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Abstract—Chest radiographs are the initial diagnostic modality
for lung or chest-related conditions. It is believed that radi-
ologist’s availability is a bottleneck impacting patient’s safety
because of long waiting times. With the arrival of machine
learning and especially deep learning, the race for finding
artificial intelligence (AI) based approaches that allow for the
highest accuracy in detecting abnormalities on chest radiographs
is at its peak. classification of radiographs as normal or ab-
normal is based on the training and expertise of the reporting
radiologist. The increase in the number of chest radiographs
over a period of time and the lack of sufficient radiologists in
the UK and worldwide have had an impact on the number of
chest radiographs assessed and reported in a given time frame.
Substantial work is dedicated to machine learning for classifying
normal and abnormal radiographs based on a single pathology.
The success of deep learning techniques in binary radiograph
classification urges the medical imaging community to apply
it to multi-label radiographs. Deep learning techniques often
require huge datasets to train its underlying model. Recently, the
availability of large multi-label datasets has ignited new efforts
to overcome this challenging task. This work presents multiple
convolutional neural networks (CNNs) based models trained
on publically available CheXpert multi-label data. Based on
common pathologies seen on chest radiographs and their clinical
significance, we have chosen pathologies such as pulmonary
odema, cardiomegaly, atelectasis, consolidation and pleural ef-
fusion. We trained our models using different projections such
as anteroposterior (AP), posteroanterior (PA), and lateral and
compared the performance of our models for each projection.
Our results demonstrate that the model for the AP projection
outperforms the remaining models with an average AUC of
0.85. Furthermore, we use the samples with uncertain labels
in CheXpert dataset and improve the model performance by
removing the uncertainty using gaussian mixture models (GMM).
The results show improvement in all three views with AUCs
ranging from 0.91 for AP, 0.75 for PA and 0.85 on the lateral
view.

Index Terms—Chest radiograph, Deep learning, Multi-label
classification, Uncertain labels

I. INTRODUCTION

Respiratory diseases are one of the leading causes of death
in the United Kingdom. According to a survey by Conor
Stewart [1], prior to COVID-19, the mortality rate from
respiratory diseases in the United Kingdom in 2020 was
130 per 100,000 male population and 89 per 100,000 female
population. Chest radiographs are the most utilised diagnostic
modality for lung or chest-related conditions. However, it
requires an experienced radiologist to accurately analyse radio-
graphs to detect chest-related conditions, such as pulmonary
oedema, cardiomegaly, atelectasis, lung cancer, and consolida-
tion, besides other less common pathologies. A report in 2020
by the Royal College of radiologists [2] highlights the national
shortage of radiologists resulting in reporting backlogs which
can adversely impact patient care. A further predicted shortfall
in radiologist numbers by 44% in 2025 will have a greater
impact on reporting backlogs. Expenditure on outsourcing
imaging examinations for reporting has increased by 58% in
the last few years. In addition to the scarcity of radiologists,
there is a problem with diagnostic errors in radiology reports.
According to [3], worldwide, annually, at least 40 million out
of 1 billion radiology reports contain errors. Chest radiographs
are the most used diagnostic procedure for respiratory and
cardiovascular diseases - errors in diagnosis and delays in
reporting contribute to adverse outcomes for patients. In order
to decrease the workload for existing and future radiologists,
scientists have been working on automatic radiographic inter-
pretation systems. Recently, Deep Learning and CNN (convo-



lutional neural networks) have boosted research in computer
vision, especially in medical imaging and have demonstrated
promising results in the detection of pathologies on chest
radiographs. However, the interpretation of chest radiographs
can be challenging. In order to provide good results, deep
learning requires a large number of data samples for training.
The presence of multiple conditions in one radiograph makes it
difficult for the model to generalise as there can be an overlap
in the imaging findings of two different chest pathologies,
e.g., pulmonary oedema and infectious pathologies. More-
over, the presence of uncertain labels in a dataset further
increases the difficulty. Samples with uncertain labels can
cause difficulties in training the machine learning algorithm.
Besides demonstrating the potential to improve diagnostic
accuracy, deep learning models can also improve the reporting
workflow by prioritising abnormal radiographs over normal
ones. Training the model on different radiographic projections
has the potential to improve the diagnostic accuracy of the
model, particularly when dealing with a suboptimal radiograph
in a critically ill patient.

This study trains a state-of-the-art CNN-based deep neural
network DenseNet121 [4] on a large chest radiograph dataset,
CheXpert [5] [6]. Figure I shows few radiographs from the
CheXpert dataset. In addition, we trained separate models
for different views AP (Anteroposterior), PA (Posteroanterior),
and lateral and evaluated their performance. Furthermore, the
study addresses uncertainty present in the data by relabelling
uncertain samples using a Gaussian Mixture Model (GMM)
[7] and including them in the training data. The performance
is then compared before and after reducing the uncertainty.
In the following Section, offers a review of the state of the
art using deep learning for interpreting chest radiographs,
identifying multiple conditions in a single radiograph, and
addressing uncertain labels in data. Section III presents our
approach, which involves utilizing various data and model
based methods, correcting uncertain labels, and addressing
each radiographic view individually. In Section IV, we conduct
comparative experiments on the CheXpert dataset and provide
the results. Section V examines the main insights gained from
the results. Lastly, in Section VI, we present the conclusion
of the paper.

II. RELATED WORK

The availability of large labelled datasets [5] [6] [8] of chest
radiographs has led many researchers to use deep learning
for chest radiograph interpretation. Most recent work in this
area has focused on CNN-based models and applied various
techniques such as transfer learning, feature extraction, and
region of interest analysis to improve the detection of ab-
normalities [9] [10] [11] [12]. In one study, a 121-layered
neural network trained on the CheXnet frontal view dataset
outperformed average radiologists in detecting pneumonia [9].
Additionally, data augmentation has been used to tackle the
issue of insufficient data in new challenges such as COVID-
19, as seen in [13] where a CNN model was trained to classify
radiographs of patients’ chest infected with COVID-19. Many

Fig. 1. Images from CheXpert dataset. Each image has 14 labels correspond-
ing to each condition. Mentioned conditions are positive labels for each of
the four images.

studies have focused on specific conditions such as pneumonia,
COVID-19 and oedema [9] [13] [14].

In addition to the above, the power of deep learning allows
for the detection of multiple conditions in a single radiograph
[15] [16]. Multiple label detection on chest radiographs is
much more challenging as compared to a single label. The
overlapping and vanishing of features can hinder the model
performance in a multi-label setting [17]. The hierarchical
dependencies present between conditions are exploited in [15]
by using a conditional training approach. This is achieved by
training a deep neural network twice, first on data with only
positive parent-level conditions, followed by training on the
entire dataset. As CNN is very good at extracting prominent
features, [18] suppresses the irrelevant features by assigning
them smaller weights and enhancing the important features
with higher weights to detect multiple conditions in chest
radiographs. Different abnormal conditions that appear on
radiographs in different anatomical areas, such as a pleural
effusion, can be identified by looking at the lower left and
right corners of the lungs. Localising the correct anatomical
region in [19] enables the model to learn the better relationship
between different structures in the radiograph.

This paper examines the use of three different radiograph
views (AP, PA, lateral) separately. In the first phase, we train
a DenseNet121 model for each view, using techniques such
as transfer learning, template matching, and augmentation to
improve performance. We have repeated these experiments ten
times to ensure generalisable results. In the second phase, we
use a semi-supervised approach with GMM to label uncertain



samples, which is an improvement over previous methods [5]
[15] that assigned positive labels to all uncertain samples or
a random float between 0.55 to 0.85. We then include these
relabelled uncertain samples in the training data and repeat all
experiments. Our approach of individually analysing each view
shows promising results and effectively reduces uncertainty in
the data.

III. METHODOLOGY

In this section, we outline the method utilised to classify
radiographs with multiple labels. We begin by introducing
DenseNet121 and CNN briefly along with the applied model
training procedure in subsection A. Following that, we delve
into explaining multi-scale template matching for data quality
improvement and transfer learning techniques we employed
to enhance the model’s performance in subsection B. Further-
more, in subsection C, we expound upon the data augmenta-
tion methods we adopted to enhance data diversity and control
model overfitting. Finally, we describe how we utilize GMM
to eliminate uncertainty in the data in subsection D.

A. DenseNet121 and Model Training

In this paper, we chose DenseNet121 architecture as our
base CNN model because of its popularity in computer vision,
especially in medical imaging [15]- [20]- [21]. DenseNet121
utilizes convolutional neural networks (CNN) and comprises
121 layers. The layers in the network are connected in such a
way that each layer receives inputs from all the previous lay-
ers; this helps the model retain important features recognized
in the earlier layers [4]. CNN is a deep learning algorithm
that performs a convolution operation on images to extract
features. We also used pooling and dropout layers to prevent
the model from overfitting. Finally, we trained the model using
a batch size of 32, Adam optimizer, and used the Area under
the Receiver Operating Characteristic Curve (AUC) as the
evaluation metric, as in [15].

B. Multi-scale Template Matching and Transfer Learning

In order to improve the data quality, we employed a multi-
scale template matching technique to eliminate unnecessary
regions from both the training and testing images [15] [22].
To achieve this, we picked a high-quality template image from
each view, trimmed and scaled it to 224×224 pixels, and
removed unnecessary areas such as the shoulders, neck, and
pelvic sections. We then matched the template image at a scale
range (empirically chosen) of (0.7 to 1.3) with the entire data
and extracted the best-matched 224×224 section of the image,
thus enabling the model to concentrate on the thoracic area and
avoiding any confusion from other regions.

Furthermore, to help the model train fast and accurately we
applied transfer learning. This is a powerful method to improve
the accuracy of deep learning models. The idea is to leverage
the knowledge gained by training on a generic data set, such
as ImageNet [23], to gain knowledge of general image features
(vertical and horizontal edges). The last layers of the model are
then replaced and the model fine-tuned with data specific to

the task at hand, such as CheXpert [5] in this instance. As the
data in ImageNet is very different from the one in CheXpert,
so instead of fine-tuning just the last layers of the model we
fine-tuned all layers [24]. This makes all layers specialised to
radiographs while getting help from general image features.
Through experimentation, we have compared the performance
of models with and without transfer learning. The detail is in
section IV of this paper.

C. Data Augmentation

In the medical image classification domain, insufficient data
has always been a problem. Chest radiograph data is no
different. Although we have very large chest radiograph data
sets available [5]- [6]- [8], these are still not enough for a
deep-learning model to generalise ideally. This is because the
same pathology can manifest differently on a chest radiograph
depending on the patient’s age, gender, lifestyle and stage
of the disease, besides the radiographic projection and other
technical factors. Multiple pathologies on a single radiograph
make feature extraction more difficult. That is the reason, deep
learning algorithms require a very large number of samples
with the same pathology to capture sufficient important fea-
tures. With data augmentation, we artificially enhance the size
of the data set and add diversity to it. Various techniques can
be used to modify the image, such as resizing and zooming.
In order to improve feature extraction, we employed data
augmentation on our data set which includes setting brightness
randomly between 30% and 100%, randomly rotating the
image by 7± degrees, applying a random shear range of 0.2±,
zooming the image by 0.2, adding random noise to the images,
and finally flipping the images horizontally [25]. These six
augmentation techniques were chosen empirically. We apply
all six data augmentation techniques on all training images
and send them to the model along with the original image for
training. The results of the experiment reveal that applying
image augmentation significantly improves performance.

D. Relabelling Uncertain labels with GMM

In the CheXpert dataset, almost 30% of the samples have
uncertain labels, which means the condition may or may
not be present in the radiograph. As this is a multi-label
problem, the presence of one condition can impact the ap-
pearance of another coexisting condition on the radiograph.
Instead of discarding the 30% of the data with uncertain
samples in CheXpert, or assigning all positive/negative labels,
we removed the uncertainty and relabelled the samples and
include them in the training process. To do that, we chose
GMM because of its ability to tackle a mixture of multiple
data distributions. It is a probabilistic model that creates
multiple clusters using an expectation-maximization (EM)
algorithm and updates the estimator parameters during the
process [7]. We trained a GMM model for each of the five
conditions separately using only certain samples. It created
100 clusters for Consolidation, 500 for Pleural Effusion, 200
for Cardiomegaly, 300 for Atelectasis and 350 for Edema.
It operates by assigning each sample to the cluster with the



distribution that is closest in terms of parameters. This results
in many clusters, with multiple clusters of each class. Once the
estimator was fully converged, we used it to get predictions for
the uncertain samples. We conducted experiments excluding
uncertain samples and then including them after relabelling,
in the model training process. The results indicate that this
approach leads to performance improvement. Further detail is
in section IV of this paper.

IV. EXPERIMENTATION AND RESULTS

The dataset has 223,414 chest radiographs of 65,240 pa-
tients collected between October 2002 and July 2017. Each im-
age has 14 labels corresponding to a medical condition. In this
study, we chose five clinically important conditions pulmonary
oedema, consolidation, cardiomegaly, atelectasis, and pleural
Effusion [5]. To make the performance comparison between
different radiograph views, we created an individual model for
each X-ray. Also, to ensure fair performance comparison, we
trained the models on an equal number of samples (29,421
images per view). We did not use the CheXpert validation set
during training and instead used it to test the models after
training. The experiments were conducted in two phases. In
the first phase, we excluded samples with uncertainty from
the model training process, further explained in subsection A.
In the second phase of experiments, we incorporated 22,219
relabelled uncertain samples for each view in the training
process. Through this method, we were able to observe the
impact of eliminating data uncertainty on the performance of
the models.

A. Experiments Excluding Uncertain Samples

In this paper, we used DenseNet121 as the main network
and trained five different models for each radiograph view.
These models include DenseNet121, DenseNet121 with multi-
scale template-matched (TM) data, DenseNet121 with transfer
learning (TL), DenseNet121 with data augmentation (AUG),
and a combination of template matching, transfer learning,
and augmentation. AUC is used as the evaluation metric in
all of the experiments done in this paper. Table I shows the
results on the posteroanterior view. We repeat each experi-
ment ten times with different sample sets randomly chosen
from CheXpert. We can see how different techniques ap-
plied with DenseNet121 performed better, especially transfer
learning and data augmentation. The best-performing model
is ”DN121 TM TL AUG”. Table II shows the results of
the best-performing model for each view. AP and lateral
views have much better performance than PA. On average AP
performed better than lateral with a standard deviation of 0.02
as compared to 0.04 for lateral.

B. Experiments Including Uncertain Samples

In the second phase of experiments, we included the re-
labelled uncertain samples to the training data of the corre-
sponding data set. We reran the whole series of experiments
as in the first phase. Table III shows the results of the
experiments for the best model of each view. Interestingly,

TABLE I
AUC SCORES FOR VARIOUS DEEP LEARNING METHODS WITH

DENSENET121 ON AP, WITHOUT UNCERTAIN SAMPLES. THE VALUES IN
BOLD SHOW THE BEST RESULTS OF EACH MODEL.

TABLE II
RESULTS OF EXPERIMENTS USING OUR BEST-PERFORMING MODEL ON

AP, PA AND LATERAL VIEWS WITHOUT UNCERTAIN SAMPLES

on average AP is still ahead but if we look at the minimum
and maximum AUC, it is 0.65 and 0.91 respectively, which
is why the standard deviation is much higher than PA and
lateral models. Figure II shows a better view of gradual
improvement in the performance of AP models. Overall, each
time we removed uncertainty, the model performed better.
The blue boxes indicate the performance of models before
including uncertain samples and the orange boxes indicate
the performance of models after including uncertain samples
which were relabelled using GMM.

V. DISCUSSION

By training a state-of-the-art deep learning algorithm on
different views of chest radiographs, we showed that AP and
lateral views are better than PA. This is an interesting fact,
keeping in view that PA radiographs are more commonly
performed in the outpatient setting, while AP radiographs are
performed in patients who are ill or unstable and therefore
unable to cooperate for a PA view. Identifying a condition by
a view-specialised model can be more reliable than a general
model trained on all types of views. As the frontal and lateral
views of the chest look different, important features of a frontal



TABLE III
RESULTS OF EXPERIMENTS USING OUR BEST-PERFORMING MODEL ON

AP, PA AND LATERAL VIEWS WITH UNCERTAIN SAMPLES

Fig. 2. Performance comparison of AP models before and after including
uncertain samples.

image can manifest differently on a lateral view resulting in
uncertainty for interpretation both by the radiologist and the
machine learning algorithm.

Machine learning can help resolve uncertain labels which
can be utilised in the training process. The models mentioned
in this paper have many limitations such as the data-set we
have utilised, containing radiographs from just one hospital.
An extension to this work is required to get data from multiple
sources ideally from different geographical areas and do the
same experiments to see if it gives similar/reproducible results.

we have applied multiple techniques to improve the data
quality and the model’s ability. For transfer learning, we
utilised a DenseNet121 model pre-trained on ImageNet data.
ImageNet dataset is very different from CheXpert but still,
it helps the model. A better strategy could be, pre-training
the model on a different chest radiograph data-set and fine-
tuning it on CheXpert, this will help the model to learn
some basic radiograph features in the pre-training stage. Data
augmentation has resulted in improved model performance.
We believe that carefully engineered augmentation techniques
can enhance the detection accuracy of radiographs.

The results of our experiments have the potential to improve
diagnostic accuracy for chest radiographs and also classify
radiographs in a reporting worklist as normal or abnormal
thereby prioritising abnormal radiographs for more urgent

reporting.

VI. CONCLUSION

We have presented a performance comparison of five CNN-
based deep learning models trained on different views of chest
radiographs. Our results indicated the final derivation of the
model utilising a combination of template matching, transfer
learning, and augmentation provided the highest average AUC
of 0.88. This observation led to choosing the final model as a
tool to compare and contrast between different views. Our
contrasting led to ordering AP, lateral and PA views with
a decreasing AUC from 0.85 to 0.83 and 0.72 respectively.
Improving the model by labelling uncertain samples led to
increasing in AUC, by a factor of 0.01, for each of these views.
Our results indicated that it is possible to detect and label
radiographs in multi-condition images, with anterio-posterior
and lateral views outperforming the posterio-anterior view. We
also highlighted that our approach to uncertainty reduction can
have a positive impact on AUC improvement, indicating better
detection accuracy. We now embark on evaluating if there are
conditions where different views have a vested advantage in
detection, using the above CNN model. We also plan co-design
studies with radiologists in our partner hospitals, to identify
barriers to the acceptability of such models, but also ways to
integrate such approaches into the clinical workflow.

REFERENCES

[1] C. Stewart, “Respiratory disease in the united kingdom (uk) - statistics
and facts.” https://www.statista.com/topics/5908/respiratory-disease-in-
theuk/: :text=Respiratory%20disease%20is%20one%20of,117%20per%
20100%2C000%20for%20women, Apr. 2022.

[2] RCR, “Clinical radiology uk workforce census 2020 report.”
https://www.rcr.ac.uk/publication/clinical-radiology-uk-workforce-
census-2020-report, Apr. 2021.

[3] M. A. Bruno, E. A. Walker, and H. H. Abujudeh, “Understanding and
confronting our mistakes: the epidemiology of error in radiology and
strategies for error reduction,” Radiographics, vol. 35, no. 6, pp. 1668–
1676, 2015.

[4] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 4700–4708, 2017.

[5] J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Mark-
lund, B. Haghgoo, R. Ball, K. Shpanskaya, et al., “Chexpert: A large
chest radiograph dataset with uncertainty labels and expert comparison,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 33,
pp. 590–597, 2019.

[6] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers,
“Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on
weakly-supervised classification and localization of common thorax
diseases,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2097–2106, 2017.

[7] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal
processing magazine, vol. 13, no. 6, pp. 47–60, 1996.

[8] A. E. Johnson, T. J. Pollard, S. J. Berkowitz, N. R. Greenbaum, M. P.
Lungren, C.-y. Deng, R. G. Mark, and S. Horng, “Mimic-cxr, a de-
identified publicly available database of chest radiographs with free-text
reports,” Scientific data, vol. 6, no. 1, p. 317, 2019.

[9] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding,
A. Bagul, C. Langlotz, K. Shpanskaya, et al., “Chexnet: Radiologist-
level pneumonia detection on chest x-rays with deep learning,” arXiv
preprint arXiv:1711.05225, 2017.

[10] H. Sharma, J. S. Jain, P. Bansal, and S. Gupta, “Feature extraction and
classification of chest x-ray images using cnn to detect pneumonia,” in
2020 10th International Conference on Cloud Computing, Data Science
& Engineering (Confluence), pp. 227–231, IEEE, 2020.



[11] M. Heidari, S. Mirniaharikandehei, A. Z. Khuzani, G. Danala, Y. Qiu,
and B. Zheng, “Improving the performance of cnn to predict the
likelihood of covid-19 using chest x-ray images with preprocessing
algorithms,” International journal of medical informatics, vol. 144,
p. 104284, 2020.

[12] T. Rahman, M. E. Chowdhury, A. Khandakar, K. R. Islam, K. F. Islam,
Z. B. Mahbub, M. A. Kadir, and S. Kashem, “Transfer learning with
deep convolutional neural network (cnn) for pneumonia detection using
chest x-ray,” Applied Sciences, vol. 10, no. 9, p. 3233, 2020.

[13] A. A. Reshi, F. Rustam, A. Mehmood, A. Alhossan, Z. Alrabiah,
A. Ahmad, H. Alsuwailem, and G. S. Choi, “An efficient cnn model
for covid-19 disease detection based on x-ray image classification,”
Complexity, vol. 2021, pp. 1–12, 2021.

[14] C. Hayat, “Densenet-cnn architectural model for detection of abnor-
mality in acute pulmonary edema,” Khazanah Informatika: Jurnal Ilmu
Komputer dan Informatika, vol. 7, no. 2, pp. 73–79, 2021.

[15] H. H. Pham, T. T. Le, D. Q. Tran, D. T. Ngo, and H. Q. Nguyen,
“Interpreting chest x-rays via cnns that exploit hierarchical disease de-
pendencies and uncertainty labels,” Neurocomputing, vol. 437, pp. 186–
194, 2021.

[16] I. M. Baltruschat, H. Nickisch, M. Grass, T. Knopp, and A. Saalbach,
“Comparison of deep learning approaches for multi-label chest x-ray
classification,” Scientific reports, vol. 9, no. 1, pp. 1–10, 2019.

[17] S. Albahli, H. T. Rauf, A. Algosaibi, and V. E. Balas, “Ai-driven deep
cnn approach for multi-label pathology classification using chest x-rays,”
PeerJ Computer Science, vol. 7, p. e495, 2021.

[18] Q. Guan and Y. Huang, “Multi-label chest x-ray image classification via
category-wise residual attention learning,” Pattern Recognition Letters,
vol. 130, pp. 259–266, 2020.

[19] N. N. Agu, J. T. Wu, H. Chao, I. Lourentzou, A. Sharma, M. Moradi,
P. Yan, and J. Hendler, “Anaxnet: anatomy aware multi-label finding
classification in chest x-ray,” in Medical Image Computing and Com-
puter Assisted Intervention–MICCAI 2021: 24th International Confer-
ence, Strasbourg, France, September 27–October 1, 2021, Proceedings,
Part V 24, pp. 804–813, Springer, 2021.

[20] O. Gozes and H. Greenspan, “Deep feature learning from a hospital-
scale chest x-ray dataset with application to tb detection on a small-
scale dataset,” in 2019 41st annual international conference of the ieee
engineering in medicine and biology society (embc), pp. 4076–4079,
IEEE, 2019.

[21] J. A. Dunnmon, D. Yi, C. P. Langlotz, C. Ré, D. L. Rubin, and M. P.
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