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Abstract—This paper investigates the recent advances in 
Digital Twin technologies. The aim is to compare the 
approaches, available open source and proprietary technologies 
and methods, their features, and their integration capabilities. 
The motivation is to enable better design decisions based on the 
available literature and case studies. Various tools for 3D 
reconstruction and visualisation, IoT and sensor integration, 
Physical simulations and other complete platforms provide 
complete solutions. A conclusion of current challenges and 
future work identified that the lack of standardisation and 
interoperability makes the life-time of a digital twin short, with 
a high cost and time to build and rebuild if required. 

Keywords— Digital Twins, 3D reconstruction, Simulation, 
Causal analysis. 

I. INTRODUCTION 

Digital Twins (DTs) technologies emerged from flight 
simulations in the 2010s and can be dated back to Kalman 
Filters algorithms from the 60s of the last century. A DT is a 
digital representation of a Physical entity or Cyber-Physical 
System (CPS) containing a geometry model that enables 3D 
reconstruction to enable design optimisation, traces (timed 
events) for real-time monitoring, aggregated data from 
sensors or history for predictive maintenance and functions to 
control the services of the CPS and maintain and optimise it. 
DTs matured over the last few decades due to the availability 
of large deep learning models ready to work on the substantial 
available datasets from the widespread Internet of Things 
(IoT) devices and sensors, Programmable Logic Controllers 
(PLC), and other real-time data streams. Virtual Reality and 
Augmented Reality technologies are not only for games and 
social networks but also have widespread applications in 
healthcare, manufacturing, avionics, smart cities, 
construction, aerospace, logistics, energy and power, 
communications and transportation. A digital model such as 
in AutoCAD would simulate all requirements before actual 
manufacturing, and the reverse process is feasible through 3D 
reconstruction from images and videos. Bi-directional 
communication between the digital and physical twins 
enables continuous development and maintenance. In silico, 
the digital twin can simulate to produce synthetic data using 
known models, while, in reality, the Physical twin sends 
information for analysis to infer models and update 
knowledge about the asset being studied. Control of a 
Physical asset can then be optimised by choice of the most 
appropriate model, sensors and their placement, maintenance 
requirements, and feasible upgrades to avoid hazards or 
optimise performance [1]. 
 

This review presents the theoretical foundations required to 
enable DTs development, models’ libraries, and available 
technologies, followed by use cases in various sectors. Given 
the availability of various tools and approaches, new adoptees 
of DT technologies would find it challenging to identify a 
suitable approach. This review aims to introduce and compare 
the latest advances in the field and facilitate their adoption 
based on the needs of a given asset type and its environment.   

II. LITERATURE REVIEW 

Previous surveys explained the key notations such as [2] 
characterised 13 key terminologies and associated processes 
as follows: Physical Entity/Twin; Virtual Entity/Twin; 
Physical Environment; Virtual Environment; State; 
Realisation; Metrology; Twinning; Twinning Rate; Physical-
to-Virtual Connection/Twinning; Virtual-to-Physical 
Connection/Twinning; Physical Processes; and Virtual 
Processes. A display DT will only visualise the Physical asset 
it represents. A simulation DT requires Physical models as 
well to simulate the physical environment conditions around 
the physical asset as read from the sensors attached. While a 
Causal DT further models the interactions between various 
DTs and their environment from acquired sensor data about 
features and states to identify cause-effects mapping [3]. The 
different DT Types can be thought of as hierarchical in nature 
in terms of what technologies each type requires to build it. 
The Display DT is the base type that needs to be built using 
3D geometry methods and visualisation platforms. The 
simulation DT builds on top of it defining functions and 
processes. Finally, the Causal DT will use various methods 
from ML and control algorithms to predict and optimise the 
DT. This is illustrated in Figure 1. 

 

 

Figure 1: DT Types and their requirements 



A product life-cycle for building a DT project is identified in 
[4] containing stages of Imagine, Define, Realise, 
Support/Use, and Retire/Dispose. The Imagine and Define 
phases received less attention in recent research endeavours. 
Although, if not appropriately planned, considerable time and 
cost can be wasted in implementing detailed functionality that 
could have been best approached using different platforms, 
technologies and algorithms. CPS domain experts would 
specify a choice of functional requirements, along with various 
properties of the environment and possible data 
communication details in the Define stage. In the Realise 
stage, a main concern is data ownership and security, whether 
in the communication protocol choice and setup or the data 
storage and shared access. Another concern in the Realise 
stage and its testing phase is the performance metrics required 
to evaluate the performance of the DT. A simulation DT 
requires the highest levels of fidelity with the CPS, such as the 
simulation environment, and its results precisely measure the 
physical environment. Performance metrics include network, 
computing speeds, and ML model accuracy in estimating the 
CPS state vector or predicting future states. For example, a 
high-fidelity DT model can be useful in forensics when 
aggregated data are shared with insurance companies to 
investigate a car accident’s causes, and DTs prediction 
matches physical environmental conditions. More 
performance measures are discussed in the conclusion section. 
Identifying the end of life of a DT model to retire and dispose 
of it happens when a malfunction is identified that can not be 
fixed, or a required improvement or feature can not be 
implemented using DTs current technologies. The ongoing 
interoperability research endeavour might enable a plug-and-
play of different tools and technologies when required. A final 
decision on migration to another platform or technology might 
be possible with new tools as they come up. This might create 
a cycle from the define stage, then realise, support, and then 
retire/migrate stage, as illustrated in Figure 2. 

 

Figure 2: A DT LIfe Cycle Design Decisions with Possible 
Continous Integration/Continous Development 

From various references [5]–[8], it does not seem that DT 
development has its own standards from any standardisation 
bodies as of the time of writing this review. However, a joint 
subcommittee from the International Organization for 
Standardization (ISO), the International Electrotechnical 
Commission (IEC), ISO/IEC JTC 1/SC 41 is currently 
developing a standard specific to DT technologies. 

DT development evolved from various existing technologies, 
each with its own standards, such as IoT reference architecture 
ISO/IEC 30141, and domain-level standards, such as  ISO TC 
184/SC4 for Automation/Integration of industrial data for SO 
TC 184/SC4. Many other components have their own 
standards, such as systems modelling, security, 
communication protocols, data formats, and visualisation, 
among others. 

 
 

 
Theoretical Foundations: 

The same theoretical foundations for machine learning 
(ML) are required to enable DT Technologies at the third level 
of Causal DTs and predictive control. As identified in [9], the 
required foundation range from basic probability theory, linear 
algebra, optimisation, various ML algorithms and deep 
learning architectures and models, differential equations, 
stochastic differential equations, Inverse Problems, finite 
element analysis and uncertainty quantification using 
Bayesian models or Kalman Filters. The book reviews these 
concepts in enough detail required to get started with example 
code from various programming languages and environments 
and also references other books from which more depth or 
details can be studied.  

All traditional AI models, and recent advances in Artificial 
Neural Networks (ANN) with their various complex 
architectures, learn from data (observations or features) a 
mapping function to a required target. If the features are effects 
and the target is the cause of these effects, this is known as 
Causality or causal analysis. Causal analysis is mathematically 
formulated in various approaches. IoT devices and sensors 
provide many environmental observations related to the 
physical asset being simulated by a DT. Studying these 
observations to identify the cause of a particular effect (such 
as the state vector of the asset) is an inverse problem 
formulated in the opposite direction (effects to causes), which 
is the reverse of the direct mapping (causes to effects). 
Bayesian modelling and Kalman Filters are widely adopted in 
DTs. A Graphical model approach has been applied in [3] to 
enable prediction and control at a scale between digital and 
Physical assets. Kalman Filter Algorithm has been used for 
causal analysis of DTs in [10]. In comparison, a Recurrent 
Neural Network model has been employed in [11], producing 
similar estimations to those provided by Kalman Filter models, 
particularly for linear models.  

Also, Adaptive Control Systems such as Fuzzy Logic, ANN, 
Evolutionary Algorithms, and Complex Systems are useful for 
Data-Driven Control as opposed to Model-Based Control 
discussed next [12]. The technologies compared below would 
use the mathematical model of each algorithm when needed 
without re-implementing from scratch.  

Digital Twin Data (DTD) is a term coined with DT-related 
data to manage various processes such as comprehensive data 
gathering, storage, mining, multi-modal fusion and 
association, interaction, iterative optimisation, servitisation 
(make available for a fee), universality, and on-demand usage. 
This data is classified into six types: physical entity-related 
data, virtual model-related data, service-related data, fusion 
data, connection data, and domain knowledge [13]. 

Models Libraries 

A DT can be derived from a user-derived model, matching the 
nearest model from a model library or by being data-driven 
entirely. The various IoT cloud providers allow users to define 
their DTs using various interfaces and modelling languages. 
MS Azure, for example, uses a Digital Twin Definition 
Language (DTDL) to enable users to define their own models 
in their own vocabulary, using existing models to inherit from 
or interact with drawing a graph of DTs. The work in  [1] 
compared the modelling languages of MS Azure, AWS and 
Eclipse DT platforms and attempted standardising them with 
Object Oriented Unified Modelling Language (UML) to 
facilitate interoperability and migration. Other platforms’ 
modelling processes will be reviewed in the next section. 

Physical Models of the services performed by the CPS 
must also be integrated with the DT model. This requires close 
collaboration between the DT developer and the CPS expert. 

 



For example, a car DT will require kinematic engines to 
simulate a driving mechanical engine model to simulate the 
engine dynamics and maintenance requirements, among many 
other sensors and IoT devices that can be attached to provide 
real-time control and optimisation. A review of Model-based 
predictive control mathematical and physical literature is 
found in [14]. A DT comprehensive platform is ideally 
equipped with MultiPhysics simulation environments with a 
common solver for mechanical, electrical, structural, 
chemical, and electronic processes. Alternatively, subsystems 
are addressed to reduce the model complexity. Simulation 
software includes COMSOL, SimScale, AnyLogic, Ansys and 
MATLAB® and Simulink [15]. 

Available Technologies 

3D reconstruction and visualisation are fundamental 
technology for DT building. 3D data will likely blend 
architecture, engineering, product, process, and 
Geospatial data, as well as important metadata. Existing 
models can be inherited from various computer-aided design 
(CAD), computer-aided engineering (CAE), Product Life 
Cycle Management (PLM), maintenance, repair and 
operations (MRO), Geographic information systems (GIS), 
Building Information Modeling (BIM), robotics models 
among others. Universal Scene Description (USD) is an open-
source 3D scene description that captures 3D scene contents 
for creation and interoperability between the different tools. 
Hiring Digital Artists to create a digital model from scratch 
sometimes is optimal for some developments. 

Data streams and analytics tools are well-standardised 
now. There are IoT Cloud providers, open-source to build own 
servers, and proprietary solutions for IoT Devices and 
systems. Simulation software has been used for decades for in 
silico simulation of expensive physical systems. Some are 
proprietary, and some are open source. Other tools and 
technologies are available for use and well documented, such 
as data streaming technologies like Kafka, Apache Storm and 
various databases for different objectives, visualisation and 
exploratory data analysis, machine learning models and pre-
trained models. Many studies identified pipelines of existing 
tools to provide the required functionality, and others 
produced specific methods for one of the functions.  

Use Cases 

DT has been built for various individual CPSs, such as 
people, cars, buildings, biological cells, and machines. 
Environmental monitoring requires a number of DTs 
interacting together, such as a fleet of cars, roads and their 
contents such as buildings, cars and so forth, smart energy 
grids showing demand and supply entities, and smart 
agriculture. Processes as well are represented as functions of 
hypothetical DTs, such as manufacturing processes, micro- 
and macro-economics functionalities by the different entities, 
citizen science, and Industrial Symbiosis (IS). IS monitor 
various industries’ circular use of resources such as water, 
energy, and the production of materials and byproducts to 
guarantee sustainable development [16]. 

III. METHODOLOGY 

This review aims to identify the steps to get started with DT 
technologies and compare existing platforms, tools, libraries 
and algorithms that can offer the required functionalities. 
Some identified platforms and tools are open-source such as 
OpenTwins, PhotoScene, and Eclipse. Other proprietary 
platforms exist, such as Matlab, Nvidia, Microsoft, Amazon 
Oracle, IBM Watson IoT, Siemens MindSphere, PTC 
ThingWorx, ScaleOut, Dassault Systèmes, Dassault Systèmes 
3DEXPERIENCE, GE Predix, and SAP Leonardo. The 
review includes the modelling approach, features, integration, 

and interoperability with other required technologies. A search 
was conducted through recent publications, books, and online 
publications to identify the conclusions of current studies, best 
practices, and features. For brevity, not all existing 
technologies are reviewed. A selection of ready-to-use well-
founded platforms is reviewed below. The first three are open 
source, while the rest are proprietary. 

1. Eclipse Foundation DT suite 

The Eclipse Foundation provides an open-source Digital Twin 
(DT) suite called Eclipse Ditto. It offers a framework and tools 
for building and managing digital twins. 

DT Modelling: Eclipse DT Suite is an open-source 
platform that consists of Vorto text tool for modelling DTs 
using VortoLang modelling language (a metamodel based on 
the Eclipse Modeling Framework (EMF)). VortoLang is 
composed of InformationModels that define the DT properties 
and FunctionBlocks that define the Operation, Event, 
configuration, fault, and status information.  

Other Services: Eclipse Ditto enables RESTful web 
services to the DT, and Hono or Bosch IoTHub enables device 
connections using various protocols. These tools can be 
installed on privately owned and/or self-hosted web servers.   

Use cases built using the Eclipse DT suite is diverse. Some 
organisations that have expressed interest in or contributed to 
the Eclipse Ditto project include Bosch, Siemens, SAP, 
Deutsche Telekom, and Vodafone. These organisations have a 
strong presence in manufacturing, energy, 
telecommunications, and software development industries. 

2. OpenTwins 

This is an open framework based on Eclipse Ditto DT 
modelling platform integrated with other open source 
frameworks for Unity 3D visualisation, MongoDB for DT 
Data Storage, InfluxDB for Time-series Data, Kafka data 
streaming, Grafana data visualisation, Kafka ML framework 
and other planned to integrate in the future. 

3. PhotoScene 

PhotoScene converts an image into a renderable 3D scene 
using a collection of algorithms in a pipeline [17]. 

DT Modelling: A DT is modelled from images that are then 
segmented to identify the objects it contains and textures to 
estimate scene normals. The scene normals produce a coarsely 
aligned 3D scene model. Using MaskFormer, the material of 
the objects is calculated. Generally, texture smoothing is 
performed, but PhotoScene uses 71 graphs from MATch tool 
to find the nearest match to the materials in the input image 
using VGG CNN weights to improve the material.    

4. Matlab 

Matlab is the Mathworks matrix algorithms platform rich in 
toolboxes for various robot manipulation, Physics models, 
simulations, Data visualisation, and ML models. Matlab does 
not offer a specific DT suite. However, Matlab is a widely used 
software tool in various domains, and it is utilised to build 
digital twin models and perform simulations and analysis 

DT Modelling: Matlab has toolboxes for image processing 
and computer vision that enable 3D reconstruction that can be 
used for building DT models and their environments. 

Other Services: Matlab offers diverse algorithms and 
toolboxes, such as modelling, simulation, control, 
optimisation, data analytics, data-driven ML models and 
ANNs. Also, physics-based modelling is enabled by Simulink 
to attach mechanical, hydraulic, and electrical components. 



Matlab can integrate with IoT cloud providers over various 
streaming protocols such as Kafka. 

Matlab has been employed in numerous DT development 
applications in aerospace and defence, automotive, energy, 
manufacturing, and healthcare domains. Organisations using 
Matlab include BMW and Ford for automotive DTs and 
General Electric (GE) for energy-related DT models. Also, 
Siemens used Matlab to build DTs for assembly lines and 
production workflows to analyse and improve system 
performance, reduce downtime, and enhance overall 
efficiency. ABB used Matlab to create virtual models of 
robotics for real-time automation and control. Bosch used 
Matlab to build DTs for CNC machines (Computer Numerical 
Control) used for precision machining operations and 
assembly systems. 

Siemens Healthineers used Matlab to build DTs for medical 
imaging devices such as X-ray, computed tomography (CT), 
and magnetic resonance imaging (MRI) systems. They 
integrate physical system parameters, sensor data, and imaging 
algorithms to simulate and optimise imaging workflows. 

 

5. Nvidia Omniverse 

Nvidia is another proprietary hardware and software provider 
that produced Omniverse with owned platforms.  

DT Modelling: Omniverse is founded on USD 3D standards 
that can migrate 3D assets from various sources that can scale 
well. Robot models can also be used from NVIDIA 
Issac Sim. The foundation of NVIDIA Omniverse is built upon 
NVIDIA’s high-performance graphics processing units 
(GPUs) from the RTX series. Material Definition Language 
(MDL) is NVIDIA’s language for describing and defining 
materials in a physically based manner. MDL facilitates the 
accurate representation of light interactions, reflections, and 
other optical characteristics. NVIDIA OptiX is a ray tracing 
framework used within Omniverse to simulate light and 
generate photorealistic renderings. 

Other Services:  Omniverse provides real-time visualisation, 
simulation, and collaboration capabilities. It also offers a 
development environment to build apps and microservices. 
Physics models for simulation can be built using Physx open 
source, migrated from open source NVIDIA Modulus, or other 
physics solvers such as SimScale and Kitware ParaView. 
Other valuable platforms include NVIDIA Metropolis for 
computer vision and ML APIs.  

Use cases of DT models built using NVIDIA Omniverse vary 
across various domains such as Architecture, Engineering, and 
Construction (AEC), Autonomous Vehicles and Robotics, 
Manufacturing and Industrial Processes, Smart Cities and 
Urban Planning, and Energy and Utilities. NVIDIA has 
partnerships with several automotive companies, such as 
BMW, Volkswagen Group, Audi, Toyota, and Volvo, but not 
clear if they used it to build automotive DTs. 

6. AWS IoT TwinMaker 

Amazon Web Services (AWS) enable developers to build 
DT models of physical devices or assets, making monitoring, 
managing, and optimising those assets remotely more 
accessible.  

DT Modelling: AWS IoT TwinMaker enables DT model 
specification using APIs and JSON REST requests. The model 
is defined as a ComponentType with properties as tags and 
PropertyDefinitions. Functions are defined as well using 
DataConnector to function implementation. 

Other Services: Data communication is enabled over 
RESTful web services and APIs. The platform also enables 3D 

visualisation of the CPS and its physical space. AWS 
Greengrass enables connections to various devices, and 
custom dashboards can be designed for end-users. AWS 
platform includes key services such as Real-time data 
ingestion and analysis, Predictive analytics and machine 
learning algorithms, and integration with other AWS services, 
including IoT Core, Lambda, and S3. 

Use cases of DTs built using AWS technologies include 
applications in predictive maintenance for industrial 
machinery and equipment, remote monitoring and control of 
smart buildings and infrastructure, optimisation of energy 
usage and resource allocation, and real-time tracking and 
monitoring of vehicles, assets, and supply chains. Example 
client organisations using AWS IoT TwinMaker include 
Siemens, which used AWS IoT TwinMaker to create a digital 
twin of a gas turbine to optimise performance and reduce 
maintenance costs. Shell used AWS IoT TwinMaker to 
develop a predictive maintenance solution for offshore oil and 
gas platforms. Philips Lighting used AWS IoT TwinMaker to 
create digital twins of streetlights for remote management and 
optimisation. 

7. MS IoT Hub and Azure DTs 

Microsoft Azure IoT Hub and Azure Digital Twins (ADTs) 
utilise a combination of technologies, tools, and algorithms to 
build and manage Digital Twins. 

DT Modelling: ADT cloud services offer DTDL language 
that is based on JSON format and a comprehensive set of APIs 
and tools. DTDL allow defining the model from scratch or 
inheriting from another. A model is defined by name, ID, and 
other properties. A DT model can have relationships to other 
models to exchange data, attached components as other 
models, and commands request and response.  

Other Services: Connection to devices can be performed 
using the Azure IoT Hub. Azure IoT Hub is a cloud-based 
service that acts as a central message hub for bi-directional 
communication between devices and the cloud. It provides 
secure and scalable device connectivity, data ingestion, and 
command/control functionalities for IoT solutions. IoT Hub 
supports protocols such as MQTT, AMQP, and HTTPS for 
device communication. Azure IoT Edge extends the 
capabilities of Azure IoT Hub by allowing the processing and 
analysis of data at the edge devices themselves. This is 
beneficial for scenarios where low latency, offline capabilities, 
or reduced cloud dependency are required. Azure Functions is 
a serverless computing service that allows running code 
snippets or functions in a scalable manner. It can be used to 
implement custom business logic and event-driven processing 
for IoT solutions. The platform also enables 3D visualisation 
of the CPS and its physical space. Data analysis is provided 
using various services such as Azure Time Series Insights, 
Stream Analytics, Machine Learning, Cognitive Services and 
Advanced analytics and algorithms [18]. 

Use cases of DTs built using MS Azure DT technologies span 
various domains such as Predictive Maintenance, Smart 
Buildings, Smart Cities, Energy, Agriculture, Manufacturing, 
Asset Tracking and Management. MS IoT Hub and Azure 
Digital Twins (DTs) clients include Johnson Controls in their 
OpenBlue platform for smart buildings; Thyssenkrupp created 
DTs for their elevator systems; Bentley Systems iTwin 
platform created DTs for infrastructure assets; ICONICS built 
DTs for industrial equipment and processes. Ecolab built DTs 
for water management solutions. Automotive clients for MS 
DT technologies might include Renault-Nissan-Mitsubishi 
Alliance, Volkswagen Group, BMW Group, and Volvo Cars. 

IoT Cloud Providers: Various IoT Cloud Providers 
comparisons are published in papers and blogs such as [19] 
and [20] can help identify the suitable provider for a given use-



case based on features, cost, interoperability and 
standardisation. Alternatively, building self-managed servers 
is always available and suitable for secured data storage and 
interoperability with existing systems. 

In summary, there are four major platform providers in DT 
technologies. Eclipse Foundation Digital Twin (DT) suite is an 
open-source solution, MATLAB is a versatile numerical 
computing environment, NVIDIA Omniverse focuses on 3D 
simulation and visualisation, and Microsoft Azure IoT Hub 
and Azure Digital Twins provide a comprehensive cloud-
based platform for IoT device management and digital twin 
development. The choice among these tools depends on the 
users’ specific requirements, preferences, and expertise in the 
respective domains. Table 1 attempts to provide a non-
exhaustive summary of the major industrial organisations in 
the various domains and their choices of DT providers. The 
table identifies Matlab as favoured by manufacturing and 
industrial organisations, Nvidia Omniverse as favoured by 
Automotive organisations, and MS Azure for smart buildings. 
As an open-source provider, Eclipse is favoured by 
telecommunication organisations, while some manufacturing 
organisations are interested in it. The information available in 
this table is collected from the public domain. Further details 
can be collected from the DT platform providers and/or the 
CPS organisations.  

Table 1: DTs Providers and Major Application Industries 
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One example of a DT of a car is the Z1 Dashboard software 
that is used by many manufacturers, including Porsche, in their 
911 GT3 Cup Car simulator. The digital twin includes a full 
vehicle model with all components, including the engine, 
transmission, suspension, and aerodynamics, and allows users 
to simulate and optimise the performance of the car in various 
scenarios. Generally, Porche uses DTs collected data to 
improve new generations of their cars [21], [22]. Another 
example of a DT for a smart city is Amsterdam, which is made 
available through a cell phone application [23]. 

IV. CONCLUSION 

Depending on their specific application and objectives, 
DTs can be evaluated against various performance metrics that 
the CPS domain expert needs to further specify in their 
requirements. Ten proposed metrics can be used in the 
evaluation. The effectiveness and efficiency of a DT can be 
assessed by the accuracy of its ability to replicate the 
behaviour and characteristics of the physical system. This 
includes comparing the data generated by the digital twin with 
real-time data from the physical system to ensure alignment. 
The reliability of a DT can be assessed by its availability when 
needed to provide consistent and uninterrupted insights and 
analysis, such as measuring its uptime. A DT responsiveness 
evaluates its ability to provide real-time or near real-time 
insights is crucial. Evaluating its responsiveness involves 
assessing the latency or delay in data transfer, analysis, and 
feedback between the physical system and the digital twin. A 
DTs scalability metric evaluates its ability to scale to 
accommodate larger systems or networks and handle increased 
data volumes. Evaluating scalability helps ensure that a DT 
can handle growth and expansion without compromising 
performance. A DT’s computational efficiency measures the 
computational resources required to operate the digital twin. 
Evaluating computational efficiency helps identify potential 
bottlenecks and optimise resource allocation, ensuring the 
digital twin operates cost-effectively. The predictive 
capability of a DT measures the effectiveness of its forecast 
system behaviour and makes proactive recommendations. 
Assessing the accuracy and reliability of the digital twin’s 
predictions against real-world outcomes helps measure its 
predictive capability. 

The maintenance and update efficiency of a DT measures 
the required periodic updates and maintenance to remain 
effective. Evaluating the ease and efficiency of updating and 
maintaining the digital twin helps it adapt to changes in the 
physical system or underlying technology. The cost-
effectiveness of a DT considers the overall cost of developing, 
implementing, and operating the digital twin compared to its 
value. Evaluating cost-effectiveness helps determine the return 
on investment (ROI) and the economic viability of the digital 



twin solution. Security of a DT deal with sensitive data and 
must maintain a high level of security. Evaluating the digital 
twin’s security measures and vulnerability to cyber threats 
helps protect critical systems and data. Finally, the user 
experience of interacting with a DT should be evaluated. This 
includes assessing the intuitiveness of the interface, ease of 
data interpretation, and the availability of relevant 
visualisations and actionable insights [24]. 

As reviewed in the previous sections, planning a DT project is 
challenged by many design decisions in all stages, and each 
affects the success, serviceability, and longevity of the end 
product. The various platforms, tools, and algorithms make the 
design decisions available for a new project vary from one use 
case to another. A choice might be more costly or not enabling 
future enhancements, integration with other tools, or required 
new features. The same software engineering methods for any 
computing development project are required to enable best 
practices of low coupling between components and high 
coherence within components’ contents, reusability of code, 
and change management. Interoperability and standardisation 
are still an open research gap in the current state of the art of 
DT technologies. An initial choice for a project might not be 
changed later without a considerable loss of resources. 

Future work will focus on testing these technologies using a 
few case studies, such as building a Digital Twin for a building 
or a car and comparing their performance in different 
development platforms. Research gaps exist on the wide 
adoption of these technologies to provide different synthetic 
data/real data integration approaches for various application 
domains and control scenarios. A detailed conclusion needs to 
be drawn on how intuitive the process is using the various 
technologies and how easy to integrate the created models with 
other tools such as bidirectional communication, 3D 
reconstruction, visualisation, and ML algorithms for analysis 
and predictions. Also, working towards current research gaps 
is planned, such as testing the various platforms on integrating 
various virtual entities to provide more realistic environments 
interactions rather than the simple models that ignore many 
physical factors in the environment. Once the most suitable 
platform is identified, a DT model can be built to apply 
innovative use cases for various objectives, such as reducing 
the cost of design, maintenance, reconfiguration, and risks of 
simulating new functions and interactions  
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