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1. Introduction

The landscape of communication environments is undergoing a revolutionary trans-
formation, driven by the relentless evolution of technology and the growing demands of
an interconnected world. The proliferation of mobile devices, the rise of IoT applications,
and the deployment of 5G networks have ushered in an era where communication envi-
ronments are not only increasingly complex but also highly dynamic. With the capability
of 5G networks to support various forms of vertical integration, the landscape is poised
for diverse applications and enhanced connectivity across industries [1]. Furthermore,
even for 6G networks, the provision of ubiquitous and 3D coverage in the form of an
integrated space–air–ground–sea network is envisioned [2]. In this rapidly evolving tech-
nological ecosystem, the need for intelligent solutions to adaptively manage the intricacies
of communication systems is more pressing than ever [3]. As we stand on the cusp of
these transformative changes, the integration of machine learning techniques emerges
as a pivotal catalyst poised to revolutionize the way we address challenges and harness
opportunities in communication systems and networks [4].

Traditionally, communication systems heavily relied on model-based approaches,
wherein various components were meticulously modeled based on data analysis or mea-
surement data. While these model-based approaches have been successful, they face
challenges in accurately modeling dynamic and complex communication environments [5].
Machine learning (ML), capable of extracting characteristics and identifying hidden rela-
tionships, becomes a powerful tool in scenarios where traditional designs may falter due to
model mismatches [6]. Moreover, the data-driven essence of ML enables inference about
network traffic, service requirements, user behavior, and dynamic channels, leading to
improved resource provisioning and network operation [3]. ML, with its real-time adapt-
ability and ability to extract insights from vast datasets, promises to reshape communication.
The increasing volume and diversity of data in dynamic communication systems demand
innovative approaches for efficient operation and optimal performance. From predicting
environmental or system status changes to optimizing resource allocation and addressing
security threats [7], ML spans applications like intelligent traffic management [8] and
automatic reconfiguration in communication infrastructure [9,10].

In this editorial, we explore the intersection of ML and communication, unraveling
how these technologies synergize to meet current challenges and leverage opportunities in
our highly connected world. In the subsequent section, we provide concise summaries of
key points covered in the twenty articles collected in this Special Issue.

2. An Overview of Published Articles

In the dynamic realm of communication systems, achieving precise prediction and
estimation of communication channels is paramount for optimizing overall system per-
formance. The following five articles concentrate on leveraging ML techniques to ef-
fectively address the challenges of channel estimation. In the research conducted by
Gaballa et al. (Contribution 1), the primary focus lies in predicting channel coefficients for
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users in the Non-Orthogonal Multiple Access (NOMA) system. Within the NOMA system,
these coefficients assume a critical role in optimizing power distribution at the base station
(BS) and streamlining the retrieval of desired data at the user end. The authors employ a
deep Q-network (DQN) approach for the BS, enabling it to learn an optimal channel predic-
tion policy. This policy is designed to maximize the sum rates for all users in the NOMA
network, leveraging pertinent information such as user states, user distance, channel path
loss, and power distribution. Similarly, the study by Gaballa et al. (Contribution 2) delves
into channel estimation in power domain NOMA systems. In this investigation, the predic-
tion of channel status information (CSI) is coupled with the determination of power factors
for each user, achieved through a Q-learning-based reinforcement learning (RL) approach.
In the study by Camana et al. (Contribution 3), the dynamic update of a radio environment
map (REM) is explored through the prediction of received signal strength indicator (RSSI)
values. The REM proves invaluable in detecting shadow areas with potential for improved
network planning and accurate indoor localization. In the study, devices exhibiting similar
signal strengths are grouped into clusters using the K-means algorithm, and the dynamic
REM update is then orchestrated through a random forest (RF)-based ML algorithm. This
model predicts RSSI values for each location, incorporating historical measurement data,
including user location and RSSI values. The ML model is designed for real-time updates,
facilitated by data collected from a mobile robot, ensuring a seamless and continuous
adaptation of the REM, effectively responding to alternations in the wireless environment.
The study by Phaiboon et al. (Contribution 4) focuses on path loss prediction within smart
agriculture sensor networks, aiming to provide effective coverage areas and system ca-
pacity. For challenging environments like plantations, where signal paths are obstructed
by trees and vegetation, the authors introduce an adaptive neuro-fuzzy inference system
(ANFIS) that combines fuzzy logic and neural networks to learn path loss. Utilizing path
loss measurement data and incorporating information such as sensor node distances and
antenna heights, the ANFIS model provides an efficient means of estimating path loss.
In the article by Ribouh et al. (Contribution 5), the focus is on identifying the distinctive
characteristics of the CSI of received signals in vehicular communication by employing
convolutional neural network (CNN)-based learning. The study aims to develop a model
capable of discerning a vehicles’ surroundings among five categories: rural line-of-sight
(LoS), urban LoS, urban nLoS (non-LoS), highway LoS, and highway nLoS. The ultimate
goal of this environment detection model is to empower autonomous vehicles to make
informed speed limit decisions based on their surroundings.

ML is expected to play an important role in the demodulation process of communi-
cation systems since it can adaptively learn and extract complex patterns from received
signals, particularly in dynamic and challenging environments. The following four articles
are dedicated to the integration of ML into the demodulation process. In the investigation
by Harper et al. (Contribution 6), automatic modulation classification (AMC) is used to
estimate the modulation scheme employed by the transmitter. AMC proves invaluable in
predicting the module schemes of a transmit signal when they are unknown. The authors
examine the impact of a variety of architecture changes and propose the design of neural
network (NN)-based AMC models. The scenario considered in the study by Zhang et al.
(Contribution 7) involves decoding low-density parity check (LDPC) codes. LDPC codes,
prevalent in modern communication systems on account of their extended code lengths
and versatile combinations, present challenges in decoding and coding blind recognition.
To address these challenges, the authors propose an architecture for coding the blind
recognition of LDPC codes using deep learning (DL), incorporating a cascade network
structure with denoising and blind recognition networks. This innovative approach en-
hances encoding performance even under poor signal-to-noise ratio (SNR) conditions. In
Lamilla et al.’s study (Contribution 8), the attention shifts to a coherent optical encoding
system. The authors introduce a robust coding algorithm based on laser intensity profile
recognition, utilizing support vector machine (SVM)-based ML for data symbol classifica-
tion and recognition. This strategy proves effective in mitigating the signal noise added
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to communication channels. While the above three articles focus on the decoding accu-
racy performance, the paper by Cho et al. (Contribution 9) considers how to improve the
decoding speed for short-length Reed–Muller (RM) codes. Acknowledging the simplistic
structure of RM codes and their potential use as control channels in wireless communi-
cation, the authors employ a revised auto-encoder scheme, a supervised ML technique,
to design an ML-based decoding scheme for faster decoding.

Intelligent resource allocation, empowered by ML, is capable of taking on complex
challenges related to the efficiency and adaptability of communication systems and net-
works. The integration of ML not only ensures the effective utilization of individual
resource domains but also facilitates the joint optimization of multiple resource alloca-
tions, elevating decision-making processes and overall system performance. The following
articles explore ML applications for intelligent resource allocation. The investigation by
Pu et al. (Contribution 10) focuses on optimal transmission channel selection in jamming
environments. Employing wideband spectrum sensing and Q-learning, the authors design
transmitters to dynamically adapt to jamming issues by learning effective channel selection
strategies, resulting in high success rates. In Ding et al.’s study (Contribution 11), they
employ ML in the routing optimization of low-Earth-orbit (LEO) constellation networks.
Satellite nodes, functioning as learning agents, dynamically adapt to changes in topol-
ogy and channel conditions. Through a collaborative multi-agent reinforcement learning
(MARL) framework, satellites share their learning experiences using Q-tables. The pro-
posed three-step routing approach involves neighbor node discovery, followed by offline
and online training to ensure that satellites swiftly acquire network link status and adjust
their routing strategies accordingly. In the article by Zhang et al. (Contribution 12), the au-
thors delve into the joint optimization of bandwidth and power allocation using multi-agent
learning. The proposed approach targets to maximize the system throughput by addressing
co-channel interference and ensuring adherence to quality of service (QoS) constraints.
Within a large-scale uplink system, individual users act as learning agents, each striving
for an optimal strategy in bandwidth and power allocation for their uplink transmission.
The collaborative learning process involves sharing users’ past training experiences, lead-
ing to the centralized training of all agents aligned with a common objective, maximizing
the system’s throughput. In Liu et al.’s work (Contribution 13), aerial edge computing
networks, comprising low-altitude aerial base stations (AeBSs) and a high-altitude node,
are considered. The study focuses on minimizing task processing delay and energy con-
sumption through the control of AeBSs’ deployment and computation offloading in this
two-level aerial network. Utilizing deep RL (DRL), the optimization of low-altitude AeBSs
and offloading strategies is carried out by considering factors such as their computational
capacity, the number of associated users, the number of computational tasks required by
users, and the channel gain with users. Sharing learning model parameters with a high-
altitude node, the proposed RL mechanism enables collaborative control among AeBSs,
while the high-altitude node serves as a global aggregator, improving training efficiency
within the federated DRL framework. In the study by Camana et al. (Contribution 14), a
DNN is applied to jointly optimize the beamforming vectors and power-splitting ratios in
a multi-input, single-output (MISO) simultaneous wireless information and power transfer
(SWIPT) system. The optimization objective is to minimize overall transmission power
while ensuring compliance with predefined requirements for energy harvest and minimum
data rate within the multi-user system.

ML could also offer benefits for communication network management, including
dynamic network configuration, network traffic analysis, and efficient resource alloca-
tion. In the article by Hamdan et al. (Contribution 15), Open RAN (O-RAN), recognized
for its potential in interoperability, scalability, and cost efficiency, is studied. Despite its
advantage, the intricate management of the O-RAN system poses challenges, and the
article conducts a thorough survey of current research endeavors while outlining research
opportunities about how to uses ML for network automation in O-RAN. In the paper
by Baek et al. (Contribution 16), ML is employed to monitor and analyze network traffic,
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providing benefits in various domains including traffic control, network security, and re-
source planning. The focus of this paper lies in web services, which are a combination of
multiple applications where various application traffic sflows can be intertwined within
service traffic. For web services, classifying traffic solely based on service units may lead to
high errors in misclassification. To tackle this challenge, a DL-based algorithm performing
multitask classification is proposed. This algorithm aims to classify application traffic by
considering the relationships between browser, protocol, service, and application tasks
within web services.

By leveraging data-driven insights, ML can be useful for service-specific decision making.
The following two papers consider distinct service contents, focusing on e-Health and vehicu-
lar communication, respectively. In the contribution by AlZailaa et al. (Contribution 17), the
emphasis is on addressing the real-time urgency inherent to critical tasks within e-Health
applications. Operating within hierarchical fog–cloud networks, the paper employs a sup-
port vector machine (SVM)-based ML approach to classify and schedule tasks efficiently.
A SVM-based task classification method is introduced, tailored for handling of latency-
sensitive critical tasks. Building upon task classification outcomes, the study devises a
task priority assignment and resource mapping algorithm. The overarching objective is
to minimize latency and enhance the overall resource utilization in fog–cloud networks.
In the work by Huang et al. (Contribution 18), the focus shifts to vehicular networks.
ML is harnessed for precise vehicle arrival time estimation. Employing support vector
regression (SVR)-based learning, the ML model incorporates factors like average vehicle
speed, weather conditions, time, and the real-time road traffic information from roadside
units (RSUs). Vehicles utilizing this learning algorithm predict their arrival times at specific
road sections, transmitting this information to the RSUs. The significance of these data lies
in their utilization by RSUs to efficiently manage bandwidth, particularly for supporting
reliable real-time video applications. When vehicle users compete for bandwidth, RSUs
leverage arrival information to prioritize services, optimizing overall user experiences by
offloading traffic to vehicle-to-vehicle (V2V) links.

The traditional approach to analyzing extensive datasets using ML involves centralized
ML models. However, the surge in data generation from diverse end devices and concerns
over privacy issues have sparked significant interest in federated and distributed learning.
Federated learning (FL) allows clients to cooperate to generate a global model without
sharing sensitive client data with a server. In the work by Seol et al. (Contribution 19),
the impact of statistical heterogeneity indicating non-independent and identical distribution
(non-IID) of the training datasets (generated by clients) is highlighted, which clients will use
for local training in an FL framework. A novel approach is proposed to reduce statistical
heterogeneity and dynamically control batch size and learning rate, aiming to enhance
FL performance. In the investigation by Bemani et al. (Contribution 20), the emphasis is
on understanding the impact of communication-induced noise during FL training on the
convergence and accuracy performance of the ML mode. The paper proposes the use of
analog over-the-air aggregation to effectively manage noise in communication channels,
ultimately contributing to improved convergence in ML algorithms.

3. Conclusions

This compilation of articles sheds light on the transformative impact of machine
learning on communication systems and networks. As evident from the diverse range of
contributions, ML not only enhances traditional aspects of communication networks but
also paves the way for novel applications and optimizations. The showcased articles empha-
size the role of ML in addressing intricate challenges, from intelligent resource allocation and
dynamic network management to efficient channel estimation and service-specific decision
making. The application domains span across e-Health, transportation, agriculture, and more,
highlighting the versatility of ML in shaping the future of communication technologies.

Despite significant strides, challenges in applying ML persist. The heterogeneity of
communication environments and the ever-evolving nature of network dynamics present
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ongoing hurdles. Issues related to the privacy, security, and interoperability of ML models
in communication contexts also call for further research. Additionally, the scalability and
adaptability of ML algorithms to handle the burgeoning volume of data generated in
real-time pose continuous challenges.

Looking ahead, collaborative efforts between the ML and communication technology
communities will be essential to address these challenges. Interdisciplinary research,
harmonization of data formats, standardization of ML methodologies in communication
protocols, and the development of scalable, privacy-preserving algorithms will be crucial
for the sustainable advancement of ML applications in communication environments.
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