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Abstract—Memristive neuromorphic networks have great po-
tential and advantage in both technology and computational
protocols for artificial intelligence. Efficient hardware design of
biological neuron models forms the core of research problems in
neuromorphic networks. However, most of the existing research
has been based on logic or integrated circuit principles, limited
to replicating simple integrate-and-fire behaviors, while more
complex firing characteristics have relied on the inherent prop-
erties of the devices themselves, without support from biological
principles. This paper proposes a memristor-based neuron circuit
system (MNCS) according to the microdynamics of neurons
and complex neural cell structures. It leverages the nonlinearity
and non-volatile characteristics of memristors to simulate the
biological functions of various ion channels. It is designed based
on the Hodgkin-Huxley (HH) model circuit, and the parameters
are adjusted according to each neuronal firing mechanism. Both
PSpice simulations and practical experiments have demonstrated
that MNCS can replicate 24 types of repeating biological neuronal
behaviors. Furthermore, the results from the Joint Inter-spike
Interval(JISI) experiment indicate that as the background noise
increases, MNCS exhibits pulse emission characteristics similar
to those of biological neurons.

Index Terms—Memristor, Neuromorphic networks, Hodgkin
Huxley model, Ion chanel, Neurodynamics.

I. INTRODUCTION

S INCE the emergence of large-scale models, like ChatGPT,
people have once again experienced the power and prac-

ticality of artificial intelligence (AI) up close. However, the
integration density of silicon-based hardware has reached its
physical limits, combined with the high power consumption
of von Neumann architecture, resulting in a bottleneck in
the development of AI [1]. This is particularly evident in
mobile robotics, where existing chips and portable power
supplies cannot meet the operational requirements of large-
scale artificial intelligence algorithms. Compared to existing
artificial intelligence networks, the biological brain possesses
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a unique structure that integrates storage and computation,
providing distinct advantages in terms of energy consumption,
chaotic behavior, nonlinearity, and parallel processing capabil-
ities [2]. This is illustrated in Fig.1a. Hence, the development
of neuromorphic networks is a crucial pathway to advance AI
towards artificial general intelligence (AGI) [3]–[6].
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Fig. 1. Biological neurons vs. Memristor-based neural systems.

Neuron serves as the core computational unit in biological
neural networks, over 20 distinct firing characteristics have
been identified, to form intricate and dynamic computational
systems. Neurons are connected through complex plasticity
synapses and form an extraordinary biological intelligence
with cognition, memory, and consciousness. Therefore, re-
search on neuromorphic networks of artificial neurons pri-
marily encompasses two main aspects: replicating neuronal
connection pathways [7], [8] and fine neural circuit design
[9], [10], as illustrated in Fig.1b. However, constrained by
the computing power of simplified neuronal models, artificial
neural networks still cannot show the same computing capabil-
ities as the human brain due to insufficient activation or poor
robustness et al [11]. In addition, highly biomimetic neural
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circuits based on complementary metal-oxide-semiconductor
(CMOS) technology also bring problems such as reduced
hardware integration density and increased power consumption
[12], [13]. However, in order to achieve low latency and high
nonlinearity in neural morphological computation, similar to
the biological brain, the computational capabilities of neu-
rons should not be overlooked. To simultaneously address
low power consumption and high integration density, it is
necessary to break through the computational architecture of
traditional computers and leverage the inherent characteristics
and coordinated operation of various organelles, just like
neurons, to accomplish complex calculations.

Memristors provide a novel approach to the realization
of neuromorphic networks [14], [15]. First, compared to
silicon-based devices, memristors exhibit a smaller size, lower
power consumption, and greater ease of integration [16],
[17]. Second, their nonlinear and non-volatile characteristics
closely resemble those of biological synapses [18]. Finally,
the characteristics of single-compartment memristors closely
resemble the ion channel permeability, which is the core of the
firing behavior of neurons, intricately linked to the activity of
Na+, K+, and Ca2+. As shown in Fig. 1, the characteristic
of memristor-based neuron circuit system (MNCS) exhibits
striking similarities to neurons [19]. Therefore, memristor has
been wildly used in the design of neurons [20], synapses [21],
[22], and chaotic circuits [23], [24], to enhance integration
densities, and reduce energy consumption [25], [26].

Currently, research on memristor-based artificial neurons
focuses on two aspects. One aspect is through the inherent
properties of memristors that simulate a wide range of neu-
ronal characteristics. These memristor neuron circuits have
a simple structure, complex computation, and the ability
to exhibit multiple neuronal properties [27]–[29]. However,
compared to biological neurons, they exhibit lower robustness,
and limited biological interpretability due to the absence of
neuronal structures. The other aspect employs memristors to
simulate the diverse organelles of neurons and construct highly
nonlinear memristor neuron circuits [19], [30]. These circuits
have been demonstrated to exhibit various neuronal character-
istics, including all-or-nothing spiking, refractory period.

Nevertheless, most of these firing behaviors in memristor-
based neuron circuits are explained by the Leaky Integrate-
and-Fire (LIF) model [31], [32]. In comparison to the HH
model [33], [34], the LIF model has a simplified biomimetic
structure, resulting in fewer neural computational characteris-
tics. Conversely, the Hodgkin-Huxley (HH) model is designed
based on the structural and computational characteristics of
neurons. By adjusting its parameters, the HH can accurately re-
produce the majority of known neuronal firing behaviors [35],
[36]. However, few works strictly rely on the HH model for
neuronal circuit design due to its excessive complexity. As a
consequence, even though the neuronal structure is considered
[19], [30], most memristor-based neuron circuits still rely on
the inherent characteristics of the memristor to achieve specific
neuronal firing behaviors, such as inhibition-induced bursting
[37], [38]. Neurons possess strong robustness. When one
organelle ceases to function, substitute organelles with similar
functions, such as astrocytes, will take over the entire signal

transmission process. However, current work neglects the close
collaboration between organelles and relies solely on high-
order nonlinear devices to simulate neuron characteristics,
which results in poor robustness and low reliability of the
artificial neural network and deviates from the original goal
of bionics, and cannot be trained, learned, and stored like a
biological neural network.

To emulate the dynamics and structure of neuron and
enhance the robustness and biological interpretability of
memristor-based neurons, this paper proposes a memristor
model to adapt various ion channel dynamics. Furthermore,
based on the HH model circuit and dynamic equation, a highly
biomimetic MNCS is proposed. To enhance biological inter-
pretability, the electronic devices in the MNCS are directly
mapped to organelles of neurons. To validate the reliability
of the MNCS, we conducted simulation experiments using
PSpice and performed circuit experiments using a memristor
circuit simulator built with COMS components. The results
of both tests demonstrated that the MNCS is capable of
reproducing 24 different types of neuron characteristics, in-
cluding mixed mode, inhibition-induced spiking, inhibition-
induced bursting, resonator, and various other complex firing
behavior. Additionally, to verify the biomimetic characteristics
of the MNCS, the Joint Inter-spike Interval (JISI) experiments
are conducted, and the results are compared with those of
biological experiments, which further confirms the biological
plausibility of the MNCS.

The rest of this paper is organized as follows. Section
II describes the physiological process of neuron firing, the
memristive model of ion channels, and the neuronal dynamics
equation. Section III presents the circuit design of MNCS,
computer simulation experimental results, circuit experimental
results, and JISI experimental results. Section IV provides a
comparative analysis of MNCS with previous research. Section
V presents the conclusions.

II. NEURONAL FIRING MECHANISM AND ION CHANNEL
MEMRISTOR MODEL

In the intricate network of the biological nervous systems,
a multitude of neuron types can be found, each with a unique
firing mechanism. Even within a single type of neuron, multi-
ple firing mechanisms can be observed [39]. In this section, we
explore the typical neuronal firing mechanisms primarily from
a biological standpoint, delve into the ion channels’ dynamics,
and introduce the memristor model, offering an alternative to
the biological ion channel functionality.

Some specialized terminology needs to be explained in
advance. Resting membrane potential refers to the voltage
difference, with the outside of the cell membrane being
positively charged and the inside being negatively charged,
that exists across the cell membrane when it is not stimulated.
Polarization refers to the process of making the cell membrane
potential more negative, approaching the resting membrane
potential. Depolarization refers to the process of making the
cell membrane potential more positive, moving away from the
negative resting membrane potential. Hyperpolarization refers
to the process of making the cell membrane potential more
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Fig. 2. Microscopic mechanism of neuronal cell firing. a) Resting state; b) Injecting positive charges into the neuronal cell; c) Sodium ions flow into the cell
from the extracellular space; d) Potassium ions flow out of the cell from the intracellular space to the extracellular environment.; e) Injecting negative charges
into the neuronal cell; f) Calcium ion flow into the cell from the extracellular space; g) Excitatory and inhibitory postsynaptic potentials(EPSP and IPSP).

negative, moving away from the normal resting membrane
potential.

A. Typical neuronal firing mechanisms

The fundamental reason for generating different firing char-
acteristics lies in the activation and deactivation of distinct
ion channels under various stimuli [40]. The ion channels
primarily involved in generating action potentials are Na+,
K+, and Ca2+ channels. When a neuron is not generating an
action potential, major ion channel groups are in an inactive
state, known as the resting state, as depicted in Fig. 2a. The
Nernst potentials for Na+ and Ca2+ are 55mV and 118mV ,
respectively, due to their higher concentrations outside the
neuronal cell. In contrast, the concentration of K+ inside the
cell is higher than outside, so the Nernst potential for K+ is
−77mV . When the neuron is at rest, non-voltage-gated K+

channels are activated, allowing K+ to move freely across
the cell membrane. Due to the movement of K+ and the
influence of charged particles, the membrane potential stays
around −71mV in the resting state [39].

Depending on the polarity of the input current, neurons can
produce either Excitatory Postsynaptic Potentials (EPSP) or
Inhibitory Postsynaptic Potentials (IPSP). EPSP occurs when
positive charges are injected into the neuron, causing the
membrane potential to increase gradually and leading to the
depolarization of the neuronal cell, as shown in Fig.2b. Once
the membrane potential reaches a certain threshold of around
−55mV , there is a rapid activation of the Na+ channels,

which allows for a significant influx of Na+ into the cell.
This leads to further depolarization of the neuron, as shown
in Fig. 2e. When the membrane potential reaches the activation
threshold of the K+ channels (typically around 20mV ), the
K+ channel groups rapidly activate, resulting in a significant
efflux of K+ from the cell, as shown in Fig. 2f. This leads to a
swift decrease in membrane potential, causing hyperpolariza-
tion of neurons. During this process, the Na+ channels also
undergo inactivation. When the membrane potential decreases
to the inactivation threshold of the K+ channels (typically
around −76mV ), the K+ channels undergo a slow process
of inactivation, leading to the neuron to return to the resting
state, thereby completing an action potential. Fig. 2g shows
the T-V curve of EPSP.

Compared to EPSP, the ion channels and stimulation meth-
ods involved in IPSP are different [41]. When the neuron cell
is in a resting state, negative charges are injected into the
cell, as depicted in Fig. 2c. During this period, the membrane
potential decreases, leading to neuron hyperpolarization. When
the activation threshold of the T-type Ca2+ channel is reached
(typically around −80mV ) [42], the T-type Ca2+ channel
activates. Due to the concentration gradient, a significant
influx of Ca2+ occurs, leading to depolarization of the nerve
cell, ultimately reaching the activation threshold of the Na+

channel, as illustrated in Fig. 2d. Subsequently, the firing
process of EPSP is iterated, leading to the completion of the
action potential. The T-V curve of IPSP is shown in Fig.
2g. Due to the fast activation and slow deactivation of T-
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type Ca2+ channels, neurons will continue to generate action
potentials until the T-type Ca2+ channels are fully inactivated
[43], [44].

Bursting is a distinctive pattern of neuronal firing closely
linked to Ca2+-gated K+ channels [41]. In neuronal ex-
periments, the use of apamin, a specific blocker of small
conductance (SK) Ca2+-gated K+ channels, can induce burst-
ing activity in neurons [45]. One possible explanation is
that during the generation of the action potential, apamin
blocks a portion of the K+ channels, preventing the efflux
of K+ from the cells promptly. This results in the inability of
membrane potential to reach the inactivation threshold of Na+

channels, thereby delaying the inactivation of Na+ channels.
Consequently, a continuous influx of Na+ into the cell results
in the repetitive activation and deactivation of functional K+

channels within a short period, thereby giving rise to bursting
activity [39], [41].

B. Ion channel memristor

From the above analysis, it can be known that ion channel
organelles play an essential role in neurons’ firing behavior.
The intricate biological attributes of ion channels can be faith-
fully replicated through the utilization of single-compartment
memristors. In particular, memristors engineered with materi-
als like niobium oxide and vanadium oxide excel in this regard
[19], [30], [46]. In this paper, according to the biological
characteristics of each ion channel, a memristor circuit model
was designed and simulated with PSpice [47]. Furthermore, a
memristor circuit was designed, and circuit experiments were
carried out, to verify the accuracy and biological rationality of
the ion channel memristor model.

Na+ channel memristor: Among various ion channels,
the Na+ channel belongs to the fast-activating and fast-
inactivating types. Its function is to facilitate the rapid depo-
larization of neurons. Based on the activation and deactivation
thresholds observed in Na+ channels within neurons, it is
identified that there are two thresholds for the Na+ channel
memristor model. The dynamic equation of the memristor
is expressed by Eq. (1), (2), and (3). Table I provides all
parameters involved in the dynamic equations of the memristor
model. Fig. 3a, 3b, and 3c illustrate the V −I curves of Na+,
K+, Ca2+ channel memristors, respectively. In Fig. 3, the
blue curve represents the process of the memristor switching
from a low-resistance state to a high-resistance state, while the
red curve represents the opposite.

V (t) = Roff − x ·∆R · i(t) (1)

V (t) represents the voltage passing through the memristor
at t moment, t denotes time, and Roff corresponds to the
maximum resistance of the memristor. The x represents the
resistance coefficient of change, which fluctuates with the
current and time based on the resistance coefficient change
Eq. (2) or (4). The i(t) represents the current passing through
the memristor at t moment, and ∆R refers to the difference
between the maximum resistance Roff and the minimum
resistance Ron of the memristor. The values of Roff and Ron

a b

c
High resistance （Roff）
                to 
Low  resistance （Ron）

Low  resistance （Ron） 
                 to 
High resistance （Roff）

Fig. 3. The V − I characteristic curves of sodium, potassium, and calcium
ion channel memristors.

are determined by the rate at which ions flow through the ion
channels.

dx

dt
=


q1 · kb1on · f1(x) · i(t) ·∆R, V (t) < Vth1

0 , Vth2 > V (t) ≥ Vth1

q2 · kb2off · f2(x) · i(t) ·∆R, V (t) ≥ Vth2

(2)

where f(x) represents a window function that is utilized to
modify the nonlinear variation characteristics of the memristor
model. It is expressed by Eq. (3). The coefficients q1, q2, kon,
koff , b1, b2 are used to adjust the rate of resistance change of
the memristor.

f(x) =

{
a1 · (1 + x)p1

a2 · (1 + x)p2
(3)

In Eq. (3), a1, a2, p1, p2 represent the coefficients used to
adjust the nonlinear variation characteristics of the memristor.
In order to replicate activation characteristics of Na+ chan-
nels, the resistance switching speed of the memristor model is
intentionally set to be remarkably fast. This results in a V − I
curve that is nearly perpendicular to the x-axis, as shown in
Fig. 3a.
K+ channel memristor: K+ channels demonstrate rapid

activation and gradual inactivation properties. In fact, the
activation speed of K+ channels is even faster than that of
Na+ channels. Two thresholds for the memristor add are
before based on the characteristics of the K+ channel. By fine-
tuning the parameters of Eq. (4), the resistance switching speed
of the memristor can be adjusted to align with the properties
exhibited by potassium ion channels. The dynamic behavior
of the memristor is described by Eq. (1), (3), and (4) in the
dynamic equation.

dx

dt
=


q1 · kb1on · f1(x) · i(t) ·∆R, V (t) > Vth1

0 , Vth1 ≥ V (t) > Vth2

kb2off · f2(x) · i(t)q2 ·∆R, V (t) ≤ Vth2

(4)
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TABLE I
PARAMETERS OF SODIUM, POTASSIUM, AND CALCIUM ION CHANNEL MEMRISTORS.

ID Ion CH Roff Ron Vth1 Vth2 b1 b2 p1 p2 koff q1 q2 Dynamical Eq.

1 Na+ CH 1MΩ 200Ω −110mV −119.5mV 15 2 4 2 2 - - (1), (2), (3)
2 K+ CH 1MΩ 20Ω 97mV 7mV 18 −9.8 4 2 2 1.05 −0.51 (1), (3), (4)
3 K+ CH2 11MΩ 20Ω 97mV 40mV 18 −9.8 4 2 2 1.05 −0.51 (1), (3), (4)
4 Ca2+ CH 1MΩ 10kΩ −195mV −120mV 7 5 1.2 2.1 2 1 1 (1), (2), (3)
5 K+ CH3 1MΩ 20Ω 97mV 40mV 18 −9.8 4 2 2 1.05 −0.51 (1), (3), (4)
6 K+ CH4 1MΩ 20Ω 97mV 7mV 18 −9.8 4 2 0.01 1.05 −0.51 (1), (3), (4)
7 Ca2+ CH2 20kΩ 10kΩ −195mV −120mV 7 5 1.2 2.1 2 1 1 (1), (2), (3)
8 K+ CH5 1MΩ 1kΩ 15mV 7mV 7 7 4 2 2 1 1 (1), (2), (3)
9 Ca2+ CH3 1MΩ 30kΩ −184mV −192mV 12 12 4 2 2 1 1 (1), (2), (3)
10 K+ CH6 1MΩ 500Ω 97mV 40mV 18 1 4 2 0.01 1.05 1 (1), (3), (4)

Note 1 : In all memristors, the values of a1 and a2 are 1, and the value of kon is 2.
Note 2 : The symbol ’-’ represents an empty value.
Note 3 : K+ CH2: K+ channel for bursting; K+ CH3: Ca2+-gated K+ channel; K+ CH4: Special K+ channel; K+ CH5: Non-voltage-gated K+

channel; Ca2+ CH: T-type Ca2+ channel; Ca2+ CH2: Dysfunctional Ca2+ channel; Ca2+ CH3: L-type Ca2+ channel;

From the V − I curve depicted in Fig. 3b for the K+

channel memristor, it is clear that the memristor undergoes
a rapid transition in resistance from Roff to Ron, like Na+

channel. The transition from Ron to Roff occurs relatively
slowly, and the V − I curve exhibits a gradual slope. This
characteristic aligns with the biological properties of K+

channels. It is important to note that the resistance recovery
speed of K+ channel memristors needs to be regulated within
an appropriate range. If it is too fast, the neuron circuit may
not hyperpolarize sufficiently, whereas if it is too slow, it can
impact the frequency of pulse firing.

Ca2+ channel memristor: In neurons, there exist various
types of Ca2+ channels. However, the specific Ca2+ chan-
nels implicated in IPSP are predominantly the T-type Ca2+

channels [42]. Hence, it is primarily focused on designing the
memristor model based on the specific attributes of the T-type
Ca2+ channel. As mentioned earlier, the T-type Ca2+ channel
is characterized as a fast-activating and slow-inactivating type
of ion channel. During the polarization of neurons, the T-
type Ca2+ channel is activated and gradually inactivated
throughout the depolarization process. In a similar manner,
two trigger thresholds for the memristor are established based
on the specific characteristics of the T-type Ca2+ channel.
Furthermore, by taking into account the activation properties
of the T-type Ca2+ channel, the resistance switching speed of
the memristor is fine-tuned using Eq. 2. The dynamic behavior
of the memristor is described by Eq. 1, 2, and 3.

Similar to K+ channels, Ca2+ channels also demonstrate
fast activation and slow inactivation characteristics. As a result,
the I−V curves of Ca2+ channel memristors closely resemble
those of K+ channel memristors, as shown in Fig. 3c. It is
worth noting that an excessive influx of Ca2+ into neurons can
lead to abnormal neuronal firing, resulting in conditions such
as epilepsy or QT syndrome [48], [49]. Therefore, the rate of
Ca2+ flow through ion channels is not as high as that of Na+

or K+. To emulate this neuronal characteristic, the resistance
value R of the Ca2+ channel memristor is deliberately set to
a relatively high level in order to prevent abnormal firings in
MNCS.

C. Dynamics of MNCS

Due to its classification as a fine neuronal-biomimetic
circuit, MNCS can be comprehensively explained by utilizing
the dynamic equations of the HH model. The conservation
of electric charge on a piece of membrane implies that the
applied current I(t) may be split into two parts, a capacitive
current IC(t) charges the capacitor C, and components Ik pass
through the ion channels.

I(t) = Ic(t) +
∑
k

Ik, (5)

where the sum runs over all ion channels. From the definition
of capacitance C = q/u, q is the charge and u is the voltage
across the capacitor, we have the charging current IC(t) =
C · du/dt. Hence from Eq. (5)

C · du
dt

= −
∑
k

Ik + I(t). (6)

With the incorporation of Ca2+ channels, an extra dimen-
sion must be included in the dynamic equations of the HH
model to adequately describe MNCS. The dynamic equations
of MNCS can be represented by

∑
k

Ik = gNa · (u− ENa) + gk · (u− Ek)+

gCa · (u− ECa) + gL · (u− EL).

(7)

The parameters gNa, gK , and gCa denote the alterations
in the conductance of Na+, K+, and Ca2+ throughout the
process of action potential generation. The values of these
variables are determined collectively by Eq.(1), (2), (3), and
(4). The changes in conductance of the leakage channel are
represented by gL. The parameters ENa, EK , ECa, and
EL are the reversal potentials, u represents the membrane
potential.

III. SIMULATION AND PRACTICAL EXPERIMENTS

In the previous section, the firing mechanism of biological
neurons has been described. In this section, we replace the
organelles in neurons with electronic devices and construct
neural circuit systems based on the structure of neurons to
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Fig. 4. Memristor-based Neuron Circuit System. a) Electronic Devices Corresponding to Neuronal Organelles; b) Compound Neuron(CN), Highly consistent
with neuronal structures, the compound neuron is capable of faithfully replicating the vast majority of neuronal discharge characteristics; c) Phasic Neuron(PN),
The PN lacks biological knowledge support in certain mechanisms, but it is capable of reproducing specific neuronal discharge characteristics; d)Mixd-mode
Neuron(MN), The Mixed-mode Neuron exclusively replicates a single type of neuronal discharge characteristic, providing a basis for comparison with the
CN.

replicate the majority of neuronal characteristics. Simulation
and experiments are carried out to verify the effectiveness of
the proposed circuit systems.

A. Memristive-based Neuronal Circuit System

As described in Section II, the outflow of K+ inside
neuronal cells generates a resting potential of approximately
−71mV . Therefore, in the MNCS, a fixed resistor R∗

k is
used to simulate the non-voltage-gated K+ channel, and it
is connected in series with a −77mV DC power supply to
mimic the outflow of K+. As shown in the branch a in Fig.
4b, 4c, 4d.

The MNCS can be divided into two sub-circuit systems,
Compound Neuron (CN) and Phasic Neuron (PN). As a
comparative circuit, the Mixed-mode Neuron (MN) does not
belong to the MNCS. For CN, it is designed entirely based on
the structure of neurons. As shown in Fig. 4b, the area above
dashed line 1 represents the intracellular region, while the area
below dashed line 2 represents the extracellular region. The
region between dashed lines 1 and 2 represents the cell mem-
brane and the organelles present on the membrane. As shown

in Fig 4a, ion channels, and other organelles are embedded in
the cell membrane. According to the principles of circuitry, the
organelles on the membrane and the cell membrane itself are
effectively connected in parallel. Therefore, in the HH model
circuit, the individual resistors representing ion channels and
the capacitor representing the cell membrane are connected in
parallel. The CN, PN, and MN, following the design of the
Hodgkin-Huxley model circuit, also inherit this structure. In
CN, PN, and MN, the Rna, Rk, and Rca represent ion channel
memristors, which serve as substitutes for the variable resistors
in the HH model circuit, whereas V2, V3, and V4 represent the
Nernst potentials resulting from the concentration gradients of
various ions between the interior and exterior of the neuronal
cell.

The capacitors C1, C2, and C3 correspond to the cell
membranes surrounding the respective ion channels in their
local regions. It is important to note that when action potentials
propagate along axons, the Na+, K+, and Ca2+ channels
that undergo rapid activation are confined to a small region.
The capacitance of the biological capacitor formed by the
lipid bilayer remains unchanged, which means that C1, C2,
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TABLE II
THE PARAMETERS OF MEMRISTOR-BASED NEURON CIRCUIT SYSTEM COMPUTER SIMULATION TEST.

Category Rin Cin C1 C2 C3 Nb
m Vb

2 Nc
m Vc

3 Nd
m Vd

4 Circuit

Phasic spiking 6kΩ 1.5µF 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV - - PN
- - 1.5µF 1.5µF 1.5µF 1 55mV 6 −77mV - - CN

Phasic bursting 6kΩ 1.5µF 0.5µF 0.5µF 0.5µF 1 55mV 5 −77mV - - PN
- - 2µF 2µF 2µF 1 55mV 5 −77mV 6 -77mV CN

Spike frequency adaptation 6kΩ 30µF 2µF 2µF 2µF 1 55mV 2 −77mV - - PN
Depolarizing after-potential 10kΩ 1.5µF 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV - - PN

Accommodation 10kΩ 1µF 1µF 1µF 1µF 1 55mV 2 −77mV - - PN
Tonic spiking - - 2µF 2µF 2µF 1 55mV 2 −77mV - - CN
Tonic bursting - - 2µF 2µF 2µF 1 55mV 2 −77mV - - CN
Rebound spike - - 2µF 2µF 2µF 1 55mV 2 −77mV 3 118mV CN

Rebound bursting - - 2µF 2µF 2µF 1 55mV 5 −77mV 3 118mV CN
Class 1 excitable - - 2µF 2µF 2µF 1 55mV 2 −77mV - - CN
Class 2 excitable - - 0.3µF 0.3µF 0.3µF 1 55mV 2 −77mV - - CN

Spike latency - - 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV 9 118mV CN
Refractory period - - 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV - - CN

All-or-nothing firing - - 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV - - CN
Inhibition-induced spiking - - 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV 3 118mV CN
Inhibition-induced bursting - - 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV 5 118mV CN

Resonator - - 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV - - CN
Integrator - - 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV - - CN

Threshold variability - - 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV 3 118mV CN
Subthreshold oscillations - - 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV 3 118mV CN
Dysfunctional Ca channel - - 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV 7 118mV CN

Mixed mode 45kΩ 1µF 1µF 1µF 1µF 1 55mV 2 −77mV - - PN
- - 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV 5 −77mV CN

Bistability - - 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV 8 −77mV CN
Excitation block - - 1.5µF 1.5µF 1.5µF 1 55mV 2 −77mV 10 −77mV CN

Note 1: The symbol ’-’ represents an empty value.
Note 2: Nx

m represents the unique identifier assigned to branch x within the MNCS. The specific memristor used in this branch is chosen based on the
corresponding identifier found in Table I. The selected memristor is then configured according to the corresponding parameter settings associated with
that identifier.
Note 3 : In addition to bistability, V1 is −71mV . For bistability,V1 is −50mV . All Rm are 2.7kΩ.

and C3 have been set to equal values. In the PN and MN,
there is no direct correspondence of Cin and Rin to specific
organelles. The combination of Cin and Rin in the circuit
is designed to temporarily disrupt the dynamic equilibrium
of the neuronal circuit using the capacitor charging process,
leading to the transient generation of action potentials or
the generation of more action potentials. This design is only
necessary for discharge modes such as Depolarizing after-
potential, Accommodation, and Spike frequency adaptation.
The generation of these action potentials relies on the inherent
properties of Cin and Rin themselves, without reference to the
structure and discharge mechanisms of biological cells, result-
ing in relatively low biological interpretability. PN leverages
the inherent characteristics of the devices to achieve certain
neuronal properties that are temporarily unattainable in CN.
On the other hand, MN is used as a circuit of comparison
with CN. Moreover, based on the parameter settings provided
in Table I and II, CN, PN, and MN in schematic diagram Fig. 4
can successfully replicate 24 common discharge characteristics
observed in neurons. The explanations for special parameter
symbols used in the table are provided in the table notes.
All of our simulation experiments were conducted using
the PSpice simulation software. The simulation results for
the 24 discharge characteristics are shown in Fig. 5. Each
small colored block in the upper-left corner of each graph
corresponds to the background color of the circuit depicted in
Fig. 4, indicating that the result is generated by that circuit.

The five neuron firing behaviors depicted in Fig. 5a to
5e can be achieved through PN, while phasic spiking and
phasic bursting can also be achieved through the CN. Phasic
spiking: For the PN, the voltage change during the charging
of capacitor Cin disrupts the balance of the MNCS, leading

to an action potential. Once the voltage at both ends of the
capacitor reaches a steady state, the MNCS returns to a resting
state and no longer responds. The implementation mode of
CN is significantly different. In CN, No.6 memristor in Table
I is used to replace the K+ channel memristor. Consequently,
after an action potential is completed, the K+ CH4 memristor
fails to reset promptly, resulting in a sustained output that
remains unchanged for a significant duration. Phasic bursting:
In biological neurons, bursting is associated with the blocking
of certain K+ channels. Therefore, it is necessary to utilize the
No.3 memristor from Table I circuit to simulate the blockage
of the Ca2+-gated K+ channel. In the CN, besides utilizing
the No. 3 memristor, it is also necessary to incorporate the
No. 6 memristor from Table I to achieve single cluster firing.

Spike frequency adaptation: The basic principle of this
firing characteristic is consistent with phasic spike. The vari-
ation in firing frequency is achieved through the nonlinear
charging characteristics of the capacitor. By adjusting the input
capacitance Cin and input resistance Rin, it is possible to
modify the firing frequency and duration. Depolarizing after-
potential(DAP): The implementation of DAP behavior in PN
is achieved through the charging of capacitor Cin during
action potential, which leads to a temporary increase in the
voltage at both ends of Cin, exceeding the steady-state value
and reaching Vmxa. Subsequently, when Cin discharges from
Vmxa back to the steady-state value, the DAP phenomenon
occurs. Accommodation: PN achieves this characteristic by
leveraging the discrepancies in the charging and discharging
speeds of capacitors Cin.

All of the firing characteristics that will be introduced
next can be effectively implemented using the CN circuit.
Regarding Tonic spiking and Tonic bursting, their implemen-
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tation mechanism is fully consistent with the basic principles
of neuronal firing, as described in detail in the previous
sections. These behaviors can be achieved by setting the circuit
parameters according to the values listed in Table I and II.
Rebound spiking and Rebound bursting: The reason behind
this characteristic is that the inhibitory small pulses cause
the Ca2+ channels to be partially activated, allowing a small
influx of Ca2+ into the neuron. As a result, the membrane
potential rises, leading to the generation of action potentials.
Class 1 excitable and Class 2 excitable: The main feature
of these two characteristics is that different types of neurons
generate action potentials at varying frequencies. In CN,
different firing frequencies can be achieved by simultaneously
adjusting the values of capacitors C1, C2, and C3. The smaller
the capacitance value, the higher the firing frequency. In neural
cells, apart from the difference in cell membrane capacitance,
the excessive activation or insufficient activation of cation
channels, such as Na+ channels, can also lead to action
potential at different frequencies.

Spike latency: For spike latency, one possible explanation
is that the L-type Ca2+ channel to be activated and slowly
inactivated. When neurons receive a small stimulus, the L-type
Ca2+ channel is activated [50], allowing a small amount of
Ca2+ to flow into the cells continuously. The cells gradually
depolarize, and an action potential is generated when the firing
threshold is reached. The interval between the activation of the
L-type Ca2+ channel and the emission of an action potential
may range from several milliseconds to tens of milliseconds.
Refractory period: The reason for this phenomenon is that
during the action potential generation process, the ion channel
is already activated and the typical inputs during this process
do not significantly affect the state of the ion channel. As
a result, the neuron does not respond to these inputs. In
MNCS, the ion channel memristor is in the Ron state, and
the resistance value is minimally affected by the input current.
As a result, MNCS does not exhibit a significant response to
the input current. All-or-nothing firing: This is a fundamental
characteristic of all neuron cells. The firing mechanism aligns
with the process of action potential generation, which has been
extensively discussed in the previous chapter.

Inhibition-induced spiking and Inhibition-induced
bursting: Sustained inhibitory input currents maintain
activation state of the Ca2+ channels, resulting in a
persistent influx of Ca2+ into the neuron and causing
repeated generation of action potentials. Resonator: This
characteristic may be associated with certain specific negative
ion channels, which is a reasonable speculation. High-
frequency input may activate some negative ion channels,
causing the two consecutive excitatory small pulses to fail in
depolarizing the neuron to the threshold for generating action
potentials. However, as long as the interval between the
two excitatory small pulses is sufficiently long, this specific
negative ion channel will remain inactive. The neuron will
sustain a certain level of depolarization following the first
excitatory small pulse, facilitating the second pulse to easily
depolarize the neuron to the threshold for triggering an action
potential. In the experiment, the delay switch replaced the
function of this specific negative ion channel, thus confirming

our hypothesis. Integrator: The situation with Integrator is
the opposite of that with Resonator. An excitatory small pulse
is unable to trigger neuronal firing, but when two excitatory
small pulses within a short time are applied, the neuron can
depolarize to the threshold for action potential generation.
The longer the interval between the two excitatory small
pulses, the more time the neuronal potential has to repolarize
back to its initial level. This prevents the generation of action
potentials.

Threshold variability: The situation of threshold variability
is more complex. As shown in Fig.5s, an excitatory small
pulse is unable to generate an action potential, but when an
inhibitory small pulse is input to the neuron followed by the
same excitatory small pulse, an action potential is generated.
This is because the inhibitory small pulse can partially activate
the T-type Ca2+ channel, placing the Ca2+ channel in a semi-
activated state. As a result, a small amount of Ca2+ ions
flows into the neuron, causing the neuron to reach a certain
level of depolarization. This leads to an increase in membrane
potential. Subsequently, when the same excitatory small pulse
is applied, the neuron can depolarize further to reach the firing
threshold, resulting in the generation of an action potential.
On the surface, the inhibitory small pulse appears to modify
the firing threshold for neuronal firing. However, the firing
threshold of the neuron remains unchanged. The inhibitory
small pulse simply increases the membrane potential of the
neuron, thereby facilitating the firing of action potentials.

Subthreshold Oscillations: It has been proposed that when
action potentials are generated, specific ions within the nerve
cell are activated or partially activated. This causes both posi-
tive and negative ions to enter, disrupting the ion balance in the
neuron. As a result, the neuron exhibits oscillatory behavior
after the generation of action potentials. This principle of
neuron activity is replicated in MNCS. Dysfunctional Ca2+

channel: The previous section has provided a detailed expla-
nation of this trait. It is primarily caused by the dysregulation
of Ca2+ channels, leading to their over or partial activation.
This leads to a significant influx of Ca2+ into the neurons,
maintaining a high level of depolarization and resulting in the
abnormal firing of nerve cells. In MNCS, simulating the run-
away behavior of the Ca2+ channel and achieving abnormal
firing can be achieved by setting the Roff value of the Ca2+

channel memristor to a value close to Ron. Mixed mode:
For this characteristic, the biological mechanism involves the
K+ channel group being in an intermediate state between
abnormal and normal functioning. As mentioned earlier, if
the Ca2+-gated K+ channels are blocked, the neuron will
exhibit bursting behavior. Therefore, by adjusting the threshold
value and activation speed of the K+ channel memristor to an
appropriate range, we can position it between controlled and
out-of-control states. This enables us to effectively replicate
this characteristic using the CN circuit. However, in the PN
circuit, during the initial stage of firing, the action potential can
be generated at a high frequency due to the rapid charging of
the input capacitor Cin. Once the input capacitor Cin is fully
charged, it will subsequently fire spiking in a normal manner.
This design approach lacks biological support and exhibits
poor performance in-circuit testing.
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Bistability: Most neurons inherently exhibit the firing char-
acteristics of bistability, which require the involvement of a
non-voltage-gated K+ channel. In a resting state, the activa-
tion of non-voltage-gated K+ channels facilitates the outward
flow of K+ from neurons, leading to the establishment of
a resting potential of approximately -71mV . When a neuron
is stimulated by a non-voltage signal, the non-voltage-gated
K+ channel becomes either inactivated or semi-inactivated,
resulting in a continuous rise in membrane potential until it
reaches the threshold for firing an action potential. Therefore,
according to biological theory, it is not possible to achieve
bistability characteristics in MNCS using voltage-gated mem-
ristors. In MNCS, we still utilize voltage-gated memristors
to simulate the physiological function of this specific K+

channel. The triggering mechanism of this firing characteristic
in MNCS deviates from biological principles.

Excitation block: From a biological perspective, in order
for neurons to experience an excitation block, the ion chan-
nels need to undergo inactivation or partial inactivation. This
process hinders the exchange of ions between the inside and
outside of the neuron cell. However, the membrane potential
of cells is determined by the distribution of ions inside and
outside the cells prior to the inactivation of ion channels.
If there is a high concentration of cations inside the cells,
the membrane potential will be high; otherwise, it will be
low. In the experiment, this characteristic can be achieved by
blocking the variation of the resistance value of the memristor.
Another possibility is that there are abnormalities in the ion
channels, causing a constant exchange of cations and anions
between the inside and outside of the neurons, resulting in a
dynamic balance similar to the formation of resting potentials
in neurons. Under this condition, the steady-state value of the
membrane potential is determined by the magnitude of the
anion and cation currents. Compared to the former possibility,
the implementation of this mechanism is relatively complex.
Therefore, in MNCS, the former speculation is utilized to
implement the excitation block.

B. The practical experiment of the Memristor-based Neural
Circuit System.

In the simulation, we systematically describe the various
characteristic firing mechanisms of neurons and MNCS. To
conduct the circuit experiment, we constructed a memristor
circuit simulator using CMOS, bidirectional silicon-controlled
rectifier, and other components to emulate the behavior of
each ion channel memristor in the circuit. The structure of
the ion channel memristor circuit simulator is depicted in Fig.
6. Fig. 6a illustrates the experimental scene, output results, and
PCB circuit board used in our experiment. Fig. 6b, 6c, and 6d
represent the simulators for the memristors corresponding to
Na+, Ca2+, and K+ channels, respectively. As shown in Fig.
6, the green area represents the activation control circuit, in-
dicating that the corresponding memristor is switched to Ron.
On the other hand, the orange area indicates the inactivation
control circuit, causing the corresponding memristor to switch
back to Roff . The circuit simulator is designed based on
the fundamental characteristics of the bidirectional thyristor,

incorporating the ideas provided by HP Labs [51]. As long
as a certain level of current flows through the bidirectional
thyristor, even when the control terminal voltage is removed,
the bidirectional thyristor can remain in the conducting state.
This characteristic can effectively simulate the memristance
of ion channels. Therefore, it is only necessary to design a
threshold circuit to control the bidirectional thyristor in order
to effectively simulate ion channels. The complete experimen-
tal circuit diagram requires replacing the memristor in Fig. 4
with the memristor simulation circuit provided in Fig. 6. Table
III presents the relevant parameters associated with MNCS in
the practical experiment. The relevant parameters of circuit
simulator for ion channel memristors are listed in Table IV.

The structure of the circuit experiment is illustrated in Fig.
7. We have already provided a comprehensive description
of the various characteristics and corresponding operating
mechanisms of neuronal cells and MNCS in the simulation
experiment. We will not go into more specifics on these. The
MNCS, modeled after the structure of neuronal cells and the
HH model, proves to accurately imitate the biological traits of
neurons. Among the circuits, the CN circuit is noteworthy as
it emulates the structure and dynamic actions of neurons, and
can imitate up to 24 distinct types of neuronal activities

C. Biological Characteristics Testing

For isolated neurons, they exhibit highly reliable and repeat-
able responses to fluctuating input currents, as do neurons in
neural networks under strong stimuli. However, in the entire
biological neural network, there is constant background firing
and electrical leakage, which are generally considered noise
signals for individual neurons. When neurons are subjected to
stimuli lacking any temporal structure, they generate irregular
spike signal sequences and exhibit irregular spontaneous activ-
ities that are not significantly correlated with external stimuli.
To further verify whether MNCS possesses the characteristics
of the aforementioned biological neurons, we conduct a Joint
Interspike Interval (JISI) test [52]. The specific method is to
replace stimuli without any temporal structure in the neural
network with noise models. The specific approach involves
introducing the noise signal as a background signal into the
input signal of the MNCS, and then comparing it with the
response of the biological neuron.

We constructed the simulated circuit according to the circuit
shown in Fig. 4b. The specific parameter settings are adopted
according to the configuration corresponding to tonic spiking
in Table II. A current of 3µA in intensity is used as the
baseline current input to the MNCS, stimulating it to produce
continuous action potentials. To better observe the correlation
between noise signals and consecutive spike intervals (ISIs),
we applied three different gradients of noise signals ranging
from 0 to 1µA as inputs to MNCS. Since the MNCS responses
were largely similar under the same input conditions, we only
captured the first 500ms of the output as the experimental
results for presentation. The experimental results are depicted
in Fig. 8. From the pulse graph on the left side of Fig. 8a, it
can be observed that when a constant input without noise is
applied to MNCS, it consistently generates consecutive spikes
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TABLE III
THE PARAMETERS OF MEMRISTOR-BASED NEURON CIRCUIT SYSTEM PRACTICAL TEST.

Category Rin Cin C1 C2 C3 RM Va
1 Vb

2 Vc
3 Vd

4 Circuit

Phasic spiking 6kΩ 1.5µF 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V - PN
- - 2µF 2µF 2µF 2.7kΩ −7.1V 5.5V −7.7V - CN

Phasic bursting 2.7kΩ 5.5V 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V - PN
- - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V −7.7V CN

Spike frequency adaptation 15kΩ 5µF 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V - PN
Depolarizing after-potential 10kΩ 1.5µF 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V - PN

Accommodation 20kΩ 0.1µF 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V - PN
Tonic spiking - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V - CN
Tonic bursting - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V - CN
Rebound spike - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V 11.8V CN

Rebound bursting - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V 11.8V CN
Class 1 excitable - - 2µF 2µF 2µF 2.7kΩ −7.1V 5.5V −7.7V - CN
Class 2 excitable - - 0.5µF 0.5µF 0.5µF 2.7kΩ −7.1V 5.5V −7.7V - CN

Spike latency - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V 11.8V CN
Refractory period - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V - CN

All-or-nothing firing - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V - CN
Inhibition-induced spiking - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V 11.8V CN
Inhibition-induced bursting - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V 11.8V CN

Resonator - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V - CN
Integrator - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V - CN

Threshold variability - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V 11.8V CN
Subthreshold oscillations - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V 11.8V CN
Dysfunctional Ca channel - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V 11.8V CN

Mixed mode 23kΩ 5µF 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V - PN
- - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V −7.7V CN

Bistability - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V −7.7V CN
Excitation block - - 1.5µF 1.5µF 1.5µF 2.7kΩ −7.1V 5.5V −7.7V −7.7V CN

Note : The symbol ’-’ represents an empty value.

TABLE IV
THE PARAMETERS OF CIRCUIT SIMULATOR FOR ION CHANNEL MEMRISTORS.

Category R1 R2 R3 R4 R5 R6 R7 R8 DC1 DC2 DC3 DC4 DC5

Na+ CH circuit 2MΩ 0.1MΩ 1MΩ 0.2kΩ 10kΩ 1kΩ 1.11MΩ 0.39MΩ 6.3V 4V 5.5V 10V -
K+ CH circuit 5Ω 2MΩ - - - - - - 7.7V 2.5V 9V - -

Ca2+ CH circuit 10kΩ 10Ω 100Ω 10Ω 2MΩ 50Ω - - 11.8V 15V 13V 15V 5V

Note 1: The symbol ’-’ represents an empty value.
Note 2: The KT stands for electromagnetic relay.

with approximately equal time intervals. This characteristic is
further illustrated by the JISI scatter plot on the right side
of Fig. 8a. This characteristic aligns with the phenomenon
observed in isolated individual biological neuron experiments.
When a noise signal of 0.5µA is added to a constant input,
the consecutive spike intervals generated by MNCS exhibit
irregularities. From the pulse plot and scatter plot in Fig. 8b,
it is evident that certain consecutive spike intervals exhibit
varying degrees of elongation. When the noise signal intensity
increases to 1uA, the anomalous consecutive spike intervals
continuously generated by MNCS become more prominent.
The scatter plot in Fig. 8c closely resembles the irregular spike
signal sequence generated by biological neurons [52].

The experimental results of JISI have effectively demon-
strated that under the influence of noise signals, MNCS
generates irregular spike signal sequences and irregular spon-
taneous activities. These responses do not exhibit a significant
correlation with external stimuli.

IV. COMPARISON WITH PREVIOUS WORK

In Table V, various neuron mathematical and circuit models
are analyzed and compared. It is obvious that early established
models such as Integrate and Fire, and Quadratic Integrate and
Fire, fail to capture many essential biological characteristics
due to their limited representation of cellular dynamics. How-
ever, with the continuous progress of theoretical and experi-

mental techniques, researchers have developed mathematical
models that can accurately represent almost all biological
characteristics. Notable examples of such models are the
Izhikevich (2003) and Hodgkin-Huxley models.

In recent years, there has been a growing trend of utilizing
circuitry to implement classic neural dynamics mathematical
models, thanks to advancements in material technology. An
example is the Izhikevich (2022) circuit presented in Table
V, which is implemented using FPGA technology, capable of
reproducing 8 highly complex neuronal firing behaviors [53],
has the potential to replicate all the neuronal characteristics
outlined in the Izhikevich (2003) mathematical model. Unfor-
tunately, despite the significant energy-saving advantages of
the Izhikevich circuit, its implementation principle is based
on logical circuits, which means that the Izhikevich (2022)
circuit lacks biologically meaningful interpretability [53]. As
indicated in Table V, the HRL V O2 Neuron incorporates the
structural elements and dynamics of the HH model, allowing it
to replicate common neuronal biological characteristics. HRL
V O2 Neuron is composed of three circuit systems. Among
these, the Tonic Neuron circuit system can exhibit up to 15
distinct discharge characteristics. However, due to the HRL
V O2 Neuron has limitations in terms of referencing biological
structure and dynamic principles, the individual neuron circuit
systems within the HRL V O2 Neuron exhibit a relatively small
number of neuronal firing characteristics. This paper fully
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Fig. 5. Simulation Test Results For 22 Neuronal Firing Behaviors.a) Phasic
spiking; b) Phasic bursting; c) Spike frequency adaptation; d) Depolarizing
after-potential; e) Accommodation; f) Tonic spiking; g) Tonic bursting; h)
Rebound spike; i) Rebound bursting; j) Class 1 excitable; k) Class 2 excitable;
l) Spike latency; m) Refractory period; n) All-or-nothing firing; o) Inhibition-
induced spiking; p) Inhibition-induced bursting; q) Resonator; r) Integrator;
s) Threshold variability; t) Subthreshold oscillations; u) Dysfunctional Ca
channel; v) Mixed mode 1; w) Mixed mode 2.
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adheres to the structure and dynamics of biological neurons in
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COMPARISON WITH THE BIOLOGICAL CHARACTERISTICS OF CLASSICAL NEURON MODELS OR CIRCUITS [19].
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Integrate-and-fire + + - - + - - - - - + - - - - + - - - - - - - - - * 5
Integrate-and-fire with adapt + + - - + - - - - + + - - - - + - - - - + - - - - * 10

Integrate-and-fire-or-burst + + - - + + * + - + + - - - - + + + - + + - - - - * 13
Resonate-and-fire + + + - + + - - - - + + - + + + + - - + + + - - + * 10

Quadratic integrate-and-fire + + - - + - - - - - + - + - - + - - + + - - - - - * 7
Izhikevich(2003) + + + - + + + + + + + + + + + + + + + + + + + + + * 13

FitzHugh-Nagumo + + + - + + - * - - + - + + + - + - + + - + + - - * 72
Hindmarsh-Rose + + + - + + + * * + + + + + + + + + + + + + + * + * 120

Morris-Lecar + + + + + + - * - - + + + + + + + * + + - + + - - * 600
Wilson + + + - + + + * * + + + + + + + + + + * + + * * * * 180

Hodgkin-Huxley + + + + + + + * * + + + + + + + + + + + + + + * + * 1200
Izhikevich(2022) * * * - + + + + * * * + * + * * * * * * + * + * * *

HRL V O2 Neuron
—TN + + + + + - + - - + + + + + - + - - - + - - + + * *
—PN - - - - - + - + - - - - - - + - + + + - + + - - * *
—MN - - - - - - - - + - - - - - - - - - - - - - - - * *

MNCS
—CN + + + + + + + + + - + + + + + + + + + + - - + + * +
—PN - - - - - + - + - + - - - - - - - - - - + + - - * *
—MN - - - - - - - - + - - - - - - - - - - - - - - - * *

Note 1 : The symbols ”+”, ”-”, and ”*” represent ”has,” ”does not have,” and ”uncertain if it has,” respectively.
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Fig. 7. Circuit Experiment Results For 22 Neuronal Firing Behaviors. a) Pha-
sic spiking; b) Phasic bursting; c) Spike frequency adaptation; d) Depolarizing
after-potential; e) Accommodation; f) Tonic spiking; g) Tonic bursting; h)
Rebound spike; i) Rebound bursting; j) Class 1 excitable; k) Class 2 excitable;
l) Spike latency; m) Refractory period; n) All-or-nothing firing; o) Inhibition-
induced spiking; p) Inhibition-induced bursting; q) Resonator; r) Integrator;
s) Threshold variability; t) Subthreshold oscillations; u) Dysfunctional Ca
channel; v) Mixed mode 1; w) Mixed mode 2.
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Fig. 8. The correlation between noise signals and consecutive spike intervals
(ISIs). a) without noise signal; b) a 0.5µA noise signal; c) 1µAnoise signal

designing MNCS, through PSpice simulation and practical ex-
periments, it has been demonstrated that MNCS can replicate
almost all common neuronal biological characteristics.

V. CONCLUSION

In this paper, we propose a memristor-based neuron circuit
system to address the hard problem of energy efficiency calcu-
lation beyond the capabilities of von Neumann architecture. By
utilizing the intricate biological structure and intricate micro
dynamics of neurons, a complex memristor neuron circuit sys-
tem is constructed based on the cellular structure of neurons.
We begin with an in-depth examination of the biological traits
of ion channels that play a role in generating action potentials.
Next, we make use of the unique nonlinear and non-volatile
properties of memristors to accurately replicate the biological
functions of these ion channels. We also incorporate capacitors
to imitate the ion isolation function found in lipid bilayers
and a DC voltage source to mimic the Nernst potential which
arises from the difference in ion concentration between the
interior and exterior of nerve cells. Finally, we take these
circuit components and create a complex memristor neuron
circuit system that is modeled after the cellular structure of
neurons. Through PSpice simulation, circuit experiments, and
JISI experiments, it has been demonstrated that MNCS can
accurately replicate almost all of the common biological char-
acteristics that are displayed by neurons. MNCS exhibits con-
tinuous discharge characteristics similar to biological neurons
under the influence of continuously increasing background
noise. The proposed MNCS can act as the building block for
the neural circuits found in spiking neural networks (SNN),
providing more biological features to the SNN, resulting in
more intricate discharge modes and the potential for chaotic
firing.
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