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Abstract

We study two central aspects of information processing in cognitive systems:
one is the ability to incorporate fresh information to already learnt models; the
other is the “trickling” of information through the many layers of a cognitive
processing pipeline. We investigate the extent to which these specific structures
of cognitive processing impact their informational optimal limits. To do so, we
present mathematical characterisations and low-dimensional numerical examples,
which explore formal properties of the Information Bottleneck method: namely,
how it relates to successive refinement, and successive coarsening of information.

1 Introduction

One of the most crucial tensions characterising the activity of embodied agents, is that between
pursuing one’s own interests, thus behaving in a purposeful and relevant manner, and doing so without
violating the constraints on cognitive processing specific to each agent and situation. The framework
of information-theoretic bounded rationality [14, 7, 18] operationalises this tension as the fundamental
trade-off resulting from the optimization of the agent’s preference, while keeping its information-
processing cost below a given bound. More precisely, on the one hand this information-processing
cost is measured with the mutual information I(X;T ) between an environmental variable X and an
agent’s representation T . On the other hand, behavioral relevancy is most often quantified with an
explicit utility function, but it can also be measured implicitly through the mutual information I(Y ;T )
that the representation T extracts about a “relevancy” variable Y . Assuming the information about Y
can be only extracted from the environmental variable X , i.e., that the Markov chain T −X − Y
holds, the representation T then solves the so-called Information Bottleneck (IB) problem [20, 8]

argmax
q(T |X) :

T−X−Y, I(X;T )≤λ

I(Y ;T ), (1)

where λ > 0 controls the complexity-relevancy trade-off — so that the solutions to (1) for varying λ
draw the optimal limits on the feasible trade-offs. Note that for the actual computation of solutions
to (1), due to the non-linearity of the constraint, one usually rather maximises the Lagrangian
I(Y ;T )− βI(X;T ), where the trade-off is now parametrised by the multiplier β.

A richer description of real-world biological and artificial agents demands taking into the picture
another key characteristic of their information-processing dynamics: namely, that information-
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processing operates along hierarchies [11, 10, 5, 9], producing sequences of representations, instead
of single ones. Hierarchical and sequential generalisations of the IB problem (1), or related problems,
have been proposed: in particular concerning multiple-stage decision-making [7, 13] and the analysis
of deep networks’ learning dynamics [19, 22, 21]. In this paper, we are interested in the following
question: how are the information-processing limits drawn by solutions to (1) — which are not
constrained to satisfy any specific structure — affected when one does impose hierarchical sequential
structures? We will take a look at two cases of sequential processing. The first one investigates
to which extent the optimal information bounds on (1) can be implemented through incremental
incorporation of fresh information into already learned models [12]. In other words, in a develop-
mental language, can the optimal bounds on the information trade-off (1) be achieved by a system
which first passes through a given stage of development, and then builds on it to acquire further
information about the environment [16, 17]? The second one considers the loss of optimality, in terms
of discrepancy from the bound (1), induced by information being feed-forwardly processed through
many layers of a cognitive processing pipeline. We will investigate these questions from a formal
point of view, with mathematical characterisations and numerical experiments on low-dimensional
examples.

2 Successive refinement

Consider an incremental learning process where each step incorporates new information so as to
refine the previously acquired representations. In a similar spirit to the classic IB, one can describe
the optimal informational bounds on this multiple-stage processing: this is precisely what the notion
of successive refinement does. This notion has initially been formulated for classic rate-distortion
problems [6, 15], but inspired by recent work [13, 7], we adapt it to the IB framework. Consider the
following two-stage bottleneck problem1: for λ2 > λ1 ≥ 0, we first design a bottleneck T = T1 that
solves (1) with λ = λ1; and then design a solution S2 to

argmax
q(S2|X,T1) :

(T1,S2)−X−Y, I(X;S2|T1)≤λ2−λ1

I(Y ;S2|T1) (2)

The second, conditional bottleneck S2 optimally “supplements” the information already optimally
acquired in T1, yielding a final “two-stage bottleneck” T2 := (T1, S2).
Definition 1. There is successive refinement from parameters λ1 to λ2 > λ1, if there is a two-stage
bottleneck T2 := (T1, S2) with parameters (λ1, λ2), such that T2 is also a one-stage bottleneck with
parameter λ2, i.e., solves the IB problem (1) with T = T2 and λ = λ2.

Using the chain rule for mutual information [4] and the fact that the inequality constraint must be
saturated for the IB problem [1], one can easily prove that there is successive refinement from λ1

to λ2 if and only if there exists one-stage bottlenecks T1 and T2, with respective parameters λ1 and
λ2, such that the Markov chain T1 − T2 −X holds. To determine whether or not these equivalent
properties hold true, we propose a geometric approach. Denote by Hull(E) the convex hull of a set
E, and consider the condition

∀t1 ∈ T1, p(X|t1) ∈ Hull{p(X|t2), t2 ∈ T2}, (3)

where t1, t2, resp. T1, T2, denote the symbols, resp. alphabets, of distinct one-stage bottlenecks T1

and T2, with respective parameters λ1, λ2, where λ1 < λ2.
Proposition 2. We use the notations defined above. Successive refinement from λ1 to λ2 implies (3),
and (3) implies successive refinement if the transition matrix defined by q(X|T2) is injective.

Moreover, if the bottleneck problem (1) has strictly concave information curve2, then for any bottleneck
T , the transition matrix defined by q(X|T ) can always be chosen injective.3

In short, Proposition 2 says that under conditions that are easily satisfied, there is successive refinement
if the convex hull of the q(X|t2) still contains the q(X|t1). Equipped with this new characterisation,

1Our formulation is inspired by, and equivalent to, the asymptotic formulation in [13]. It is also related to
so-called “parallel information-processing hierarchy” in [7].

2The information curve is the curve drawn by points (I(X;T ), I(Y ;T )), for bottlenecks T corresponding
to every possible λ ≥ 0. It is always concave, and generically strictly concave if p(Y |X) is not deterministic.

3The proof of this proposition will be presented in a publication under preparation.
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Figure 1: Example trajectories of the qβ(X|T ). Each point is a qβ(X|t) for a fixed symbol t. Colours
have been indexed by Iβ(X;T ) instead of β because it allowed better visualisation.

we computed bottlenecks on synthetic examples, with example distributions p(X,Y ) sampled
uniformly on the simplex. We used the Lagrangian formulation of the IB (see Section 1) — where
β is the trade-off parameter — and optimised it with the modified Blahut-Arimoto algorithm [20]
combined with reverse deterministic annealing [23], starting at β = ∞ from the generic optimum
T = X . We chose |X | = |Y| = 3, which allows to plot the trajectories of qβ(X|T ) on the simplex
∆X . We only focused on examples with strictly concave information curve and injective q(X|T2), so
that condition (3) does characterise successive refinement.

Figure 1 shows two representative examples4. On both plots 1-(a) and 1-(b), we can visualise the
bifurcations at which some qβ(X|t) splits into two distinct distributions as β grows, yielding an
increase of the effective bottleneck cardinality [23]. More importantly for us here, we observe that
Hull{qβ2

(X|t), t ∈ T } seems to have a general tendency to contain the qβ1
(X|t) for β1 < β2. For

instance, this is the case after the split into 3 distinct symbols. But the condition can fail: for instance
if the condition held, the first curve segments where we have only two symbols (bluer families of
points in Figures 1-(a) and 1-(b)) should be linear segments. But this is not the case for Figure 1-(b):
there the first trajectory segment is non-negligibly curved — a relatively typical behavior. Thus, even
though there are many pairs of β1 and β2 > β1 for which condition (3) holds, these numerical results
suggest that the qβ1(X|t), for β1 < β2, are not always encompassed by Hull{qβ2(X|t), t ∈ T }.

We propose to quantify this “spreading out” from the convex hull with the measure of unique
information proposed in [3], using the algorithm5 designed in [2]:

UI(X : T1 \ T2) := argmin
r(X,T1,T2)∈∆q

Ir(X;T1|T2), (4)

where ∆q is the set of probabilities r(X,T1, T2) consistent with the bottleneck probabilities6, i.e.,
such that r(X,T1) = q(X,T1) and r(X,T2) = q(X,T2). This quantity vanishes if and only if there
is successive refinement from T1 to T2. In the case of Figure 1-(a), where the convex hull condition
(3) seems visually always satisfied, the maximum of UI(X : T1 \ T2) over all T2 finer than T1 (i.e.,
with β2 > β1) is approx. 4.0 · 10−5; whereas in Figure 1-(b), where (3) is clearly broken, it is approx.
0.008. Importantly, even if UI(X : T1 \ T2) is nonzero in the second case, it is still noticeably small.
Among all the examples we studied, it never exceeded 5.4% of I(X ; T1, T2).

Overall, these numerical results suggest that imposing two-stage processing, with incorporation of
new information at the second stage, does not essentially degrade the optimal informational limits
drawn by the classic IB — and the same statement can be made for n-stage processing, by direct
iterations of the definitions, arguments and computations in this section. This is encouraging for
the feasibility of the optimal IB trade-offs (1) in real-world cognitive processing systems, as the
representations they possess about their environment are most often the result of a sequential – and in
particular, developmental — process. However, as the modified BA algorithm is only guaranteed to
find local optima [20], one should be wary that the observed patterns do not necessarily reflect the
behavior of actual, global solutions to (1).

4See Appendix B for values of the sample p(X,Y ).
5Thanks to J. Rauh and P. Banerjee for insightful comments on the algorithm.
6The IB method provides us only with q(X,T1) and q(X,T2), which does not wholly constrain q(X,T1, T2).
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Figure 2: Left: IB curve (blue) vs. DIC curve (red). Right: same plot, superimposed with the curve
made of the (I(Tk−1;Tk), I(Y ;Tk)) (green). Note that even though here the cusps of the red and
green curve touch one another, it was not always the case in other explored examples (not shown).

3 Dense information coarsening

Here we consider the converse situation of that of Section 2, where along a feed-forward cognitive
processing pipeline, the information is coarsened rather than refined, without additional external
input between layers. In other words, we consider a hierarchy of representations T1, . . . , Tn, that, by
assumption, satisfies the Markov chain X − T1 − · · · − Tn, where X is an environmental variable,
and Tk has only direct access to the previous layer Tk−1 — deep neural networks being an example
of this setting [19]. Note that the indices are in reverse order as those of the previous section, because
we stick to an indexing describing the order in which representations are produced. If each layer
extracts information about a fixed relevancy variable Y , then the optimal information trade-off at
each layer is drawn by bottlenecks Tk with relevancy Y , but where the source X in (1) is replaced by
Tk−1. The question is then: given these hard constraints on the cognitive processing pipeline, how
much information optimality do we lose as compared to a one-stage processing as described by (1)?

We focus on the limit of an infinite number of processing stages, which models cognitive systems
where the number of information-processing stages stemming from the sensory interfaces is large.
Moreover we consider a processing highly distributed among stages: in other words, each stage
performs only a small amount of compression, resulting in a “trickling down” of information through
dense information-processing layers. We thus consider a sequence of bottlenecks (Tk)k∈N∗ , where
Tk is a bottleneck with source Tk−1 and relevancy Y . We choose the sequence (βk)k∈N∗ with small
increments, such that I(X;T1) ≈ I(X;Y ) and I(X;Tk) → 0 when k → +∞. We will refer here
to this process as the “dense information coarsening” (DIC for short).

We compared, for distributions p(X,Y ) sampled uniformly on the simplex, the information curve of
the regular IB (1) with fixed source X , with the DIC information curve — i.e., the curve drawn by
points (I(X;Tk), I(Y ;Tk)). Figure 2 (left) shows a representative example7 with |X | = |Y| = 3.
Here, and in the other examples explored (not shown), the DIC curve tracks rather neatly the regular
IB curve. However, the discrepancy between the curves is non-negligible and the DIC curve displays
a distinctive structure: as opposed to the IB curve which is always concave, the DIC curve is only
piece-wise concave, resulting in slight cusps at the junctions — in Figure 2 (left), there are two such
pieces of concave curve and one cusp. These cusps correspond to symbol splitting points of the
DIC trajectories on the simplex ∆X (see Appendix A for further details). In Figure 2 (right), we
superimposed these graphs with the trajectories of points (I(Tk−1;Tk), I(Y ;Tk)) which suggests
a hypothesis on the reason for the discrepancy between the DIC and IB curve. Indeed, the curves
show that the increase in discrepancy between IB and DIC curves occur concomitantly with a brutal
decrease of the information I(Tk−1;Tk) between consecutive layers, suggesting that this abrupt
decrease in cross-layer information induces a divergence from the optimal informational trade-off.

Whether this hypothesis is satisfied in real-world cognitive systems or not, these numerical results
suggest a phenomenon of divergence, at critical bifurcation points, from the optimal trade-off drawn
by the regular IB (1), for information-processing pipelines with multiple layers resembling very deep
neural networks [19]. This phenomenon will be better clarified in future work.

7See Appendix B for values of the sample p(X,Y ).
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Figure 3: Left: IB trajectory of qβ(X|T ) distributions over β. Right: DIC trajectory of q(X|Tk)
distributions over k.

Appendices
A IB and DIC trajectories on the simplex

One can compare the simplex trajectories of the IB and DIC methods. Even though a deeper
understanding of the observed patterns (in particular how they relate to the main content in Section
3) is left to future work, we still describe them here. In Figure 3 (left), we plot the IB trajectory, on
the simplex ∆X , of the qβ(X|T ) distributions corresponding to the IB solutions drawing the optimal
IB curve in Figure 2 (blue curve). This IB trajectory is compared, in Figure 3 (right), with the DIC
trajectory, still on ∆X , of the q(X|Tk) distributions that draw the DIC curve in Figure 2 (red curve).
See resp. Sections 2 and 3 for notations.

The two kinds of trajectories are to a large extent similar. Crucially, the DIC trajectory displays
symbol merges as k increases, just like the IB trajectory displays symbol merges when β decreases.
Moreover the symbol merge in Figure 3 (right) corresponds exactly to the cusp which can be observed
on the DIC information curve in Figure 2.

However we notice two key differences: first, contrarily to the IB trajectories which have in general
non-zero curvatures, the DIC trajectories are always composed of straight lines between two symbol
merges. Second, the symbol merge, which can occur in the interior of the simplex for the IB case,
happens on the border of the simplex for the DIC trajectories — a feature which was always satisfied
for other explored examples of DIC trajectories.

These numerical results thus hint towards possible ways of understanding the discrepancy between
the IB and DIC and information curve: it might be partly explained by the discrepancy between the
distributions qβ(X|T ), resp. q(X|Tk), at which symbol merge occurs in resp. the IB and DIC case;
and it might also be related to a different nature of the trajectories on the simplex.

B Values of sample distributions

The distributions p(X,Y ) used for our numerical experiments were sampled from the uniform
distribution on the probability simplex. In this paper, we presented only features which were
qualitatively always satisfied among the examples we studied.

For Figure 1-(a), the sample p(X,Y ) was defined from8

p(X) =

(
0.198
0.511
0.291

)
, p(Y |X) =

(
0.401 0.328 0.271
0.315 0.490 0.195
0.109 0.389 0.502

)
;

8The values are rounded to 10−3, and p(Y |X) is written as a column transition matrix.
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Figure 4: Distributions p(Y |X) on the simplex ∆Y . Each black square is a p(Y |x) for a given
symbol x. The resp. left, middle and right p(Y |X) distributions is that used for resp. Figure 1-(a),
Figure 1-(b), and Figure 2.

for Figure 1-(b), from

p(X) =

(
0.516
0.270
0.213

)
, p(Y |X) =

(
0.519 0.310 0.226
0.301 0.128 0.683
0.180 0.562 0.091

)
;

and for Figure 2, from

p(X) =

(
0.298
0.353
0.349

)
, p(Y |X) =

(
0.410 0.133 0.518
0.558 0.317 0.149
0.032 0.550 0.332

)
.

The respective conditional distributions p(Y |X) are represented on the Y simplex in Figure 4.
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