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In this Letter, we define the Aharony-Bergman-Jafferis-Maldacena loop momentum amplituhedron,
which is a geometry encoding Aharony-Bergman-Jafferis-Maldacena planar tree-level amplitudes and loop
integrands in the three-dimensional spinor helicity space. Translating it to the space of dual momenta
produces a remarkably simple geometry given by configurations of spacelike separated off-shell momenta
living inside a curvy polytope defined by momenta of scattered particles. We conjecture that the canonical
differential form on this space gives amplitude integrands, and we provide a new formula for all one-loop
n-particle integrands in the positive branch. For higher loop orders, we utilize the causal structure
of configurations of points in Minkowski space to explain the singularity structure for known results
at two loops.
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Introduction.—Recent years have seen remarkable
progress in applying positive geometries [1] to the problem
of finding scattering amplitudes. The most famous example
is the amplituhedron [2–20], which describes scattering
amplitudes and loop integrands in planar N ¼ 4 super
Yang-Mills (SYM) in four-dimensional momentum twistor
space, that was based on previous works on positive
Grassmannians [21–23]. More relevant to our work, the
momentum amplituhedron [24–29] describes tree-level
amplitudes in N ¼ 4 SYM directly in four-dimensional
spinor helicity space, and was recently extended to include
loop integrands [30]. In past years, there has been a continued
interest in extending these ideas to Aharony-Bergman-
Jafferis-Maldacena (ABJM) theory, which has a similar
Grassmannian formulation [31–35]. This led to the discovery
of the ABJM momentum amplituhedron [36–38], which
describes tree-level ABJM amplitudes in three-dimensional
spinor helicity space. Most recently, by considering the
reduction of the kinematics from the four-dimensional
space of massless momenta to three dimensions, the ABJM

amplituhedron WðLÞ
n was defined [39–42] in the three-

dimensional momentum twistor space. This geometry enc-

odes planar tree-level amplitudes Að0Þ
n and loop integrands

AðLÞ
n in its canonical differential form. Importantly, it was

conjectured in [42] that the L-loop integrands can be

explicitly obtained from the ABJM amplituhedron by sub-
dividing it into smaller pieces that are cartesian products of

tree-level geometry (Cm) times the L-loop geometry (LðLÞ
m )

WðLÞ
n ¼ ∪

m
Cm ×LðLÞ

m ; ð1Þ

where Cm are maximal intersections of Britto-Cachazo-
Feng-Witten cells at tree level termed “chambers.” For a
given chamber, the loop geometry is the same, and can be
thought of as a fibration of the loop amplituhedron over the
tree one.
In this Letter we define a close cousin to the ABJM

amplituhedron we termed the “ABJM momentum ampli-
tuhedron”AðLÞ

n , that lives directly in the three-dimensional
spinor helicity space. To do that, we utilize the map used in
the recently conjectured construction of the loop momen-
tum amplituhedron for N ¼ 4 SYM [30]. This will define
a geometry whose differential form is the integrand for the
so-called “positive branch” of the theory. Importantly, the
geometry that we obtain is remarkably basic when depicted
in the space of dual momenta in three-dimensional
Minkowski space. In particular, for a given tree-level
configuration of points in Cm, the loop geometry is a
subset of the Cartesian product of L curvy versions of

simple polytopes [43] we denote ΔðmÞ
n . Remarkably, at one

loop the ABJM loop momentum amplituhedron in a given

chamber is the curvy polytope ΔðmÞ
n , and it is straightfor-

ward to find its canonical form. For each chamber one can

easily identify vertices of ΔðmÞ
n and therefore find a general

form of all one-loop integrands Að1Þ
n in the positive branch

for scattering amplitudes with n ¼ 2k particles:
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Að1Þ
n ¼

X
ðT1;T2Þ∈ T o×T e

Ωð0Þ
T1;T2

∧ Ωð1Þ
T1;T2

: ð2Þ

Here, Ωð0Þ
T1;T2

is the tree-level canonical form for a given
chamber that we labeled by a pair of triangulations ðT1; T2Þ
of two k-gons formed of odd and even particle labels. The

one-loop differential form Ωð1Þ
T1;T2

associated with the
chamber ðT1; T2Þ takes the form

Ωð1Þ
T1;T2

¼
Xn
a¼1

ð−1Þaωa−1;a;aþ1þ
X

ða;b;cÞ∈T1

ωþ
abc−

X
ða;b;cÞ∈T2

ω−
abc;

and we present its explicit expression later. Results for
other branches can be obtained from (2) by parity oper-
ations defined in [42].
For higher loops, the ABJM momentum amplituhedron

AðLÞ
n is specified by configurations of L points inside ΔðmÞ

n

that are spacelike separated from each other. By studying
such configurations of points, we are able to give a simple
explanation for the structure of the answer for the two-
loop integrands known for n ¼ 4 [45,46], n ¼ 6 [47], and
n ¼ 8 [48]. To do that, we will utilize the notion of negative
geometries [49] and use the causal structure of the three-
dimensional Minkowski space.
This Letter is organized as follows: we start by recalling

basic facts about three-dimensional Minkowski space
that will set the stage for next sections. Then, we study
configurations of dual momenta that originate from the
definition of the tree-level ABJM momentum amplituhe-
dron that will allow us to define the curvy polytopes ΔðmÞ

n .
We follow by defining the ABJM momentum amplituhe-
dron at loop level, and detailing its structure at one loop. In
particular, we provide the explicit formula for one-loop
integrands in the positive branch for all multiplicities. The
final section focuses on the two-loop geometry. We con-
clude the Letter with some open questions arising from our
construction.
Three-dimensional Minkowski space.—We will work in

the three-dimensional Minkowski space M with signature
ðþ;−;−Þ. Scattering data for n-particle scattering in ABJM
is encoded in a set of n ¼ 2k three-dimensional on-shell
momenta pμ

a, a ¼ 1;…; 2k, μ ¼ 0, 1, 2, with ðpaÞ2 ¼ 0.
We assume that particles with odd labels are outgoing and
the ones with even labels are incoming. This leads to the
following momentum conservation:

X
a odd

pμ
a −

X
a even

pμ
a ¼ 0: ð3Þ

In planar theory, this data can be equivalently encoded
using dual coordinates,

pμ
a≕ xμaþ1 − xμa; ð4Þ

that define a null polygon in Minkowski space. For
convenience, we choose x1 ¼ 0. This allows us to invert
relation (4) to get

xb ¼
Xb−1
a¼1

ð−1Þapa: ð5Þ

We denote by I x ¼ fy∈M∶ðx − yÞ2 ¼ 0g the light cone
of point x.
The on-shell condition p2 ¼ 0 can be resolved by

introducing three-dimensional spinor helicity variables
(see, e.g., [50] for a review) and writing

pαβ ¼
�
−p0 þ p2 p1

p1 −p0 − p2

�
≕ λαλβ: ð6Þ

Scattering amplitudes are invariant under the action of the
Lorentz group SLð2Þ on λ and therefore a point in the
kinematic space is an element of the orthogonal
Grassmannian λ∈OGð2; 2kÞ≕K2k, where orthogonality
is defined with respect to η ¼ diagðþ;−;…;þ;−Þ. In the
following, we will repeatedly use the spinor brack-
ets habi ≔ λ1aλ

2
b − λ2aλ

1
b.

Tree-level momentum amplituhedron.—Following
[36,37], the tree-level ABJM momentum amplituhedron

Að0Þ
2k ¼ ϕΛ½OGþðk; 2kÞ� is a subset of the kinematic space

K2k, which is the image of the positive orthogonal
Grassmannian OGþðk; 2kÞ through the map

ϕΛ∶ OGþðk; 2kÞ → OGð2; 2kÞ
C ↦ λ ¼ ðC · η · ΛÞ⊥ · Λ; ð7Þ

where Λ∈Mðkþ 2; 2kÞ is a fixed matrix [51]. To get the
desired geometry, in this Letter we slightly modify the
original definition and demand that the matrix Λ is such
that the image contains points satisfying the following sign-
flip pattern: hiiþ 1i > 0 for all i ¼ 1;…; n; the sequence
fh12i; h13i;…; h1nig has k − 2 sign flips and all planar
Mandelstams are negative. We found that taking a generic
twisted positive matrix Λ, i.e., Λ · η has all maximal minors
positive, leads to the correct sign-flip pattern.

Importantly, for every point λ∈Að0Þ
2k , when translated to

the dual space we get a configuration of dual points xa,
a ¼ 1;…; n forming a null polygonal loop, that satisfy the
conditions

ðxa − xbÞ2 < 0; for ja − bj > 1; ð8Þ

and all even-indexed points are in the future of their (null-
separated) odd-indexed two neighbors.
These configurations of points xa have a very interesting

and intricate structure. In particular, for any three generic
points xa, xb, and xc that are not neighbors, we find

PHYSICAL REVIEW LETTERS 131, 161601 (2023)

161601-2



two points in the intersection of their light cones
I xa ∩ I xb ∩ I xc , one in the future of points ðxa; xb; xcÞ,
and one in the past. We denote the future (past) point as
pþ
abc (p

−
abc). Motivated by our future considerations, let us

define the region of the Minkowski space,

K≤0
xa ≔ fx∈M∶ðx−xaÞ2 ≤ 0 for a¼ 1;…;ng; ð9Þ

containing all points that are spacelike (or lightlike)
separated from all xa. This region is nonempty since
xa ∈K≤0

xa for all a ¼ 1;…; n. Moreover, it can be naturally
divided into two pieces: a compact one that we denote
ΔnðxaÞ and a noncompact one Δ̄nðxaÞ. We depict the
compact region for n ¼ 4 and n ¼ 6 in Fig. 1. It is easy to
see that the region Δ4ðxaÞ is a curvy version of a
tetrahedron, while Δ6ðxaÞ is a curvy version of a cube.
The latter has two vertices coming from triple intersections
of light cones, pþ

135 and p−
246, in addition to the six vertices

xi. For higher n, the shape of ΔnðxaÞ is more involved and
starts to depend on the details of the configuration of xs. For
example, for n ¼ 8 there are four distinct geometries

ΔðmÞ
8 ðxaÞ, each of them contains eight vertices xa together

with triple intersections of light cones:

V½Δð1Þ
8 ðxaÞ� ¼ fxa; pþ

135; p
þ
157; p

−
246; p

−
268g;

V½Δð2Þ
8 ðxaÞ� ¼ fxa; pþ

137; p
þ
357; p

−
246; p

−
268g;

V½Δð3Þ
8 ðxaÞ� ¼ fxa; pþ

135; p
þ
157; p

−
248; p

−
468g;

V½Δð4Þ
8 ðxaÞ� ¼ fxa; pþ

137; p
þ
357; p

−
248; p

−
468g:

These four cases exactly correspond to the four chambers
for n ¼ 8 in [42]! One notices that the labels of the
intersecting cones for each chamber can be thought of
as products of triangulations of two 4-gons: one formed of
odd labels, and one formed of even labels. This pattern
continues for higher n. We found that there are exactly C2

k−2

different geometries ΔðmÞ
n for n ¼ 2k particles, where Cp is

the pth Catalan number. All these geometries have n
vertices corresponding to xa together with exactly
(k − 2) triple intersections of light cones of points with
odd labels, and (k − 2) intersections with even labels.

The geometry changes at nongeneric configurations of
points xa, where an intersection of four light cones is
possible, corresponding to a bistellar flip in one of the

aforementioned triangulations. All curvy polytopes ΔðmÞ
n

are simple, meaning that each vertex has exactly three
edges originating from it.
We note that the two triangulations of k-gons are more

than just a mnemonic to distinguish distinct geometries:
they in fact provide part of the skeleton of the dual

geometry of ΔðmÞ
n ! The fact that the facets of this dual are

all triangles is equivalent to the statement that polytopes

ΔðmÞ
n are simple. The triangles with vertices ða; b; cÞ in

the dual correspond to vertices pabc of ΔðmÞ
n . Since the

dual of a triangulation of a k-gon is a planar tree
Feynman diagram for k particles, the skeleton of our
geometry is that of a null polygon between points xa,
with two distinct Feynman diagrams drawn between the
odd and even points, where different choices of Feynman

diagrams label different chambers. Therefore, distinct ΔðmÞ
n

correspond to all pairs of two planar tree Feynman diagrams
for k particles.
Loop-level momentum amplituhedron.—Given a fixed

tree-level configuration λ∈Að0Þ
n , we will define the ABJM

loop momentum amplituhedron using the map

Φλ∶ Gð2; 2kÞL → GLð2ÞL
ðD1;…; DLÞ ↦ ðl1;…;lLÞ ð10Þ

that was introduced for N ¼ 4 SYM in [30]. It is
defined by

ll ¼
P

a<bðabÞDl
l⋆
abP

a<bðabÞDl
habi ; ð11Þ

where the matrix Dl is an element of Grassmannian space
Gð2; 2kÞ and ðabÞDl

are 2 × 2 minors of the matrix Dl.
Moreover, we define

l⋆
ab ¼

Xn
c¼bþ1

ð−1Þcλahbciλc−
Xn

c¼aþ1

ð−1Þcλbhaciλc: ð12Þ

The image ll ¼ ΦλðDlÞ is generically not a symmetric
matrix, and therefore in order to adapt this construction to
the ABJM theory, we need to restrict to a subsets of
matrices Dl that result in three dimensional off-shell
momenta. This imposes additional constraints onDl, which
correspond to the symplectic condition described in [42].

We define the loop momentum amplituhedron AðLÞ
2k as

the image of a particular subset DL ⊂ Gð2; 2kÞ ×… ×
Gð2; 2kÞ obtained as follows. We take a matrix
C∈OGþðkÞ such that λ ¼ ϕΛðCÞ and construct its T-dual
version Č (see [52]). Then we say that ðD1;…; DLÞ∈DL if

FIG. 1. The region Δn that is the compact part of the set of all
points that are spacelike separated from xa for n ¼ 4 and n ¼ 6.
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the matrices ðČ; Dl1 ;…; DlpÞ are positive for all subsets
fl1;…; lpg ⊂ f1;…; Lg. Finally, we can define

AðLÞ
2k ¼ ΦλðDLÞ: ð13Þ

One loop.—We start our exploration of the loop momen-
tum amplituhedron by examining the one-loop geometry

Að1Þ
2k , which is relatively basic. One straightforward fact

that can be derived from definition (10) is thatAð1Þ
2k ⊂ K≤0

xa ,

which means that all point l≡ x∈Að1Þ
2k are spacelike

separated from all points xa. What is far less obvious is the
fact that all points of the loop momentum amplituhedron sit
in the compact part Δ2kðxaÞ of K≤0

xa . We have sampled
many random points in the image of (13) for n ≤ 10 to
confirm that they are actually equal:

Að1Þ
2k ¼ ΔðmÞ

2k ; ð14Þ
where the geometry depends on the choice of tree-level λ.
Most importantly, for all points λ in the same chamber, the

loop geometry Að1Þ
2k looks the same, confirming that the

geometry factorizes as in (1).
Knowing the geometry, we can find its canonical differ-

ential form. From the factorization property, we immedi-
ately get that

Að1Þ
n ¼

X
m

Ωð0Þ
n;m ∧ Ωð1Þ

n;m; ð15Þ

where Ωð0Þ
n;m is the tree-level form associated to the chamber

Cm. In the following we will derive explicit expressions for

Ωð1Þ
n;m ¼ ΩðΔðmÞ

2k Þ. Since ΔðmÞ
2k is just a curvy version of a

simple polytope in three dimensions, the canonical form
should naively be just the sum over vertices of the d log
forms for all facets that meet at that vertex

Ωnaive½ΔðmÞ
2k � ¼

X

ðabcÞ∈V½ΔðmÞ
2k �

σabcωabc; ð16Þ

where

ωabc¼ d logðx−xaÞ2 ∧ d logðx−xbÞ2 ∧ d logðx−xcÞ2:
The signs σabc can be found by demanding that the form is
projective, see [53].We emphasize that the differential forms
ωabc separately are not dual conformally invariant; however,
the final answer (16) is. The difference in our case compared
to the story of simple polytopes is that the differential form

(16) also has nonvanishing residues at points outside ofΔðmÞ
2k .

More precisely, it has a nonzero residue at all points p�
abc,

while only one of them is a vertex of ΔðmÞ
2k . Since

Res
x¼p�

abc

ωabc ¼ 1; ð17Þ

weneed to find a form that contributeswith opposite signs on
the twopoints. The natural candidate is the triangle integrand

ω△
abc

¼
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2abx

2
bcx

2
ac

q
d3x

ðx−xaÞ2ðx−xbÞ2ðx−xcÞ2

¼�d log
ðx−xaÞ2
ðx−p�

abcÞ2
∧dlog

ðx−xbÞ2
ðx−p�

abcÞ2
∧d log

ðx−xcÞ2
ðx−p�

abcÞ2
;

ð18Þ
for which

Res
x¼p�

abc

ω△
abc ¼ �1: ð19Þ

Therefore, the form that is supported only on ΔðmÞ
2k is

ΩðΔðmÞ
2k Þ¼

X

ðabcÞ∈V½ΔðmÞ
2k �

σabcω
�
abc¼

X
ðabcÞ

σabcðωabc�ω△
abcÞ;

where the relative sign in the bracket depends on which
solution of the triple intersection is a vertex of the geometry.
Performing case-by-case studies, one finds that all inter-
sections with even labels have negative sign, while all with
odd labels positive sign. We note that the light cones that
meet at vertices xa are given by ðx − xa−1Þ2 ¼ 0,
ðx − xaÞ2 ¼ 0, and ðx−xaþ1Þ2¼ 0, and since ω△

a−1aaþ1 ¼
0 these vertices only contributeωa−1aaþ1. We notice that the

form Ω½ΔðmÞ
2k � has a residue of 2 at p�

abc, whereas there is a
residue of 1 at vertices xa. This is a necessary feature to
ensure projective invariance, and it leads to the correct
integrand. The generalization of positive geometries that
allows for these type of residues has been recently intro-
duced in [20] in the context of the loop amplituhedron.
Therefore, we conjecture that the one-loop ABJM integrand
for the positive branch for any n ¼ 2k is (2). The formula
agrees with the one provided in [42] for n ¼ 4, 6, 8, 10 [54].
As argued in [42], the complete 2k-point ABJM inte-

grand is given by a sum over 2k−2 different branches. While
our current construction of the geometry gives the integrand
only for the positive branch, the integrands for other
branches can be obtained from (2) by making use of the
parity operations introduced in [42]. These effectively
interchange certain pþ

abc ↔ p−
abc, while keeping all points

xa unchanged. Therefore, we can think of other branches as

having exactly the same shape ΔðmÞ
2k as the positive branch,

but with some of the triple intersection points swapped. It is
clear that such a parity operation will only flip the signs of
the corresponding triangle integrands, while leaving the
rest of the form unchanged. Therefore, if one is able to
classify all parity operations for given n, the full amplitude
can be derived from our geometric construction by sum-
ming over these relabeled geometries.
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More loops.—In this section we will have a first look at
implications of our construction for the L-loop problem for
L > 1. In this case, each off-shell loop momentum ll is
spacelike separated from all points xa and therefore sits

inside ΔðmÞ
2k . However, we also need to impose mutual

positivity constraints that translate into the requirement
that every pair of loop momenta is spacelike separated
ðll1 − ll2Þ2 < 0 for all l1; l2 ¼ 1;…; L.
This is particularly simple for n ¼ 4 at two loops, where

for a fixed position of momentum l1, the geometry
accessible to the momentum l2, depicted in Fig. 2(a),
does not depend on the position of l1. We are therefore
interested in the region inside Δ4 that sits outside the light
cone of l1. Importantly, the latter intersects the light cones
of points x1 and x3 in the future and the light cones of points
x2 and x4 in the past. It is not obvious how to directly find
the canonical differential form of this region. We will
however circumvent this problem by considering negative
geometries; see [39,49]. It is clear that

Að2Þ
4 ∪ R4 ¼ Að1Þ

4 ×Að1Þ
4 ; ð20Þ

where R4 ¼ fðl1;l2Þ∈Δ4 × Δ4∶ ðl1 − l2Þ2 > 0g. This
region further decomposes into R4 ¼R4;l1≺l2 ∪R4;l1≻l2 ,
where R4;l1≺l2

(R4;l1≺l2) contains all points for which l1

is in the past (future) of l2. The boundary structure of these

two regions is significantly simpler then the one of Að2Þ
4 ;

see Fig. 2(b). In particular, the only boundaries accessible
by momentum l1 are ðl1 − l2Þ2 ¼ 0, ðl1 − x2Þ2 ¼ 0, and
ðl1 − x4Þ2 ¼ 0 [ðl1 − l2Þ2 ¼ 0, ðl1 − x1Þ2 ¼ 0, and
ðl1 − x3Þ2 ¼ 0]. By comparing with known results, there
is a natural differential form that we can associate to each of
these regions:

ΩðR4;l1≺l2Þ

¼ x213x
2
24d

3l1 ∧ d3l2

ðl1−x2Þ2ðl1−x4Þ2ðl1−l2Þ2ðl2−x1Þ2ðl2−x3Þ2

andΩðR4;l1≻l2Þ ¼ ΩðR4;l1≺l2Þjl1↔l2 . Therefore, the two-
loop integrand is given by

Ωð2Þ
4 ¼Ωð1Þ

1 ðl1Þ∧Ωð1Þ
1 ðl2Þ−ΩðR4;l1≺l2

Þ−ΩðR4;l1≻l2Þ:
ð21Þ

This agrees with [45].
For higher number of points at two loops, we observe

that, when going to negative geometries, we can again
define two regions, Rn;l1≺l2 and Rn;l1≻l2 , where loop
momenta are timelike separated and time-ordered. Unlike
for n ¼ 4, we get different regions for l2 depending on the
position of l1. However, there is a simple classification of
all these regions. We focus first onR6;l1≺l2 and notice that
for fixed l1 the only boundaries for momentum l2 are at
ðl1 − l2Þ2 ¼ 0 and at the light cones of points xa that
intersect the light cone of l1 in the future. There are four
possibilities:

fIl1 ∩ I x1 ≠ =0;Il1 ∩ I x3 ≠ =0g; ð22Þ

fIl1 ∩ I x1 ≠ =0;Il1 ∩ I x5 ≠ =0g; ð23Þ

fIl1 ∩ I x3 ≠ =0;Il1 ∩ I x5 ≠ =0g; ð24Þ

fIl1 ∩ I x1 ≠ =0;Il1 ∩ I x3 ≠ =0;Il1 ∩ I x5 ≠ =0g; ð25Þ

as depicted in Fig. 3. Similar analysis holds true for
boundaries for l1 when l2 is fixed: the four possibilities
are f2; 4g, f2; 6g, f4; 6g or f2; 4; 6g. We found that there
are 13 allowed regions in this geometry [notice that region
(f2; 4g, f1; 5g) and its two cyclic rotations are not
allowed], which correspond to the bipartite graphs in [42].
Therefore, it should be possible to rewrite the answer found
there such that each term matches one of these 13 regions.
Similar structure is also present in the n ¼ 8 two-loop
answer, and it naturally follows from our construction,
since it reflects which light cones intersects Il1 and Il2 in
the past and future. At the moment we do not have a good
understanding of how to associate differential forms to this
regions and leave it for future work.
Finally, by moving to higher loop orders, one can use

negative geometries and study configurations of loop

FIG. 2. The positive (a) and negative (b) part of the geometry
for n ¼ 4 for fixed l1.

FIG. 3. Two of the 13 possible regions in the two-loop
geometry for fixed position of l1 for n ¼ 6.
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momenta inside the region ΔðmÞ
n that are (partially) time-

ordered in three-dimensional Minkowski space, as sug-
gested in [39]. Our construction provides a simple
geometric picture that can be used to organize the calcu-
lations based on the causal structure of the corresponding
configuration of loop momenta.
Conclusions and outlook.—In this Letter we defined the

spinor helicity version of the ABJM amplituhedron and, by
translating it to the space of dual momenta, we found a
surprisingly simple geometry associated with the causal
structure of configurations of points in three-dimensional
Minkowski space. This allowed us to find a formula for all
integrands at one loop, and shed some light on the structure
of the answer at two loops and beyond.
Intriguingly, if we knew nothing about amplituhedra,

we could still define ΔnðxaÞ as a compact region in the
Minkowski space that is spacelike separated from a null
polygon with n vertices. By studying this region we would
rediscover the structure of scattering amplitudes in
ABJM theory! However, it is far from obvious why
ABJM theory is selected from all possible three-
dimensional quantum field theories. Finding the answer
to this question might shed light on generalizations of our
construction beyond ABJM.
There are many interesting avenues to follow based on

this new picture of scattering in ABJM. The most urgent
one is to better understand the geometry itself and in
particular to provide a constructive way to derive its
differential forms. It will be crucial to check whether the
structure of the answer that we saw at one loop can be
systematically generalized to higher loops, promising all
multiplicity answers for ABJM loop integrands.
Finally, the ABJM momentum amplituhedron is a

reduction of the momentum amplituhedron in N ¼ 4
SYM. A natural question that arises is whether a similar
basic geometry lives in the four-dimensional space of dual
momenta in (2,2) signature.
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