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Abstract: In this article, the topic of time series modelling is discussed. It highlights the criticality of
analysing and forecasting time series data across various sectors, identifying five primary application
areas: denoising, forecasting, nonlinear transient modelling, anomaly detection, and degradation
modelling. It further outlines the mathematical frameworks employed in a time series modelling task,
categorizing them into statistical, linear algebra, and machine- or deep-learning-based approaches,
with each category serving distinct dimensions and complexities of time series problems. Additionally,
the article reviews the extensive literature on time series modelling, covering statistical processes,
state space representations, and machine and deep learning applications in various fields. The unique
contribution of this work lies in its presentation of a Python-based toolkit for time series modelling
(PyDTS) that integrates popular methodologies and offers practical examples and benchmarking
across diverse datasets.

Keywords: time series modelling; forecasting; nonlinear modelling; denoising; anomaly detection;
degradation modelling; deep learning; machine learning

1. Introduction

Time series modelling has gained significant interest in the last decades due to the rise
of machine learning and big data. It stands out as a crucial domain with diverse applications,
ranging from financial forecasting to climate modelling [1,2]. The ability to analyse and
forecast time series data has become increasingly important for timely informed decision
making in various fields. Five different areas of applications can mainly be identified:
first, denoising (or source separation), where the signal ground truth is isolated from a
noisy observation, e.g., speech denoising [3] or separation of energy signals [4]; second,
forecasting, where future signal values are predicted based on the signal’s history, e.g., grid
load or weather forecasting [5]; third, nonlinear transient modelling, where nonlinear and
possibly underdetermined problems are solved for time series inputs, e.g., transient thermal,
structural, or fluid modelling [6]; fourth, anomaly detection, where outliers are identified
in a large population of time series data, e.g., faulty samples in production sequences or
failures under thermal/mechanical stress [7]; and fifth, degradation modelling, where a
variable changes slowly over time, e.g., ageing of electric components and structures or
expiration of food [8,9].

To model the above phenomena in time series signals, several mathematical ap-
proaches have been proposed in the literature. These approaches can be fundamentally split
into three categories, namely, statistical, linear algebra, and machine- or deep-learning (ML,
DL)-based ones. The dimensionality of the problem, i.e., the input and output dimension,
as well as the problem evaluation over time, i.e., if the data have a constant mean value,
highly determines which of the above techniques can be used to model the time series
problem. For example, statistical models like autoregression or moving average processes
are restricted to one-dimensional time series and have been applied to linear statistical
problems and short-term ahead prediction [10]. Conversely, in the case of two or more
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variables, linear algebra models like state-space (SS) systems can be used to capture the
input and output relation of multidimensional time series [11]. Most recently, machine
and deep learning models have been used to capture complex multidimensional and pos-
sibly nonlinear relations between input and output samples of time series data [12], like
long short-term memory (LSTM) [13], one-dimensional convolutional neural networks
(CNNs) [14], or transformer models [15].

The topic of time series modelling has also been studied extensively in the literature.
Modelling of statistical processes has been discussed in [16], with specific applications like
wind speed modelling [17] or electricity or emission forecasting [18,19]. Similarly, state-
space representations have been reviewed in [20]. In detail, state-space models have been
proposed for thermal modelling in buildings [21] or battery electric vehicles [22], as well as
in methodologies for solar irradiance forecasting in combination with exponential smooth-
ing [23]. Moreover, numerous articles on machine and deep learning have been published
covering the topics of feature extraction [24] and modelling approaches [25,26]. In specific,
machine and deep learning approaches have been used for forecasting in applications
like renewable energies [27], grid loads [28], and weather events [29]. Furthermore, deep
learning models have been used for denoising in medical applications [30] and in renew-
able energy generation [31]. Similarly, nonlinear applications have been studied including
structural dynamic problems [32], time delay approximations in optical systems [33], or
transient thermal modelling [34]. Deep learning approaches have also been used in anomaly
detection [35] and degradation modelling [36]. Most recently, also combinations of these
approaches, e.g., deep state space models [37], or informed neural networks have been
proposed [38]. Moreover, federated learning applications sharing one common model and
approaches implemented on microprocessor hardware have been investigated [39].

Several different toolkits for time series modelling have been proposed previously,
including Nixtla [40], AutoTS, Darts [41], and Sktime [42]. Each of these toolkits has a
different purpose and different functionalities. While Nixtla and AutoTS only implement
time series forecasting, Darts additionally implements anomaly detection, while Sktime
implements forecasting, classification, regression, and data transformations. Likewise,
PyDTS offers forecasting, classification, and regression functionalities, but additionally
focuses on specific applications like denoising, nonlinear modelling, or degradation. The
aim is to reduce the threshold of using deep-learning-based modelling as far as possible by
offering a one-click functionality without needing to copy code, download, and preprocess
data or plot results. The contributions of this article are as follows: First, the topic of time
series modelling is reviewed. Second, a Python-based toolkit for time series modelling
(PyDTS) with deep learning is presented, which incorporates the most used approaches and
provides time series modelling examples for a wide range of datasets and benchmarking
results. The results of these examples can be reproduced by calling one single function.
Third, the article explains the effect of the free parameters, and the user can try these changes
by simply changing one parameter without the need for changing the code while observing
the changes based on a standard set of accuracy metrics and plots. Fourth, all results are
evaluated on real-world datasets without the use of any synthetic or exemplary datasets.
The toolkit is available on GitHub (https://github.com/pascme05/PyDTS, accessed on 27
February 2024).

The remainder of the article is structured as follows: In Section 2, a generalized archi-
tecture for time series modelling is described, also introducing the different applications
of time series modelling. In Section 3, different modelling approaches are presented. An
experimental setup and results for different datasets and applications are presented in
Section 4. Finally, discussion and conclusions are provided in Sections 5 and 6, respectively.

2. Time Series Modelling Architecture

As outlined in Section 2, time series modelling has several applications. In this section,
a generalized modelling architecture is introduced, while specific approaches including
their mathematical formulation are presented in Sections 2.1–2.5. Let us consider an input

https://github.com/pascme05/PyDTS
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time series signal x ∈ RT×M with T time samples of M input values each and a multivariate
output signal y ∈ RT×N with the same number of time samples and N output values; we
can formulate the input–output relation as follows (1):

y(t) = fΘ(x(t)), (1)

where fΘ(·) is an arbitrary nonlinear function parametrized by a set of free parameters Θ.
The goal of a time series modelling architecture is to model the input and output relation as in (2):

ŷ(t) = g(x(t))
s.t. min∥y − ŷ∥2

(2)

where g(·) is an arbitrary regression or classification function aiming to approximate fΘ(·)
and its free parameters, and ŷ ∈ RT×N is the predicted output. The generalized architecture
is illustrated in Figure 1:

Pre-
processing

Window
Framing

Feature
Extraction

Model
Prediction

Post-
Processing

𝜏 − 1 𝜏 + 1𝜏

Figure 1. Generalized time series architecture.

As illustrated in Figure 1, the general architecture consists of five steps: first, pre-
processing, e.g., resampling or filtering, of the raw feature input vector, x resulting into
x′; second, window framing x′ into time frames xτ ∈ RW×M with a window length W;
third, feature extraction based on the time frame signals converting xτ to a feature input
vector Xτ ∈ RW×F with F input features; and finally, predicting and optionally postpro-
cessing the model output ŷ. In specific, when predicting time series signals, the input
and output relation can be modelled using three different approaches, which can be dis-
tinguished by their input and output dimensionality in the temporal domain. The three
approaches are sequence-to-point modelling, sequence-to-subsequence modelling, and
sequence-to-sequence modelling [43] and are conceptually illustrated in Figure 2.

(a) (b) (c)

Figure 2. Relation between input and output dimensionality for frame-based time series modelling:
(a) sequence-to-point, (b) sequence-to-subsequence, and (c) sequence-to-sequence.

The PyDTS toolkit replicates the above structure, providing modules for preprocessing,
framing, feature extraction, modelling approach, and postprocessing. The different modules
offered by PyDTS and the flow diagram for the different operations are illustrated in
Figures 3 and 4.

In the following, the mathematical formulation of time series modelling with applica-
tion in denoising, forecasting, nonlinear modelling, anomaly detection, and degradation
modelling are provided.
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Figure 3. Overview of implemented modules and functionalities in the PyDTS toolkit. Inputs and
preprocessing are indicated in red, features and data sequencing in yellow, modelling in green,
postprocessing in blue, and visual elements and outputs in purple.
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Figure 4. Internal data pipeline of PyDTS including training and testing modules and external data,
model, and setup databases.

2.1. Denoising

One of the most common time series prediction tasks is denoising, where the ground-
truth data are retrieved based on a distorted observation. Without loss of generality, the
problem can be formulated as in (3):

y(t) = x(t) + ϵ(t), (3)

where y(t) is the output signal, x(t) is the input signal, and ϵ(t) is the noise. Here, we
use as an example of denoising the energy disaggregation task, where appliance energy
signatures (clean signal) are extracted from the aggregated data (noisy signal) [44]. Since
multiple signals are extracted from a single observation, it is a single-channel blind source
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separation problem, i.e., a problem with very high signal-to-noise ratio. The problem can
be mathematically formulated as in (4):

y(t) = f (xm(t), ϵ(t)) =
M

∑
m=1

xm(t) + ϵ(t), (4)

where y(t) is the aggregated signal, xm(t) is the m-th appliance signal, and ϵ(t) is additive
noise from unknown devices, from electromagnetic interference on the transmission lines
and from line coupling. The goal is to denoise the signal y(t) by isolating the signature
x̂m(t) of each appliance.

2.2. Forecasting

Load forecasting is a task where future values, e.g., weather, energy consumption, or
power draw, are predicted based on previous values of the same time series signal [45]. The
aim is to model temporal information based on previous samples and accurately predict
future values. Assuming linearity, the problem can be mathematically formulated as in (5):

y(t) = αy(t − 1) + βx(t) + ϵ(t), (5)

where y(t) is the signal of interest, x(t) are signals with additional information and α, β
are constant in the linear case, and ϵ(t) is stochastic noise. In this article, energy consump-
tion prediction has been used as an example; i.e., future energy consumption values are
predicted based on the consumption of previous days and additional information, e.g.,
weather or socioeconomic information [46].

2.3. Nonlinear Modelling

Nonlinear modelling is a task where the relation between input and output values
is nonlinear. As an example application of nonlinear modelling, thermal modelling of
power electronics and electric machinery is considered [47]. In this application, the funda-
mental heat conduction equation itself is linear, but nonlinearities are introduced through
thermal coupling or losses, which are themselves a nonlinear function of temperature.
Fundamentally, the temperature on a component can be modelled as in (6) and (7):

q̇(t) = R(ϑ) · I2
rms, (6)

where q̇(t) is a time-dependent heat source that is generated by a current Irms flowing
through a nonlinear temperature-dependent resistance R(ϑ). The temperature is then
calculated using (7):

ρcp
∂T
∂t

−∇ · (k∇T) = q̇(t)φ(⃗r), (7)

where ρ is the mass density, cp the specific heat capacity, and k the thermal conductivity.
Furthermore, φ(⃗r) is a spatial function projecting the heat source q̇(t) on the respective vol-
ume.

2.4. Anomaly Detection

Anomaly detection describes the task of finding outliers within the data. Often, these
data are highly unbalanced; i.e., there are much more positive than negative values or vice
versa. The aim is to efficiently detect a small number of outliers within large amounts of
time series data. The problem can be mathematically formulated as follows (8):

ŷ(t) = φ( fΘ(x(t))), (8)

where ŷ(t) ∈ 0, 1 is the anomaly detection status of the signal; i.e., if a sample at time t
is normal or anomalous, x(t) are the input signals that provide indication for the status
signal, f (·) is a function calculating the probability for a sample to be anomalous, and φ(·)
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is a threshold to convert the prediction into a binary variable. In this article, we used as an
example model motor faults based on vibration data.

2.5. Degradation Modelling

Degradation modelling is a task where a relation between input parameters, time,
and slow-varying output parameters exists. The aim is to describe the slow-varying
degradation based on the initial state and the loads applied over time. The problem can be
mathematically formulated as in (9):

y(t) = y0 + βx(t) + ϵ(t), (9)

where y(t) is the degradation signal; x(t) are load signals stressing the component, e.g.,
temperature or mechanical stress; and ϵ(t) is stochastic noise. It must be noted that this
problem depends on the initial state of y0. In this article, the example case is to predict
degradation data of lithium-ion batteries, i.e., the change of cell capacitance over time,
using temperature, current, and voltage as input features.

3. Modelling Approaches

To implement the classification or regression function f (·) from (1), three approaches
exist, namely, statistical, linear algebra, and machine or deep learning (ML, DL). In the
following subsections, each of these three approaches is briefly explained.

3.1. Statistical Modelling

Assuming that the output function y(t) is a one-dimensional time series and only
depends on previous values y(t − 1) and stochastic white noise ϵ(t), then the relation
between input and output can be expressed using statistical models based on autoregression
and averaging (ARMA) [48], as described in (10):

y(t) = c +
p

∑
i=1

ϕiy(t − 1) +
q

∑
j=1

θjϵ(t − j) + ϵ(t), (10)

where c is a constant, ϕi is a weighting factor for the autoregression term, and θj is a
weighting factor for the moving average.

3.2. Linear Algebra Modelling

If there are two processes, with one process being latent, thus describing a hidden time-
varying structure, state-space representations have been used for the system identification
of first-order systems with M inputs and N outputs [49]. The mathematical formulation for
continuous parameter time-invariant coefficients is shown in (11):

ṡ(t) = As(t) + Bx(t) (11a)

y(t) = Cs(t) + Dx(t) (11b)

where s(t) ∈ RL and ṡ(t) ∈ RL are the internal system states and the derivatives with L
being the number of states, A ∈ RL×L is the system matrix, B ∈ RL×M is the input matrix,
C ∈ RN×L is the output matrix, and D ∈ RN×M is the feed-forward matrix. This model
belongs to the category of white box modelling [50], where the states and the evolution
of the states can be physically interpreted and, most importantly, also observed (12) and
controlled (13) if the following restrictions are satisfied [49]:

rank
[

B, AB, A2B, . . . , An−1B
]
= L, (12)



Entropy 2024, 26, 311 7 of 23

rank


C

CA
...

CAn−1

 = L, (13)

3.3. Machine and Deep Learning

While the above techniques have limitations regarding the dimensionality of the input
and output channels or the nonlinearity of the relation between input and output features,
machine and deep learning models offer the highest flexibility in modelling an arbitrary
function. In detail, the output of an artificial neural network with one hidden layer is
shown in (14):

ŷn(t) = φ2

(
J

∑
j=1

w(2)
nj φ1

(
M

∑
m=1

w(1)
jm xm(t)

))
, (14)

where φ1,2(·) and w1,2 are the activation functions and the weights of the respective layer,
and J is the number of nodes in the hidden layer. The weights can then be determined
iteratively using backpropagation and a loss function, as shown in (15):

E =
1

2n ∑
x
∥y − ŷ∥2

2, (15)

3.4. Comparison

Each of the above modelling approaches has its advantages and disadvantages. A
comparison list of relevant properties is shown in Table 1. Whenever, the respective
property can be deducted directly from the model equation in Sections 3.1–3.3, e.g., the
dimensionality of the input/output or the interpretability of the internal state. Table 1 lists
the respective equation; otherwise, relevant literature is provided.

Table 1. Comparison of relevant properties between different modelling approaches: (+): compara-
tively better, (o): neutral, and (-): comparatively worse.

Properties Ref. and Eq. Linear Algebra Statistical
Modelling

Machine
Learning

Runtime [51] o + -
Memory [51] o + -

Interpretability (12)–(14) + o -
Dimensionality (10), (11), (14) o - +
Transferability [52] o - +

Nonlinear (10), (11), (14) o - +
Hyperparameters (10), (11), (14) o + -

Training data [53] + o -

As can be seen in Table 1, machine and deep learning approaches suffer especially
from larger computational complexity, memory requirements, and a lack of physical in-
terpretation of the model parameters [50,51]. Statistical models present advantages, but at
the same time, they are limited in 1D-only input and output dimensionality [48], as can
be also seen from (10). This restriction makes statistical modelling approaches not feasible
for most of the presented tasks in Section 2. In terms of transferability, deep learning ap-
proaches have very good transferability properties working as automated feature extraction
engines [52]; however, they require extensive amounts of training data and have many
hyperparameters to optimize [50,53]. Finally, as explained in Section 3.3, machine and deep
learning models enable nonlinear modelling due to the nonlinear activation functions in
(14). Because of the limitation of statistical and linear algebra models with respect to the
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input and output dimension in the following sections, the focus will be on machine and
deep learning approaches.

4. Experimental Setup

The time series modelling architecture described in Section 2 was evaluated using the
datasets, models, and experimental protocols presented below.

4.1. Datasets

The proposed time series prediction methods have been evaluated using publicly
available datasets consisting of real-world data; i.e., no synthetic data have been used. In
the following, each of the datasets is briefly explained. For disaggregation energy data
(denoising), the AMPds2 dataset has been used, which includes 20 electrical appliances
and the aggregated energy consumption of a Canadian household measured between 2012
and 2014 [54]. For energy consumption forecasting, the energy consumption of Tetouan,
a city in the north of Morocco, has been used [55]. For nonlinear modelling, the motor
temperature dataset in [47] has been used, which includes 185 h of measured temperatures
of a state-of-the-art permanent magnet synchronous machine from a Tesla Model 3. To
predict anomalies, motor vibration data have been used, which were previously classified
into faulty and faultless motors [56]. To model degradation, the dataset from [57] was
used, which includes lithium-ion battery cells measured over several cycles of charging
and discharging under different conditions. The datasets, including their most important
properties, are summarized in Table 2.

Table 2. Short description of the datasets. The feature column includes the following abbreviations:
active power (P), reactive power (Q), apparent power (S), current (I), voltage (V), temperature (T),
relative humidity (RH), solar irradiance (IRR), wind speed (Ws), rotational speed (n), torque (M),
and acceleration (A). Similarly, the outputs include the appliance current (Iapp), the per-phase power
(PLx ), the stator winding and rotor magnet temperatures (ϑ), the motor state, and the remaining
battery charge (Qbat).

Name Ref. Scenario Length Sampling Features Output Max Mean Std

AMPds2 [54] Denoise 2 y 60 s P, Q, S, I Iapp 105 0.8 10.9
Energy [55] Forecast 1 y 10 min P, T, RH, Ws Irr PL1,L2,L3 52.2 23.7 12.2

Motor Temp. [47] Nonlinear 185 h 0.5 s V, I, T, M, n ϑ 141.4 57.5 22.7
Ford Motor [56] Anomaly 1.4 h 2 ms Ax,y,z s 1.0 0.49 0.50

Battery Health [57] Degradation 57 days 2.5 s V, I, T Qbat 1.92 1.54 0.17

As can be seen in Table 2, the datasets cover a wide range of sampling frequencies, total
number of samples, and input features, allowing for testing the PyDTS toolkit on different
data inputs. Additionally, for the input features, the output that will be predicted is shown,
as well as the max, mean, and standard deviation of the output. These values are included
to provide a standard to the performance of the regression or classification models. For
example, if the standard deviation of a dataset is close to zero, there are very few changes
in the output signal; thus, a naive predictor would be sufficient to predict the outputs.
Similarly, if the maximum predicted error of a model is equal to the maximum value of the
output signal, while the average is close to zero, that indicates that the model is predicting
well on average, but there are instances in which it fails to make an accurate prediction.

4.2. Preprocessing

During preprocessing, the input data have been normalized using mean–std normal-
ization for input features (16):

x′ =
x − µtrain

σtrain
, (16)
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where x′ is the input feature scaled by the mean (µtrain) and standard deviation (σtrain) of the
training data. Similarly, min–max normalization has been used for the output features (17):

y′ =
y − min(ytrain)

max(ytrain)− min(ytrain)
, (17)

where y′ is the output feature scaled by the minimum and maximum values of the training
data. Furthermore, the optimal number of samples for the input window has been deter-
mined by grid search for each of the datasets tabulated in Table 1 with the exception of the
anomaly detection as it is predefined in that dataset. The results are shown in Figure 5.
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Figure 5. Grid search for the optimal number of input samples depending on the time series problem.

As can be seen in Figure 5, the optimal number of input samples strongly varies with
the problem under investigation. In detail, when denoising electrical appliances signatures,
the optimal input length is around 30 min, which is a typical operational duration for
electrical appliances [58]. For the forecasting of electrical power consumption, the optimal
input length was found to be around 24 h, which is typical due to working and living
habits. It can also be observed that at around 12 h, 36 h, and 48 h, there are significant
improvements. For modelling degradation data, no upper limit could be found since
the degradation is a slow-varying property and it would be best to feed the complete
degradation cycle at once, which is not possible due to the number of samples. The optimal
input length for modelling the thermal behaviour of the electrical machine was found to
be 20 min, which is in the order of the thermal time constant of the machine, and it is in
line with [59]. Unless otherwise stated, the modelling approaches are based on sequence-
to-point modelling using the optimized length of input samples from Figure 5, with one
sample overlap between consecutive frames.

4.3. Model Structure and Parametrization

To implement the regression function f (·) for the approaches discussed in Section 2,
different ML and DL approaches have been used. For ML approaches especially, random
forest (RF) and K-nearest neighbours (KNN) have been evaluated, while for anomaly
detection, also support vector machine (SVM) has been tested. The free parameters have
been found using exhaustive automated parameter optimization on a bootstrap training
dataset. The results are presented in Table 3.
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Table 3. Optimized model parameters for ML approaches including KNN, RF, and SVM.

Model Parameter Optimal Range Step

KNN Neighbors 140 10–200 5

RF
Max. Depth 10 5-25 5

Split 4 2–10 2
#-Trees 128 2–256 2n

SVM
Kernel rbf linear, rbf, poly -

C 100 1–200 20
Gamma 0.1 0.001–1 10n

Similarly, for DL models, DNN, LSTM, and CNN architectures have been evaluated.
The architectures are illustrated in Figure 6.
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Figure 6. DL layer architectures for DNNs, LSTM, and CNN models. For CNNs, the notation of the
convolutional layer is Conv1D(x,y) with x being the number of filters and y being the kernel size.
For pooling layers MaxPool(x,y), x is the size and y the stride, while for LSTM and DNN layers, x
denotes the number of neurons.

Unless otherwise stated, the above architectures have been used when being referred
to CNN, LSTM, and DNN. For specific applications, the free parameters, i.e., the number
of hidden layers, neurons, the kernel sizes, and the filters, have been optimized using the
hyperband tuner from Keras. Additionally, the hyperparameters and solver parameters
tabulated in Table 4 have been used.

Table 4. Hyper- and solver parameters for deep learning models including DNN, CNN, and LSTM.

Hyperparameters Solver Parameters

Batch 1000 optimizer adam
Epochs 50–200 loss mae
Patience 15 Learning rate 1 × 10−3

Validation steps 50 Beta1 0.9
Shuffle False Beta2 0.999

5. Experimental Results

In this section, the experimental results are presented when using the data, the
parametrizations, and models from Section 4. The results are evaluated in terms mean
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absolute error (MAE), root mean square error (RMSE), mean square error (MSE), and the
normalized mean square error (NMSE):

MAE =
1
T

T

∑
t=1

|y(t)− ŷ(t)|, (18)

RMSE =
√

MSE =

√√√√ 1
T

T

∑
t=1

(y(t)− ŷ(t))2, (19)

NMSE = 1 − ∑T
t=1|y(t)− ŷ(t)|
2 · ∑T

t=1|y(t)|
, (20)

where y(t) is the true signal, ŷ(t) is the predicted value, and T is the total number of
samples. Since not all modelling approaches are applicable for each of the scenarios, due to
their limitations with respect to the input and output dimensionality, the following results
are presented for machine and deep learning approaches. Each of these approaches can
be reproduced with the PyDTS toolkit using the predefined configuration stored under
the setup directory (https://github.com/pascme05/PyDTS/tree/main/setup/journal,
accessed on 26 February 2024). Unless otherwise stated, the results were calculated using
fivefold cross-validation using 10% of the training data for validation.

5.1. Denoising

For the denoising task, the energy of a Canadian household [54] has been disaggre-
gated; i.e., the appliance-specific energy consumption has been extracted based on the
observation of the total energy consumption of the household. Specifically, we focused on
five different appliances: the dishwasher (DWE), the fridge (FRE), the heat pump (HPE),
the wall oven (WOE), and the cloth dryer (CDE). For input features, active power (P),
reactive power (Q), apparent power (S), and current (I) were used, while the output feature
was the current for each device. The average results for all the five appliances and different
machine and deep learning models are tabulated in Table 5.

Table 5. Average results (A) for the energy disaggregation task for fivefold cross-validation using
different models and accuracy metrics. The best performances are indicated with bold notation.

Model NMSE RMSE MSE MAE MAX

CNN 92.48 0.64 0.41 0.08 29.01
LSTM 94.51 0.60 0.36 0.08 30.54
DNN 94.39 0.66 0.44 0.08 31.85

RF 81.39 0.63 0.40 0.10 28.60
KNN 74.11 1.15 1.32 0.21 31.09

As can be seen in Table 5, LSTM outperforms all other regression models for all
accuracy metrics except for the maximum error. In this scenario, only 1D time series inputs
were used to disaggregate the signals, and LSTM has shown outperforming results in
application with 1D time series, including temporal information, i.e., where future samples
depend on previous samples. Furthermore, the results for the best-performing model
(LSTM) have been evaluated at the device level and are presented in Table 6.

As can be seen in Table 6, all appliances show low disaggregation errors, except the
dishwasher, which shows poor performance that could be attributed to its lower activity,
which is in line with other approaches reported on the same dataset [58]. Moreover, the
results have been compared with the state-of-the-art approaches in the literature. The
results are presented in Table 7.

https://github.com/pascme05/PyDTS/tree/main/setup/journal
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Table 6. Per-device results (A) for the energy disaggregation task for fivefold cross-validation using
LSTM as regression model and different accuracy metrics.

Device NMSE RMSE MSE MAE MAX

DWE 49.79 0.87 0.76 0.12 6.76
FRE 95.15 0.24 0.06 0.13 3.41
HPE 97.55 0.63 0.40 0.07 7.21
WOE 91.50 0.63 0.40 0.03 30.61
CDE 97.66 0.62 0.38 0.02 40.73

Avg 94.51 0.60 0.36 0.08 30.54

Table 7. Comparison with the literature for the energy disaggregation task.

Ref. Year Model NMSE RMSE MAE

[60] 2016 HMM 94.1% - -
[61] 2019 CNN 93.9% - -
[62] 2020 CNN 94.7% - -
[58] 2021 CNN 95.8% - -
[43] 2022 CNN 94.7% 0.48 0.06

This Work 2023 LSTM 94.5% 0.60 0.08

As can be seen in Table 7, the PyDTS toolkit reports results similar to the ones from pre-
viously reported approaches on the same dataset and is only outperformed by specifically
optimized approaches for the energy disaggregation task. Moreover, a set of numerical
predictions and ground-truth data is illustrated in Figure 7 for the best-performing LSTM
model from PyDTS. In detail, a 12 h period with high appliance activity on 9 January 2013
at 12:00 p.m. was selected, where FRE, HPE, and CDE are active at the same time.

As can be seen in Figure 7, the LSTM model is able to extract all three appliance
signatures from the aggregated data with high accuracy. There are only minor errors
during the active periods where the current ripple is not precisely predicted.
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Figure 7. Predicted appliance current draw for 12 h for three different (FRE, HPE, and CDE) appliances
from the AMPds2 dataset on 9 January 2013 at 12:00 p.m.
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5.2. Forecasting

For the forecasting task, the energy consumption of a city in Morocco [55] has been
used. As input features, the previous power consumption values of the three-phase grid
have been chosen. Additionally, these values have been extended by environmental
features, namely, the ambient temperature, the wind speed, the relative humidity, and the
solar irradiance. The output feature, which is predicted, is the power consumption on
phase-leg L1. The results for an ahead forecast of 24 h are presented for different regression
models in Table 8 using Seq2Point and in Table 9 using Seq2Seq approaches.

Table 8. Forecasting errors (kW) using Seq2Point for a 24 h ahead prediction window with different
models and accuracy metrics using fivefold cross-validation. The best performances are indicated
with bold notation.

Model NMSE RMSE MSE MAE MAX

CNN 95.72 3.62 13.10 2.77 18.49
LSTM 95.55 3.85 14.82 2.88 18.19
DNN 95.61 3.74 13.99 2.85 17.90

RF 97.50 2.42 5.87 1.60 17.88
KNN 93.98 4.96 24.60 3.88 18.63

Table 9. Forecasting errors (kW) using Seq2Seq for a 24 h ahead prediction window with different
models and accuracy metrics using fivefold cross-validation. The best performances are indicated
with bold notation.

Model NMSE RMSE MSE MAE MAX

CNN 95.88 3.54 12.53 2.67 18.61
LSTM 95.99 3.01 9.06 2.36 12.12
DNN 95.66 3.71 13.76 2.81 17.26

As can be seen in Tables 8 and 9, Seq2Seq approaches outperform Seq2Point ap-
proaches for all deep learning approaches with LSTM being able to capture the temporal
relation reporting an average error equal to 2.36 kW. However, when considering Seq2Point
approaches, RF shows improved performance reporting an average error of 1.60 kW
but showing a significantly higher maximum error of 17.88 kW compared with the best-
performing LSTM approach, which has a maximum error of 12.12 kW. The best performance
is illustrated for 1 week in Figure 8.
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Figure 8. Forecasted power consumption and error for phase L1 for 1 week using RF as regres-
sion model.
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As can be seen in Figure 8, the predicted power consumption is close to the actual
value with errors between 1 and 5 kW. Interestingly, the errors at the beginning and ending
of the week are higher than at the middle of the week, which is probably due to a higher
fluctuation of power demand at these times.

5.3. Nonlinear Modelling

For the nonlinear modelling task, the temperature prediction of a permanent magnet
synchronous machine [47] has been considered. In detail, four different temperature hot
spots have been evaluated, namely, the stator winding, the stator tooth, the stator yoke, and
the magnet temperature inside the rotor. As input features, the ambient and the coolant
temperature, the stator current and voltages, and the mechanical torque as well as the
rotational speed have been used. The output is the maximum stator winding (ϑsw) and the
rotor magnet (ϑpm) temperature. The results in terms of MAE, RMSE, and MAX error are
tabulated in Table 10 for stator and rotor temperatures, respectively.

Table 10. Temperature prediction results for 5-fold cross validation using different regression models
and performance metrics. Due to memory restrictions the LSTM input was reduced to 500 samples.
The best performances are indicated with bold notation.

Model
NMSE RMSE MSE MAE MAX

ϑsw ϑpm ϑsw ϑpm ϑsw ϑpm ϑsw ϑpm ϑsw ϑpm

CNN 97.67 95.19 4.54 7.59 20.61 57.61 3.06 5.53 76.43 54.18
LSTM 96.71 93.23 6.39 10.6 40.83 112.4 4.28 7.85 77.15 60.05
DNN 97.37 95.21 5.32 7.81 28.30 61.00 3.43 5.59 76.52 59.20

RF 96.04 94.66 7.63 8.30 58.22 68.89 5.26 4.43 73.73 47.87
KNN 86.40 89.85 22.79 14.98 519.4 224.4 17.39 11.45 82.24 57.96

As can be seen in Table 10, the rotor temperature shows worse performances across all
models in terms of accuracy as its losses and thus temperatures are much more difficult
to model based on the available inputs. Furthermore, deep learning models outperform
machine learning models due to their ability to better capture the nonlinear relationship
between the input feature vector and the temperature rise of the electric machine. To further
compare the results, the experiments from [59] have been repeated using the same split for
training, testing, and validation data. The results for the best-performing CNN model are
tabulated in Table 11.

Table 11. Results for MSE (K²) and MAX (K) errors for different testing IDs, their respective time (hr),
and temperature hot spots using a CNN regression model per hot spot.

ID Time
Stator Winding Stator Tooth Stator Yoke Magnet

MSE MAX MSE MAX MSE MAX MSE MAX

60 1.7 2.41 5.03 1.68 4.28 1.16 3.14 22.62 9.90
62 3.3 2.75 6.23 1.25 3.78 1.22 3.96 17.49 9.74
74 3.0 3.33 6.18 2.42 5.43 1.80 5.00 14.47 10.81

Avg 8.0 2.90 6.23 1.78 5.43 1.42 5.00 17.45 10.81

As can be seen in Table 11, the difficulty in estimating the temperatures in the dif-
ferent test IDs varies significantly, with the lowest errors being found in test ID 62 and
the highest in test ID 72. On average, the results are better for the stator temperatures,
which is in line with the input features being mostly stator quantities. In Figure 9, the
temperature predictions for stator winding and magnet temperature are illustrated for all
three testing IDs.
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Figure 9. Predicted temperature for stator winding and rotor magnet for IDs 60, 62, and 72.

As can be seen in Figure 9, stator temperatures are much better predicted than rotor
temperatures. Especially during heat-up and cool-down phases, the rotor temperature is
not correctly predicted. This is probably due to the change in the heat transfer coefficient
and the fact that the rotor is thermally isolated through the air gap; thus, the heat path is
not based on heat conduction as in the stator, but a combination of heat convection and
conduction. To compare the results with the previously published literature, a comparison
of average errors was made in Table 12.

As can be seen in Table 12, the results obtained from the baseline CNN model imple-
mented in PyDTS are comparable to the results obtained from other machine or deep learn-
ing architectures. Only physical informed approaches like thermal neural networks [59]
perform significantly better.

Table 12. Comparison for temperature prediction using different models and number of input features.

Ref. Year Model MSE MAX Features

[63] 2021 MLP 5.58 14.29 81
[63] 2021 OLS 4.47 9.85 81
[47] 2020 CNN 4.43 15.54 81
[59] 2023 TNN 2.87 6.02 5

This Work 2023 CNN 5.89 10.81 13

5.4. Anomaly Detection

For the anomaly detection task, the vibration data of combustion engines, in normal
and faulty states, have been used. As an input feature, the acceleration signal has been
used, while the output is a binary variable indicating the healthy or faulty state of the
motor [56]. Since, in this dataset, the training and test scenarios are presplit, the results will
not be presented for fivefold cross-validation as in the previous experiments but using the
predefined splitting of the data. In detail, the results were calculated three times, using raw
input samples of the acceleration data, using statistical features of the acceleration data
(mean, min, max, std, range, etc.) [44], and using frequency domain features (e.g., magni-
tudes of the Fourier transform signal or wavelets) [64,65]. The results in terms of accuracy
(ACC) and F1-score (F1) are tabulated in Table 13 for different classification models.
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Table 13. Classification results in terms of ACC and F1 for anomaly detection using different
classification models. The best performances are indicated with bold notation.

Model
Raw Statistical Frequency

ACC F1 ACC F1 ACC F1

CNN 92.35 92.34 56.52 55.87 94.85 94.85
LSTM 51.06 50.52 55.30 54.90 51.59 35.12
DNN 80.15 80.15 56.52 56.13 94.77 94.77

RF 72.80 72.77 59.09 59.10 92.42 92.42
KNN 72.80 72.76 58.11 58.12 88.94 88.90
SVM 51.59 35.12 58.41 58.01 94.47 94.47

As can be seen in Table 13, DL approaches clearly outperform ML-based approaches
when using raw data operating as automated feature extraction engines. ML techniques
show good results on frequency domain features as the relevant information is extracted
when computing the Fourier coefficients. When using statistical features, none of the
classification models can perform well, as the averaging effect in the time domain eliminates
the vibration signatures discriminating healthy and faulty samples. To give more insights
into the prediction accuracy, the confusion matrix of the best-performing CNN model is
illustrated in Figure 10 for all three different feature setups.
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Figure 10. Confusion matrices for (a) raw, (b) statistical, and (c) frequency domain features for the
CNN model.

5.5. Degradation Modelling

For the degradation modelling task, the ageing data of lithium-ion battery cells [57]
have been used during charging and discharging. As input features, the cell current and
voltage as well as the cell temperature have been used. The output is the degradation curve
of the maximum remaining cell capacity for each charging and discharging cycle. The
results for different regression models and accuracy metrics are tabulated in Table 14 for
Seq2Point learning and in Table 15 for Seq2Seq learning. It must be noted that machine
learning approaches are not able to perform Seq2Seq learning due to their restriction of the
input dimensionality.

Table 14. Degradation errors for different regression models and performance metrics using
Seq2Point learning. The best performances are indicated with bold notation.

Model NMSE RMSE MSE MAE MAX

CNN 98.00 0.08 0.01 0.06 0.36
LSTM 97.85 0.08 0.01 0.07 0.39
DNN 98.64 0.06 0.01 0.04 0.49

RF 95.15 0.16 0.03 0.15 0.38
KNN 97.43 0.10 0.01 0.08 0.35
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Table 15. Degradation errors for different regression models and performance metrics using Seq2Seq
learning. The best performances are indicated with bold notation.

Model NMSE RMSE MSE MAE MAX

CNN 98.26 0.07 0.01 0.05 0.34
LSTM 97.74 0.09 0.01 0.07 0.41
DNN 97.85 0.09 0.01 0.07 0.41

As can be seen in Tables 14 and 15, deep learning approaches are significantly out-
performing machine learning approaches due to their ability to model longer temporal
characteristics. In detail, DNNs outperform all other models for all performance metrics
except for the maximum error. The predicted degradation curve is illustrated in Figure 11.
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Figure 11. Ground-truth and predicted remaining cell charge and prediction error using the best-
performing DNN model (for visibility, the predicted output has been filtered with a median filter of a
length of 100 samples).

As shown in Figure 11, the predicted output closely follows the measured degradation
curve and is also capturing the frequent relaxation of the cell material, e.g., after 50 h. The
maximum error is approximately 0.075 Ah being 12.3% of the remaining cell capacitance.
On average, the model is underestimating the remaining capacity with around 0.01 Ah
being 1.7% of the average cell capacitance.

6. Discussion

In this section, discussion on transferability is provided in Section 6.1, execution time
and model size in Section 6.2, and model optimization and model order reduction in
Section 6.3.

6.1. Transfer Learning

In transfer learning, the aim is to predict the output of new data based on a model that
was pretrained on other data for a usually similar application. Two different approaches are
investigated, namely, the intratransferability and the intertransferability. During intratrans-
ferability, the new data come from the same data domain, e.g., a different phase of the same
electrical grid, while in intertransferability, the data only come from the same application
domain, e.g., the same type of electrical appliance in a different consumer household. Both
types of transferability will be considered in this subsection. The intratransferability setup
is based on the electrical load forecasting of Section 5.2, predicting the load of phase 2 using
a model trained on phase 1. The intertransferability setup is based on the disaggregation
setup of Section 5.1 and [52], extracting the load signatures of a fridge, microwave, and
dishwasher in a different household using the REDD dataset [66] (houses 1 and 2). The
results for the intratransferability setup are tabulated in Table 16.
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Table 16. Intratransferability scenario based on load forecasting between phases 1 (L1) and 2 (L2).
The best performances are indicated with bold notation.

Model
L2 (Train L2) L2 (Train L1) Loss (%)

NMSE RMSE MAE NMSE RMSE MAE NMSE RMSE MAE

CNN 92.02 4.22 3.36 87.61 6.34 5.19 4.79 50.24 54.46
LSTM 93.21 3.58 2.81 92.88 3.70 2.94 0.35 3.35 4.63
DNN 92.81 3.86 3.03 87.44 6.40 5.25 5.79 65.80 73.27

RF 96.02 2.35 1.71 93.28 3.44 2.78 2.85 46.38 62.57
KNN 91.66 4.37 3.49 89.07 5.58 4.56 2.83 27.69 30.66

As can be seen in Table 16, the performance when predicting phase 2 based on a
model of phase 1 leads to a decrease in all evaluated accuracy metrics and all regression
models with a loss between 0.35% and 73.27%. However, due to the data coming from the
same domain, the average accuracy is still relatively high between 87.44% and 93.28%. In
detail, LSTM shows better performance capturing the temporal information of phase 1 and
transferring it to phase 2, showing significantly lowest loss in accuracy by only 0.35–4.63%.
The results for the intertransferability setup are tabulated in Table 17.

Table 17. Intertransferability scenario based on energy disaggregation between different consumer
households (REDD-1,2). The best performances are indicated with bold notation.

Model
REDD2 (Train REDD2) REDD2 (Train REDD1) Loss (%)

NMSE RMSE MAE NMSE RMSE MAE NMSE RMSE MAE

CNN 92.60 39.44 5.45 76.12 70.83 16.57 16.48 79.59 204.0
LSTM 86.65 84.36 9.83 71.26 94.88 19.95 15.39 12.47 102.9
DNN 85.02 76.83 11.03 55.19 106.4 31.10 29.83 38.49 181.9

RF 89.19 41.38 7.96 75.88 67.77 16.74 13.31 63.77 110.3
KNN 92.48 31.32 5.54 70.09 79.57 20.76 22.39 154.1 274.7

As can be seen in Table 17, the loss in performance is substantially increased compared
with the intratransferability setup by 13.31–204.00%. This is due to the much more complex
task of modelling similar devices in a completely different environment. Overall, CNN is
achieving the best absolute performance for both the baseline and the transferability scenario.

6.2. Execution Time and Model Size

Model size and execution time determine the real-time capability and the utilization on
hardware applications. Different models and application scenarios have been benchmarked
on a personal computer using an AMD Ryzen 3700, an Nvidia RTX3070, and 32 GB of 3600
MHz DDR4 RAM. The model sizes after training are tabulated in Table 18.

Table 18. Model size of the trained model including all parameters for different scenarios.

Model
Denoise Forecast Nonlinear Anomaly Degradation

30 × 4 144 × 8 1000 × 13 500 × 1 140 × 3

CNN 2.91 MB 6.37 MB 32.0 MB 9.49 MB 6.20 MB
LSTM 4.29 MB 4.30 MB 4.34 MB 4.26 MB 4.27 MB
DNN 1.92 MB 5.00 MB 40.6 MB 2.30 MB 2.81 MB

RF 37.7 MB 12.1 MB 58.4 MB 2.80 MB 9.16 MB
KNN 3.94 GB 0.33 GB 26.9 GB 7.05 MB 162.4 MB

From Table 18, it is observed that while the model size of CNN, LSTM, and DNN
only depends on the size of the feature input vector, KNN stores all training samples to
compute neighbouring distances and RF creates more trees, thus having significantly higher
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memory requirements for large datasets. Additionally, while the DNN and CNN models
are sensitive to the window length of the input feature vector, the LSTM model has barely
increased in model size due to its long short-term memory cells. The training and inference
times are reported in Table 19.

Table 19. Training (T) and inference time (I) per sample (µs) for different models and scenarios.

Model
Denoise Forecast Non-Linear Anomaly Degradation

T I T I T I T I T I

CNN 530 59 2570 120 2610 190 8650 478 1540 109
LSTM 540 87 6790 255 10,300 556 6540 893 2410 232
DNN 310 22 1500 33 3070 95 3760 76 1510 31

RF 9 × 103 15 5710 5.5 20 × 103 24 90 20 2170 3.1
KNN 0 6 × 103 0 967 0 42 × 103 0 97 0 854

As can be seen in Table 19, the training time per sample of deep learning approaches
depends mainly on the convergence of the model. Conversely, the training time per
sample for RF depends on the complexity and the number of different states that are
extracted, while it is close to zero for KNN, which does not have any trainable parameters.
Considering inference time, deep learning approaches are mostly dependent on the model
size and the size of the input feature vector. Conversely, RF has very low inference time
as it only performs comparison at the branches of the different decision trees, while KNN
has large inference times because it compares every sample in the testing data with the
training data.

6.3. Optimal Models and Model Order Reduction

To further improve the performance of a deep learning model in terms of model size
and/or performance, the input feature vector and the model parameters can be optimized.
To optimize the input feature vector, the importance of the input with respect to the output
can be evaluated. Possible ranking algorithms include principal component analysis (PCA),
correlation coefficients, or the ReliefF algorithm [67]. The feature ranking for the nonlinear
modelling task is illustrated in Figure 12.
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Figure 12. Feature ranking for the nonlinear modelling task for 13 features: coolant/ambient
temperature (Tc, Ta), stator voltages (Us, Ud, Uq), stator currents (Is, Id, Iq), torque (Tm), rotational
speed (ωm), apparent power (Ss), and products or current/power and rotational speed (Iω , Sω).

As can be seen in Figure 12, the stator and rotor temperature are dominated by
the cooling temperature (heat conduction to the coolant), the ambient temperature (heat
convection to the ambient), the stator voltage and stator current (ohmic and iron losses),
and the rotational speed (coupling or stator and rotor temperature through airflow inside
the machine). Furthermore, a Keras hyperparameter tuner can be used to optimize the
parameters of the CNN model to account for the changed input feature dimensionality.
The results of the reduced-order model using 6 input features instead of 13 are tabulated in
Table 20.



Entropy 2024, 26, 311 20 of 23

Table 20. Temperature prediction results for stator winding and magnet temperature in terms of
MSE (K²) for different testing IDs and models. Baseline scenarios are denoted with ‘Base’, while
reduced-order configurations are denoted with ’MOR’.

ID Time (h)
Stator Winding Rotor Magnet

Base MOR Base MOR

60 1.7 2.41 1.34 22.62 16.68
62 3.3 2.75 1.79 17.49 31.11
74 3.0 3.33 2.37 14.47 15.39

Avg 8.0 2.90 1.91 17.45 22.15

As can be seen in Table 20, a reduced-order model reports even better performances
for stator quantities, showing improvement by 34.1%. Conversely, the rotor performance
decreased by 26.9%, which is probably due to the missing torque values and the complex
power as these quantities are directly related to the rotor shaft.

7. Conclusions

A machine and deep learning Python toolkit for modelling time series data has been
introduced. Five different scenarios, namely, denoising, forecasting, nonlinear modelling,
anomaly detection, and degradation modelling, have been evaluated using real-word
datasets and different machine and deep learning models. It was shown that the PyDTS
toolkit and the models implemented in the toolkit can achieve performance close to the state
of the art of the respective approach. Additionally, to benchmark the different approaches,
the topics of transfer learning, hardware requirements, and model optimization have been
discussed. The authors hope that the paper, accompanied by the PyDTS toolkit, will
help new researchers entering the area of time series modelling and hopefully will create
new ideas.
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