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A B S T R A C T

Flying ad hoc networks (FANETs) have particular importance in various military and civilian applica-
tions due to their specific features, including frequent topological changes, the movement of drones in a
three-dimensional space, and their restricted energy. These features have created challenges for designing
cluster-based routing protocols. In this paper, a Q-learning-based smart clustering routing method (QSCR) is
suggested in FANETs. In QSCR, each node discovers its neighbors through the periodic exchange of hello
messages. The hello time interval is different in each cluster, and cluster leaders determine this interval based
on the average speed similarity. Next, an adaptive clustering process is presented for categorizing drones in the
clusters. In this step, the cluster leader is selected based on a new parameter called merit value, which includes
residual energy, centrality, neighbor degree, speed similarity, and link validity time. Then, a centralized Q-
learning model is presented to tune weight coefficients related to merit parameters dynamically. In the last
step, the routing process is done using a greedy forwarding technique. Finally, QSCR is run on NS2, and the
simulation results of QSCR are compared with those of ICRA, WCA, and DCA. These results show that QSCR
carries out the clustering process rapidly but has less cluster stability than ICRA. QSCR gets energy efficiency
and improves network lifetime. In the routing process, QSCR has a high packet delivery rate compared to
other schemes. Also, the number of isolated clusters created in QSCR is less than other clustering methods.
However, the proposed scheme has a higher end-to-end delay than ICRA. Also, this scheme experiences more
communication overhead than ICRA slightly.
. Introduction

Recently, unmanned aerial vehicles (UAVs) have been successfully
sed in military and civilian areas for different applications, including
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aerial photos, 5G technology, wildfire monitoring, road traffic monitor-
ing, intelligent UAV-assisted agriculture, UAV-assisted connections, and
search and rescue (Alam and Moh, 2022; Alam et al., 2022). In these
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applications, reliable and fast wireless communication between UAVs
must be formed using a network. This is a motivation to carry out drone
missions in the form of a flying ad hoc network (FANET) (Hossein-
zadeh et al., 2023c; Yousefpoor et al., 2021). In this network, drones
cooperate with each other, and consequently, FANET is more effective
and efficient than a single-UAV system in terms of cost development,
scalability, survivability, and efficiency (Messaoudi et al., 2023; Hos-
seinzadeh et al., 2023d). In addition, FANET includes distinct features
that make it different from other ad hoc networks such as mobile ad
hoc networks (MANETs) or vehicular ad hoc networks (VANETs). Some
of these features are highly moving UAVs, very dynamic topology,
sparse network, and limited energy capacity (Darabkh et al., 2022;
Rahmani et al., 2022b). It is essential to pay attention to these spe-
cific features when creating routing protocols in these networks. For
this reason, many routing protocols proposed for MANET and VANET
cannot be used directly in FANET (Lee et al., 2021; Lansky et al., 2023).
Generally, routing protocols presented in FANET can be categorized
into two groups: single-path routing and multi-path routing (Almeida
et al., 2021; Rovira-Sugranes et al., 2021). Single-path routing protocols
consider a static routing table, which contains routing paths calculated
before network operation begins. These routes are unchanged at all
times. Multi-path routing protocols guide data packets step-by-step
toward the destination (Zhang et al., 2022b; Yang et al., 2022). A key
subject in the route discovery process of these routing protocols is how
to single out the next-hop node. In addition, routing protocols can be
grouped into two categories: topology-based routing and position-based
routing. The first group includes three classes: proactive, reactive, and
hybrid (Liu et al., 2023; Jin et al., 2023).

To transfer data packets between UAVs in a high-dense FANET,
researchers have proposed cluster-based routing protocols. In these
methods, FANET includes a hierarchical structure in which UAVs act
as cluster heads (CHs) or cluster members (CMs) (Dhall and Dhongdi,
2023; Hosseinzadeh et al., 2023e). The selection of cluster heads (also
called cluster leaders) is a major challenge in the clustering process.
This role is determined based on different factors such as residual
energy, centrality, neighbor degree, and so on (Arafat and Moh, 2019;
Abdulhae et al., 2022). Note that some clustering techniques are single-
criterion methods, meaning that, cluster leaders are chosen only based
on one criterion such as energy, while other clustering techniques are
multi-criteria methods, meaning that, they consider different criteria
to choose cluster leaders (Hosseinzadeh et al., 2023a; Mansoor et al.,
2023). Multi-criteria clustering methods allocate a specific weight to
each clustering criterion, and the weighted sum of these clustering
criteria is considered as the final score for determining cluster lead-
ers (Gharib et al., 2022; Khedr et al., 2023). In the clustering process,
an important challenge is how to choose a suitable weight coefficient
for each clustering criterion. Most studies only emphasize that the sum
of these weight coefficients should be equal to one (Khan et al., 2019,
2020). Most research studies consider the same value for these weight
coefficients, while some protocols also determine different weights for
each clustering criterion. In a clustered network, CMs are responsible
for transmitting data collected from the environment to its cluster
leader (Jawhar et al., 2017; Shahzadi et al., 2021). In addition, clus-
ter leaders are responsible for managing intra-cluster communication
and intra-cluster data aggregation. They act as relay nodes and form
inter-cluster communication. Cluster leaders are also responsible for
communicating with the ground control station (GCS) (Alzahrani et al.,
2020; Hadi et al., 2023). Due to the dynamic nature of UAVs in FANET,
intra or inter-cluster communication links have a very short lifetime,
and the stability of clusters is very weak. These affect the reliability of
the data transmission process and, consequently, cause routing ineffi-
ciency and weaken the quality of services (QoS) in FANET (Fanian and
Rafsanjani, 2019; Cheng et al., 2023).

Today, reinforcement learning (RL) is widely applied for improving
wireless communication paths in ad hoc networks. In RL, agents exe-
2

cute various actions in the dynamic environment such as FANET, and
utilize previous experiences to make more smart decisions and increase
reward (Khan et al., 2022; Lansky et al., 2022a; Hosseinzadeh et al.,
2023b). RL is employed for many applied scenarios such as forecast-
ing network topology, estimating communication channels, optimizing
flight trajectory, and designing routing. A well-known reinforcement
learning technique is Q-learning (QL) whose features are off-policy,
model-free, and value-based (Rahmani et al., 2022c; Lansky et al.,
2022b). It can be used for multi-objective optimization goals in FANET.
QL examines the expected cumulative reward and adopts an optimal
policy according to the obtained experiences. In addition, QL is a
successful solution to choose an optimal path in the data transfer
process to the destination (Rahmani et al., 2022a; Wang et al., 2022).

In this paper, a Q-learning-based smart clustering routing method
(QSCR) is suggested for flying ad hoc networks. QSCR includes four
phases: dynamic neighbor discovery, adaptive clustering, dynamic and
smart adjustment of clustering parameters, and greedy routing. In
QSCR, the clustering phase is responsible for constructing network
topology, and the greedy routing process is responsible for creating
paths. In the clustering process, cluster leaders are chosen based on
the weighted sum of five merit parameters, including residual energy,
centrality, neighbor degree, speed similarity, and link validity time.
The weight coefficient related to each merit parameter is tuned up
based on a centralized QL-based learning model so that these weight
coefficients change according to the conditions of UAVs in the network,
and consequently, the importance of each parameter will be different
accordingly. QSCR adjusts Q-learning parameters to be more consistent
with the dynamic topology of FANET. In general, the main innovations
in this paper are as follows:

• In QSCR, the neighbor discovery process focuses on the content of
each hello packet and its propagation time interval. Each cluster
leader is responsible for specifying the hello propagation time
interval in its cluster based on the average similarity between its
velocity vector and cluster members’ velocity vector.

• In QSCR, an adaptive clustering process is proposed for FANET
to distribute energy consumption in the network uniformly and
increase network longevity. At this phase, cluster leaders are cho-
sen based on a new parameter called merit, which includes five
parameters, namely residual energy, centrality, neighbor degree,
speed similarity, and link validity time.

• In QSCR, a QL-based learning model is presented to tune weight
coefficients related to the merit parameters and determine their
effect on the merit value in a dynamic manner and according to
FANET conditions. In this learning process, the reward function
is also calculated based on three metrics, namely the balance
of energy consumption, the number of isolated clusters, and the
distribution of cluster leaders in the network.

• In QSCR, learning parameters are chosen adaptively. QSCR cal-
culates the learning rate based on the stability of clusters. In
addition, the discount coefficient is calculated based on the sim-
ilarity between the velocity vectors of cluster members and the
cluster leader.

• In QSCR, the inter-cluster routing process follows a greedy routing
technique so that the cluster leader examines the positions of
its adjacent clusters and selects the closest cluster leader to the
destination as its next-hop node.

The structure of this paper includes the following sections: Section 2
introduces some related works in flying ad hoc networks. Section 3
provides the concepts of reinforcement learning, especially Q-learning,
because of its use in QSCR. Section 4 expresses the assumptions of the
network model. Section 5 describes the details of the proposed method.
In Section 6, the simulation and evaluation results of the proposed
method are compared to other schemes. Finally, this paper is concluded

in Section 7.
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2. Related works

In Ergenç et al. (2019), a dependability-based clustering algorithm
(DCA) is offered in MANETs. It can properly deal with the challenge
that originates from the lack of a central administrator and centralized
infrastructure in MANETs. This scheme makes a clustered topology,
which has high scalability and reliability. DCA pays attention to the
dependency of clusters along with individual nodes to stabilize the
clustered network structure. In addition, DCA analyzes various criteria
and introduces a complete optimization structure to choose CHs and
calculate the dependency of clusters in a weighted clustering algorithm.
In DCA, the weight coefficient related to each clustering metric is
computed by the moment-independent Delta analysis technique. DCA
makes a flexible clustering structure, which is stable, energy-efficient,
and provides quality of services (QoS) in the network. Each node
employs the dependency related to each cluster for joining a suitable
cluster. Simulation results indicate the superiority of DCA compared to
other approaches for fixed and dynamic scenarios.

In Chatterjee et al. (2002), an on-demand decentralized clustering
scheme called WCA is suggested in MANET. In these dynamic networks,
nodes are mobile in nature. Consequently, frequent connections and
disconnections of nodes to/from the clusters threaten network stability,
so the system needs to be configured again. In WCA, CHs create a
dominant set to guarantee network scalability and stability. WCA takes
into consideration several metrics, including ideal degree, movement
of nodes, residual energy, and transmission power, to decide on cluster
heads. It benefits from a weighted approach to choose CHs based on
their connection and energy levels. In WCA, the number of nodes
around a cluster must be more than a threshold value to improve
the performance of the media access control (MAC) protocol. WCA
employs a non-periodic CH selection process to lower computational
and communication costs. CHs are responsible for making inter-cluster
communications in the network. The experimental results show that
WCA works better than other approaches.

In Guo et al. (2022), an intelligent clustering routing approach
(ICRA) is presented for FANETs. ICRA constitutes three processes,
namely clustering procedure, clustering adjustment procedure, and
routing procedure. The first procedure calculates the fitness value of
each node to determine its state, namely CH or CM. Furthermore, to
extend topology stability and network lifespan in diverse states, rein-
forcement learning assists the clustering adjustment procedure to learn
constantly the network environment and obtain the best strategy by
taking different actions to calculate the fitness of UAVs in each network
state. In accordance with this knowledge, the clustering adjustment
procedure aids the clustering technique to be compatible with the
current network state. In addition, in the last procedure, ICRA employs
a few gateways in each cluster to facilitate the inter-cluster routing
procedure. This shortens end-to-end delay and increases the packet
delivery ratio. The simulation results emphasize that ICRA is better than
other clustering methods.

In Lansky et al. (2022c), a Q-learning-based routing approach called
QFAN to control weather conditions using flying ad hoc networks.
In QFAN, there are two phases, namely the discovery and the main-
tenance of paths created in the network. The first phase constitutes
a Q-learning-aided routing model. In this learning model, the state
space is restricted by calculating a filtering parameter, which removes
some UAVs from this space. The second phase repairs the paths, which
may fail in the near future. Evaluation results confirm that QFAN
has a superior performance than other routing approaches. However,
overhead in QFAN is slightly high.

In Zhang et al. (2022a), a three-dimensional Q-learning-based rout-
ing (3DQ) approach is offered to provide QoS requirements, especially
PDR, in flying ad hoc networks. 3DQ includes a learning model, which
benefits from Q-learning to make routing decisions on the networks.
Two main parts of 3DQ are link-state prediction and path construction.
3

The first part, link-state prediction, enables UAVs to forecast the status
of links connected to their neighbors with regard to their 3D movement
and transmit data packets to the destination. Each UAV makes its
routing decisions in accordance with the path construction part in 3DQ.
The evaluation results show that 3DQ is suitable for FANET and is more
successful than other routing schemes.

In Alam and Moh (2023), a Q-learning routing scheme based on
adaptive flocking control (QRIFC) in FANETs. This scheme provides an
adaptive flocking control system to manage the optimized movement
of UAVs with regard to the distance traveled by each UAV. Hence, this
system can handle the density of UAVs in FANET. Furthermore, it relies
on the information of two-hop neighbors to calculate the upper and
lower boundaries of distance between UAVs in the network. This causes
a balance between area coverage and network connectivity, increases
the stability time of communication links between neighboring nodes,
and decreases control overhead in the network. A multi-objective Q-
learning model is designed to carry out the exploration and exploitation
operations for finding the best path in terms of delay, stability, and
energy efficiency. The evaluation results express the superiority of
QRIFC compared to other methods.

In Cui et al. (2022), a topology-aware and flexible Q-learning rout-
ing algorithm (TARRAQ) is presented in FANETs. It tracks topology
changes, controls overhead, and chooses routing paths in an indepen-
dent and distributed manner. TARRAQ checks the behavior of UAVs
using queue theory and gets two scales, namely closed-form solutions
of neighbor change rate (NCR) and neighbors’ change inter-arrival time
(NCIT). According to NCR and NCIT, a flexible evaluation time interval
is calculated in accordance with a new metric called the expected
perception delay of events that occur in the network. In addition, a
Q-learning-based routing model is suggested to find different paths
between UAVs in a distributed, independent, and adaptive manner.
The expected perception delay obtained in this scheme can lower
communication costs when updating the action set. The evaluations
performed on this scheme confirm the high accuracy and successful
performance of TARRAQ in FANET.

In Arafat and Moh (2021), a Q-learning-based topology-aware rout-
ing (QTAR) protocol for FANET. It uses the information of two-hop
neighbors to get local network topology and create reliable routes
between UAVs in the network. To find the most suitable paths in the
network, QTAR employs the information of two-hop neighbors and
considers several metrics such as residual energy, location, speed, and
delay. QTAR extends its knowledge about local network topology due
to the use of two-hop neighbor information and, consequently, makes
optimal routing decisions in the network. In addition, these routing
decisions are made based on a Q-learning system to manage topological
changes adaptively. The evaluation results confirm the efficiency of
QTAR compared to other routing schemes.

Table 1 expresses the most important strengths and weaknesses of
scheme mentioned in this section.

3. Basic concept

Reinforcement learning (RL) belongs to the family of machine learn-
ing (ML) techniques in artificial intelligence (AI). This science can be
explained using a simple example. Assume that a person did not test
a particular food previously. Now, he (she) wants to test this food for
the first time. As a result, this person detects whether this food has
a good taste or not. Accordingly, he (she) acquires knowledge about
various foods, and this acquired knowledge can be applied to decide
whether this person will again eat this food or not in the future (da
Costa et al., 2021; Adams et al., 2022). In computer science, RL is
used in algorithms, which need knowledge about their task. These
algorithms utilize RL to make the best decision for doing this task.
Furthermore, RL can be used in FANETs to improve and enhance
applications, for example, resource management, channel modeling,
localization, network security aspects, and routing. RL is made up of

various elements, namely agent, learning environment, action, state,
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Table 1
Comparison of related works.

Approach Strengths Weaknesses

DCA (Ergenç et al., 2019) Making reliable communication links between nodes, improving
energy efficiency, getting high scalability, prioritizing nodes in the
CH selection process, reducing communication overhead

High time complexity, need to high time for creating clusters due
to high computational complexity, lack of adaptability to the
dynamic environment of FANET

WCA (Chatterjee et al., 2002) Increasing energy efficiency, scalability, high fault tolerance High communication overhead due to the exchange of control
messages between CHs, lack of adaptation to the very dynamic
topology of FANET because of its high topology changes

ICRA (Guo et al., 2022) Improvement of energy consumed by nodes in the network,
enhancing the quality of services, growing throughput in the
clustering procedure, stabilizing network topology, shortening
end-to-end delay, rising packet delivery rate, lowering routing
overhead

Use of fixed learning parameters in the proposed Q-learning model,
not calculating a propagation time interval for disseminating hello
messages in the network

QFAN (Lansky et al., 2022c) Filtering the search space, converging to the optimal solution
rapidly, shortening delay, increasing the data transfer rate,
improving network scalability

Considering the fixed values for Q-learning parameters, namely
learning rate and discount factor, increasing communication
overhead

3DQ (Zhang et al., 2022a) Suitable throughput, improving QoS requirements, including delay
and PDR in the network, avoiding congestion in the routing
process, preventing routing holes

Considering two fixed values for learning rate and discount factor in
Q-learning, ignoring the energy consumed by UAVs, low scalability

QRIFC (Alam and Moh, 2023) Decreasing delay in the network, creating stable routes, getting
energy efficiency, attention to learning parameters and updating
them constantly, improving throughput, PDR, and reliability

High time complexity, the possibility of falling the adaptive
flocking control algorithm in a local optimum

TARRAQ (Cui et al., 2022) Improving data transmission rate, minimizing energy consumption,
increasing reliability and throughput, adaptability to topological
changes in FANET, calculating the hello propagation time interval
adaptively

Low scalability, converging to optimal solution slowly because of
having a large Q-table, high time and computational complexities

QTAR (Arafat and Moh, 2021) Adaptability to the dynamic environment of FANET, high
scalability, decreasing delay in the routing process, increasing
throughput and PDR in the network, tuning learning parameters (𝛼
and 𝛾) adaptively

High time complexity, having a large Q-table, and converging to
the optimal solution slowly
and reward. Continuous interaction with the environment causes the
agent to learn its best behavior in a learning environment. During
the learning process, the agents acquire diverse experiences by ex-
periencing different scenarios on the environment. Each scenario is
called a state. However, in each state, the agent can single out an
action from a set of permissible actions. The selected action affects
the environment and produces a result. Accordingly, the agent gets a
reward or penalty from the environment. Over time, the agent tries to
increase the rewards gotten from the environment, and consequently, it
will learn its best behavior in each state (Prudencio et al., 2023; Elallid
et al., 2022).

Q-learning is a subset of RL, which uses a new concept called Q-
value to optimize the agent’s behavior using an iterative manner. This
algorithm allocates Q-values (i.e. 𝑄

(

𝑆𝑡, 𝐴𝑡
)

) to different states and
ctions. 𝑄

(

𝑆𝑡, 𝐴𝑡
)

estimates how desirable it is to do the action 𝐴𝑡 in the
tate 𝑆𝑡. According to Q-learning, the agent is in an initial state. Then,
t is transferred from the current state to the next state. Each transition
ccurs because of an action performed by the agent when interacting
ith the environment. Therefore, at each step, the agent applies its

elected action to the environment and gets a reward from it. Then,
t goes to another state. This process continues until the agent reaches
he goal. In this situation, an episode is completed. In QL, 𝑄

(

𝑆𝑡, 𝐴𝑡
)

is
stimated based on Eq. (1) to calculate Q-values when interacting the
gent with the environment (Ganesh and Xu, 2022; Sutton and Barto,
018).
(

𝑆𝑡, 𝐴𝑡
)

← 𝑄
(

𝑆𝑡, 𝐴𝑡
)

+ 𝛼
[

𝑅𝑡+1 + 𝛾max
𝐴

𝑄
(

𝑆𝑡+1, 𝐴
)

−𝑄
(

𝑆𝑡, 𝐴𝑡
)

]

(1)

𝑆𝑡 and 𝑆𝑡+1 show the current and next states of the agent, respec-
tively. 𝐴𝑡 indicates the present action selected based on a particular
policy. 𝐴′ is the best action selected based on the current Q-value. 𝑅𝑡+1
expresses the reward obtained from the environment when performing
the current action. max

𝐴
𝑄
(

𝑆𝑡+1, 𝐴
)

indicates the maximum Q-value
under the next state. In the following, some learning parameters related
4

to QL are described briefly:
• Discount factor (𝛾): 𝛾 is a coefficient limited to the interval [0, 1].
Q-learning algorithms often assume that the value of future re-
wards is less than that of current rewards. As a result, Q-learning
function discounts them.

• Learning rate (𝛼): 𝛼 shows the knowledge acquired from the
environment for updating 𝑄

(

𝑆𝑡, 𝐴𝑡
)

.
• 𝜖-Greedy policy: It is a simple solution to choose actions by

considering the estimations of Q-values. Accordingly, the next
action is chosen based on the highest Q-value by considering
the probability (1 − 𝜖) or it is selected randomly based on the
probability 𝜖.

4. Network model

In QSCR, the flying ad hoc network includes a number of flying
nodes and a ground station control (GCS). In this scheme, each flying
node is displayed as 𝑈𝑖 where 𝑖 = 1, 2,… , 𝑛. 𝑈𝑖 has a direct com-
munication with flying nodes available in its communication range
(𝑟𝑖) while it has created an indirect or multi-hop communication with
other flying nodes that are out of 𝑟𝑖. In QSCR, 𝑈𝑖 has access to a
positing system and can obtain its position and speed at any moment.
In this network, UAVs are connected to each other through UAV-to-
UAV communication (U2U) in the air. However, UAVs and GCS are
connected to each other through UAV-to-GCS communication (U2G) or
GCS-to-UAV communication (G2U). These UAVs are categorized into 𝑚
groups using a dynamic and intelligent clustering method. Each group
is called cluster (𝐶𝑘) so that 𝑘 = 1, 2,… , 𝑚. 𝐶𝑘 includes a cluster
leader (𝐿𝑈𝑘) and a number of cluster member UAVs (𝑀𝑈𝑘

𝑗 so that
𝑗 = 1, 2,… , 𝑁𝑘). In each 𝐶𝑘, some cluster members close to the cluster
border also play the role of inter-cluster gateways (𝐺𝑈𝑘

𝑔 ) and are used
to connect with adjacent clusters. This network model is shown in
Fig. 1. In the following, the task of each node is explained in the
network.

• GCS: It benefits from an unlimited and stable energy source.
GCS is responsible for monitoring the network, controlling flight

routes, determining the mission of flying nodes, and transmitting
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Fig. 1. Network model in QSCR.
various commands to UAVs. In QSCR, the most important task of
GCS is to tune clustering parameters using a Q-learning algorithm
intelligently and dynamically.

• 𝐋𝐔𝐤: In QSCR, the role of cluster leader periodically rotates
between flying nodes so that energy consumption is uniformly
distributed between UAVs. This increases network lifespan. Each
𝐿𝑈𝑘 is responsible for managing and monitoring its clusters. It
creates two types of communication, namely intra-cluster and
inter-cluster communications on the network.

• 𝐌𝐔𝐤
𝐣 : In QSCR, each 𝑀𝑈𝑘

𝑗 is responsible for sensing the sur-
rounding environment and transmitting this information to it.
These nodes support only one type of communication, namely,
intra-cluster communication.

• 𝐆𝐔𝐤
𝐠 : In QSCR, each 𝐺𝑈𝑘

𝑔 must perform the tasks of a cluster
member node, namely sensing the environment and sending infor-
mation to 𝐿𝑈𝑘. Also, it participates in inter-cluster routing process
and sends the required information to adjacent clusters. These
nodes support two types of communication, namely inter-cluster
and intra-cluster communications.
5

5. Proposed scheme

Here, a Q-learning-based smart clustering routing method (QSCR)
is described for flying ad hoc networks. QSCR includes four phases:

• Dynamic neighbor discovery
• Adaptive clustering
• Smart and dynamic adjustment of clustering parameters
• Greedy routing

See the schematic design of QSCR in Fig. 2. In addition, Table 2
presents the symbols used in the proposed scheme.

5.1. Dynamic neighbor discovery

In QSCR, the neighbor discovery process gives 𝑈𝑖 this opportunity
to get a local network topology and use this local information in
clustering and routing processes. In this process, hello packets play an
important role in finding neighboring nodes and building a neighbor
table. The hello propagation operation between neighboring UAVs is
shown in Fig. 3. In QSCR, the hello packet related to 𝑈𝑖 is marked as
𝐻 . The content of 𝐻 and its propagation period are two important
𝑖 𝑖
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Fig. 2. Schematic design of QSCR.
points in the neighbor discovery process. The content of 𝐻𝑖 specifies
that 𝑈𝑖 wants to access what information from its neighboring nodes,
and the propagation period determines what time interval is suitable
for broadcasting these packets on the network regularly. Algorithm 1
provides the pseudo-code related to this process.

• Content: 𝐻𝑖 includes 𝐼𝐷𝑖, spatial coordinates 𝐿𝑜𝑐𝑖 =
(

𝑥𝑡𝑖, 𝑦
𝑡
𝑖, 𝑧

𝑡
𝑖
)

,
speed and movement angle 𝑀𝑜𝑏𝑖 =

(

𝑉 𝑡
𝑖 , 𝜃

𝑡
𝑖 , 𝜑

𝑡
𝑖
)

, identifier of
cluster leader (𝐼𝐷𝐿𝑈𝑘

), and the propagation period of 𝐻𝑖 (𝐻𝑇𝑖).
The structure of 𝐻𝑖 is stated in Eq. (2). Note that if 𝑈𝑖 is a cluster
leader, it inserts its ID into the field 𝐼𝐷𝐿𝑈𝑘

. Otherwise, it inserts
the identifier of its cluster leader in this field.

𝐻 =
⟨

𝐼𝐷 ‖

‖𝐿𝑜𝑐 ‖‖𝑀𝑜𝑏 ‖

‖𝐼𝐷 ‖

‖𝐻𝑇
⟩

(2)
6

𝑖 𝑖
‖

𝑖
‖

𝑖
‖

𝐿𝑈𝑘
‖

𝑖

When 𝑈𝑖 gets 𝐻𝑗 from one of the adjacent UAVs, such as 𝑈𝑗 , then
𝑈𝑖 examines the following conditions for storing the content of
𝐻𝑗 in its neighbor table (𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 ).

– If 𝑈𝑖 has information about 𝑈𝑗 in 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟
𝑖 , then 𝑈𝑖

examines the new content of 𝐻𝑗 and updates the entry
related to 𝑈𝑗 in 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 .
– If 𝑈𝑖 has no information about 𝑈𝑗 in 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 , then 𝑈𝑖

extracts the content of 𝐻𝑗 and stores it in a new entry added
to 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 .
– If 𝑈𝑖 has information about 𝑈𝑗 in 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 but it does
not get any new 𝐻𝑗 from 𝑈𝑗 , then 𝑈𝑖 deletes 𝑈𝑗 from its
neighbor list by removing its information from 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟.
𝑖
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f
t
n

Table 2
Symbols used in QSCR.

Symbol Description

𝑈𝑖 Flying node 𝑖 in the network
𝑛 Total number of flying nodes in the network
𝑟𝑖 Communication range of 𝑈𝑖
𝑁𝑖 Number of neighbors of 𝑈𝑖 in 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖
𝐶𝑘 Cluster 𝑘
𝑚 Total number of clusters in the network
𝐿𝑈𝑘 Cluster leader in 𝐶𝑘

𝑀𝑈𝑘
𝑗 𝑗th cluster member in 𝐶𝑘

𝑁𝑘 Total number of cluster members in 𝐶𝑘

𝐺𝑈𝑘
𝑔 𝑔th inter-cluster gateways in 𝐶𝑘

𝐻𝑖 Hello packet related to 𝑈𝑖
𝐻𝑇𝑖 Propagation time interval corresponding to 𝐻𝑖
𝐼𝐷𝑖 Identifier of 𝑈𝑖

𝐿𝑜𝑐𝑖 =
(

𝑥𝑡𝑖 , 𝑦
𝑡
𝑖 , 𝑧

𝑡
𝑖
)

Spatial coordinates of 𝑈𝑖

𝑀𝑜𝑏𝑖 =
(

𝑉 𝑡
𝑖 , 𝜃

𝑡
𝑖 , 𝜑

𝑡
𝑖
)

Speed and movement angle of 𝑈𝑖

𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟
𝑖 Neighbor table stored in 𝑈𝑖

𝑉max Upper boundary of UAVs’ speed in the network
𝑉min Lower boundary of UAVs’ speed in the network
𝑚𝑡

𝑖 Merit of 𝑈𝑖
𝐸𝑖 Residual energy of 𝑈𝑖
𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 Initial energy capacity of UAVs in the network
𝐶𝑁𝑅𝑖 Centrality of 𝑈𝑖
𝐷max Maximum distance between UAVs in the network
𝐷𝑒𝑔𝑖 Neighbor degree of 𝑈𝑖

𝑆𝐶 𝑡
𝑖 Average similarity between the velocity vector of

𝑈𝑖 and those of its neighbors
𝐿𝑇𝑖𝑗 Validity time of link between 𝑈𝑖 and 𝑈𝑗
𝑀 𝑖

𝑚𝑒𝑟𝑖𝑡 Merit message of 𝑈𝑖

𝑀 𝑖
𝐿𝑈𝑘

Leader message sent by 𝐿𝑈𝑘

𝑀 𝑖
𝑀𝑈𝑘

𝑗
Connection message from 𝑀𝑈𝑘

𝑗 to 𝐿𝑈𝑘

𝑀𝐴𝑐𝑐𝑒𝑝𝑡
𝐿𝑈𝑘

Accept message send by 𝐿𝑈𝑘

𝑀𝐺𝑎𝑡𝑒𝑤𝑎𝑦
𝐺𝑈𝑘

𝑔
Gateway message from 𝐺𝑈𝑘

𝑔 to 𝐿𝑈𝑘

𝑅𝑡 (𝐹 ) Reward function
𝛼 Learning rate
𝛾 Discount factor
𝐶𝑐ℎ𝑎𝑛𝑔𝑒
𝑘 Stability value of 𝐶𝑘

𝑁𝐶𝑐ℎ𝑎𝑛𝑔𝑒
𝑘

Number of role changes in 𝐶𝑘

• Propagation time interval (𝐇𝐓𝐤): In QSCR, the cluster leader
𝐿𝑈𝑘 is responsible for specifying the hello propagation time
interval (𝐻𝑇𝑘) in its cluster (𝐶𝑘) and updating it at each step.
Then, 𝐿𝑈𝑘 must notify 𝐻𝑇𝑘 to the cluster member UAVs (𝑀𝑈𝑘

𝑗
so that 𝑗 = 1, 2,… , 𝑁𝑘), and 𝑀𝑈𝑘

𝑗 must adhere to this propagation
time interval. To determine 𝐻𝑇𝑘 in 𝐶𝑘, 𝐿𝑈𝑘 calculates the cosine
similarity between two velocity vectors related to 𝐿𝑈𝑘 and 𝑀𝑈𝑘

𝑗
based on Eq. (3).

𝑆𝐶 𝑡
𝑘𝑗 =

𝑉 𝑥
𝐿𝑈𝑘

𝑉 𝑥
𝑀𝑈𝑘

𝑗
+ 𝑉 𝑦

𝐿𝑈𝑘
𝑉 𝑦
𝑀𝑈𝑘

𝑗
+ 𝑉 𝑧

𝐿𝑈𝑘
𝑉 𝑧
𝑀𝑈𝑘

𝑗

√

(

𝑉 𝑥
𝐿𝑈𝑘

)2
+
(

𝑉 𝑦
𝐿𝑈𝑘

)2
+
(

𝑉 𝑧
𝐿𝑈𝑘

)2
×

√

(

𝑉 𝑥
𝑀𝑈𝑘

𝑗

)2

+
(

𝑉 𝑦
𝑀𝑈𝑘

𝑗

)2

+
(

𝑉 𝑧
𝑀𝑈𝑘

𝑗

)2

(3)

So that
(

𝑉 𝑥
𝐿𝑈𝑘

, 𝑉 𝑦
𝐿𝑈𝑘

, 𝑉 𝑧
𝐿𝑈𝑘

)

is the velocity vector of 𝐿𝑈𝑘 calculated

through Eqs. (4), (5), and (6).
(

𝑉 𝑥
𝑀𝑈𝑘

𝑗
, 𝑉 𝑦

𝑀𝑈𝑘
𝑗
, 𝑉 𝑧

𝑀𝑈𝑘
𝑗

)

is also the

velocity vector of 𝑀𝑈𝑘
𝑗 that is obtained using a similar technique.

𝑉 𝑥
𝐿𝑈𝑘

= 𝑉 𝑡
𝐿𝑈𝑘

sin𝜑𝑡
𝐿𝑈𝑘

cos 𝜃𝑡𝐿𝑈𝑘
(4)

𝑉 𝑦
𝐿𝑈𝑘

= 𝑉 𝑡
𝐿𝑈𝑘

sin𝜑𝑡
𝐿𝑈𝑘

sin 𝜃𝑡𝐿𝑈𝑘
(5)

𝑉 𝑧
𝐿𝑈𝑘

= 𝑉 𝑡
𝐿𝑈𝑘

cos𝜑𝑡
𝐿𝑈𝑘

(6)

where 𝑉 𝑡
𝐿𝑈𝑘

, 𝜃𝑡𝐿𝑈𝑘
, and 𝜑𝑡

𝐿𝑈𝑘
indicate the speed information of
7

𝐿𝑈𝑘, namely the velocity length, the angle between the projection
of the speed vector on the plane 𝑋𝑌 and the positive axis 𝑋, and
the angle between the velocity vector and the positive axis 𝑍.

Then, 𝐿𝑈𝑘 calculates the average similarity of its velocity vector to
cluster members’ velocity based on Eq. (7).

𝑆𝐶 𝑡
𝑘 = 1

𝑁𝑘

𝑁𝑘
∑

𝑗=1
𝑆𝐶 𝑡

𝑘𝑗 (7)

So that 𝑁𝑘 indicates the number of cluster members in 𝐶𝑘.
Then, 𝐿𝑈𝑘 must obtain 𝐻𝑇𝑘 from Eq. (8).

𝐻𝑇 𝑡
𝑘 =

⎧

⎪

⎨

⎪

⎩

𝐻𝑇 0
𝑘 , 𝑡 = 0

𝐻𝑇 𝑡−1
𝑘 𝑒

⎛

⎜

⎜

⎝

𝑆𝐶𝑡
𝑘−𝑆𝐶

𝑡−1
𝑘

𝐻𝑇 𝑡−1𝑘

⎞

⎟

⎟

⎠, 𝑒𝑙𝑠𝑒

(8)

So that,

𝐻𝑇 0
𝑘 = 𝐻𝑇𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑒

−

(

𝑉 𝑡
𝐿𝑈𝑘

−𝑉min
𝑉max−𝑉min

)

(9)

Here, 𝐻𝑇𝐷𝑒𝑓𝑎𝑢𝑙𝑡 represents a default value, for example, one second,
or broadcasting hello messages in the network. 𝑉max and 𝑉min indicate
he upper and lower boundaries related to the speed of UAVs in the
etwork. 𝑉 𝑡

𝐿𝑈𝑘
is the velocity length of 𝐿𝑈𝑘.

Algorithm 1 Dynamic neighbor discovery
Input: 𝑈𝑖: Flying node 𝑖 so that 𝑖 = 1, 2, ..., 𝑛

𝑁𝑖: Number of neighbors of 𝑈𝑖
𝐻𝑖: Hello message related to 𝑈𝑖
𝐼𝐷𝑖: Identifier of 𝑈𝑖
𝐿𝑜𝑐𝑖 =

(

𝑥𝑡𝑖 , 𝑦
𝑡
𝑖 , 𝑧

𝑡
𝑖
)

: Location information of 𝑈𝑖
𝑀𝑜𝑏𝑖 =

(

𝑉 𝑡
𝑖 , 𝜃

𝑡
𝑖 , 𝜑

𝑡
𝑖
)

: Mobility information of 𝑈𝑖
𝐼𝐷𝐿𝑈𝑘 : Identifier of the leader cluster corresponding to 𝑈𝑖
𝑁𝑘: Number of members of the cluster 𝑘
𝐻𝑇𝑖: Hello dissemination period
𝑡𝑁𝑒𝑡: A timer for measuring the network time.

Output: 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟
𝑖 : Neighboring table stored in 𝑈𝑖

Begin
1: repeat
2: if 𝑡𝑁𝑒𝑡 mod 𝐻𝑇𝑖 = 0 then
3: 𝐔𝐢: Obtain 𝐿𝑜𝑐𝑖 and 𝑀𝑜𝑏𝑖 from a positioning system (GPS);
4: if 𝑈𝑖 plays the role of 𝐿𝑈𝑘 then
5: for 𝑗 = 1 to 𝑁𝑘 do
6: 𝐔𝐢: Obtain the cosine similarity (𝑆𝐶 𝑡

𝑘𝑗 ) between the velocity vectors of 𝑈𝑖

and 𝑀𝑈𝑘
𝑗 from Equation (3);

7: end for
8: 𝐔𝐢: Calculate the average cosine similarity (𝑆𝐶 𝑡

𝑘) based on Equation (7);
9: 𝐔𝐢: Refresh 𝐻𝑇𝑖 based on Equation (8);
10: 𝐔𝐢: Send 𝐻𝑇𝑖 to all 𝑀𝑈𝑘

𝑗 in its cluster;
11: else
12: 𝐔𝐢: Send a request message to 𝐿𝑈𝑘 to obtain updated 𝐻𝑇𝑖;
13: end if
14: 𝐔𝐢: Insert 𝐼𝐷𝑖, 𝐿𝑜𝑐𝑖, 𝑀𝑜𝑏𝑖, 𝐼𝐷𝐿𝑈𝑘 , and 𝐻𝑇𝑖 into 𝐻𝑖 based on Equation (2);
15: 𝐔𝐢: Broadcast 𝐻𝑖 to the neighboring nodes;
16: end if
17: for 𝑗 = 1 to 𝑁𝑖 do
18: if 𝑈𝑖 has information about 𝑈𝑗 in 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 and 𝑈𝑗 sends a new 𝐻𝑗 to 𝑈𝑖
then

19: 𝐔𝐢: Refresh the entry related to 𝑈𝑗 based on this 𝐻𝑗 ;
20: else if 𝑈𝑖 has information about 𝑈𝑗 in 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 and 𝑈𝑗 does not send any
new 𝐻𝑗 to 𝑈𝑖 then

21: 𝐔𝐢: Remove the entry related to 𝑈𝑗 from 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟
𝑖 ;

22: else if 𝑈𝑖 has not any information about 𝑈𝑗 in 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟
𝑖 and 𝑈𝑗 sends a

new 𝐻𝑗 to 𝑈𝑖 then
23: 𝐔𝐢: Add a new entry related to 𝑈𝑗 to 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 ;
24: 𝐔𝐢: Insert the information of 𝑈𝑗 into 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 based on this new 𝐻𝑗 ;
25: end if
26: end for
27: until Simulation time is finished

End

5.2. Adaptive clustering process

In this section, QSCR proposes an adaptive clustering process for
flying ad hoc networks to categorize 𝑛 flying nodes into 𝑚 groups. Each
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Fig. 3. Hello propagation operation between neighboring UAVs.

group is called a cluster 𝐶𝑘 so that 𝑘 = 1, 2,… , 𝑚. 𝐶𝑘 includes a cluster
leader (𝐿𝑈𝑘) and a number of cluster members (𝑀𝑈𝑘

𝑗 ) so that 𝑗 =
1, 2,… , 𝑁𝑘. Note that 𝑁𝑘 indicates the total number of cluster members
in 𝐶𝑘. In QSCR, the role of 𝐿𝑈𝑘 periodically rotates between UAVs so
that energy consumption is uniformly distributed between all UAVs in
the network. This leads to the improvement of network lifespan. 𝐿𝑈𝑘
is responsible for managing and monitoring its clusters. It provides
two types of communication, namely intra-cluster and inter-cluster
communications, on the network. Furthermore, some cluster member
nodes close to the cluster border play the role of inter-cluster gateways
(𝐺𝑈𝑘

𝑔 ) to connect with the adjacent cluster. Algorithm 2 expresses the
clustering process in QSCR. Furthermore, three following steps, namely
merit value, cluster formation, and cluster support, explain how to
select and support these nodes.

5.2.1. Merit value
In this step, each 𝑈𝑖 firstly finds its neighbors and establishes

𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟
𝑖 in accordance with the dynamic neighbor discovery pro-

cess in Section 5.1. Then, 𝑈𝑖 must prove its merit (𝑚𝑡
𝑖) to obtain the role

of the cluster leader 𝐿𝑈𝑘 among other neighboring nodes. To get this
purpose, 𝑈𝑖 calculates its merit with regard to five merit parameters,
namely remaining energy, centrality, neighbor degree, speed similarity,
and link validity time.

• Remaining energy (𝐄𝐢): It is essential to pay attention to energy
in determining the merit value of flying nodes to accept the role
of cluster leader. If 𝑈𝑖 has little remaining energy, then it cannot
play the role of 𝐿𝑈𝑘 well because the cluster leader has important
and decisive tasks, namely cluster management, determination
of the hello propagation time interval, intra-cluster communi-
cation, data aggregation, and inter-cluster communication. As a
result, it deals with a lot of control and computational overhead.
Therefore, 𝐿𝑈𝑘 needs more energy than normal nodes. In order
to balance energy consumption in the network and prevent the
death of low-energy UAVs in FANET, 𝑈𝑖 should consider its
remaining energy for calculating its merit. 𝑈𝑖 knows about its
energy level at any moment and normalizes it through Eq. (10).
Note that QSCR carries out normalization operation to restrict
8

energy value to [0, 1]. This leads to the same effect of merit
parameters with different units on 𝑚𝑡

𝑖.

𝐸𝑖 =
𝐸𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝑖
𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙

(10)

where 𝐸𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝑖 and 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 present the current and initial energies

of 𝑈𝑖, respectively.
• Centrality (𝐂𝐍𝐑𝐢): It is very important to consider the centrality

parameter when determining the merit value of 𝑈𝑖 for playing
the role of 𝐿𝑈𝑘. If 𝑈𝑖 is close to the center of the cluster, the
distance between it and cluster members is short. As a result,
𝑈𝑖 requires less energy to form intra-cluster communication with
𝑀𝑈𝑘

𝑗 . Eq. (11) calculates 𝐶𝑁𝑅𝑖 that indicates the average dis-
tance between 𝑈𝑖 and its neighbors, such as 𝑈𝑗 , in 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 .

𝐶𝑁𝑅𝑖 =
1
𝑁𝑖

𝑁𝑖
∑

𝑗=1

√

(

𝑥𝑡𝑖 − 𝑥𝑡𝑗
)2

+
(

𝑦𝑡𝑖 − 𝑦𝑡𝑗
)2

+
(

𝑧𝑡𝑖 − 𝑧𝑡𝑗
)2

(11)

where 𝐿𝑜𝑐𝑖 =
(

𝑥𝑡𝑖, 𝑦
𝑡
𝑖, 𝑧

𝑡
𝑖
)

and 𝐿𝑜𝑐𝑗 =
(

𝑥𝑡𝑗 , 𝑦
𝑡
𝑗 , 𝑧

𝑡
𝑗

)

shows the location
information of 𝑈𝑖 and 𝑈𝑗 in the current time 𝑡, respectively.
Furthermore, 𝑁𝑖 indicates total number of adjacent UAVs around
𝑈𝑖 in 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 . As mentioned above, QSCR carries out nor-
malization operation for limiting 𝐶𝑁𝑅𝑖 to the interval [0, 1]. This
causes the same effect of merit parameters with different units on
𝑚𝑡
𝑖.

𝐶𝑁𝑅𝑛𝑜𝑟𝑚
𝑖 =

𝐶𝑁𝑅𝑖
𝐷max

(12)

So that 𝐷max indicates the longest distance between UAVs in the
network. It is determined by Eq. (13) and is dependent on the
dimensions of the network.

𝐷max =
√

𝑋2 + 𝑌 2 +𝑍2 (13)

As, 𝑋, 𝑌 , and 𝑍 represent the length, width, and height of the
desired network.

• Neighbor degree (𝐃𝐞𝐠𝐢): This parameter is very important for
determining the merit value of 𝑈𝑖 and accepting the role of 𝐿𝑈𝑘
because if 𝑈𝑖 has many neighbors, it has high communication
capability. As a result, it can create stable and suitable communi-
cation with its cluster members as well as other adjacent cluster
leaders. However, if 𝑈𝑖 does not have a high neighbor degree, it
may not be able to accept any node as its cluster member, and
consequently, an isolated cluster is formed in the network. 𝐷𝑒𝑔𝑖
is calculated based on the number of neighbors in 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 .
Note that QSCR performs normalization operation to limit 𝐷𝑒𝑔𝑖
to [0, 1].

𝐷𝑒𝑔𝑖 =
𝑁𝑖
𝑛 − 1

(14)

Where 𝑁𝑖 is the number of adjacent flying nodes around 𝑈𝑖 stored
in 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 and 𝑛 represents the total number of flying nodes
in the network.

• Speed similarity (𝐒𝐂𝐭
𝐢 ): The importance of speed similarity to

the merit value is that if the velocities of 𝑈𝑖 and its neighbors
are similar, then the cluster 𝐶𝑘 is stable, and 𝑈𝑖 can play the
role of 𝐿𝑈𝑘 for a long period. However, if the difference between
the speed of 𝑈𝑖 and its neighbors is high, cluster members may
speedily leave the cluster area of 𝐶𝑘, if 𝑈𝑖 is selected as 𝐿𝑈𝑘.
As a result, the need to rebuild the cluster will increase. This
imposes a lot of communication and computational overhead. In
Section 5.1, Eq. (3) explains how to calculate 𝑆𝐶 𝑡

𝑖 . The only point
that is important here is that 𝑆𝐶 𝑡

𝑖 has a value in [−1, 1]. Hence,
the normalization operation is performed on it using Eq. (15). In
this case, the normalized value is limited to 0, 1 .
[ ]
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𝑆𝐶𝑛𝑜𝑟𝑚
𝑖 =

𝑆𝐶 𝑡
𝑖 + 1
2

(15)

• Link validity time (𝐋𝐓𝐭
𝐢 ): The importance of the link validity time

in determining the merit value of 𝑈𝑖 is that a flying node with
powerful and stable communication links can play the role of 𝐿𝑈𝑘
better, and this increases the stability of 𝐶𝑘. However, if there are
weak connections between 𝐿𝑈𝑘 and its cluster members, these
connections will be broken rapidly, and consequently, 𝐶𝑘 needs to
be reconstructed. To calculate the link validity time, the distance
between 𝑈𝑖 and 𝑈𝑗 in moment 𝐿𝑇𝑖𝑗 is obtained from Eq. (16).

(

𝐷𝐿𝑇𝑖𝑗
𝑖𝑗

)2
=

⎛

⎜

⎜

⎜

⎜

⎝

(

𝑥𝑡𝑖 − 𝑥𝑡𝑗
)

⏟⏞⏞⏟⏞⏞⏟
𝛼1

+
(

𝑉 𝑥
𝑖 − 𝑉 𝑥

𝑗

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝛽1

𝐿𝑇𝑖𝑗

⎞

⎟

⎟

⎟

⎟

⎠

2

+

⎛

⎜

⎜

⎜

⎜

⎝

(

𝑦𝑡𝑖 − 𝑦𝑡𝑗
)

⏟⏞⏞⏟⏞⏞⏟
𝛼2

+
(

𝑉 𝑦
𝑖 − 𝑉 𝑦

𝑗

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝛽2

𝐿𝑇𝑖𝑗

⎞

⎟

⎟

⎟

⎟

⎠

2

+

⎛

⎜

⎜

⎜

⎜

⎝

(

𝑧𝑡𝑖 − 𝑧𝑡𝑗
)

⏟⏞⏞⏟⏞⏞⏟
𝛼3

+
(

𝑉 𝑧
𝑖 − 𝑉 𝑧

𝑗

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝛽3

𝐿𝑇𝑖𝑗

⎞

⎟

⎟

⎟

⎟

⎠

2

(16)

So that
(

𝑉 𝑥
𝑖 , 𝑉

𝑦
𝑖 , 𝑉

𝑧
𝑖
)

is the velocity vector of 𝑈𝑖 obtained through
Eqs. (17), (18), and (19). Also,

(

𝑉 𝑥
𝑗 , 𝑉

𝑦
𝑗 , 𝑉

𝑧
𝑗

)

shows the velocity
vector of 𝑈𝑗 and is calculated in a similar manner.

𝑉 𝑥
𝑖 = 𝑉 𝑡

𝑖 sin𝜑
𝑡
𝑖 cos 𝜃

𝑡
𝑖 (17)

𝑉 𝑦
𝑖 = 𝑉 𝑡

𝑖 sin𝜑
𝑡
𝑖 sin 𝜃

𝑡
𝑖 (18)

𝑉 𝑧
𝑖 = 𝑉 𝑡

𝑖 cos𝜑
𝑡
𝑖 (19)

The general form of Eq. (16) is stated below.

(

𝐷
𝐿𝑇𝑖𝑗
𝑖𝑗

)2
=

3
∑

𝑞=1

(

𝛼𝑞
)2 + 𝐿𝑇𝑖𝑗

3
∑

𝑞=1
2𝛼𝑞𝛽𝑞 +

(

𝐿𝑇𝑖𝑗
)2

3
∑

𝑞=1

(

𝛽𝑞
)2 (20)

On the other hand, the distance between 𝑈𝑖 and 𝑈𝑗 in moment
𝐿𝑇𝑖𝑗 equals their communication radius, i.e. 𝐷𝐿𝑇𝑖𝑗

𝑖𝑗 = 𝑟𝑖. Hence, it
can be concluded that:
(( 3

∑

𝑞=1

(

𝛼𝑞
)2
)

−
(

𝑟𝑖
)2
)

+𝐿𝑇𝑖𝑗
3
∑

𝑞=1
2𝛼𝑞𝛽𝑞+

(

𝐿𝑇𝑖𝑗
)2

3
∑

𝑞=1

(

𝛽𝑞
)2 = 0 (21)

Now, the Delta method is used to solve the above two-order
equation to calculate 𝐿𝑇𝑖𝑗 (Eq. (22)).

𝐿𝑇𝑖𝑗 =
−
∑3

𝑞=1 2𝛼𝑞𝛽𝑞 +
√

(

∑3
𝑞=1 2𝛼𝑞𝛽𝑞

)2
− 4

(

∑3
𝑞=1

(

𝛽𝑞
)2
)((

∑3
𝑞=1

(

𝛼𝑞
)2
)

−
(

𝑟𝑖
)2
)

2
∑3

𝑞=1
(

𝛽𝑞
)2

(22)

Then, 𝑈𝑖 obtains the average link time from Eq. (23).

𝐿𝑇 𝑡
𝑖 = 1

𝑁𝑖

𝑁𝑖
∑

𝑗=1
𝐿𝑇𝑖𝑗 (23)

so 𝑁𝑖 represents the number of surrounding flying nodes around
𝑈𝑖 in 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 . Eq. (24) is also used to normalize 𝐿𝑇 𝑡
𝑖 and

limit it to [0, 1].

𝐿𝑇 𝑛𝑜𝑟𝑚
𝑖 =

𝐿𝑇 𝑡
𝑖

𝐿𝑇max
(24)

Finally, 𝑈𝑖 uses Eq. (25) to calculate 𝑚𝑡
𝑖.

𝑚𝑡
𝑖 = 𝜔1𝐸𝑖 + 𝜔2

(

1 − 𝐶𝑁𝑅𝑛𝑜𝑟𝑚
𝑖

)

+ 𝜔3𝐷𝑒𝑔𝑖 + 𝜔4𝑆𝐶𝑛𝑜𝑟𝑚
𝑖 + 𝜔5𝐿𝑇 𝑛𝑜𝑟𝑚

𝑖 (25)

where 𝜔𝑖 (𝑖 = 1, 2, 3, 4, 5) represents the weight coefficient that de-
termines the effect of the relevant parameter on 𝑚𝑡. These weight
9

𝑖

Fig. 4. Broadcasting merit messages for neighboring UAVs.

coefficients are limited to [0, 1] so that ∑5
𝑖=1 𝜔𝑖 = 1. In QSCR, GCS is

responsible for adjusting these weight coefficients using a Q-learning
algorithm, which will be detailed in Section 5.3.

5.2.2. Cluster formation process
Here, the cluster construction steps, including cluster leader selec-

tion, connection to the cluster, and gateway selection are explained.

• Step (1) Cluster leader selection: To determine 𝐿𝑈𝑘 in 𝐶𝑘, 𝑈𝑖
calculates its merit value 𝑚𝑡

𝑖 in accordance with Eq. (25) in
Section 5.2.1 and then broadcasts this information through the
merit message 𝑀 𝑖

𝑚𝑒𝑟𝑖𝑡 to surrounding nodes in the network. See
Fig. 4. 𝑀 𝑖

𝑚𝑒𝑟𝑖𝑡 includes 𝐼𝐷𝑖, 𝑚𝑡
𝑖, and a timestamp 𝑇𝑚𝑒𝑟𝑖𝑡. Its structure

is stated in Eq. (26).

𝑀 𝑖
𝑚𝑒𝑟𝑖𝑡 =

⟨

𝐼𝐷𝑖
‖

‖

‖

𝑚𝑡
𝑖
‖

‖

‖

𝑇𝑚𝑒𝑟𝑖𝑡
⟩

(26)

Now, 𝑈𝑖 waits for a certain time interval to get merit messages
from other UAVs. After receiving these messages, 𝑈𝑖 extracts the
merit values of UAVs from their merit messages and compares 𝑚𝑡

𝑖
with these values. Here, there are two modes.

– First mode: If 𝑈𝑖 has the greatest merit value among other
neighboring nodes, it introduces itself as 𝐿𝑈𝑘 and transmits
a leader message 𝑀 𝑖

𝐿𝑈𝑘
to its adjacent nodes. The structure

of 𝑀 𝑖
𝐿𝑈𝑘

is stated in Eq. (27) and contains 𝐼𝐷𝑖, 𝑚𝑡
𝑖, the role

of 𝑈𝑖 (i.e. 𝐿𝑈𝑘), and a timestamp 𝑇𝐿𝑈𝑘
.

𝑀 𝑖
𝐿𝑈𝑘

=
⟨

𝐼𝐷𝑖
‖

‖

‖

𝑚𝑡
𝑖
‖

‖

‖

𝐿𝑈𝑘
‖

‖

‖

𝑇𝐿𝑈𝑘

⟩

(27)

– Second mode: If the merit value of 𝑈𝑖 is less than other
adjacent nodes, 𝑈𝑖 waits to get a leader message from other
flying nodes and goes to Step 2.

• Step (2) Connection to the cluster: In this step, 𝑈𝑖 waits to get
a leader message from other nodes. Now, three modes can occur.
This process is shown in Fig. 5.

– First mode: If 𝑈𝑖 gets only a leader message from 𝐿𝑈𝑘, then
𝑈𝑖 acts as a cluster member 𝑀𝑈𝑘

𝑗 and transfers a connection
message 𝑀 𝑖

𝑀𝑈𝑘
𝑗

to 𝐿𝑈𝑘. This message contains 𝐼𝐷𝑖, 𝑀𝑈𝑘
𝑗

(role of 𝑈𝑖), 𝐼𝐷𝐿𝑈𝑘
, and timestamp 𝑇𝑀𝑈𝑘

𝑗
, and its structure

is presented in Eq. (28).

𝑀 𝑖
𝑀𝑈𝑘

𝑗
=
⟨

𝐼𝐷𝑖
‖

‖

‖

𝑀𝑈𝑘
𝑗
‖

‖

‖

𝐼𝐷𝐿𝑈𝑘
‖

‖

‖

𝑇𝑀𝑈𝑘
𝑗

⟩

(28)

When this message reaches 𝐿𝑈𝑘, it sends an accept message
𝑀𝐴𝑐𝑐𝑒𝑝𝑡 to 𝑈 and accepts it as 𝑀𝑈𝑘 in the cluster 𝐶 .
𝐿𝑈𝑘 𝑖 𝑗 𝑘
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Fig. 5. Determining cluster members.

This message contains the cluster leader ID, the cluster
member ID, and timestamp 𝑇𝐴𝑐𝑐𝑒𝑝𝑡, and its structure is stated
in Eq. (29).

𝑀𝐴𝑐𝑐𝑒𝑝𝑡
𝐿𝑈𝑘

=
⟨

𝐼𝐷𝐿𝑈𝑘
‖

‖

‖

𝐼𝐷𝑀𝑈𝑘
𝑗

‖

‖

‖

𝑇𝐴𝑐𝑐𝑒𝑝𝑡
⟩

(29)

– Second mode: If 𝑈𝑖 gets several leader messages from dif-
ferent cluster leaders, then 𝑈𝑖 calculates the validity time of
link between itself and each cluster leader. Then, it chooses
𝐿𝑈𝑘 with the longest connection time as its cluster leader
and transmits a connection message 𝑀 𝑖

𝑀𝑈𝑘
𝑗

for it in the
cluster 𝐶𝑘. After accepting this connection request by 𝐿𝑈𝑘,
𝑈𝑖 is accepted as 𝑀𝑈𝑘

𝑗 in the cluster 𝐶𝑘.
– Third mode: If 𝑈𝑖 does not receive any leader message from

the adjacent nodes, then 𝑈𝑖 announces itself as the cluster
leader and transfers a leader message 𝑀 𝑖

𝐿𝑈𝑘
to its adjacent

nodes to determine its cluster members.

• Step (3) Gateway selection: At this step, gateway nodes are
specified in each cluster. According to Section 5.1, 𝑈𝑖 advertises
its cluster leader ID (𝐼𝐷𝐿𝑈𝑘

) through hello messages to other
adjacent nodes, and this information is recorded in 𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 .
To determine gateway nodes, such as 𝐺𝑈𝑘

𝑔 , suppose that 𝑀𝑈𝑘
𝑗

belongs to the cluster 𝐶𝑘, and its cluster leader is 𝐿𝑈𝑘. In this
case, 𝑀𝑈𝑘

𝑗 examines its neighbor table, if it finds a neighboring
node that belongs to another cluster such as 𝐶𝑓 and its leader
cluster is 𝐿𝑈𝑓 , then 𝑀𝑈𝑘

𝑗 is known as a gateway node to con-
nect the cluster 𝐶𝑓 and transmits a gateway message 𝑀𝐺𝑎𝑡𝑒𝑤𝑎𝑦

𝐺𝑈𝑘
𝑔

to 𝐿𝑈𝑘. This message contains the gateway ID 𝐼𝐷𝐺𝑈𝑘
𝑔
, 𝐼𝐷𝐿𝑈𝑘

,
𝐼𝐷𝐿𝑈𝑓

, timestamp 𝑇𝐺𝑎𝑡𝑒𝑤𝑎𝑦. The format of this message is stated
in Eq. (30).

𝑀𝐺𝑡𝑒𝑤𝑎𝑦
𝐺𝑈𝑘

𝑔
=
⟨

𝐼𝐷𝐺𝑈𝑘
𝑔

‖

‖

‖

𝐼𝐷𝐿𝑈𝑘
‖

‖

‖

𝐼𝐷𝐿𝑈𝑓
‖

‖

‖

𝑇𝐺𝑎𝑡𝑒𝑤𝑎𝑦

⟩

(30)
10
Algorithm 2 Adaptive clustering
Input: 𝑈𝑖: Flying node 𝑖 so that 𝑖 = 1, 2, ..., 𝑛

𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟
𝑖 : Neighboring table stored in 𝑈𝑖

𝑁𝑖: Number of neighbors of 𝑈𝑖
𝐶𝑘: Cluster 𝑘 so that 𝑘 = 1, 2, ..., 𝑚
𝐿𝑈𝑘: Leader of 𝐶𝑘
𝑀𝑈𝑘

𝑗 : Cluster member UAV so that 𝑗 = 1, 2, ..., 𝑁𝑘

𝐺𝑈𝑘
𝑔 : Gateway UAV in 𝐶𝑘

𝑡𝑁𝑒𝑡: A timer for measuring the network time.
Output: 𝐶1 , ..., 𝐶𝑘 , ..., 𝐶𝑚: Clusters in the network

Begin
1: repeat
2: if 𝑡𝑁𝑒𝑡 mod 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 = 0 then
3: 𝐔𝐢: Obtain the weight coefficients (𝜔𝑖, where 𝑖 = 1, 2, 3, 4, 5) using the learning

model designed in GCS;
4: 𝐔𝐢: Calculate 𝑚𝑡

𝑖 based on Equation (25);
5: 𝐔𝐢: Insert 𝑚𝑡

𝑖 into the message 𝑀 𝑖
𝑚𝑒𝑟𝑖𝑡 based on Equation (26);

6: 𝐔𝐢: Broadcast 𝑀 𝑖
𝑚𝑒𝑟𝑖𝑡 to its neighboring nodes;

7: for 𝑗 = 1 to 𝑁𝑖 do
8: 𝐔𝐢: Wait to receive 𝑀𝑗

𝑚𝑒𝑟𝑖𝑡 from 𝑈𝑗 ;
9: 𝐔𝐢: Extract 𝑚𝑡

𝑗 from 𝑀𝑗
𝑚𝑒𝑟𝑖𝑡;

10: if 𝑚𝑡
𝑖 > 𝑚𝑡

𝑗 then
11: 𝑚max = 𝑚𝑡

𝑖 ;
12: else
13: 𝑚max = 𝑚𝑡

𝑗 ;
14: end if
15: end for
16: if 𝑚max = 𝑚𝑡

𝑖 then
17: 𝐔𝐢: Play the role of 𝐿𝑈𝑘 and adjust the message 𝑀 𝑖

𝐿𝑈𝑘
based on Equation

(27);
18: 𝐔𝐢: Broadcast 𝑀 𝑖

𝐿𝑈𝑘
to its neighboring nodes;

19: if 𝐿𝑈𝑘 receives a message 𝑀 𝑖
𝑀𝑈𝑘

𝑗
from a 𝑀𝑈𝑘

𝑗 then

20: 𝐋𝐔𝐤: Set a message 𝑀𝐴𝑐𝑐𝑒𝑝𝑡
𝐿𝑈𝑘

based on Equation (29);

21: 𝐋𝐔𝐤: Send 𝑀𝐴𝑐𝑐𝑒𝑝𝑡
𝐿𝑈𝑘

to the relevant 𝑀𝑈𝑘
𝑗 ;

22: end if
23: else
24: 𝐔𝐢: Wait to receive the messages 𝑀 𝑖

𝐿𝑈𝑘
from different 𝐿𝑈𝑘 nodes;

25: if 𝑈𝑖 receives only one 𝑀 𝑖
𝐿𝑈𝑘

from a 𝐿𝑈𝑘 node then

26: 𝐔𝐢: Play the role of 𝑀𝑈𝑘
𝑗 and adjust a message 𝑀 𝑖

𝑀𝑈𝑘
𝑗

based on Equation

(28);
27: 𝐔𝐢: Send 𝑀 𝑖

𝑀𝑈𝑘
𝑗

to the relevant 𝐿𝑈𝑘;

28: else if 𝑈𝑖 receives several 𝑀 𝑖
𝐿𝑈𝑘

from different 𝐿𝑈𝑘 nodes then
29: 𝐔𝐢: Calculate the link lifetime between itself and each 𝐿𝑈𝑘 using Equation

(22);
30: 𝐔𝐢: Select 𝐿𝑈𝑘 with maximum link lifetime as its leader;
31: 𝐔𝐢: Play the role of 𝑀𝑈𝑘

𝑗 and adjust a message 𝑀 𝑖
𝑀𝑈𝑘

𝑗
based on Equation

(28);
32: 𝐔𝐢: Send 𝑀 𝑖

𝑀𝑈𝑘
𝑗

to the relevant 𝐿𝑈𝑘;

33: else if 𝑈𝑖 does not receive any 𝑀 𝑖
𝐿𝑈𝑘

from 𝐿𝑈𝑘 nodes then

34: 𝐔𝐢: Play the role of 𝐿𝑈𝑘 and adjust the message 𝑀 𝑖
𝐿𝑈𝑘

based on Equation
(27);

35: 𝐔𝐢: Broadcast 𝑀 𝑖
𝐿𝑈𝑘

to its neighboring nodes;

36: if 𝐿𝑈𝑘 receives a message 𝑀 𝑖
𝑀𝑈𝑘

𝑗
from a 𝑀𝑈𝑘

𝑗 then

37: 𝐋𝐔𝐤: Set a message 𝑀𝐴𝑐𝑐𝑒𝑝𝑡
𝐿𝑈𝑘

based on Equation (29);

38: 𝐋𝐔𝐤: Send 𝑀𝐴𝑐𝑐𝑒𝑝𝑡
𝐿𝑈𝑘

to the relevant 𝑀𝑈𝑘
𝑗 ;

39: end if
40: end if
41: if 𝑀𝑈𝑘

𝑗 belongs to 𝐶𝑘 and 𝑀𝑈𝑘
𝑗 has a neighbor, which belongs to another

cluster like 𝐶𝑓 then
42: 𝐌𝐔𝐤

𝐣 : Play the role of 𝐺𝑈𝑘
𝑔 and adjust the message 𝑀𝐺𝑎𝑡𝑒𝑤𝑎𝑦

𝐺𝑈𝑘
𝑔

based on

Equation (30);
43: 𝐌𝐔𝐤

𝐣 : Send 𝑀𝐺𝑎𝑡𝑒𝑤𝑎𝑦
𝐺𝑈𝑘

𝑔
to 𝐿𝑈𝑘;

44: end if
45: end if
46: end if
47: until Simulation time is finished

End
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Algorithm 3 Supporting the clustering process
Input: 𝑈𝑖: Flying node 𝑖 so that 𝑖 = 1, 2, ..., 𝑛

𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟
𝑖 : Neighboring table stored in 𝑈𝑖

𝑁𝑖: Number of neighbors of 𝑈𝑖
𝐶𝑘: Cluster 𝑘 so that 𝑘 = 1, 2, ..., 𝑚
𝐿𝑈𝑘: Leader of 𝐶𝑘
𝑀𝑈𝑘

𝑗 : Cluster member UAV so that 𝑗 = 1, 2, ..., 𝑁𝑘

𝐺𝑈𝑘
𝑔 : Gateway UAV in 𝐶𝑘

𝑡𝑁𝑒𝑡: A timer for measuring the network time.
𝐻𝑇𝑘: Hello dissemination time
𝐻𝑘: Hello message related to 𝐿𝑈𝑘

Output: Updating clusters 𝐶1 , ..., 𝐶𝑘 , ..., 𝐶𝑚 in the network
Begin

1: repeat
2: for 𝑘 = 1 to 𝑚 do
3: if 𝑡𝑁𝑒𝑡 mod 𝐻𝑇𝑘 = 0 then
4: 𝐋𝐔𝐤: Adjust a message 𝐻𝑘 based on Equation (2);
5: 𝐋𝐔𝐤: Broadcast 𝐻𝑘 to its cluster member nodes;
6: for 𝑗 = 1 to 𝑁𝑘 do
7: if 𝑀𝑈𝑘

𝑗 does not receive any 𝐻𝑘 from 𝐿𝑈𝑘 then
8: 𝐌𝐔𝐤

𝐣 : Adjust a message 𝑀 𝑖
𝑀𝑈𝑘

𝑗
based on Equation (28);

9: 𝐌𝐔𝐤
𝐣 : Send 𝑀 𝑖

𝑀𝑈𝑘
𝑗

to the nearest 𝐿𝑈𝑘;

10: if this new 𝐿𝑈𝑘 receives 𝑀 𝑖
𝐿𝑈𝑘

from 𝑀𝑈𝑘
𝑗 then

11: 𝐋𝐔𝐤: Set a message 𝑀𝐴𝑐𝑐𝑒𝑝𝑡
𝐿𝑈𝑘

based on Equation (29);

12: 𝐋𝐔𝐤: Send 𝑀𝐴𝑐𝑐𝑒𝑝𝑡
𝐿𝑈𝑘

to the relevant 𝑀𝑈𝑘
𝑗 ;

13: end if
14: end if
15: 𝐌𝐔𝐤

𝐣 : Adjust a message 𝐻𝑗 based on Equation (2);
16: 𝐌𝐔𝐤

𝐣 : Broadcast 𝐻𝑗 to its 𝐿𝑈𝑘;
17: if 𝐿𝑈𝑘 does not receive any 𝐻𝑗 from 𝑀𝑈𝑘

𝑗 then
18: 𝐋𝐔𝐤: Remove 𝑀𝑈𝑘

𝑗 from its member list;
19: end if
20: end for
21: end if
22: end for
23: if a new 𝑈𝑖 is connected to the network then
24: 𝐔𝐢: Play the role of 𝑀𝑈𝑘

𝑗 and adjust a message 𝑀 𝑖
𝑀𝑈𝑘

𝑗
based on Equation (28);

25: 𝐔𝐢: Send 𝑀 𝑖
𝑀𝑈𝑘

𝑗
to the nearest 𝐿𝑈𝑘;

26: if 𝐿𝑈𝑘 receives 𝑀 𝑖
𝐿𝑈𝑘

from this new node then

27: 𝐋𝐔𝐤: Set a message 𝑀𝐴𝑐𝑐𝑒𝑝𝑡
𝐿𝑈𝑘

based on Equation (29);

28: 𝐋𝐔𝐤: Send 𝑀𝐴𝑐𝑐𝑒𝑝𝑡
𝐿𝑈𝑘

to the relevant 𝑀𝑈𝑘
𝑗 ;

29: end if
30: end if
31: until Simulation time is finished

End

5.2.3. Cluster support process
Here, different cluster support steps are explained.

• Connecting a new node: When a new node enters the network,
it must propagate a connection request in the network. As soon
as the connection message reaches cluster leaders in the network,
they respond to this request. Finally, this new node is connected
to the nearest cluster leader.

• Connecting with cluster members: 𝐿𝑈𝑘 periodically examines
its connections with its cluster members through the exchange of
hello messages. If 𝐿𝑈𝑘 does not receive any hello message from
𝑀𝑈𝑘

𝑗 , then it has gone out of the communication area of 𝐿𝑈𝑘 and
should be removed from the list of cluster members.

• Connecting to the cluster leader: 𝑀𝑈𝑘
𝑗 periodically controls its

connection with 𝐿𝑈𝑘 through the exchange of hello messages. If
𝑀𝑈𝑘

𝑗 does not receive any hello message from 𝐿𝑈𝑘, it is clear
that 𝐿𝑈𝑘 has gone out of the communication area of 𝑀𝑈𝑘

𝑗 . As a
result, 𝑀𝑈𝑘

𝑗 must send a connection request to the nearest cluster
leader to join a new cluster.

• Connecting to gateways: 𝐺𝑈𝑘
𝑔 also periodically examines its

connection with the relevant gateway in the adjacent cluster. If
this gateway node does not receive any hello message from its
neighboring gateway in the adjacent cluster, then the connection
between the two nodes has been cut off. Hence, 𝐺𝑈𝑘

𝑔 must report
this issue to its cluster leader.
11
Table 3
Components related to the learning model in QSCR.

Learning component Description

Learning issue Learning the best weight coefficients for merit parameters
Learning environment Flying ad hoc network
Learning agent Ground station control
State space Merit values of UAVs
Action space Determining the weight coefficients

• Re-clustering: When the clustering period is completed, UAVs
again begin the clustering process in accordance with Section 5.2
to determine new clusters in the network.

Algorithm 3 expresses the pseudo-code related to the cluster support
process.

5.3. Smart and dynamic adjustment of clustering parameters

Here, QSCR provides a centralized learning model to tune up weight
coefficients (𝜔𝑖, so that 𝑖 = 1, 2, 3, 4, 5) in Eq. (25). This learning

odel is depicted in Fig. 6. Additionally, QSCR regulates Q-learning
arameters to be more consistent with FANET. Table 3 describes dif-
erent components related to this learning model. GCS is the learning
gent, which learns the network environment, and gets the best weight
oefficients through trial and error and sends them to UAVs. Then,
lying nodes apply these weight coefficients in the clustering process to
hoose cluster leaders. 𝑈𝑖 makes a state message, which includes its five
erit parameters, namely remaining energy (𝐸𝑖), centrality (𝐶𝑁𝑅𝑖),
eighbor degree (𝐷𝑖), speed similarity (𝑆𝐶 𝑡

𝑖 ), and link validity time
(𝐿𝑇 𝑡

𝑖 ), and sends it to GCS periodically. GCS stores the merit parameters
related to each flying node in its database and uses Q-learning to find
the best weight coefficients in Eq. (25). Therefore, the effect of each co-
efficient 𝜔𝑖 on the merit value is determined in a dynamic manner and
according to network conditions. Based on the points mentioned above,
the action space in the proposed learning model includes a set of weight
coefficients, i.e. 𝐴𝑐𝑡𝑖𝑜𝑛 =

{

𝜔𝑖|1 ≤ 𝑖 ≤ 5, 0 ≤ 𝜔𝑖 ≤ 1 𝑎𝑛𝑑
∑5

𝑖=1 𝜔𝑖 = 1
}

.
For each action 𝑎𝑡, the state space (𝑆𝑇 ) represents a set of merit values
of UAVs so that 𝑆𝑇 =

{

𝑚𝑡
𝑖|1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑡 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛

}

. Algorithm 4 explains
how to adjust weight coefficients dynamically and intelligently.

Assume that GCS selects an action such as 𝑎𝑡 =
{

𝜔𝑡
1, 𝜔

𝑡
2, 𝜔

𝑡
3, 𝜔

𝑡
4, 𝜔

𝑡
5
}

from the action set. In this case, the state of UAVs is 𝑆𝑇 𝑡 =
{

𝑚𝑡
1, 𝑚

𝑡
2,… , 𝑚𝑡

𝑛
}

. Then, GCS examines the effect of action 𝑎𝑡 on the
network environment by evaluating the clusters formed in FANET
and the selected cluster leaders. It calculates the reward value based
on Eq. (35). This reward function considers three scales, namely the
balance of energy consumption, the number of isolated clusters, and
the distribution of cluster leaders in the network. In the following, these
scales will be precisely defined.

• Balance of energy consumption (𝐟𝟏): It evaluates the effect of
the selected action (𝑎𝑡 =

{

𝜔𝑡
1, 𝜔

𝑡
2, 𝜔

𝑡
3, 𝜔

𝑡
4, 𝜔

𝑡
5
}

) on the balance of
energy consumption in the network. To balance energy consump-
tion in the network, GCS must consider two points when adjusting
weight coefficients in the network. Firstly, the energy consumed
by UAVs must be minimized, and secondly, high-energy UAVs
are selected as cluster leaders. Therefore, 𝑓1 must evaluate the
energy consumption rate of all flying nodes (cluster member
node or cluster leader). If this rate is low, this means that the
selected action can reduce the energy consumption of UAVs in the
network. In addition, 𝑓1 must evaluate the ratio of the sum of the
residual energy of cluster leaders to the sum of the residual energy
of cluster member nodes. If the selected action can increase this
parameter, it means that cluster leaders have more energy than
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cluster members in the network, and cluster leaders are selected
from high-energy nodes.

𝑓1 = 𝓁 1
(

1
𝑛
∑𝑛

𝑖=1
𝐸𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝑖 (𝑡−1)−𝐸𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑖 (𝑡)
𝛥𝑡

)+

(1 − 𝓁)
𝑚
∑

𝑘=1

⎛

⎜

⎜

⎜

⎜

⎝

𝐸𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝐿𝑈𝑘

(𝑡)
(

∑

∀𝑀𝑈𝑘
𝑗 ∈𝐶𝑘

𝐸𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝑀𝑈𝑘

𝑗
(𝑡)
)

⎞

⎟

⎟

⎟

⎟

⎠

(31)

So that 𝑛 indicates the total number of flying nodes, 𝑚 is the
total number of clusters, 𝐸𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑖 (𝑡 − 1) and 𝐸𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝑖 (𝑡) show the

energy levels of 𝑈𝑖 in two moments 𝑡 − 1 and 𝑡, respectively. 𝓁 is
a weight coefficient in [0, 1].

• Number of isolated clusters (𝐟𝟐): This parameter in the re-
ward function evaluates the effect of the selected action 𝑎𝑡 =
{

𝜔𝑡
1, 𝜔

𝑡
2, 𝜔

𝑡
3, 𝜔

𝑡
4, 𝜔

𝑡
5
}

on the number of isolated clusters made in
FANET. Note that isolated clusters are clusters with one or two
members. If the number of isolated clusters is high in the network,
the clustering process is not successful because the data transmis-
sion process between UAVs is often done through inter-cluster
communications. This increases the number of hops and delay
in the routing process, and boosts the energy consumption of
UAVs. Therefore, GCS is looking for weight coefficients to reduce
the number of isolated clusters in the network. As a result, 𝑓2 is
obtained from the ratio of the number of isolated clusters to the
total number of clusters in FANET.

𝑓2 = 1 −
(𝑚𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑚

)

(32)

where 𝑚 and 𝑚𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 are the total number of clusters and
the number of isolated clusters.

• Distribution of cluster leaders (𝐟𝟑): This parameter in the re-
ward function expresses the effect of the selected action 𝑎𝑡 =
{

𝜔𝑡
1, 𝜔

𝑡
2, 𝜔

𝑡
3, 𝜔

𝑡
4, 𝜔

𝑡
5
}

on the distribution of cluster leaders in FANET.
Note that a desirable clustering process must consider two points.
Firstly, cluster leaders are close to the cluster center. This means
that the average distance between cluster members (∀ 𝑀𝑈𝑘

𝑗 ∈
𝐶𝑘) and its cluster leader (𝐿𝑈𝑘) is low, and secondly, the dis-
tance between cluster leaders is high. This leads to their suitable
distribution throughout the network. Therefore, 𝑓3 is looking
for weight coefficients that optimize the distribution of cluster
leaders on the network.
12
𝑓3 = 𝛽 1

∑𝑚
𝑘=1

⎛

⎜

⎜

⎝

∑

∀𝑀𝑈𝑘
𝑗 ∈𝐶𝑘

𝑑
(

𝑀𝑈𝑘
𝑗 ,𝐿𝑈𝑘

)

𝑁𝑘

⎞

⎟

⎟

⎠

+(1 − 𝛽)
∑

∀ 𝐿𝑈𝑘≠𝐿𝑈𝑓

𝑑
(

𝐿𝑈𝑘, 𝐿𝑈𝑓
)

𝐷max

(33)

So that 𝑑
(

𝐿𝑈𝑘, 𝐿𝑈𝑓
)

is the distance between 𝐿𝑈𝑘 and 𝐿𝑈𝑓 , and
𝑑
(

𝑀𝑈𝑘
𝑗 , 𝐿𝑈𝑘

)

indicates the distance between 𝐿𝑈𝑘 and 𝑀𝑈𝑘
𝑗 .

𝑁𝑘 is the number of cluster members in 𝐶𝑘, and 𝑚 is the total
number of clusters in the network. 𝛽 is also a weight coefficient
in [0, 1]. 𝐷max indicates the maximum distance between UAVs in
the network and is determined using Eq. (34).

𝐷max =
√

𝑋2 + 𝑌 2 +𝑍2 (34)

where 𝑋, 𝑌 , and 𝑍 represent the length, width and height of the
network, respectively.

Now, GCS uses Eq. (35) to calculate the reward function based on
the parameters mentioned above.

𝑅𝑡 (𝐹 ) =

⎧

⎪

⎨

⎪

⎩

𝑅max, 𝐹 = 1
𝑅min, 𝐹 = −1
𝐹 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(35)

So that 𝐹 = 𝜆1𝑓1 + 𝜆2𝑓2 + 𝜆3𝑓3. In addition, 𝜆1, 𝜆2, and 𝜆3 express
weight coefficients and ∑3

𝑖=1 𝜆𝑖 = 1. According to the reward function,
if 𝐹 = 1, the selected action 𝑎𝑡 =

{

𝜔𝑡
1, 𝜔

𝑡
2, 𝜔

𝑡
3, 𝜔

𝑡
4, 𝜔

𝑡
5
}

obtains the
maximum reward value 𝑅max. On the other hand, if 𝐹 = −1, then,
𝑎𝑡 =

{

𝜔𝑡
1, 𝜔

𝑡
2, 𝜔

𝑡
3, 𝜔

𝑡
4, 𝜔

𝑡
5
}

gets the least reward value 𝑅min. In other
modes, the reward value is dependent on 𝐹 .

5.3.1. Q-learning parameters
Here, QSCR seeks to find its learning parameters, i.e. 𝛼 and 𝛾, in

an adaptive manner and based on network conditions to improve its
performance in the dynamic environment of FANET. Learning rate (𝛼)
is limited to 0 < 𝛼 ≤ 1. It determines how much the virtual agent
relies on old and new information in the learning process. If 𝛼 = 0, it
means that the virtual agent performs the learning process only based
on old information, and if 𝛼 = 1, the agent seeks to discover and learn
the environment based on new information. In QSCR, the learning rate
is measured based on the stability of clusters formed in the network.
The cluster stability means that flying nodes can maintain their role
in clusters, so clusters need fewer changes. This parameter is obtained
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based on Eq. (36).

𝐶𝑐ℎ𝑎𝑛𝑔𝑒
𝑘 =

⎧

⎪

⎨

⎪

⎩

0, 𝑁𝐶𝑐ℎ𝑎𝑛𝑔𝑒
𝑘

≤ 𝜑

−1, 𝑁𝐶𝑐ℎ𝑎𝑛𝑔𝑒
𝑘

> 𝜑
(36)

where 𝑁𝐶𝑐ℎ𝑎𝑛𝑔𝑒
𝑘

represents the number of changes in 𝐶𝑘 in a specified
time interval. If 𝑁𝐶𝑐ℎ𝑎𝑛𝑔𝑒

𝑘
is less than a threshold value 𝜑, 𝐶𝑘 is a stable

cluster. In this case, the learning rate (𝛼) can be reduced. However, if
𝐶𝑘 is unstable, the learning rate must be increased. Now, the average
stability of all clusters in the network is achieved through Eq. (37).

�̄�𝑐ℎ𝑎𝑛𝑔𝑒
𝑘 = 1

𝑚

𝑚
∑

𝑘=1
𝐶𝑐ℎ𝑎𝑛𝑔𝑒
𝑘 (37)

So that 𝑚 the number of clusters in the network. Finally, 𝛼 is
calculated based on Eq. (38).

𝛼 =

⎧

⎪

⎨

⎪

⎩

1 − 𝑒�̄�
𝑐ℎ𝑎𝑛𝑔𝑒
𝑘 , �̄�𝑐ℎ𝑎𝑛𝑔𝑒

𝑘 ≠ 0

0.1, �̄�𝑐ℎ𝑎𝑛𝑔𝑒
𝑘 = 0

(38)

Algorithm 4 Dynamic and smart adjustment of weight coefficients
Input: GCS (Ground control station): Agent

𝑈𝑖: Flying node 𝑖 so that 𝑖 = 1, 2, ..., 𝑛
𝑇 𝑎𝑏𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖 : Neighboring table stored in 𝑈𝑖.
𝑁𝑖: Number of neighbors of 𝑈𝑖
𝜖, 𝛼, 𝛾: Learning parameters
𝑆𝑇 =

{

𝑚𝑡
𝑖|1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑡 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛

}

: State space set

𝐴𝑐𝑡𝑖𝑜𝑛 =

{

𝜔𝑖|1 ≤ 𝑖 ≤ 5, 0 ≤ 𝜔𝑖 ≤ 1 𝑎𝑛𝑑
5
∑

𝑖=1
𝜔𝑖 = 1

}

: Action set

utput: Updating Q-table for determining the best weight coefficients in Equation (25)
Begin

1: for 𝑖 = 1 to 𝑛 do
2: 𝐔𝐢: Send its merit parameters including 𝐸𝑖, 𝐶𝑁𝑅𝑖, 𝐷𝑒𝑔𝑖, 𝑆𝐶 𝑡

𝑖 , and 𝐿𝑇 𝑡
𝑖 to GCS;

3: end for
4: GCS: Set 𝜖 in the interval [0, 1] randomly;
5: GCS: Adjust Q-values in Q-table on zero;
6: repeat
7: GCS: Select the next-state as 𝑆𝑇 𝑡 =

{

𝑚𝑡
1 , 𝑚

𝑡
2 , ..., 𝑚

𝑡
𝑛

}

randomly;
8: GCS: Extract 𝛼 and 𝛾 from Equations (38) and (40), respectively;
9: 𝑡 = 1;
10: while 𝑡 ≤ 𝑁 do
11: GCS: Get a positive random number (𝑝𝑛𝑟) in [0, 1];
12: if 𝑝𝑛𝑟 ≤ 𝜖 then
13: GCS: Obtain the action 𝑎𝑡 =

{

𝜔𝑡
1 , 𝜔

𝑡
2 , 𝜔

𝑡
3 , 𝜔

𝑡
4 , 𝜔

𝑡
5

}

from 𝐴𝑐𝑡𝑖𝑜𝑛 =
{

𝜔𝑖|1 ≤ 𝑖 ≤ 5, 0 ≤ 𝜔𝑖 ≤ 1 𝑎𝑛𝑑
5
∑

𝑖=1
𝜔𝑖 = 1

}

14: else if 𝑝𝑛𝑟 > 𝜖 then
15: GCS: Extract the action with maximum Q-value from Q-table;
16: end if
17: GCS: Calculate 𝐹 = 𝜆1𝑓1 + 𝜆2𝑓2 + 𝜆3𝑓3 based on Equations (31), (32), and (33);
8: if 𝐹 = 1 then
9: 𝑅𝑡 = 𝑅max;
0: else if 𝐹 = −1 then
1: 𝑅𝑡 = 𝑅min;
2: else
3: 𝑅𝑡 = 𝐹 ;
4: GCS: Get the next-state 𝑆𝑇 𝑡 =

{

𝑚𝑡
1 , 𝑚

𝑡
2 , ..., 𝑚

𝑡
𝑛

}

from the environment;
5: GCS: Refresh Q-value in Q-table based on 𝑅𝑡;
6: 𝑡 = 𝑡 + 1;
7: end if
8: end while
9: 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 + 1;
0: until 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ≤ 𝑀

End

In addition, QSCR seeks to adjust the discount coefficient 𝛾 in the
etwork. Note that this coefficient is limited to 0 < 𝛾 ≤ 1. If 𝛾 = 1, it
an be concluded that Q-value is stable, and the virtual agent considers
ast experiences to determine Q-value. However, if 𝛾 = 0, Q-value is
nstable. As a result, the last reward value received from the environ-
ent should have a greater effect on the determination of Q-value. In
SCR, 𝛾 is evaluated based on the similarity between the speed vectors
f cluster members and the cluster leader. If difference between these
elocity vectors is high, the relevant cluster is unstable. 𝑆𝐶 𝑡 is the
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𝑘

average speed similarity between 𝐿𝑈𝑘 and its cluster members. It was
stated in Section 5.1 and Eq. (3). Now, Eq. (39) is used to normalize
this parameter and limit it to [0, 1].

𝑆𝐶𝑛𝑜𝑟𝑚
𝑘 =

𝑆𝐶 𝑡
𝑘 + 1
2

(39)

As a result, 𝛾 is calculated based on Eq. (40).

𝛾𝑗 = 1 − 𝑒−
(

1
𝑚
∑𝑚

𝑘=1 𝑆𝐶
𝑛𝑜𝑟𝑚
𝑘

)

(40)

where 𝑚 is the number of clusters in the network.

5.4. Greedy routing

Assume that 𝑈𝑖 intends to transmit its data packet to the destination
𝑈𝑑 . In the following, the greedy routing process is clarified in QSCR.
If 𝑈𝑖 and 𝑈𝑑 are directly connected to each other, 𝑈𝑖 transfers its data
packet to 𝑈𝑑 directly. Otherwise, 𝑈𝑖 executes a cluster-based greedy
routing process and examines the following three modes. Algorithm 5
shows the pseudo-code related to this process.

• First mode: If 𝑈𝑖 plays the role of 𝐿𝑈𝑘 in the network, then
𝐿𝑈𝑘 examines the position of its adjacent clusters and selects
the nearest cluster leader to the destination, (i.e. 𝐿𝑈𝑓 in the
cluster 𝐶𝑓 ) as the next-hop node. If 𝐿𝑈𝑘 and 𝐿𝑈𝑓 are in each
other’s communication range, 𝐿𝑈𝑘 sends its data to 𝐿𝑈𝑓 directly.
Otherwise, 𝐿𝑈𝑘 sends this data to the gateway node that is
connected to 𝐶𝑓 .

• Second mode: If 𝑈𝑖 acts as a cluster member 𝑀𝑈𝑘
𝑗 , it is allowed

to send its data packets to its cluster leader 𝐿𝑈𝑘. Then, 𝐿𝑈𝑘 is
responsible for sending data to the destination.

• Third mode: If 𝑈𝑖 plays the role of 𝐺𝑈𝑘
𝑔 in 𝐶𝑘, then it examines

the destination address inserted in the data packet. If it is the
address of the adjacent cluster that is connected to 𝐺𝑈𝑘

𝑔 . Then,
𝐺𝑈𝑘

𝑔 sends this packet to the nearest gateway node in the adjacent
cluster. Otherwise, 𝐺𝑈𝑘

𝑔 transmits its data to its cluster leader
𝐿𝑈𝑘.

Algorithm 5 Greedy routing
Input: 𝑈𝑖: Flying node 𝑖 so that 𝑖 = 1, 2, ..., 𝑛

𝑈𝑑 : Destination node
Output: Forming a route between 𝑈𝑖 and 𝑈𝑑

Begin
1: if 𝑈𝑖 seeks to send its data packets to 𝑈𝑑 then
2: if 𝑈𝑖 and 𝑈𝑑 are neighbor then
3: 𝐔𝐢: Send its data packet to 𝑈𝑑 directly;
4: else
5: if 𝑈𝑖 plays the role of a 𝐿𝑈𝑘 in the network then
6: 𝐋𝐔𝐤: Select the nearest cluster toward 𝑈𝑑 , for example 𝐿𝑈𝑓 , as the next-hop;
7: if 𝐿𝑈𝑘 and 𝐿𝑈𝑓 communicate each other directly then
8: 𝐋𝐔𝐤: Send its data packets to 𝐿𝑈𝑓 ;
9: else
10: 𝐋𝐔𝐤: Send its data packets to the 𝐺𝑈𝑘

𝑔 connected to 𝐿𝑈𝑓 ;
11: end if
12: end if
13: if 𝑈𝑖 plays the role of a 𝑀𝑈𝑘

𝑗 in 𝐶𝑘 then
14: 𝐌𝐔𝐤

𝐣 : Send its data packets to its 𝐿𝑈𝑘;
15: if 𝑈𝑖 plays the role of a 𝐺𝑈𝑘

𝑔 in 𝐶𝑘 then
16: 𝐆𝐔𝐤

𝐠 : Checks the next-hop address inserted in to the data packet;
17: if the next-hop address is the address of the adjacent cluster then
18: 𝐆𝐔𝐤

𝐠 : Send its data packets to the nearest gateway node to 𝑈𝑑 in this
adjacent cluster;

19: else
20: 𝐆𝐔𝐤

𝐠 : Send its data packets to its 𝐿𝑈𝑘;
21: end if
22: end if
23: end if
24: end if
25: end if

End
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6. Simulation and evaluation of results

In this section, the simulation of QSCR is run on the network
simulator 2 (NS2). In this process, nodes use the Gauss Markov (GM)
mobility model to simulate the movement of UAVs in FANET. The
initial energy of these nodes is 2000 joules. In simulation scenarios, the
number of UAVs varies between 10 and 100 nodes, and the dimensions
of the network are 10×10 km2. UAVs have different velocities between
30 and 50 m∕s, and their communication radius is 250 m. Also, the total
simulation time is 1500 s. These simulation parameters are stated in
Table 4. In the simulation process, the results of QSCR are compared
with three methods, namely ICRA (Guo et al., 2022), WCA (Chatterjee
et al., 2002), and DCA (Ergenç et al., 2019). Note that ICRA, WCA,
and DCA have a fixed hello propagation time interval (i.e. 2 s), but in
QSCR, the cluster leader specifies the hello propagation time interval
in its cluster based on speed similarity. In the simulation process, three
different scenarios are intended to examine the performance of QSCR
from different aspects. These scenarios are related to initial energy,
network density, and speed of UAVs in the network. In the following,
these scenarios are introduced:

• First scenario: This scenario assumes that (1) Initial energy of
UAVs in the network follows a uniform distribution. (2) UAVs
are uniformly scattered in the network. (3) Speed of UAVs is the
same.

• Second scenario: The assumptions in the second scenario are
(1) Initial energy of all UAVs is the same. (2) UAVs are uni-
formly distributed on the network and their density is different
in distinguish network areas. (3) Speed of UAVs is a fixed value.

• Third scenario: The assumptions of the third scenario are: (1)
Initial energy of all UAVs is the same. (2) UAVs are uniformly
distributed in the network. (3) Speed of UAVs is different.

In the simulation process, QSCR is compared to other methods in
terms of different evaluation scales, namely cluster formation time,
cluster stability, network lifespan, routing overhead, and QoS require-
ments. These evaluation scales are introduced below:

• Cluster creation time: This evaluation scale represents a time-
frame from when the network starts the clustering operation until
it completes the first clustering process. It shows the efficiency
of a clustering scheme. If a clustering method creates clusters
rapidly, it is an effective scheme.

• Cluster stability: This evaluation scale is calculated based on the
average number of changes in the role of each node in the cluster.
This scale shows whether a cluster needs to rebuild its clusters or
not. If a clustering method creates clusters that experience fewer
changes in the role of UAVs, this method makes a stable network
topology.

• Network lifespan: This evaluation scale shows the time that the
first node dies in the network. If UAVs live for a longer time, this
clustering method achieves better energy efficiency.

• QoS requirements: Here, three QoS scales, namely end-to-end
delay, the number of isolated clusters, and packet delivery rate
are considered.

• Routing overhead: This evaluation scale shows the number of
exchanged control messages between drones to form a clustered
network topology. These control messages have a high effect
on the energy consumption of UAVs in FANET. When a clus-
tering method produces a large number of control messages, its
communication overhead will be high. As a result, the energy
consumption of UAVs will increase in this clustering method.
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Table 4
Simulation parameters.

Parameter Value

Simulator NS2
Network size 10 × 10 km2

Number of UAVs 10–100
Initial energy of UAVs 2000 J
Communication range of UAVs 250 m
Velocity of UAVs 30–50 m∕s
Size of data packet 1024 bits
Mobility model Gauss Markov (GM)
Traffic model Constant bit rate (CBR)
Data rate 1000 kbps
Antenna Omni-Antenna
Simulation time 1500 s
Mac standard IEEE 802.11
𝜑 (Role change threshold) 2
Evaluation scales Time of cluster creation, stability of clusters,

network lifetime, routing overhead, and QoS
requirements

Compared schemes QSCR, ICRA, WCA, and DCA

Fig. 7. Cluster creation time in different methods.

6.1. Cluster creation time

In Fig. 7, the cluster creation time is stated in different schemes
for scenario one. According to this figure, QSCR has the least cluster
creation time. It reduces this scale by approximately 20.34%, 63.66%,
and 45.35% compared to ICRA, WCA, and DCA, respectively. As shown
in this figure, ICRA also has a very good performance on this scale,
but it takes a little longer time than QSCR to complete the cluster
construction process. The proposed scheme has better performance
than ICRA because QSCR uses an adaptive hello mechanism and has
different hello propagation intervals in various clusters. This reduces
the cluster formation time because this mechanism decreases com-
munication overhead in QSCR. However, ICRA, WCA, and DCA have
used a fixed time interval to broadcast hello messages in FANET. DCA
considers a greater number of clustering criteria than QSCR and ICRA.
Hence, it has a weaker performance than these two schemes. WCA has
the worst performance because it uses a complex CH selection process.
Another point in Fig. 7 is that QSCR, ICRA, and DCA are not sensitive
to the number of UAVs, and change in network density does not affect
the time of cluster construction, but WCA is sensitive to the network
density so a high number of UAVs needs to more time for completing
the clustering process in FANET.
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Fig. 8. Evaluation of cluster stability in the first scenario.

6.2. Cluster stability

Figs. 8, 9, and 10 show average changes in the role of UAVs in
clusters for different methods in scenarios one, two, and three, respec-
tively. In the first scenario, the average changes in the role of UAVs
in clusters for QSCR, ICRA, WCA, and DCA are 38, 20, 276, and 124,
respectively. In the second scenario, QSCR, ICRA, WCA, and DCA have
experienced on average 51, 15, 352, and 175 role changes in UAVs,
respectively. In the third scenario, the average role changes of UAVs
for QSCR, ICRA, WCA, and DCA are 45, 29, 425, and 166, respectively.
In general, in all scenarios, ICRA has the least changes in the role of
UAVs in clusters and works better than QSCR. This means that ICRA
has created a more stable topology in FANET. This is because the Q-
learning-based clustering adjustment algorithm in ICRA has considered
the number of changes in the role of UAVs in the reward function. As a
result, ICRA adjusts weight coefficients related to clustering parameters
based on cluster stability. However, in QSCR, the reward function is
dependent on three scales, namely the balance of energy consumption,
the number of isolated clusters, and the distribution of cluster leaders
in the network. The last point in this experiment is that QSCR and
ICRA are less sensitive to the number of UAVs in the network, but the
performance of WCA and DCA varies based on the number of nodes.
This is mainly because these methods use constant weight coefficients
throughout the simulation period. However, ICRA and QSCR work well
due to the use of dynamic weight coefficients.

6.3. Network lifetime

Here, network lifespan is shown for different methods in Fig. 11
(Scenario 1), Fig. 12 (Scenario 2), and Fig. 13 (Scenario 3). In all these
scenarios, QSCR has the best network lifespan than other methods. In
Fig. 11, i.e. scenario one, QSCR extends network lifespan by 4.06%,
81.66%, and 15.67% compared to ICRA, WCA, and DCA, respectively.
Fig. 12, the second scenario, network lifetime in QSCR is 5.95%,
19.96%, and 11.27% higher than ICRA, WCA, and DCA, respectively.
In addition, in Fig. 13, the third scenario, QSCR increases network
lifespan by 3.5%, 25.27%, and 10.91% compared to ICRA, WCA, and
DCA, respectively. This is because the proposed QL-based clustering
adjustment mechanism uses a reward function based on three scales,
namely energy consumption balance, number of isolated clusters, and
distribution of cluster leaders. To balance energy consumption, QSCR
chooses weight coefficients in such a way that minimizes the energy
consumption of UAVs and selects high-energy nodes as cluster leaders.
Moreover, paying attention to the number of isolated clusters in QSCR
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Fig. 9. Evaluation of cluster stability in the second scenario.

Fig. 10. Evaluation of cluster stability in the third scenario.

helps the successful performance of the clustering process. On the
other hand, QSCR is looking for weight coefficients that improve the
distribution of cluster leaders in the network. For this purpose, QSCR
selects UAVs close to the cluster center as the cluster leader to reduce
the average distance between cluster members and its cluster leader,
and secondly, the distance between cluster leaders is high so that they
are well distributed in all network areas. This also has a positive effect
on network lifespan. Another point is that the residual energy is a merit
parameter when selecting cluster leaders. Therefore, low-energy UAVs
cannot be selected as CHs. This improves network lifetime in QSCR.
Fig. 14 evaluates the remaining energy of nodes based on the number
of UAVs. In this figure, QSCR improves the residual energy of nodes
by 7.86%, 12.04%, and 41.13% compared to ICRA, WCA, and DCA,
respectively.

6.4. QoS requirements

In Fig. 15, the end-to-end delay in different methods is evaluated
based on the number of nodes in the first scenario. QSCR, ICRA, and
DCA are not sensitive to the number of UAVs in FANET, but WCA
is drastically sensitive to the UAV density in the network. As shown
in Fig. 15, ICRA has less delay than QSCR (approximately 30.95%).
However, delay in the proposed method is about 76.76% and 9.32%
lower than WCA and DCA, respectively. ICRA works better than QSCR.
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Fig. 11. Evaluation of network lifespan in the first scenario.

Fig. 12. Evaluation of network lifespan in the second scenario.

Fig. 13. Evaluation of network lifespan in the third scenario.

This has several reasons: First, the hello propagation period is calcu-
lated in QSCR dynamically to increase the accuracy of the clustering
and routing in the network, but this process is time-consuming, while
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Fig. 14. Comparison of residual energy in different methods in the first scenario.

Fig. 15. Delay in different methods in the first scenario.

ICRA has a fixed broadcast time interval. Secondly, in QSCR, the
learning parameters, namely discount factor and learning rate, change
dynamically and according to network conditions. This increases the
adaptability of QSCR to FANET, but its calculations are also time-
consuming. However, ICRA considers fixed learning parameters in the
learning process.

Fig. 16 shows the number of isolated clusters in different methods
for the second scenario. Based on this figure, QSCR has the least
number of isolated clusters in the network. It improves this parameter
by 22.58%, 55.27%, and 47.83% compared to ICRA, WCA, and DCA,
respectively. The main reason for this issue is that QSCR considers the
number of isolated clusters when designing the reward function in the
Q-learning model. According to the suggested learning model, QSCR
adjusts weight coefficients in such a way that minimizes the number of
isolated clusters in FANET. This has a positive effect on reducing delay
and energy consumption in the suggested method.

Fig. 17 shows the performance of different methods in terms of
packet delivery rate in the third scenario. According to this figure,
QSCR has the best PDR and increases the evaluation scale by 17.88%,
27.19%, and 71.11% compared to ICRA, WCA, and DCA, respectively.
This has various reasons: (1) adjusting the hello propagation time
interval in each cluster in a dynamic and adaptive manner, (2) cal-
culating the learning parameters dynamically, and (3) attention to
the distribution of cluster leaders in the network when designing the
reward function in the proposed learning model.
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Fig. 16. The number of isolated clusters in the second scenario.

Fig. 17. Packet delivery rate in the third scenario.

6.5. Communication overhead

Here, the communication overhead of different cluster-based rout-
ing methods, namely QSCR, ICRA, DCA, and WCA is discussed. These
methods use the exchange of control messages between drones to form
a clustered network topology. These control messages have a high
effect on the energy consumption of UAVs in FANET. To evaluate the
communication overhead, the number of control messages received and
sent by each drone is calculated. When a clustering method produces a
large number of control messages, its communication overhead will be
high. As a result, the energy consumption of drones will increase in this
clustering method. For computing this parameter, the following three
hypotheses are considered.

• The total number of flying nodes in the network is equal to 𝑛.
• The total number of cluster leaders in the network is equivalent

to 𝑚.
• The number of neighbors of the flying node 𝑈𝑖 is 𝑁𝑖.

Now, in WCA, the communication overhead is calculated according
to the following steps. Then, this parameter is inserted into Table 5.

• In the neighbor discovery phase, 𝑈𝑖 periodically broadcasts a
beacon message to 𝑁 neighboring UAVs and receives 𝑁 beacon
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𝑖 𝑖
messages from these neighboring nodes. Therefore, the control
overhead is equal to 1 +𝑁𝑖 in this phase.

• In the cluster head selection phase, 𝑈𝑖 computes a combined
weight value. Then, it inserts this information into a message and
sends this message to 𝑁𝑖 neighboring nodes. Also, in this step, 𝑈𝑖
obtains 𝑁𝑖 combined weight messages from its neighboring nodes.
Therefore, the control overhead is 1 +𝑁𝑖 in this phase.

• If 𝑈𝑖 has the highest combined weight value compared to other
neighboring nodes, it accepts the role of cluster head. In this case,
𝑈𝑖 sends a CH advertisement message to its neighbors. Then, in
the worst case, it receives 𝑁𝑖 membership request messages from
its neighbors and sends 𝑁𝑖 acknowledgment messages to these
neighboring nodes. Therefore, the control overhead of CH is equal
to 1 + 2𝑁𝑖 at this step.

• If 𝑈𝑖 does not have the maximum combined weight value com-
pared to other neighboring nodes, then it accepts the role of
cluster member. In this case, 𝑈𝑖 receives a CH advertisement
message from the CH. Then, it sends a membership request mes-
sage to its CH and receives an acknowledgment message from it.
Therefore, the control overhead of CM is 3.

• In the cluster update process, each CH sends a beacon message to
its cluster members and receives 𝑁𝑖 acknowledgment messages
from them. Each cluster member node also sends a beacon mes-
sage to its CH and receives an acknowledgment message from
it. Therefore, the communication overhead of each CH and that
of each CM are 1 + 𝑁𝑖 and 2 in the cluster update process,
respectively.

• In the intra-cluster routing process, the CH receives 𝑁𝑖 data
packets from its cluster members at the worst case. This means
that its control overhead is 𝑁𝑖. Additionally, the communication
overhead of each cluster member is 1 at this step.

• In the inter-cluster routing process, the CH applies a route dis-
covery process and broadcasts the route request packet (RREQ)
in the network to find a suitable route to the destination. In the
worst case, this node sends a RREQ message, receives 𝑁𝑖 RREQs
from its neighbors, and rebroadcasts 𝑁𝑖 RREQs in the network. In
addition, this node receives a route reply packet (RREP). Hence,
the inter-cluster routing overhead of each CH is 2 + 2𝑁𝑖 at the
worst case.

In DCA, the communication overhead is computed according to the
following steps. It is presented in Table 5.

• In the bootstrapping phase, 𝑈𝑖 shares its identifier with its neigh-
boring UAVs. Then, the UAV with the lowest ID plays the role
of the initial cluster head. Hence, the communication overhead is
equal to 1 +𝑁𝑖 in this phase.

• In the cluster maintenance phase, 𝑈𝑖 transmits its status informa-
tion to its neighboring UAVs and receives 𝑁𝑖 status messages from
them. Therefore, its overhead is 1 +𝑁𝑖.

• In the CH selection process, each UAV obtains its score, transfers
a full clustering control packet (FCP) to its neighbors and receives
𝑁𝑖 FCP messages from them. Thus, the control overhead of each
node is equivalent 1 +𝑁𝑖 at this step.

• If 𝑈𝑖 has the highest score among its neighbors, then it accepts
the role of cluster head. In this case, 𝑈𝑖 forwards a CH adver-
tisement message and a core clustering control message (CCP) to
its cluster members and receives 𝑁𝑖 join request messages from
cluster member nodes. Then, it sends 𝑁𝑖 cluster announcement
messages (CAPs) to its cluster member nodes. Therefore, the
control overhead of each CH is equal to 2 + 2𝑁𝑖 at this step.

• If 𝑈𝑖 does not have the highest score among its neighbors, then
it will accept the role of cluster member. In this case, 𝑈𝑖 receives
a CH advertisement message from the cluster head and sends a
join request message to it. Finally, this cluster member receives a
CAP message from its CH. Therefore, the control overhead of this
cluster member node is 3.
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Table 5
Control overhead in different schemes.

Scheme Node type Clustering overhead Routing overhead Total

WCA Cluster head node 3
(

1 +𝑁𝑖
)

+
(

1 + 2𝑁𝑖
)

𝑁𝑖 +
(

2 + 2𝑁𝑖
)

8𝑁𝑖 + 6
Cluster member node 2

(

1 +𝑁𝑖
)

+ 5 1 2𝑁𝑖 + 8

DCA Cluster head node 3
(

1 +𝑁𝑖
)

+ 2
(

2 + 2𝑁𝑖
)

𝑁𝑖 +
(

2 + 2𝑁𝑖
)

10𝑁𝑖 + 9
Cluster member node 3

(

1 +𝑁𝑖
)

+
(

2 + 2𝑁𝑖
)

+ 3 1 5𝑁𝑖 + 9

ICRA
Cluster head node 3

(

1 +𝑁𝑖
)

+
(

1 + 2𝑁𝑖
)

+ 2 𝑁𝑖 + 2 6𝑁𝑖 + 8
Cluster member node 2

(

1 +𝑁𝑖
)

+ 7 1 2𝑁𝑖 + 10
Gateway node 2

(

1 +𝑁𝑖
)

+ 7 3 2𝑁𝑖 + 12

QSCR
Cluster head node 3

(

1 +𝑁𝑖
)

+
(

1 + 3𝑁𝑖
)

+ 2 𝑁𝑖 + 2 7𝑁𝑖 + 8
Cluster member node 2

(

1 +𝑁𝑖
)

+ 7 1 2𝑁𝑖 + 10
Gateway node 2

(

1 +𝑁𝑖
)

+ 10 3 2𝑁𝑖 + 15
• In the cluster update process, two FCP and CCP control pack-
ets are periodically exchanged between CHs and their cluster
members to update the clusters and their role in the network.
In this case, the clustering overhead of each node (CH or CM)
is equivalent to 2 + 2𝑁𝑖.

• In the intra-cluster routing process, the CH node receives 𝑁𝑖 data
packets from its cluster members at the worst case. Hence, its con-
trol overhead is 𝑁𝑖 at this step. In addition, the communication
overhead of each cluster member is equal to 1.

• In DCA, the inter-cluster routing approach is inspired by AODV.
Hence, each CH uses a route discovery process and broadcasts
the RREQ message in the network to find a suitable route to the
destination. In the worst case, this CH sends a RREQ message,
obtain 𝑁𝑖 RREQs from its neighbors, and rebroadcasts 𝑁𝑖 RREQs
in the network. Additionally, this node receives a RREP message.
Thus, the inter-cluster routing overhead of each CH is 2 + 2𝑁𝑖 at
the worst case.

In ICRA, the communication overhead is calculated in the following
steps. This parameter is recorded in Table 5.

• In the neighbor finding phase, 𝑈𝑖 periodically broadcasts its in-
formation to 𝑁𝑖 neighboring UAVs through the hello message and
receives 𝑁𝑖 hello messages from these neighboring nodes. Hence,
the control overhead is equal to 1 +𝑁𝑖 at this step.

• In the CH selection step, 𝑈𝑖 calculates a utility value. Then, it
broadcasts this value to 𝑁𝑖 neighbors through a utility message.
In addition, 𝑈𝑖 obtains 𝑁𝑖 utility messages from its neighboring
nodes. Therefore, the control overhead is equivalent to 1 +𝑁𝑖 at
this step.

• If 𝑈𝑖 has the highest utility among other neighboring nodes,
then it accepts the role of CH. In this case, 𝑈𝑖 transmits a CH
declaration message to its neighbors. Then, it receives 𝑁𝑖 join
cluster request messages from its neighbors and sends 𝑁𝑖 join
cluster response messages to these neighboring nodes. Therefore,
the control overhead of each CH is equal to 1 + 2𝑁𝑖 at this step.

• If 𝑈𝑖 does not have the highest utility value among the neighbor-
ing nodes, then it accepts the role of cluster member. In this case,
𝑈𝑖 receives a CH declaration message from the CH node. Then, it
sends a join cluster request message to the CH and receives a join
cluster response message from it. Therefore, the control overhead
of each cluster member is 3 at this step.

• In the cluster maintenance process, the CH node sends a hello
message to its cluster members and receives 𝑁𝑖 hello messages
from them. Hence, the communication overhead of each CH is
equal to 1 +𝑁𝑖. Furthermore, each cluster member sends a hello
message to its CH and receives a hello message from it. Therefore,
the communication overhead of each cluster member node is 2 at
this step.

• In the Q-learning-based clustering adjustment process, each node
sends its status information (i.e. position, speed, etc.) to GCS and
receives weight coefficients related to utility parameters from it.
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As a result, the control overhead of each node is 2 in this process.
• In the intra-cluster routing process, the CH node receives 𝑁𝑖 data
packets from its cluster members at the worst case. This means
that its control overhead is equal to 𝑁𝑖 at this step. Also, the
communication overhead of each cluster member is 1.

• In the inter-cluster routing process, the CH node (or gateway
node) receives a data packet and sends it to the closest neigh-
boring CH node (neighboring gateway node) to the desired CH.
Therefore, the inter-cluster routing overhead of each CH (or
gateway node) is equivalent to 2.

In QSCR, the communication overhead is calculated according to
the following steps. This parameter is presented in Table 5.

• In the neighbor discovery phase, 𝑈𝑖 periodically broadcasts its in-
formation to 𝑁𝑖 neighboring nodes through the hello message and
receives 𝑁𝑖 hello messages from these neighboring nodes. Here,
there is an important point: QSCR defines the hello broadcast time
based on the velocity of the CH node and the average velocity sim-
ilarity of cluster member nodes in each cluster. Therefore, QSCR
has a better adaptability to FANET. Overall, control overhead of
each node is equal to 1 +𝑁𝑖 in this phase.

• In the CH selection phase, 𝑈𝑖 calculates a merit value. Then, it
sends this value to its neighbors through a merit message. In
addition, at this step, 𝑈𝑖 receives 𝑁𝑖 merit messages from its
neighboring nodes. Thus, the control overhead is equal to 1 +𝑁𝑖
at this step.

• If 𝑈𝑖 has the highest merit value among other neighboring nodes,
then it accepts the role of cluster head. In this case, 𝑈𝑖 transmits
a leader message to its neighbors. Then, it receives 𝑁𝑖 connection
messages from its neighbors and sends 𝑁𝑖 accept messages to
these neighboring nodes. It also receives 𝑁𝑖 gateway messages
from gateway nodes in its cluster at the worst case. Hence, the
control overhead of each CH is equal to 1 + 3𝑁𝑖 at this step.

• If 𝑈𝑖 does not have the maximum merit value among the neigh-
boring nodes, then it plays the role of cluster member. In this case,
𝑈𝑖 receives a leader message from the CH node. Then, it sends a
connection message to the CH and receives an accept message
from it. Therefore, the control overhead of each cluster member
is 3. If this cluster member is a gateway node, it also sends a
gateway message to the CH. Therefore, the control overhead of
each gateway node is 4.

• In the cluster support process, the CH node sends a hello message
to its cluster members and receives 𝑁𝑖 hello messages from them.
Therefore, the communication overhead of each cluster head is
equal to 1 + 𝑁𝑖. Moreover, the cluster member node sends a
hello message to its CH and receives a hello message from it.
Therefore, the communication overhead of each cluster member
is 2 at this step. Also, gateway nodes, in addition to controlling
their connection to its CH, must check its connection with other
gateway nodes. Therefore, their communication overhead is 4 in
this process.

• In the smart and dynamic adjustment process of clustering pa-

rameters, each node sends its status information (position, speed,
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etc.) to GCS and receives weight coefficients related to the merit
parameters from it. The control overhead of each node is 2 in this
process.

• In the intra-cluster routing process, the CH node receives 𝑁𝑖
data packets from its cluster members at the worst case. This
means that its control overhead is 𝑁𝑖 in this process. Also, the
communication overhead of each cluster member is 1.

• In the inter-cluster routing process, the CH node (or gateway
node) receives a data packet and sends it to the closest neigh-
boring CH node (neighboring gateway node) to the desired CH.
Therefore, the inter-cluster routing overhead of each CH (or
gateway node) is equivalent to 2.

7. Conclusion

In this paper, a Q-learning-based smart clustering routing method
(QSCR) was proposed for flying ad hoc networks. In this scheme, the
cluster leader determines the hello propagation period in the cluster
based on the average similarity between its speed vector and cluster
members’ speed. Then, the adaptive clustering process is carried out
to construct network topology. In this operation, cluster leaders are
selected based on the weighted sum of the five merit parameters,
namely residual energy, centrality, neighbor degree, speed similarity,
and link validity time. Then, the weight coefficient of each merit
parameter is adjusted according to a Q-learning model. In this process,
QSCR determines the learning rate based on cluster stability. This
parameter defines the ability of UAVs to maintain their role in the
cluster. QSCR calculates the discount coefficient based on speed sim-
ilarity. Also, this learning process designs a reward function based on
three scales, namely the balance of energy consumption, the number of
isolated clusters, and the distribution of cluster leaders in the network.
Finally, the inter-cluster routing process was carried out using a greedy
forwarding technique. In the last step, QSCR was implemented on NS2,
and its results were compared with three methods, namely ICRA, WCA,
and DCA in terms of different scales, namely cluster construction time,
cluster stability, network lifespan, and different QoS requirements.
These experiments show that QSCR has a faster cluster construction
process than other methods, but its stability is less than ICRA. QSCR
has more delay than ICRA. However, QSCR has good energy efficiency
and greatly improves network lifespan. In the routing process, QSCR
has a very good performance in terms of the packet delivery rate. Also,
the number of isolated clusters in the proposed method is much less
than that in other methods.

In future research directions, QSCR must be modified to solve
its weaknesses. These issues can be solved using machine learning
techniques (ML) and swarm intelligence (SI). For example, some fil-
tering techniques can be applied to reduce the state and action spaces
in the learning process to accelerate the CH selection process. Also,
deep reinforcement learning strategies can be used to speed up the
convergence rate and reduce delay in the routing process. On the
other hand, the Q-learning algorithm is quite sensitive to some key
parameters, including the learning rate, the discount factor, and the
initial conditions. Hence, providing a sensitivity analysis to adjust the
learning rate, discount factor, and initial conditions can significantly
affect the performance of Q-learning algorithms. We recommend these
areas for future in-depth investigations to further refine and optimize Q-
learning applications in FANETs. Also, analysis of the convergence and
feasibility of the proposed algorithm based on Q-learning is a crucial
factor in the practical implementation of any Q-learning-based routing
protocol. We suggest a comprehensive analysis of the convergence and
feasibility of the proposed algorithm in a dynamic environment such as
FANET as a promising direction for future research endeavors.
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