
A Trust-Based Approach for Data Sharing
in the MQTT Environment

Liang Chen∗, Stilianos Vidalis∗ and Su Yang†
∗Department of Computer Science, University of Hertfordshire, Hatfield, UK

†Department of Computer Science, Swansea University, Swansea, UK

Abstract—Internet of Things (IoT) is considered as a giant
network of connected devices who collect data and share them
with each other. There has been extensive developments on IoT
standards and protocols that enable IoT devices to exchange data
in a structured and meaningful way. Message Queuing Telemetry
Transport (MQTT) is one of such developments receiving widely
adoption for industrial applications. It is designed as a lightweight
messaging protocol based on the publish-subscribe model by
which clients publish messages to a broker who is responsible
for distributing the messages to subscribed clients. MQTT is
often deployed in a hostile environment in which IoT devices
and brokers are vulnerable to attacks. While security for MQTT
has received great attention, it does not adequately address the
authorisation issues within a decentralised MQTT environment.
Existing work adopts policy-based approaches to regulate data
sharing across multiple brokers, which we believe, are unlikely
to scale well. In this paper we propose a trust-based approach
that can be easily incorporated into the existing implementation
of MQTT broker. We introduce a way of computing trust rating
of brokers and develop two means of using the trust ratings to
control data flow across multiple broker domains. Our approach
is capable of detecting and blocking malicious clients and brokers
from sending false or malicious messages into the system.

I. INTRODUCTION

The Internet of Things (IoT) represents the vast amount of
devices that connect to the Internet to exchange information
in real time. In general, any device that is capable to send
and receive data over a network is considered to be an IoT
device. This includes laptops, smartphones, TV, thermostats,
but also resource-constrained sensors, microcontrollers and
actuators. IoT solutions are enabling new ways to improve
efficiency, flexibility, and productivity, which is evident from
the buzzword “smart” appearing in the front of key areas: city,
roads, homes, farming, health and logistic depots.

There has been extensive developments on IoT standards
and protocols that enable IoT devices to exchange data in
a structured and meaningful way. One of the most widely
adopted protocols in IoT is Message Queuing Telemetry Trans-
port (MQTT) [1]. MQTT is a lightweight and scalable messag-
ing protocol, designed specifically for connecting a large scale
of resource-constrained devices. It works on the principles of
the publish-subscribe model to decouple the message sender
(publisher) from the message receiver (subscriber). Instead, a
third component, called a broker, filters all incoming messages
from publishers and distribute them correctly to subscribers.

The more devices are connected to the Internet, the more
attractive the data becomes for cyber attacks. The MQTT

protocol specifies a few security mechanisms such as authenti-
cation of users and devices, authorisation between clients and
the broker, integrity and confidentiality of message packets,
but the way of implementing these mechanisms is up to
application developers [1]. In this paper we have specifically
examine the authorisation solutions provided by the modern
implementations of MQTT brokers1. It turns out that access
control lists and OAuth2.0 are among the most popular
ones. Their implementation guidelines, however, introduce
these authorisation solutions only for a single broker context,
from which it is not obvious how they can be extended to
a decentralised MQTT environment where multiple brokers
connecting to each other for data sharing. Typically, such
environment exhibits the following characteristics:

• The resource-constrained IoT devices running at hostile
environments are vulnerable to security attacks such as
becoming malware spreading false information into the
IoT network.

• Data are often shared among devices belonging to differ-
ent security domains controlled by different local brokers.
In other words, one device may share data with another
who is not known in advance.

Existing work use a policy-based approach (either imposing
information flow policies [2] or attribute-based authorisation
policies along with user preference [3]) to regulate data sharing
in such a decentralised MQTT environment, which we believe,
are unlikely to scale well and suffer from policy administrative
burden. Trust management appears to be a natural approach,
but as far as we are aware, has not been proposed yet. Such
considerations are the focus of this paper. More specifically,
we summarise our contributions as follows:

• We take the principle of OAuth2.0 to introduce the
concept of authorisation token that is a set of permissions
granted to IoT devices for publishing and subscribing to
message topics. This token-based approach for authorisa-
tion is compliant with existing MQTT implementations.

• We propose a subjective trust model to compute the
trustworthiness of brokers in terms of proper management
of their devices and authorisation policies. When a broker
receives a message publishing request along with its
authorisation token, it determines whether to accept the
token by evaluating the trustworthiness of brokers who
signed the token.

1MQTT software: https://mqtt.org/software/



• We propose two ways of evaluating the acceptance of
an authorisation token throughout the broker network,
reflecting different degrees of security we can enforce
for the decentralised MQTT environment.

II. BACKGROUND

In this section we describe relevant background materials
on the MQTT and subjective trust assessment.

A. MQTT

MQTT is the most popular messaging protocol for the
Internet of Things (IoT), being used in a wide variety of
industries ranging from automotive, smart home, logistics to
manufacturing. It employs the publish–subscribe architecture
for messaging and data exchange between IoT devices. An IoT
device (named client) send (publish) messages on a topic to a
server (named broker) that is responsible for distributing the
messages to clients who previously subscribed for the given
topic. Fig. 1 shows a star topology of the MQTT publish-
subscribe architecture in which clients are decoupled from
each other and the connection between them is handled by
the broker.

Fig. 1. MQTT publish-subscribe architecture

An interesting concept in MQTT is the topic filter which is
an UTF-8 string that the broker uses to filter messages for each
connected client. The topic filter consists of one or more topic
levels and each topic level is separated by a forward slash. An
example of a topic filter is home/+ /bedroom/#, where both
+ and # are wildcard covering single level and multiple levels
respectively. Note that a client can use wildcard to subscribe to
multiple level of topics. For example, if a client is subscribed
to topics: home/+ /bedroom/#, it means that it can listen
to all messages regarding to the bedroom at all floors (+)
and everything that is in there (#). On publishing messages,
a client can send a message (21.5°C) under a specific topic
(home/secondfloor/bedroom/temperature) that is used by
the broker to forward the message to all subscribed clients.

It is important to observe that publishing clients cannot use
wildcard characters in the topic names they publish.

MQTT provides some important features including Quality
of Service (QoS) which gives clients the power to choose a
level of service that matches its network reliability and appli-
cation logic. The message broker manages the re-transmission
of messages and guarantees delivery according to the levels
clients chosen. A detailed study of features provided by the
latest version of MQTT (MQTT v5.0) can be referred to the
standard document [1].

B. Trust Model

While many more complex trust models exist, we adapt
Josang’s widely used Subjective Logic based approach [4],
which is a relatively straightforward model grounded on
Bayesian principles.

An opinion held by an agent x about agent y regard-
ing issue i is a tuple ωx

y:i = ⟨αx
y:i, β

x
y:i, γ

x
y:i, δ

x
y:i⟩, where

αx
y:i + βx

y:i + γx
y:i = 1 and δxy:i ∈ [0, 1]. The values of αx

y:i,
βx
y:i and γx

y:i represent the degrees of belief, disbelief, and
uncertainty regarding the proposition that the agent y will
behave as x expects with respect to issue i. The base rate
parameter δxy:i represents the a priori degree of trust that the
agent x concerned has about y, before any direct evidence has
been acquired.

Opinions are formed and updated using binary assessments
of past performance: rxy:i, being the positive experiences
with y regarding issue i; and sxy:i, being those assessed
as negative. An agent x’s opinion may then be computed:
αx
y:i = rxy:i/(rxy:i + sxy:i + 2); βx

y:i = sxy:i/(rxy:i + sxy:i + 2); and
γx
y:i = 2/(rxy:i + sxy:i + 2). For an initial opinion with no evi-

dence, therefore, αx
y:i = 0, βx

y:i = 0, γx
y:i = 1, and δxy:i is typi-

cally set to 0.5. Given an opinion computed about y regarding
i, a single-valued trust rating, which can be used to rank and
compare individuals, can be obtained: τxy:i = αx

y:i + δxy:i · γx
y:i.

III. OUR TRUST-BASED APPROACH

A. Authorisation Tokens

An MQTT client can basically do two things after it has
connected to a broker: publish messages and subscribe to
topics. Without proper authorisation, each authenticated client
can publish and subscribe to all available topics, includ-
ing malicious clients. Since MQTT is often deployed in a
hostile communication environment, the standard advocates
the provision of an authorisation mechanism that is capable
of restricting clients to publishing and subscribing to only
authorised topics.

The MQTT clients may be resource-constrained devices
and have limited computation power, thus an authorisation
mechanism needs to be implemented on the broker side.
Such a mechanism would provide an authorisation decision by
evaluating an access request with respect to an authorisation
policies. To define authorisation policies, we use a capability-
based approach which has been extensively studied for authori-
sation in the IoT context [5]. Also, the latest implementation of
authentication and authorisation for MQTT [6] advocates the



use of OAuth 2.02, which is a capability based authorisation
delegation protocol.

We follow the principle of OAuth 2.0 to assume the exis-
tence of an authorisation server (AS) who is responsible for
registering clients and managing authentication and authorisa-
tion policies on behalf of a broker. When a client registers with
AS, AS will issue an authorisation token (AT) which defines
a set of permissions granted to the client. In other words, an
authorisation token simply enumerates all authorised requests
with respect to the client. In this paper we do not focus on how
AS authenticate a client for it to issue an AT, which depends
on many different factors such as client ID, trustworthiness,
location of client, client owner’ policies, etc. Fig. 2 shows the
authentication and authorisation flow for a client connecting
to a broker. To simplify our discussions for multiple brokers
case later, we say that AT is issued by a broker instead of AS
from now on.

Fig. 2. Client authorisation flow in MQTT

Let F be a set of topic filters. Given two topic filters,
f, f ′ ∈ F , we write f ⊆ f ′ if the topics contained in
f is a subset of topics contained in f ′. For example, let
f = home/+ /bedroom/# and f ′ = home/#, we have
f ⊂ f ′. Let C be a set of clients. We define an AT as a
tuple ⟨b, c, S, Fp, Fs⟩, where b is a broker issuing the AT, c is
the client who receives the token, S is a set of brokers who
digitally sign the token, and Fp is a set of topic filters that c is
permitted to publish, and Fs is a set of topic filters to which
c is permitted to subscribe. In a single broker environment,
S = {b}, which means AT is issued and signed by the
single broker b, but the structure we defined is for a general
case where AT may be signed by multiple brokers when
it goes through the broker network. We study the general
case in the next section. Let us now take an example of
AT = ⟨b, c, {b}, Fp, Fs⟩, where Fs = {home/firstfloor/#},
and Fp = {home/groundfloor/kitchen}, suggesting that
client c is authorised to publish a message on the topic
(home/groundfloor/kitchen) and to subscribe to all topics
under home/firstfloor .

Given a request from client c to publish a topic message
f :m, denoted by reqp(c, f :m), we say that reqp(c, f :m) is
granted by broker b if c holds an AT = ⟨b, c, {b}, Fp, Fs⟩ and
there exists f ′ ∈ Fp such that f = f ′. Given a request from
client c for subscribing to topics f , denoted by reqs(c, f),
we say that reqs(c, f) is granted by broker b if c holds an

2OAuth 2.0: https://oauth.net/2/

AT = ⟨b, c, {b}, Fp, Fs⟩ and there exists f ′ ∈ Fs such that
f ⊆ f ′.

B. Messaging Across A Broker Network

In a complex IoT deployment, brokers are connecting with
each other to form a broker network, in order to facilitate
data sharing between clients across different domains. Our
approach to controlling data sharing across a broker network is
simple with little change of the original MQTT specification.

Fig. 3 shows an example of a broker network in which red
nodes represents clients and green nodes represent brokers.
Broker b1 connects to two brokers b2 and b3, and b3 connect
to b4 and b5, which is reflected as edges in the network.
We assume that each client can only be registered with one
broker at a time. After authenticating with the broker, the client
receives an AT from that broker which defines the topics it is
allowed to publish and subscribe to. When a client publishes a
message on a topic, the client may not aware that the message
will be shared by the broker to clients in other domains,
because clients are authorised to publish a message on a topic,
not concerning with the receivers. That is the principle of
decoupling with the publish-subscribe model.

For two connected brokers, they register with each other
and receive an AT from each other. For example, when b2
registers with b1, b1 treats b2 as one of its clients and issues
an AT defining the topics to which b2 is permitted to subscribe,
which is in the form of ⟨b1, b2, S, ∅, Fs⟩. It would be the same
semantics when b1 registers with b2. Note that the AT a broker
receives only contain subscription permissions not publishing,
that is because the role of broker is to manage authorisation
and to forward messages to its authorised clients.

Given a broker b, we have set up two-way message flow
through b. One is from neighbouring brokers who forward
“inbound” messages to which b is subscribed. The other way
is that b forwards “outbound” messages to its neighbouring
brokers on the topics they have subscribed to. With our
approach, a message may go through one broker to another,
enabling the communications of clients in different domains.

We now use the example in Fig. 3 to explain how each
broker b makes a decision on whether to distribute an arriving
message to its subscribed clients and brokers. When broker
b1 receives a request of publishing a message from one of its
clients c, it checks the request against the token AT held by
c. If the token is valid and permits the request, the message
is forwarded to its subscribed clients at b1. Note that these
requests are evaluated according to the mechanism we defined
in Section III-A. If broker b2 is subscribed to the topic
associated with the message, b1 forwards the request along
with the AT to b2. Broker b2 treats the request and AT as if
coming from its own clients but perform specific operations
for checking the acceptance of AT as follows:

1) Evaluate validity of AT by verifying the signature of b1
on the token;

2) Compute trust rating of trust(b1, b2) which represents
b2’s opinion on the trustworthiness of b1 in term of
proper management of its authorisation policies;



Fig. 3. Example of a broker network
Fig. 4. Example of a weighted graph

3) If trust(b1, b2) ⩾ π, where π is a trust threshold defined
globally by the system, then b2 signs the AT. This acts
as an “introducer” of b1 to other b2 connected brokers;

4) Distribute the message to its subscribed client and for-
ward the request and updated AT to its connected brokers
b4 other than b1.

Assume that broker b4 is also subscribed to the message. When
b4 receives the request and AT, it performs the same operations
as described above, but if trust(b2, b4) < π, should b4 reject
the request, or accept and forward it further down the network?
Before exploring this question, let us first figure out how to
assess brokers’ trustworthiness.

C. Computing Trust Ratings

The trustworthiness of brokers is a building block for
determining whether an AT is acceptable. Our approach to
evaluating broker’s trustworthiness is able to detect and elim-
inate malicious or compromised brokers in a network.

The trust rating of a broker bi by broker bj , denoted by
trust(bi, bj), represents how much bj trusts bi to manage
authorisation for its clients properly. This is reflected by bj’s
previous interactions with bi regarding to the “quality” of
data being received from bi. Let Hj

i be a history of message
publication events held by broker bj , whose members are
the form of ⟨bi,m, f⟩, representing that a message m on
the topic f was authorised to be forwarded from broker bi.
Given a history Hj

i , broker bj may evaluate history events:
Ej : Hj

i → {pos, neg}. Through this function, therefore, an
observed event ⟨bi,m, f⟩ ∈ Hj

i may feed positive or negative
trust updates. If b2 deems the message m being good quality,
which means it was indeed the information that bj is expected
to receive, then it results in a positive update, while a negative
update otherwise. One of our prioritised future work is to
specify how Ej works, which depends on many factors. An
obvious one may be the direct feedback from bj’ clients who
subscribed to the topic message f :m. These feedback may be
supplied by the owners whose IoT devices (clients) deployed
at broker bj .

Given Ej function, we like to capture a situation in which
trust increases gradually by positive experience in interactions
and drops significantly by a negative experience. For each h ∈
Hj

i such that Ej(h) = pos, we have rji = rji + 1. When

there exists h ∈ Hj
i such that Ej(h) = neg, we make sji =

sji + µ, where µ ∈ Z and µ > 1. The choice of µ makes sji
grows quicker when a negative interaction occurs. Broker bj
may periodically calculate trust(bi, bj) = αj

i + δji · γ
j
i , where

αj
i , γ

j
i , δ

j
i are calculated based on rji and sji .

D. Making Decisions

In Section III-B, we have not explicitly presented how a
broker makes a decision on whether a publishing request
and AT is acceptable. A straightforward approach is for the
broker to check whether its neighbouring brokers have signed
the token and evaluate the trustworthiness score of these
brokers. Formally, we construct a directed acyclic weighted
graph G = ⟨B,E, T ⟩, where B is a set of brokers, and
T : E → [0, 1] is a function mapping directed edges to their
trust rating. Given an edge e = (b, b′) ∈ E, b is said to be
adjacent to b′ and b′ is said to be adjacent from b. Given a
broker b ∈ B, we write

−→
A (b) = {b′ ∈ B : (b′, b) ∈ E} to

represent a set of brokers that are adjacent to b. Essentially,
T (e) = trust(b, b′) computing the dynamic trust rating of b by
b′. Given an AT = ⟨b, c, S, Fp, FS⟩, each broker b′ ∈ B, who
receives AT , would accept it if there exists b′′ ∈

−→
A (b′) such

that b′′ ∈ S and trust(b′′, b′) ⩾ π, and reject it otherwise. It
simply means that the broker b′ would accept the token AT
only if one of his trustworthy neighbours has signed the token.
In other words, broker b′ only trusts the introducers who are
directly connecting to her and have positive interactions with
her in terms of authorised message exchange. This approach is
intuitively reasonable but it may be too restrictive for message
dissemination in the MQTT environment.

In the following we introduce a less restrictive approach
that allows a broker to forward messages to other brokers
without the need of signing the AT. We introduce a local
threshold θj ∈ [0, 1] whose value is determined by broker bj ,
representing the minimum trust value for bj to accept the AT .
Of course, we require that θj ⩽ π which means that broker bj
can accept the token but not wish to sign it. Given a directed
acyclic weighted graph G = ⟨B,E, T ⟩, a path between b1
and bn is a sequence of brokers b1, b2, . . . , bn such that each
consecutive pair (bi, bi+1) ∈ E and 1 ⩽ i < n. Then we
define a trust rating of b1 by bn along the path b1, . . . , bn to
be the average of all the edge trust ratings along the path,



that is
∑n−1

i=1 trust(i, i + 1)/n − 1, denoted by trust(b1, . . . , bn).
Note that there may be many paths between b1 and bn, each
of which may have different trust ratings. One or more of
these paths has the minimum trust rating, which we call least-
trustworthy path. Given that an AT = ⟨b1, c, S, Fp, Fs⟩ arrives
at broker bn, bn would accept AT if there exists b ∈ S such
that, among all the paths from b to bn, the least-trustworthy
path b, . . . , bn whose rating trust(b, . . . , bn) ⩾ θn. In other
words, when bn receives the token AT , it determines whether
to accept it by checking if there is a broker b who signs the
token and the minimum trust rating path from b to bn is over
the threshold θn. The rationale for bn to check on the least-
trustworthy path from b is to emphasise safety, which means
when bn decides to accept the token, it makes sure that there
does not exist a path from b to bn whose trust rating is less than
threshold θn. Of course, we can further impose a condition,
like PGP [7], requiring at least two or three signers from whom
the least-trustworthy path to bn is over θn.

Let us take the example in Fig. 4. Suppose that b6 receives
a token AT = ⟨b1, c, {b1, b2, b3}, Fs, Fp⟩ and θ6 = 0.5. b6
decides whether to accept the AT by looking at the least-
trustworthy paths from b1, b2 and b3. Let us assume that b6 first
evaluates the path b2, b4, b6 whose trust(b2, b4, b6) = 0.45,
which is less than θ6. It then evaluates two paths from b3, that
is b3, b4, b6 and b3, b5, b6. We can see that the least-trustworthy
path between b3 and b6 is b3, b4, b6 and the trust rating for this
path trust(b3, b4, b5) = 0.4 which is less than θ6. Finally b6
looks back at the paths from b1. There are three paths between
b1 and b6: b1, b2, b4, b6, and b1, b3, b4, b6, and b1, b3, b5, b6, two
of which are the least-trustworthy paths, that is b1, b2, b4, b6
and b1, b3, b4, b6. The trust rating of the two paths is the same
which is 0.5 equals to θ6. Thus b6 would accept the token and
distribute the message to its subscribed clients.

Note that the problem of checking the acceptance of to-
ken by a broker essential reduces to computing the least-
trustworthy paths from signers of the token to the broker.
Intuitively, no broker has complete information about the trust
rating of all network edges. Instead, each broker begins with
only the knowledge of the trust ratings of its own directly
connected brokers. Then, through an iterative process of
calculation and exchange of information with its neighbouring
brokers, a broker gradually computes the least-trustworthy
path to a destination or set of destinations (token signers).
These are the features of the Distance-Vector (DV) routing
algorithm [8] which is based on the celebrated Bellman–Ford
equation, namely: dx(y) = minv{c(x, v)+ dv(y)}, where the
minv in the equation is taken over all of x’s neighbours. We
use the DV algorithm to calculate the least-trustworthy paths
in an asynchronous and iterative manner, in order to effectively
make decisions for token acceptance.

IV. CONCLUDING REMARKS

We are running an experimental evaluation of our trust-
based approaches, which is divided into two parts. The first
part is to implement our proposed mechanisms on the top of an

open source MQTT broker (Eclipse Mosquitto3). The second
part is to simulate an evaluation environment where clients and
brokers exhibiting different profiles, such as honest, malicious,
and even colluded brokers who manipulate their trust ratings.
With populating a reasonable number of nodes for the broker
network, the simulation would give a thorough assessment of
the effectiveness of our trust-based approach.

In terms of related work, there exists a sizeable body
of study on proposing security models for preserving confi-
dentiality for the general publish-subscribe middleware sys-
tems [9]. One of the work closed to ours is due to Pesonen et
al. [10] who use the SPKI authorisation certificates for propa-
gating authorisation across different domains. We believe that
the discovery of SPKI/SDSI certificate chain is a special case
of our approach, that is finding a path along a set of brokers
all of which are required to be signers of a token, but does
not require explicit trust calculation and assessment among the
brokers. In other words, our approach is more flexible and able
to detect compromised clients and brokers by assessing their
trustworthiness. Another strand of work related to ours is the
study of authorisation for MQTT [2], [3] and its cryptographic
enforcement [11], none of which however incorporates the
concept of trust for a fully decentralised MQTT environment.

In this paper, we take such an initiative to develop a flexible
trust approach that is compliant with MQTT standard and
available implementations. In particular, we provide a means
of computing a trust rating between two neighbouring brokers,
and explore two ways of using these trust ratings to control
data sharing in a multi-broker network.

REFERENCES

[1] “MQTT version 5.0,” OASIS, Standard, March 2019.
[2] J. C. F. Carranza and P. W. L. Fong, “Brokering policies and execution

monitors for IoT middleware,” in Proceedings of the 24th ACM Sympo-
sium on Access Control Models and Technologies, 2019, pp. 49–60.

[3] P. Colombo, E. Ferrari, and E. D. Tümer, “Regulating data sharing across
MQTT environments,” Journal of Network and Computer Applications,
vol. 174, p. 102907, 2021.

[4] A. Jøsang, R. Hayward, and S. Pope, “Trust network analysis with
subjective logic,” in Proceedings of the 29th Australasian Computer
Science Conference, 2006, pp. 85–94.

[5] S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based security
approach to manage access control in the internet of things,” Mathemat-
ical and Computer Modelling, vol. 58, no. 5-6, pp. 1189–1205, 2013.

[6] M. Michaelides, C. Sengul, and P. Patras, “An experimental evaluation
of MQTT authentication and authorization in IoT,” in Proceedings of
the 15th ACM Workshop on Wireless Network Testbeds, Experimental
evaluation & CHaracterization, 2021, pp. 69–76.

[7] A. Abdul-Rahman, “The PGP trust model,” EDI-Forum: the Journal of
Electronic Commerce, vol. 10, no. 3, pp. 27–31, 1997.

[8] C. Hedrick, “Routing information protocol,” Network Working Group,
RFC 1058, June 1988.

[9] E. Onica, P. Felber, H. Mercier, and E. Rivière, “Confidentiality-
preserving publish/subscribe: A survey,” ACM Computing Surveys,
vol. 49, no. 2, pp. 27:1–27:43, 2016.

[10] L. I. W. Pesonen, D. M. Eyers, and J. Bacon, “Access control in
decentralised publish/subscribe systems,” Journal of Networks, vol. 2,
no. 2, pp. 57–67, 2007.

[11] K. Spielvogel, H. C. Pöhls, and J. Posegga, “TLS beyond the broker:
Enforcing fine-grained security and trust in publish/subscribe environ-
ments for IoT,” in Proceedings of the 17th International Workshop on
Security and Trust Management, vol. 13075, 2021, pp. 145–162.

3Eclipse Mosquitto: https://mosquitto.org/


