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A B S T R A C T 

Stellar chemical abundances have proved themselves a key source of information for understanding the evolution of the Milky 

Way, and the scale of major stellar surv e ys such as GALAH have massively increased the amount of chemical data available. 
Ho we ver, progress is hampered by the level of precision in chemical abundance data as well as the visualization methods for 
comparing the multidimensional outputs of chemical evolution models to stellar abundance data. Machine learning methods 
have greatly improved the former; while the application of tree-building or phylogenetic methods borrowed from biology are 
beginning to show promise with the latter. Here, we analyse a sample of GALAH solar twins to address these issues. We apply 

The Cannon algorithm to generate a catalogue of about 40 000 solar twins with 14 high precision abundances which we use to 

perform a phylogenetic analysis on a selection of stars that have two different ranges of eccentricities. From our analyses, we 
are able to find a group with mostly stars on circular orbits and some old stars with eccentric orbits whose age–[Y/Mg] relation 

agrees remarkably well with the chemical clocks published by previous high precision abundance studies. Our results show the 
power of combining surv e y data with machine learning and phylogenetics to reconstruct the history of the Milky Way. 

Key words: methods: data analysis – techniques: spectroscopic – catalogues – stars: abundances – Galaxy: evolution. 

1

C  

e  

o  

s  

�

H  

t  

a  

s  

c  

e  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/529/3/2946/7590825 by :: user on 15 April 2024
 I N T RO D U C T I O N  

hemical enrichment plays an important role in the formation and
volution of our Galaxy. Significant advances in our understanding
f galaxy evolution have come from interpreting data from major
tellar spectroscopic surv e ys, such as the Galactic Archaeology with
 E-mail: kurt.walsen.b@gmail.com 
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ERMES (GALAH) Surv e y (De Silva et al. 2015 ; Buder et al. 2021 ),
he Gaia–ESO Surv e y (Gilmore et al. 2022 ; Randich et al. 2022 )
nd the Sloan Digital Sky Survey (Abdurro’uf et al. 2022 ). These
urv e ys hav e observ ed hundreds of thousands of stars for which
hemical abundances of up to 30 elements have been measured (see
 xtensiv e discussion in Jofr ́e, Heiter & Soubiran 2019 ). Ho we ver,
hile this increase of data is essential, it is also important to
evelop tools for analysing larger data sets. In this paper, we are
oncerned with the presentation and assessment of such methods
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n two ways – first, the extraction of chemical information from 

tars via stellar spectroscopy , and secondly , the analysis of chemical
bundances to retrieve an evolutionary history of Galactic chemical 
nrichment. 

Galactic history shares some features with biological evolution. 
ndeed, Jofr ́e et al. ( 2017 ) and Jackson et al. ( 2021 ) showed that
hylogenetic techniques can be employed to reconstruct the evolution 
f star formation within the solar neighbourhood using a small but 
ery precise sample of stellar abundances of solar twins. Interpreting 
heir results was difficult because of selection effects in their stellar
amples, which were a rather small sample of spectra obtained from
ublic archives (Nissen 2016 ; Bedell et al. 2018 ). While major
pectroscopic surv e ys retriev e data on millions of stars observ ed
ith a well-defined selection function, there is a trade-off between 

he scale of data and its resolution. This study is thus moti v ated by
arefully creating a sample of high-precision chemical abundances 
rom surv e y data. We then use a phylogenetic tree algorithm to assess
he formation sequences of the Milky Way. First, though, we discuss
he potential and dangers of using machine learning tools (ML) to 
xtract higher precision chemical abundances from stellar spectra for 
his purpose and then we introduce phylogenetic methods. 

.1 Chemical abundances from stellar spectra 

n this era of large spectroscopic surv e ys, ML has become a revolu-
ionary way to both, precisely and quickly derive spectral properties 
see e.g. Leung & Bovy 2019 ; Wheeler et al. 2020 ; Ambrosch et al.
023 , to name a few). The revolution became notable perhaps with
he introduction of The Cannon (Ness et al. 2015 ) into the field. The

ethod finds a polynomial function that directly relates the spectra 
ith labels. To do so, the function is found from stellar spectra for
hich these labels are known. The Cannon is very fast, and provides
ore precise results than standard methods when the spectra are 

oisy or not of very high resolution. Since it is easy to implement, it
as quickly been applied on a large variety of stellar spectra (Casey
t al. 2017 ; Buder et al. 2018 ; Wheeler et al. 2020 ; Nandakumar
t al. 2022 ; Manea et al. 2023 ). Many other spectral analyses using
L have followed (Leung & Bovy 2019 ; Ting et al. 2019 ; Guiglion

t al. 2020 ). Nowadays, there is a large variety of chemical data
roducts derived from neural networks or mathematical functions 
rained on synthetic or observed spectral grids. Since ML allows 
abels to be transferred from one surv e y to the other (Wheeler et al.
020 ; Nandakumar et al. 2022 ), it is possible to put sev eral surv e ys on
he same scale provided there are stars in common between surv e ys
Ness 2018 ). Indeed, ML is so powerful that today it might seem
bsurd to aim performing a spectroscopic analysis on million spectra 
ith the ‘standard’ methods (see discussion of such methods in Jofr ́e

t al. 2019 ). 
Although methods like The Cannon provide many advantages over 

he standard methods, it relies on training sets that are calibrated with
he standard analyses. Choosing the training set is not straightfor- 
ard, it should sample fully and evenly the parameter space of the

est set, and should have accurate and precise values for the labels
hat want to be determined. A grid of synthetic spectra is powerful
ecause it ensures even sampling (Ting et al. 2019 ), but synthetic
pectra and real spectra are different from each other leading to a level 
f uncertainty in the results (see discussion in O’Briain et al. 2021 ).
L methods are suitable when the methods used on the observed 

est stars are the same as for the training set stars, especially if there
s information additional to the spectra (interferometry, accurate 
arallax es, astroseismology, etc.). This e xtra information pro vides 
igher accuracy for the labels (Miglio et al. 2013 ; Jofr ́e et al. 2014 ;
eiter et al. 2015 ). The problem here, though, is the sampling. ML
orks better with large data sets, and so using the largest number
f stars as possible is preferable. Ho we ver, the full parameter space
s not often available in these very large data sets, and so there is a
rade-off between sample size and data completeness. It is thus worth
nvestigating systematically how to train an ML algorithm with the 

ore limited data available today. 

.2 Phylogenetic trees as a promising tool to trace Galactic 
hemical evolution 

hylogenetic trees are graphs that illustrate the shared evolutionary 
istory among a data set, allowing us to understand the hierarchical
attern of ancestry and descent which connects all of the observations
Baum, Smith & Donovan 2005 ). Phylogenetic methods can recon- 
truct ancestral relationships as long as there is a shared history and a
eritable process linking the data objects. These objects are normally 
ndividuals, species, and higher taxa in biology, where methods to 
nalyse them have been developed (Felsenstein 1988 ), but they are
pplicable more broadly. By making the hypothesis that the stars in
he Milky Way disc come from the same b ut ev olving interstellar

edium (ISM), and that the evolutionary marker (i.e. the heritable 
omponent) of the ISM is the chemical composition, we can use the
hemical abundances of low-mass stars as fossil records for building 
hylogenetic trees (see also Freeman & Bland-Hawthorn 2002 ). 
The hypothesis that stars in the Milky Way form from the same

volving ISM is a simplification of reality. Indeed, the Milky Way
as accreted dwarf galaxies, depositing in the ISM some gas that
as been enriched by a different chemical evolutionary history. An 
xample is the interaction of the Milky Way with Sagittarius, which
as affected the star formation history of the disc significantly (Ruiz-
ara et al. 2020 ). This process can be interpreted as ‘hybridization’,
hich in biology stands for the result of horizontal gene transfer, that

s, genetic information passed between species and not only in an
ncestor-descendant way. The impact on phylogenetic studies when 
ybridization is present is an active topic of research. 

Another simplification of this hypothesis is the fact that chemical 
bundances in low-mass stars are not as constant o v er their lifetime.
n one hand, heavy elements sink in the atmospheres due to
ravitational settling (Lind et al. 2008 ; Souto et al. 2018 ), causing
n effect in the measured abundances depending on the age and the
ass. On the other hand, newly processed heavy elements can be

redged up to the atmosphere because of mixing processes inside 
tars (e.g. Aguilera-G ́omez, Jones & Chanam ́e 2023 ). 

Furthermore, the way the ISM mix after the ejection of new chem-
cal elements is not homogeneous, making new stellar populations 
ot necessarily identical in their chemical pattern. All these issues 
o we v er hav e an impact on chemical tagging studies o v erall. 
Phylogenetic trees have already been constructed in Jofr ́e et al.

 2017 ) and Jackson et al. ( 2021 ). These papers focused on solar
wins for the practical reason that estimates of chemical abundances 
n solar twins are very precise, particularly if they are derived
ifferentially with respect to the Sun (e.g. Nissen & Gustafsson 
018 ). This implies that differences in the chemical compositions 
re not necessarily caused by a systematic effect in spectroscopic 
nalysis. Jofr ́e et al. ( 2017 ) used high precision data published by
issen ( 2015 , 2016 ) and Jackson et al. ( 2021 ) the data published
y Bedell et al. ( 2018 ). The trees were built using a nearest
eighbourhood distance method, which essentially considers the 
airwise distance in chemical abundances between stars to find 
he hierarchical differences, displaying them in a tree. Jofr ́e et al.
 2017 ) found a tree with different branches where the relationship
MNRAS 529, 2946–2966 (2024) 
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Table 1. Wavelength grid for the spectra used in this work. 

CCD Begin/ Å End/ Å Dispersion/ Å/pixel Nr. pixels 

1 4715.94 4896.00 0.046 3915 
2 5650.06 5868.25 0.055 3968 
3 6480.52 6733.92 0.064 3960 
4 7693.50 7875.55 0.074 2461 
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etween branch length and age was different, suggesting that with
rees it might be possible to identify stellar families (i.e. groups of
tars that cluster together and so may have a shared history), but
ore importantly, study their different evolutionary processes such

s chemical enrichment rate. Jackson et al. ( 2021 ) followed that
tudy by enlarging the number of stars and by choosing elemental
bundance ratios which evolve with time, e.g. the so-called chemical
locks (e.g. Nissen 2016 ; Casali et al. 2020 ; Jofr ́e, Jackson & Tucci
aia 2020 ). They also found different branches that had different

ges and dynamical distributions, and attributed them to different
tellar groups co-existing in the solar neighbourhood. How far these
tellar groups were representative of the broader stellar population
emains uncertain due to the selection function. 

.3 Aim and structure of this study 

n this work, we make the first study of a phylogenetic tree from
urv e y data, for which we chose a set of solar twins from GALAH
R3 (Buder et al. 2021 ). We compare our tree using the published

bundances from GALAH and a set of abundances obtained using
L, for which the precision is higher. The idea of this comparison is

o initiate the literature regarding the precision needed in chemical
bundances to perform phylogenetic studies with stars (also see
ecent discussions in de Brito Silva et al. 2023 , using simulated
ata). To do so, we first apply the spectral fitting machinery of The
annon to GALAH data (Buder et al. 2021 ) to impro v e the precision
f the chemical abundance measurements. We systematically assess
he steps in training The Cannon in solar twins. 

GALAH has observed a very large sample of solar twins (to
ate about 40 000). By carefully applying The Cannon we provide
 sample of high-precision abundances for a much larger sample
f solar twins that those previously published from high-resolution
ata. This takes the sample size from around 500 stars (Casali et al.
020 ) to two orders of magnitude. We then select a sample of this
atalogue to test if the phylogenetic signal impro v es from GALAH
o The Cannon abundances for the same stars. 

The paper is structured as follows: In the next section, we describe
he data used, and this is followed by a description of how The
annon training is set up. Our new catalogue is presented in Section
 and we apply phylogenetic techniques to analyse this catalogue in
ection 4 . Some general conclusions are presented in Section 5 . 

 DATA  A N D  M E T H O D S  

n this work, we use stellar spectra, parameters, and abundances
ublished as part of the third data release of GALAH (Buder et al.
021 , hereafter, GALAH DR3). Stellar spectra were observed with
he HERMES spectrograph (Sheinis et al. 2015 ) at the Anglo-
ustralian Telescope with a resolution of ∼ 28 000 across four
av elength re gions in the optical (see Table 1 ) that include absorption

eatures of more than 30 elements. For this study, we use the
adial velocity corrected and normalized spectra downloaded from
NRAS 529, 2946–2966 (2024) 
he D ATA CENTRAL 

1 web interface and interpolate them onto a
ommon wavelength scale given in Table 1 . The normalized spectra
hat are provided on D ATA CENTRAL as part of GALAH DR3 have
een velocity corrected and normalized with the routines as described
n section 2.3 of Buder et al. ( 2021 ) and based on the GUESS code
y J. Lin as part of the reduction pipeline (Kos et al. 2017 ). In short,
 cross-correlation with the best-fitting spectrum of the AMBRE grid
De Lav ern y et al. 2012 ) is performed to shift the observed spectra to
he rest frame. Subsequently, third order (CCDs 1 and 2) and fourth
rder (CCDs 3 and 4) polynomial fits are performed for pre-selected
ontinuum regions while applying sigma clipping. Flux uncertainties
re derived from the provided relative error spectra and multiplied
ith the flux. 
We use the stellar parameters ( T eff , log g , and [Fe/H]) as well as

ogarithmic elemental abundances relative to the Sun and iron, that is,
X/Fe]. These were extracted from the GALAH spectra via χ2 opti-
ization of on-the-fly computed synthetic spectra with Spectroscopy
ade Easy ( SME ; Valenti & Piskunov 1996 ; Piskunov & Valenti

017 ). Synthetic spectra were computed based on 1D MARCS model
tmospheres (Gustafsson et al. 2008 ) and non-local thermodynamic
quilibrium for eleven elements (Amarsi et al. 2020 ) and local
hermodynamic equilibrium for all other elements. As laid out in
ection 3.3 of Buder et al. ( 2021 ) with references, thirteen elements
, Li, C, O, Na, Mg, Al, Si, K, Ca, Mn, Fe, and Ba have been
easured from GALAH spectra. The optimization included the

onstraint of surface gravities log g from bolometric luminosity
stimates based on photometric information from the 2MASS surv e y
Skrutskie et al. 2006 ) and distances inferred from the Gaia satellite’s
econd data release (Bailer-Jones et al. 2018 ; Gaia Collaboration
t al. 2018 ). 

The GALAH DR3 catalogue further provides age estimates,
hich are needed for evolutionary studies. These ages and their
ncertainties are estimated via isochrone interpolation with stellar
arameters through the Bayesian fitting machinery BSTEP (Sharma
t al. 2018 ). Valued-added catalogues in GALAH also include
nformation about orbital properties, such as total velocities, ec-
entricities and actions. For more details we refer the reader to
uder et al. ( 2021 ). 

.1 Abundance uncertainties 

he total error budget in GALAH considers a combination of
recision and accuracy uncertainties. Precision uncertainties are
alculated from the internal covariance uncertainties of SME , that is,
he uncertainties are computed from the diagonal of the covariance

atrix given by SME fitting procedures, which were adjusted to be
onsistent with the scatter of repeat observations as a function of the
ignal-to-noise ratio (SNR). For this work, we consider the precision
o be the maximum between both uncertainties described abo v e.
ccuracy uncertainties for the stellar parameters are derived from

omparisons with reference stars, such as the Gaia FGK benchmark
tars (Jofr ́e et al. 2014 , 2018 ; Heiter et al. 2015 ), whereas for the
bundances we only have precision uncertainties reported. We thus
onsider for this work the GALAH DR3 precision uncertainties,
hich only report the final abundance uncertainty based on the
aximum of the internal covariance error for the abundance fit and

he SNR response to repeat observations (Buder et al. 2021 ). 

https://datacentral.org.au/services/download/
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Table 2. Selected line masks for the elemental abundance analysis using The 
Cannon . The full table is available online as supplementary material. 

Element Wavelength ( Å) Line mask ( Å) 

Na 4751.8218 [4751.7968, 4751.8468] 
Na 5682.6333 [5682.6083, 5682.6583] 
Na 5688.2050 [5688.1800, 5688.2300] 
Mg 4730.0286 [4730.0036, 4730.0536] 
Mg 5711.0880 [5711.0630, 5711.1130] 
Mg 7691.5500 [7691.5250, 7691.5750] 
Mg 7722.5930 [7722.5680, 7722.6180] 
Mg 7759.2980 [7759.2730, 7759.3230] 
Al 6696.0230 [6695.9980, 6696.0480] 
Al 6698.6730 [6698.6480, 6698.6980] 
Al 7835.3090 [7835.2840, 7835.3340] 
Al 7836.1340 [7836.1090, 7836.1590] 
– – –
Y 4819.6383 [4819.6133, 4819.6633] 
Y 4854.8611 [4854.8361, 4854.8861] 
Y 4883.6821 [4883.6571, 4883.7071] 
Y 5662.9241 [5662.8991, 5662.9491] 
Y 5728.8865 [5728.8615, 5728.9115] 
Ba 5853.6680 [5853.6430, 5853.6930] 
Ba 6496.8970 [6496.8720, 6496.9220] 
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.2 Solar twin selection 

e are interested in the solar twins of GALAH DR3. We select
hem from the file called GALAH DR3 main allspec v2.fits 2 

his file contains measurements of astrophysical parameters and 
hemical abundances of 678 423 spectra from 588 571 stars derived 
s explained above. We consider only spectra that have a signal-to-
oise ratio (SNR) abo v e 10 in all 4 CCDs. In order to select the
olar twins from that sample, we used the reported astrophysical 
arameters and performed the following cuts: 

| T eff − 5 777 | < 200 K 

| log g − 4 . 44 | < 0 . 3 

| [Fe / H] | < 0 . 3 (1) 

here we assume that the solar temperature is 5 777 K, the solar
urface gravity is 4.44 and the logarithmic number density of iron 
o hydrogen compared to the sun, [Fe/H], is 0.0 (Pr ̌sa et al. 2016 ).

e note our selection is wider than Bedell et al. ( 2018 ) and Nissen
 2015 ) in terms of parameter space but so are the errors in GALAH
arameters compared to these studies. We therefore prefer to keep 
he parameter range wider and still call our sample solar twins. 

We further used the quality flags on all the chemical abundances 
vailable in the data set, specifically flag sp and flag X fe , to
erify which stars had reliable astrophysical parameters. When the 
ag is zero, it means that the measurement of the stellar parameters
nd chemical ab undances ha ve no reported problem. We also con-
idered a high-detection rate of the different elements, i.e. stars with 
everal elements measured. Only 14 elements have a detection rate 
bo v e 90 per cent in solar twins. These elements correspond to Na
100 per cent), Mg (100 per cent), Al (98 per cent), Si (100 per cent),
a (97 per cent), Sc (100 per cent), Ti (97 per cent), Cr (100 per cent),
n (100 per cent), Ni (94 per cent), Cu (98 per cent), Zn (99 per cent),
 (94 per cent), and Ba (100 per cent). Finally, we remo v ed stars that
ad reported chemical abundance ratios with [X/Fe] > 1 or [X/Fe] <
1 to a v oid outliers. All these cuts gave us 44 317 entries. A further

election of entries with an available 1D spectrum in D ATA CENTRAL

ith no ne gativ e flux es giv es us spectra for 39 157 unique stars for
ur catalogue. Some of these stars, ho we v er, hav e been observ ed
ore than once. We use this sample of repeat observations to assess

he uncertainties in our results (see Section 3.2 for details). 

.3 Determining abundances with The Cannon 

e use the method The Cannon to determine the new abundances. 
his is a data-driven approach that allows us to derive stellar labels (in 
ur case, stellar parameters and chemical abundances) from stellar 
pectra. In short, the code connects the flux of a spectrum at different
avelengths with a set of labels, by constructing a polynomial model 
ith linear, quadratic, and cross-term coefficients for the labels. 

t was introduced by Ness et al. ( 2015 ) and has since then been
idely applied to stellar spectra (Casey et al. 2017 ; Buder et al.
018 ; Nandakumar et al. 2022 ). One of its most practical strengths
s that it does not use a physical but an empirical model of the
pectra. This allows the method to obtain labels at comparable high 
recision compared with a standard deri v ation of abundances from
.g. synthetic spectral fitting, and it does it fast and computationally 
heap. 

The Cannon requires the existence of a subset of reference objects 
in other words, a training set) which has well determined stellar
 https://www.galah-surv e y.org/ dr3/ the catalogues/ 3
abels and must co v er the parameter space sufficiently well and
venly. In a data set like GALAH, it was found that there are too few
etal-poor stars with well-determined labels to characterize well 

nough the metal-poor population observed by this surv e y (Buder
t al. 2018 ). In our case, by focusing on the solar twins only, we have
igher confidence to build a valuable training set for The Cannon . 
For this work, we used the open source version of The Cannon

ro vided by Case y et al. ( 2017 ) 3 , and built a quadratic model for
he solar twins of GALAH DR3 using different masks o v er the
avelength range for each of the considered labels (see below). 

.3.1 Masks 

uder et al. ( 2018 ) discussed that The Cannon had a better per-
ormance while using masks in the spectra for each label than
hen using the entire spectrum without filtering specific wavelength 

egions. This means our The Cannon models are not performed in
v ery pix el for ev ery label but only on pix els that were selected to
ontain information about the label. That information is known from 

ynthetic spectra (Buder et al. 2018 ). Later on, these masks have
een considered by SME to perform the fitting of observations with
ynthetic spectra to provide the abundances of all GALAH stars in
ALAH DR3. To make models for the different The Cannon labels
redictions, we have considered lines for the selected elements taken 
rom Buder et al. ( 2018 ) and the masks listed in Table 2 . No masking
as considered for the stellar parameters. 

.3.2 Training set 

e are interested in training our model with a set of high quality
pectra with accurate label measurements. That model has to be used
o generate new labels and uncertainties for the 39 157 solar twin
tars. To select the best quality data, we base our criterion on the
NR of the spectra, because GALAH DR3 provides its most accurate
nd precise parameters and abundances for high-SNR spectra (Buder 
MNRAS 529, 2946–2966 (2024) 

 https:// github.com/ andycasey/ AnniesLasso/ tree/ master/ thecannon 

https://www.galah-survey.org/dr3/the_catalogues/
https://github.com/andycasey/AnniesLasso/tree/master/thecannon


2950 K. Walsen et al. 

M

Figure 1. Median internal uncertainties per label as reported in GALAH DR3. In dots, we show all 39 157 solar twins from our selected catalogue. In triangles, 
we show the 5028 high SNR sample of solar twins. The stars represent the selection of 150 stars used as final training set (see discussions in Section A4 ). 
Uncertainties are smaller for the high SNR samples which are used for training. 
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Figure 2. Panels of abundances in the format of [X/Fe] versus [Fe/H]. The 
corresponding abundance X is displayed in each panel. In contours, all 39 157 
solar twins data. In blue, all 5 028 high SNR solar twins data. In orange, 150 
high-SNR spectra of solar twins training set selection (see Section A4 ). The 
entire data set co v ers a wider range in ab undances, b ut that could be due to 
higher uncertainties. Both train set and high SNR set have similar range in 
abundances. 
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t al. 2021 ). We thus consider a set of spectra with SNR abo v e 50
cross all CCDs because these are the highest quality spectra obtained
n GALAH DR3 and thus provide the most precise results. Since we
ant to make new predictions on the labels of the whole solar twin
ata set, we consider the full data set of 39 157 spectra as a test
et. There are 5132 high SNR spectra (hereafter, called high SNR
ample) for training and 39 157 for test/prediction. These are different
pectra of different stars. Among these 5132 high SNR spectra, there
re still some stars which have problems of normalization or data
eduction. These appeared as outliers in the [X/Fe] versus [Fe/H]
iagrams, which we identified after visually inspecting the spectra of
he outliers. We remo v ed them from our sample reducing our training
et to 5028 stars. 

Fig. 1 shows the median uncertainties in all labels for different
elections of our sample. In dots, we show the median internal
ncertainties of the entire solar twin catalogue. In triangles, we plot
he median uncertainties for all stars in the high SNR sample, and in
tars, we show the median uncertainties for a selection of a training
et of 150 stars (Section A4 ). We can see how our training set has
abels that are more precise than the rest of the catalogue for all labels
xcept for surface gravity, which was predominantly estimated from
on-spectroscopic features. Therefore, its precision is not dominated
y SNR. 
In Fig. 2 , we show the individual abundances as a function of the
etallicity, defined as [Fe/H], for the 39 157 solar twins as well as

he 5028 high SNR solar twins subset and the 150 high SNR solar
win selected as training set (see Section A4 ) following the same
olour scheme as Fig. 1 , with the full sample as contours to observe
he bulk of the distribution followed by the training set (in orange).

e see that the high SNR solar twin subset does not fully co v er the
arameter space of the entire catalogue. The low-SNR spectra might
nduce a spread in the abundances that is driven by the uncertainties.
o we v er, we observ e the selected training set of 150 stars has a good

o v erage of the metallicity and abundances when compared with the
igh-SNR sample. 

 T H E  C A N N O N  C ATA L O G U E  

n this section, we present our results about the performance of
ur new catalogue of high precision abundances of solar twins in
ALAH. Our catalogue of abundances can be downloaded from
izieR. We comment that besides the cuts on flags of the abundance
NRAS 529, 2946–2966 (2024) 
eterminations of GALAH–DR3 and visual inspection of clear
utliers in the training set, no further quality flag has been applied to
his catalogue. Therefore, we recommend users to revise the source
pectra in case of any unusual finding regarding abundances of solar
wins derived with this method. This catalogue can be used as a
omplementary catalogue to the new one provided for giant stars
sing a very similar methodology by Manea et al. ( 2023 ). 
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Figure 3. Comparison of labels obtained with The Cannon and GALAH 

DR3 for stars with min(SNR) > 50. Each panel correspond to a different 
label. Outer dashed lines correspond to 5 σ boundaries. Overestimates above 
the upper dashed line are plotted in red, underestimates below the lower 
dashed line are plotted in blue. The mean μ and standard deviation σ of the 
difference between results are specified in each panel, as well as the number 
of outliers found outside each boundary. 
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Figure 4. Same as Fig. 3 but for stars with spectra of min(SNR) < 50. 

Table 3. F alse positiv e proportion of solar twin stars from the original 
selection that are excluded from the box limited by equation ( 1 ) after adding 
or removing 1, 2, or 3 σ uncertainty from the new The Cannon parameters. 

Label σ 2 σ 3 σ

Solar twin 0.251117 0.489644 0.706464 
T eff 0.056644 0.116863 0.179610 
log g 0.187476 0.392216 0.614526 
[Fe/H] 0.021835 0.045305 0.070434 
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.1 Comparison with GALAH DR3 

e use the The Cannon Model 3, namely the model built with
50 solar twins of minimum SNR of 117 across all CCDs (See
ppendix A ). In order to validate our results, we look at the agree-
ent of the predicted values o v er the 39 157 solar twin catalogue

t high and low SNR, as well as the uncertainties reported by our
he Cannon model and compare them to the current GALAH DR3
eported uncertainties. 

In Fig. 3 , we show the comparisons of our labels and the
ALAH DR3 results for stars in the high-SNR sample. For stellar
arameters T eff and [Fe/H], we have a good agreement within 50 K
nd 0.03 de x, respectiv ely, with some exceptions of overestimates 
n the 5 σ boundary for T eff . Ho we ver, for log g , we are not able to
onsistently reco v er the labels, obtaining a scatter in the one-to-one
elation of 0.1 dex which is very large considering the small range
f surface gravities in our sample. We recall that GALAH DR3 does
ot derive surface gravities from the spectra because these spectra 
re not sensitive to surface gravity. It is thus not surprising that the
greement is poor. For the chemical abundances, we have a good 
greement o v erall. Ho we ver, we can notice some outliers for Al
nd Cr in the sense that we o v erestimate the abundances for a few
etal-poor stars and underestimate the abundances for some other 
etal-richer stars. 
In Fig. 4 , we display the same results but for stars with low SNR

below 50). As expected, the number of outliers increases, with stars
redicted to have ef fecti ve temperatures outside the solar twin range.
t is expected that the comparison will be worse in this case, as we
now the measurements obtained by the pipeline of GALAH DR3 
re more uncertain for low-SNR spectra. 

We still obtain a good agreement for Na, Mg, Si, Sc, Cu, Zn,
, Ba, although with a higher dispersion than the high-SNR stars.
o we ver for Ca, Cr, we observe two trends in our prediction.
he model makes near-flat predictions for metal-poor and metal- 

ich stars, resulting in two groups in the comparisons, with the
odel underestimating the abundances for these groups. For Al, 
e observe a higher slope in the one-to-one relation, e.g. we overes-

imate this abundance. For Ti and Ni, we obtain a flat prediction,
amely all the stars in the low-SNR re gime hav e solar-like Ti 
bundance. 

In our final catalogue, we remo v e all the outliers outside 5 σ bound-
ries found in both high and low SNR. This translates into further
emoving 88 high-SNR stars and 749 low-SNR stars, obtaining a 
nal catalogue of 38 320 solar twins. 
An interesting value to quantify is the false positive proportion of

ur solar twin selection based on our definition from equation ( 1 ).
n Table 3 , we list the proportion of stars that are excluded from the
ox limited by equation ( 1 ) when varying the stellar parameters by
,2, or 3 σ . The first row considers the entire box, but the second,
hird, and last rows show the impact of each parameter separately.

e can see that the largest impact is the surface gravity. This can be
MNRAS 529, 2946–2966 (2024) 
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Figure 5. Top panel: Histogram of number of observations for repeated stars 
in the e entire GALAH DR3 sample. Bottom panel: Density histogram as 
function of SNR in CCD2. In grey (left bins), all 39 157 solar twins catalogue. 
In cyan (right bins), repeat observations of solar twins. Raw counts abo v e each 
bin on the top of the figure. Note for the last SNR bin, we collapsed the all 
catalogue data with SNR abo v e 140. 
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xplained from the agreement between GALAH DR3 and our The
annon log g , which disagree more than the other parameters (see
ig. 4 ). 

.2 Repeat obser v ations 

o e v aluate our results, we consider repeat observations for some
tars. There are a total of 5145 spectra for 1910 solar twins. The top
anel of Fig. 5 shows a histogram with the number of observations
or the stars in the repeat observations sample. In general, we have
wo or three observations for each star, about hundred stars with
hree and four observations and a few of stars having more than four
bservations. 
For this sample, we compute the uncertainties as follows: for

ach star, we consider its observation of maximum SNR in CCD2,
hen for each repeat observation we compute the difference in
he prediction compared to the one of maximum SNR. Finally,
fter doing it for all the stars in the sample, we divide the SNR
ange in bins of length 10 and we compute for each bin the
tandard deviation of the difference in predictions of the repeat
bservations within SNR bin to their respective maximum SNR 

rediction. 
The bottom panel of Fig. 5 shows a normalized density histogram

f the repeat observation counts (cyan right bins) as function of the
CD2 SNR. In grey, we show the observation counts for the entire

olar twin catalogue. The spectra of repeat observations co v er well
he SNR distribution of the entire catalogue. The figure shows that
ur sample is a good representation of the SNR of the entire GALAH
R3 data set. 
NRAS 529, 2946–2966 (2024) 
.3 Comparison of uncertainties 

e use the internal uncertainties obtained by our model and
ompare them to the ones already given by GALAH DR3. We
lso use the repeat observations sample described abo v e, where
e made predictions with the model and compare them with the
ncertainties of repeat observations given by GALAH DR3. In Fig.
 , we summarize our findings, we have both internal uncertainties
in solid lines) and repeat observations uncertainties (in dashed
ines) for GALAH DR3/ SME in black and our The Cannon in
ed as function of SNR. We included the SME uncertainties for
og g even though the estimation for this label does not rely on
pectral fitting like our The Cannon model does. For the internal
ncertainties, we highlight for each label the median of the reported
ncertainty taken o v er each SNR bin. For the repeat observations
ncertainties, we report for each label the standard deviation σ of
he absolute differences (of the predicted label with the predicted
abel of the maximum-SNR observation) taken o v er each SNR
in in a similar way as it is done by GALAH DR3 (Buder et al.
021 ). 
In general, the internal uncertainties reported by our model are be-

ow the ones reported by GALAH DR3. F or GALAH DR3, the y tend
o increase as SNR decreases. Our model also predicts labels more
ncertain at lower SNR, but the difference in uncertainties between
igh and low SNR is smaller than for GALAH DR3. For the uncer-
ainties obtained from repeat observations however, our results are
omparable to GALAH DR3 for all SNR ranges. The uncertainties
f repeat observations for the stellar parameters T eff and [Fe/H] are
imilar for both pipelines as function of the SNR, and are generally
igher than the internal uncertainties. For the chemical abundances,
e find some cases, where our model has higher uncertainties than
ME, especially at high SNR. A notable example is Ca, where our
he Cannon model reports higher repeat observations uncertainties at
igh SNR. We note that in GALAH DR3 a more detailed approach
n masking telluric lines was made (Buder et al. 2021 ) but here
e used a less refined mask which likely contains more telluric

eatures. 
For Cu and Zn differences are negligible, which could be due to

he fact that in both procedures the masking of the spectra is the
ame therefore the methods consider the same information from the
pectra. The opposite difference is found for Si, Sc, Ti, Cr, Ni, Y
here in general our uncertainties of repeat observations are lower

han GALAH DR3. In particular, or Si and Mn our masks have
ore pixels than SME in GALAH DR3 which included an additional
ltering due to blending but were not labelled as such in the masks.
ur The Cannon model does not seem to be affected in terms of
recision suggesting that perhaps the further filtering in the GALAH
R3 masks was too strict for solar twins, remo ving pix els. F or Ti,
e also observe that The Cannon obtains more precise abundances.

ME determines Ti separately from neutral and ionized Ti lines,
hereas The Cannon takes all lines together. It is thus expected

o have better precision in our model because more pixels are
sed. 
In general, at lower SNR, The Cannon performs better since it

s al w ays using information from the whole spectrum, whereas SME

pplies further filtering in masking the detected lines in each spectrum
Buder et al. 2021 ). When there is more information in lines available
n the spectra, The Cannon will use this information, for example for
e gions where pix els are ne glected by SME due to possible blending.
he Cannon can outperform the fitting of one element at a time with
ME, since it can learn the variation of blended features as well.
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Figure 6. Standard deviation of uncertainty labels as function of SNR CCD2. In black, SME uncertainties. In red, The Cannon uncertainties. Solid lines 
represent the internal uncertainties given by the covariance matrix of the fitting by both SME and The Cannon . Dashed lines represent the uncertainties of repeat 
observations. 
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urthermore, The Cannon is able to learn the shapes of imperfect 
ontinuum fluxes, as is the case for low-SNR spectra. If we are
sing the same amount of pixels as SME, the repeat observations 
ncertainties are comparable since they are fitting essentially the 
ame features. 

.4 Ab undance distrib utions 

ig. 7 shows the individual abundances as a function of metallicity 
or The Cannon values coloured as density plots and for GALAH 

R3 as contours. Salmon and dark red stars displayed correspond 
o the lowest/highest eccentricity stars in the catalogue to be further
nalysed using phylogenetic trees (see Section 4 ). We can see how
he precision in terms of the dispersion impro v es significantly, with
xceptions for Al, Cu, Zn, Y, and Ba. Al, Cu, and Zn hav e v ery weak
p

ines which makes them a very difficult element to measure even
or The Cannon . The internal uncertainties are comparable for these
lements as discussed in the previous section. Y and Ba are elements
hat are expected to present a large scatter. Stars in binary systems
hat had an AGB companion might have been polluted by s-process
lements such as Y and Ba that were produced by the AGB star
Escorza et al. 2019 ). Based on Gaia DR3, ho we ver, we do not find
 clear signature of binarity for stars with higher [Ba/Fe] and [Y/Fe]
bundance ratios in their RUWE 

4 parameter or the uncertainties in 
MNRAS 529, 2946–2966 (2024) 

osition in the sky. 
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Figure 7. Individual abundances as a function of metallicity for the solar 
twins analysed in this work. Coloured density plots correspond to our labels 
as determined using The Cannon while contours delineate the distribution of 
GALAH DR3. Stars selected for further analysis in Section 4 are displayed 
as salmon and dark red stars for low and high eccentricity stars, respectively. 
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Figure 8. Individual abundances as function of stellar age for the solar twins 
analysed in this work. Coloured density plots correspond to our labels as 
determined using The Cannon . Age estimates are taken from GALAH DR3 
(Buder et al. 2021 ). Black solid lines correspond to the linear regression fits 
of abundance-age trends found by Spina et al. ( 2016 ) and Bedell et al. ( 2018 ). 
Red solid lines correspond to the linear regression fits found with our data. 
Stars selected for further analysis in Section 4 are displayed as salmon and 
dark red stars for low- and high-eccentricity stars, respectively. 

Table 4. Linear coefficients (with uncertainties) of abundance-age trends 
found for the elements used in our study. Abundances of GALAH DR3 
solar twins come from our The Cannon derived abundances, ages come from 

GALAH–DR3 (Buder et al. 2021 ) estimates. 

Element a σ a b σ b 

Na − 0 .001 77 0 .000 69 0 .022 19 0 .005 36 
Mg 0 .006 99 0 .001 04 − 0 .042 65 0 .007 95 
Al 0 .010 19 0 .001 92 − 0 .009 52 0 .013 76 
Si 0 .006 65 0 .000 57 − 0 .045 71 0 .004 29 
Ca 0 .002 23 0 .000 63 0 .010 05 0 .004 85 
Sc 0 .006 27 0 .000 76 − 0 .004 39 0 .005 63 
Ti 0 .007 59 0 .000 55 − 0 .041 19 0 .0042 
Cr − 0 .004 87 0 .000 68 − 0 .029 14 0 .005 25 
Mn − 0 .010 01 0 .000 65 0 .048 98 0 .004 86 
Ni − 0 .001 82 0 .000 67 − 0 .027 78 0 .004 39 
Cu 0 .003 18 0 .001 48 0 .016 62 0 .010 33 
Zn 0 .009 19 0 .001 47 − 0 .064 43 0 .010 88 
Y − 0 .009 23 0 .001 92 − 0 .077 16 0 .0149 
Ba − 0 .004 59 0 .001 42 − 0 .001 57 0 .011 22 

t  

a
 

T  

d  

v  

t  

o  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/529/3/2946/7590825 by :: user on 15 April 2024
he radial velocities. If such high Y and Ba stars were in binary
ystems, their separations would be large and their periods long. 

Elements such as Mg, Si, Ca, and Ti are formed predominantly
n SN II progenitors (see Kobayashi, Karakas & Lugaro 2020 , and
eferences therein). In this sample, we do not find stars that might
ave formed from an α–enhanced gas such as the thick disc, deducing
hat this sample is composed predominantly by thin disc stars.
ron-peak elements such as Sc, Cr, Mn, and Ni follow the trends
bserved in other higher resolution and higher precision studies,
uch as Adibekyan et al. ( 2012 ), Bensby, Feltzing & Oey ( 2014 ), and
attistini & Bensby ( 2015 ). 
Fig. 8 illustrates our values as a function of age. Here, the age

orresponds to the values reported by GALAH DR3. We note these
ges are not fully consistent with our new parameters since they are
stimated with the GALAH DR3 parameters. A ne w deri v ation of
ges is beyond the scope of this paper. Here, we aim to provide an
llustration of the type of studies that could be performed with the
ntire usage of our catalogue. 

As abo v e, the coloured density plots represent our values deter-
ined with The Cannon . The black line corresponds to the linear

egression fits of the abundance-age trend determined by Spina et al.
 2016 ) and Bedell et al. ( 2018 ) who performed a high precision
pectroscopic analysis of solar twins using high resolution. The
rends found using our data are displayed as red lines. These trends
ere found with linear regression fits considering the uncertainties

n both axes (age and [X/Fe]), using a reduced representation of the
atalogue. We divided the age ( x -axis) range in 100 bins of equal
idth, then for each bin, if the subsample size is greater than 30

for statistical significance), we take the weighted average over the
ubsample lying within the age bin, and consider the uncertainty
s the median uncertainty o v er it. The linear fit coefficients for the
NRAS 529, 2946–2966 (2024) 
rends of each element in our catalogue along with their uncertainties
re reported in Table 4 . 

We qualitatively obtain consistent trends for Mg, Al, Si, Ca, Sc,
i, and Zn. There are minor offsets, such as Cr, but that was already
iscussed in Buder et al. ( 2021 ). Since we train with GALAH DR3
alues, it is expected that the offset remains here. We note that the
rends found for Na, Mn, Ni, Cu, Y, Ba are in conflict with the
nes found by Spina et al. ( 2016 ) and Bedell et al. ( 2018 ) for high
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esolution solar twin stars, where we observe that our data follows
lopes of different signs. The differences in these trends can be caused
y several factors, such as different levels of presicion and accuracy 
f these abundances between our results and Spina et al. ( 2016 ) and
edell et al. ( 2018 ). Other sources of differences might be caused by

he fact that our sample is much larger than the ones used by Spina
t al. ( 2016 ) and Bedell et al. ( 2018 ), implying that we might have
ore stars coming from distant regions in the Galaxy, where the 

hemical enrichment might occurs at different rates (Ratcliffe et al. 
024 ). 
With respect to Fig. 8 , we also want to stress that the underlying

raining set of GALAH DR3 is subject to significant selection effects 
nd systematic parameter inaccuracies. This includes the o v erestima- 
ion (or systematic clumping) of stellar ages of stars around 2 Gyr, due
o the missing separation of young star isochrones in our solar twin
arameter space. We also expect to sample more intermediate age 
hin disc stars from the underlying set of stars due to their relative
bundance within the GALAH selection function (neglecting the 
alactic plane and sampling within magnitude ranges). 

 P H Y L O G E N E T I C  TREES  WITH  G A L A H  

OLA R  T W I N S  

n this section, we use our new catalogue in the construction of
hylogenetic trees. For our purpose, we select from the catalogue 
wo groups of solar twins with different orbit eccentricity. More 
pecifically, we select the 100 stars with lowest eccentricities and 
01 stars with highest eccentricities in the sample. These values 
ome as valued-added information in GALAH and are derived from 

aia DR3 data (see Section 2 for details). The eccentricities range 
rom 0.000 723 and 0.000 733 for the low-eccentricity group, and 
rom 0.39 to 0.63 for the high eccentricity group. Our goal is to
tudy what the phylogenetic trees built using our measurements tell 
s about the relatedness of our sample, and how our measurements 
elp in this goal compared to the GALAH DR3 ones. For this
xperiment, we compare the phylogenies constructed from both data 
ets. The stars selected for the analysis are listed in Table B1 . In
hat table, we are including the stars ID as labelled in the tips of our
rees, in addition to the Gaia DR3 IDs for further references, and
heir ages and eccentricities as downloaded from the valued added 
atalogues of GALAH DR3. This sample has a median SNR of 32,
nd the typical uncertainties for the elements in the sample range 
rom 0.094 dex using GALAH DR3 data to 0.026 dex using our The
annon measurements. Their chemical ab undance distrib utions can 
e seen in Fig. 7 and 8 with yellow and red symbols. 
A natural question arises here about our choice of stars. Indeed, 

here is no particular reason to choose this sample abo v e an y other
ne. Applying the NJ algorithm to the full complement of 40 000
tars is computationally impractical, especially when assessing the 
obustness of the built trees (see discussions below), due to its time
omplexity of O ( n 3 ) (Yang 2014 ), where n is the number of tips.
isualizing a tree with so many tips is also impractical. Therefore, 
iven that we are still at an exploratory phase of using phylogenetics
or Galactic evolution, we prefer to make choices of smaller sets
f data, and focus our scientific aim to a particular question. 
n the following sections, we aim to compare the phylogenetic 
ignal between our The Cannon and the standard GALAH-DR3 
bundances, for which a reduced number stars is sufficient. 
.1 Building trees with the neighbour-joining algorithm 

rees are built following the methods used in Jackson et al. ( 2021 )
nd Jofr ́e et al. ( 2017 ) by using the classical method called neighbour-
oining (NJ), a computationally fast di visi ve cluster algorithm pro-
osed by Saitou & Nei ( 1987 ) that iteratively joins nodes (in our
ase, stars) closely related by a given pairwise distance matrix. This
atrix of distances has size N × N with N being the number of

tars considered in the analysis, and the distance is calculated as
 Manhattan Distance between the chemical abundances of each 
tar in the pair. The tree reconstruction is made in a greedy way
y iteratively joining a pair of nodes from the distance matrix that
inimizes the Q criterion . For a tree with r nodes, the pair ( i , j ) is

oint by minimizing 

 ij = ( r − 2) d ij −
r ∑ 

k= 1 

( d ik + d jk ) , for i < j ≤ r, (2) 

here d is the distance between the pairs (See section 3.3.3 of Yang
014 , for more details of this terminology). Then a new node is
reated and is called an internal node, which acts as predecessor of
he two joint nodes. The procedure continues by recomputing the 
istances of the remaining nodes to the new internal node, removing
he rows and columns in the distance matrix related to the two joined
odes and adding the ones related to the new one. This reduces the
imension of the distance matrix by 1. The process iterates again
ntil the distance matrix is of size 2 × 2, joining the two remaining
odes and returning the built tree. 
We build our distance matrix using our selected sample of stars

rom both eccentricity groups (see T able B1 ). T o compute the
istance, we consider a vector of measured abundances for each star,
nd use the Manhattan Distance which is the absolute difference of
wo vectors. This means that we are using chemical distances for the
tars in our sample in a similar way to Jofr ́e et al. ( 2017 ). In our
ase, we perform a further selection of the abundances, namely those
hose age-abundance trend is monotonic in Fig. 8 . This is known to

ncrease the additivity of the distance matrix, hence making NJ trees
hat are closer to the true phylogenetic tree (Retzlaff & Stadler 2018 ).

e thus exclude Ca, Cr, and Ni since their age-abundance trends are
at, thus not evolving in time. Since these abundance ratios do not
hange in our sample, they add noise in our tree reconstruction (Yang
014 ; Jackson et al. 2021 ). 
To account for the uncertainties in the data, we build NJ trees from

istance matrices computed by empirically sampling a random value 
ut of a normal distribution for each of the abundances, centred at the
eported measurement and with a standard deviation of its reported 
ncertainty. We build 2000 trees by sampling the abundances 
ccording to their uncertainties and study their distribution. 

From these trees, we select the best tree to be the one which has the
ighest node support. To do so, we follow the process used in biology
hat searches the Maximum Clade Credibility (MCC) tree out of a
ample of trees. Clades correspond to a group of nodes that includes
ll the descendants of a common predecessor node in the tree. We note 
hat with trees being built empirically, we cannot immediately assume 
hat the trees follow an ancestor–descendant hierarchy; hence, an 
nternal node can not be immediately associated with a predecessor. 
sing simulated data is needed to learn the prospects and limitations
f interpreting clades and evolutionary histories from empirical trees 
de Brito Silva et al. 2023 ). In the MCC, each clade (or node with
ll the descendant nodes in our trees) in each sampled tree is given a
core that reflects the fraction of times that the same pattern appears
n all the sampled trees. If the clade occurs for all the trees then the
upport value is 1 (100 per cent). This indicates high consistency in
MNRAS 529, 2946–2966 (2024) 
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Figure 9. Node support percentage for MCC trees of Fig. 10 . In grey, support 
percentages for the MCC tree built using GALAH DR3 data. In red, support 
percentages for the MCC tree built using The Cannon data. 
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he data for that topological relationship. The product of these scores
s defined as the tree score, so that the MCC tree is the one with the
ighest tree score. Here, we employ this method to select our best
ree and e v aluate its robustness, despite not being able to ensure that
ur nodes and branching pattern can be directly related to clades (see
ore discussions below). 
The distribution of support values for the nodes is shown in Fig. 9 .

n grey and red, we have the support values for the MCC tree built
sing GALAH and The Cannon , respectively. By comparing the
istributions, we observe that The Cannon MCC tree is o v erall better
upported. The GALAH highest support value in the GALAH MCC
ree is 20 per cent, meaning that every clade seen in the MCC tree
nly appears in at most 20 per cent of the remaining sampled trees.
o we ver, e ven though the The Cannon MCC tree has more support,

he o v erall values do not e xceed 50 per cent. This means that ev en at
he high precision in the abundances of our new catalogue, the trees
re o v erall poorly supported. 

The root of the tree is the basal split that separates the most distant
in an evolutionary way) object from all the rest. The NJ algorithm
roduces unrooted trees because in this tree reconstruction method
here is no evolutionary model considered and hence no way predict
he ancestral state in the relationships of our stars. Hence, even though
e are able to apply the MCC method to find the most supported

ree, we are not able to attribute a clade in our trees as a group of
odes that includes all the descendants of a predecessor node in an
volutionary context. In our case, it is more appropriate to refer to
ossible groups in the trees as clans instead of clades. 

.2 GALAH versus Cannon trees 

n Fig. 10 , we show the MCC trees built from our sample stars. For
etter visualization of our trees, we choose the tip corresponding to
he star labelled with ID 0 as our reference star. This means, the
ree is displayed in a way that all branch lengths are visualized with
espect to ID 0. That star is the one with highest eccentricity in our
ample. Its Gaia DR3 ID is 5396076243592498944, and it has an
ccentricity of 0.63. This allows us to study the relationship of all
tars with respect to that high eccentric one. 

We stress that the tree is not rooted. We could have chosen any star
s our reference star for visualizing the relationships, e.g. the oldest
ne, the most metal-poor one, or simply a random one. The tree is
isplayed relative to that star for better comparison between trees,
nd the branching order that follows the node with that reference
NRAS 529, 2946–2966 (2024) 
tar does not necessarily mean an ancestor–descendant relationship
ecause we do not have a root nor any prior or model about the
volutionary history of our selected stars. In this case, we chose the
ost eccentric star of our sample simply because its possibilities to

ome from a re gion be yond the Solar neighbourhood is higher than a
tar with circular orbit, implying its chances to be more evolutionarily
istant to the rest are higher. Furthermore, the dynamical properties
f the stars depend on Gaia data only, and are independent of the
pectroscopic parameters (as well as ages and chemical abundances).
his allows us to use the same star as reference for both data sets

hat we consider in building the tree (our The Cannon abundances
nd GALAH–DR3). 

The left panel of Fig. 10 shows the MCC tree obtained using
ALAH abundances and the right panel shows the MCC tree
btained using The Cannon abundances. Both trees have the branches
oloured by the metallicity as obtained from the corresponding
atalogue. The parenthesis in each tip of the trees corresponds to the
ccentricity group, where 0 represents circular orbits and 1 represents
ore eccentric orbits. Specific information about eccentricities and

ges of our stars can be found in Table B1 . 
By comparing the topologies of these trees, we see some similari-

ies. In both cases, the eccentric stars are located close to the star ID
, and after a few splits, we are able to observe two main branches.
ithin these branches, we select clans for further studies, which we

abel Clan A and B for the GALAH tree, and Clan C and D for the
he Cannon tree. We will discuss these clans with more detail later
n. 
We also observe that the length of the tip branches differ between

he trees. In fact, the tip branch lengths of the GALAH tree are larger
han the ones with The Cannon . Some GALAH branches reach 4 dex
hile Cannon ones reach 3 dex. In fact, the GALAH tree has tip
ranch lengths which are larger than the inner branches. This is an
ndication of a hard tree (Yang 2014 ), which are trees prone to errors.
n the GALAH tree, the difference between two stars, reflected by the
um of horizontal branch lengths connecting the two tips along the
ree, is dominated by the tip branch lengths rather than the internal
ranch lengths, dominating o v er the hierarchical structure in the tree.
his means that more of the chemical differences among the stars is
eing explained by their tips than any one of the internal branches.
his is also noticed in The Cannon tree but to a lesser extent. We
ave to keep in mind that our catalogue contains very similar stars
all solar twins). The difference between them is intrinsically very
mall therefore the difference dominated by the tip lengths reflect
hat the o v erall distance between stars is more or less similar o v er
he entire sample. 

In any case, we observe that both trees chemically cluster together
tars from both eccentricity groups, but with the The Cannon data the
rouping is more resolved. In the GALAH tree, Clan A (highlighted
ith blue in Fig. 10 ) contains mostly the stars in circular orbits
hich are primarily metal-rich, while Clan B (in orange in the figure)

ontains a mix of stars. When using our catalogue, we see that Clan
 (enclosed in red in the right hand panel of Fig. 10 ) contains mostly

ow eccentric metal-rich stars. Clan D has (in violet in the figure)
tars with high eccentricities and rather metal-poor. 

The distributions of the ages of both groups and their associations
o the different clans can be seen in Fig. 11 . The upper panel shows
he distributions of SNR and the lower panel the distribution in age.

e see no systematic difference in the SNR of our stars therefore we
xpect no systematic differences in abundance uncertainties hence
ranch lengths. The distribution of SNR is well represented to the
ntire sample (see Fig. 5 ). Regarding the age distributions, we see
hat Clan A and Clan C have a range of ages while Clan B and Clan
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Figure 10. Maximum Clade Credibility (MCC) trees from a sample of 2000 trees for 201 stars of different eccentricity groups with tips coloured by metallicity. 
On the left, MCC tree obtained with GALAH labels. On the right, MCC tree obtained with The Cannon labels. Stars in selected eccentricity groups are 
enumerated in the tips with values between 0 and 200, 0 being the fixed branch placed at the most eccentric solar twin in the catalogue (eccentricity of 0.63), 
1–100 being the following most eccentric stars and 101–200 referring to the less eccentric stars in the catalogue (see Table B1 ). Selected clans A–B and C–D 

can be seen from the coloured areas of GALAH and The Cannon , respectively. 
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 have mostly old stars. This is consistent with Clan A and Clan
 having mostly stars from the circular orbit group and Clan B and
lan D stars from the eccentric orbit group. 
It is worth to comment on the selection of our clans. Between

lan C and Cland D there is a branch of stars that is more similar
o Clan C than Clan D but the internal branches are short compared
o the length of the tip branches, and the topology is o v erall more
alanced. That branching pattern is indeed similar to a random tree, 
acking phylogenetic signal (de Brito Silva et al. 2023 ). We have
hus focused on the clans that are the farthest from each other in the
ree. 
F

t
m

.3 Astr ophysical interpr etation of the selected clans 

e now look into the Clan A and B from the GALAH DR3 tree and
lan C and D from the The Cannon tree. To do so, we explore the

rend of age and [Y/Mg], commonly referred to as chemical-clock . 
ndeed, in the analysis performed on solar twins by Nissen ( 2015 ),
 tight relationship between age and [Y/Mg] was found. This trend
as explained with the argument that yttrium, which is an element
roduced by AGB stars, increases with increasing Fe, while Mg, 
hich is an element produced by SN II , decreases with increasing
e. Since Fe increases with time, this difference in dependency with
e causes a strong dependency of [Y/Mg] with age. 
After that study, several works have studied the applicability of 

his trend considering different kinds of stars, finding that solar- 
etallicity giants in the solar neighbourhood behave similarly to the 
MNRAS 529, 2946–2966 (2024) 
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Figure 11. Distributions for SNR CCD2 (top panel) and age (bottom panel), 
for eccentricity groups in dashed lines and clans selected from trees of Fig. 10 
in solid lines. 
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Figure 12. Age–[Y/Mg] relations of the stars in the clans selected from the 
trees of Fig. 10 . Linear regression fits are drawn to quantify the slopes in these 
relations. Trend found by Nissen et al. ( 2020 ) displayed as a dashed black 
line. [Y/Mg] errors taken from the internal uncertainties reported by GALAH 

DR3 and our The Cannon catalogue. Age errors taken from GALAH DR3 
Buder et al. ( 2021 ). 
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olar twins (Slumstrup et al. 2017 ; Casamiquela et al. 2021a ) but at
ower metallicities, this relationship might weaken (Delgado Mena
t al. 2019 ; Casali et al. 2020 , Vitali et al. 2024 ). It is also suspected
hat this relation is subject to systematics in the age determination
Berger et al. 2022 ). Further studies have found this relation might
ot hold for stars outside the solar neighbourhood (Casamiquela et al.
021a ), which can be explained by the fact that this relation has a
trong dependency of the the star formation rate, which is different
t different birth radii (Ratcliffe et al. 2024 ). 

Considering that [Y/Mg] = [Y/Fe] − [Mg/Fe], the errors in the
bundance ratio used in this work are computed as the quadratic sum
f the errors reported for both abundances. Age estimates as well as
ge errors are taken from Buder et al. ( 2021 ). In Fig. 12 , we show
he age–[Y/Mg] trends for the selected clans in Fig. 10 following
he same colours. We compute a linear regression fit of the stars in
ach group, and plot the fit with a line of the same colour as the
orresponding clan. The legend indicates the value of the slope and
he uncertainty of the fit. The dashed black line corresponds to the
lope of the linear fit found by Nissen et al. ( 2020 ), for reference. 

We see that the age −[Y/Mg] trends have different slopes for the
if ferent clans. Ho we ver, among all the trends, it is remarkable the
greement of the slope in the trend found for Clan C and the Nissen
t al. ( 2020 ) fit. Clan C is the group which is composed by a majority
f low-eccentric stars using The Cannon abundances. We note that
he stars analysed by Nissen et al. ( 2020 ) have eccentricites normally
elow 0.1 (see also Nissen 2015 ; Jofr ́e et al. 2017 ; Jackson et al.
021 ). 
Interpreting this finding in terms of the phylogenetic nature of

his group is ho we v er trick y. As sho wn recently by Ratclif fe et al.
 2024 ), the age −[Y/Mg] relationship found by Nissen et al. ( 2020 ,
nd references therein) can be interpreted only by considering that
irth radii also plays a fundamental role. It is only possible to explain
NRAS 529, 2946–2966 (2024) 
hat a sample of stars with a restricted metallicity range in the solar
eighbourhood can have a range in ages if they come from different
alactic radii. Like this, each star traces a different star formation

ate and reaches the same [Fe/H] at different time-scales. The fact
hat Clan C is composed of stars that are mostly on circular orbits,
 ut ha ve a range in ages, suggests that the oldest stars might have
igrated from inner regions. We would expect that old stars with

ircular orbits that have not migrated should be significantly more
etal-poor. These are not here because we have only selected solar-
etallicity stars for our study. 
Our selection in metallicity is ho we ver not too restrictive. In

act, we have a range of 0.6 dex in metallicity in the sample, and
lan C contains stars of all metallicities, indicating that some ISM
volution at the solar radius must be present. Disentangling which
tars are product of the inheritance of the ISM at the solar radius
nd which have migrated or are visiting due to dynamical heating
higher eccentricities) is tricky since all these processes are mixed in
he disc (Feltzing, Bowers & Agertz 2020 ) and evolve as time passes
Aumer, Binney & Sch ̈onrich 2016 ; Bird et al. 2021 ; Lu et al. 2022 )

The slope of Clan D is rather flat, but that could be due to the fact
hat the stars in Clan D are predominantly eccentric. These stars might
ave originated from different Galactic radii and are less exposed to
ave a shared history. Most of them are also old, making the resulting
t biased. It is currently believed that stars originating from different
alactic radii might have different age–[Y/Mg] relations (Casali

t al. 2020 ; Casamiquela et al. 2021a ). Furthermore, the trend and its
elationship with birth radius evolves with time. For oldest stars, this
atio could have been flat across the Galaxy (Ratcliffe et al. 2024 ),
nd this is consistent with our findings. 

For the GALAH Clans A and B, we see a smaller difference
hen considering the uncertainties. Moreo v er, Clan A has an age–

Y/Mg] trend which is flatter than Clan B, which is the opposite
o what we find with the The Cannon abundances. It is thus hard
o explain that Clan A, which contains predominantly low-eccentric
tars, deviates more from the Nissen et al. ( 2020 ) relation than Clan
, which contains a mix of stars. This might be a consequence of
igher uncertainties in the abundances of GALAH DR3. 
A natural question may arise as to whether we are able or not

o reco v er the same trends by simply doing dynamical cuts for the
ample stars. To answer this question, we consider Clans A and C,
ecause they are the groups that mainly contain low-eccentric stars.
e compare the slopes of their chemical clocks with the ones we
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Figure 13. Age–[Y/Mg] relations of the stars in Clans A (GALAH DR3) 
and C ( The Cannon ) selected from the trees of Fig. 10 . Linear regression 
fits are drawn to quantify the slopes in these relations. A linear fit using all 
low-eccentricity stars selected for the analysis is displayed as a solid black 
line. Trend found by Nissen et al. ( 2020 ) displayed as a dashed black line. 
[Y/Mg] errors taken from the internal uncertainties reported by GALAH DR3 
and our The Cannon catalogue. Age errors taken from GALAH DR3 Buder 
et al. ( 2021 ). 
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ould obtain if we considered all the 100 low-eccentricity stars in 
he sample. Fig. 13 summarizes this result. On the left panel, we plot
gain in blue the stars belonging to Clan A and the blue solid line
s the resulting linear fit to these stars. Since Clan A does not only
ontain low-eccentric stars, for better illustration of our findings, we 
lot with different symbols the stars with circular orbits (in circles) 
nd eccentric orbits (in stars). The resting stars in low-eccentricity 
rbits are plotted with grey circles, and the linear fit is shown in the
lack solid line. Finally, for reference, the chemical clock fit found 
y Nissen et al. ( 2020 ) is shown with the dashed line, as before.
ll slopes are specified in the le gend. F or Clan C, which considers

he abundances obtained by us with The Cannon , the same infor-
ation is shown in the right-hand panel, and the stars are coloured

n red. 
As we see in Fig. 13 , by just considering the low-eccentricity

tars, we are not able to find trends that are consistent within the
iterature, even considering the uncertainties. This might be because 
e are missing important older stars which now are on less circular
rbits. A cut on dynamical properties only is therefore not sufficient 
ince the selected groups are incomplete (Soubiran & Girard 2005 ; 
awkins et al. 2015 ). When using the tools provided by phylogenetic

nalyses, we can chemically identify different groups of stars and find 
atterns that could be associated to their shared history. We stress that
e obtain this result only for our new high-precision abundances, 
emonstrating also the importance of having very high-precision 
bundances for a better selection of stellar populations. 

.4 Discussion 

n this section, we discuss the prospects and limitations of a 
hylogenetic analysis on a sample of solar twin chemical data. 

.4.1 On the clustering methods 

he NJ algorithm is essentially a clustering algorithm, not particu- 
arly different to others available in the literature (see e.g. Ratcliffe 
t al. 2020 , for descriptions and discussions of different clustering 
lgorithms used in chemical data). What makes the NJ algorithm 

o we ver attracti ve here is that first we do not have to specify the
umber of clusters we aim to find, unlike other fast clustering 
lgorithms such as K-means. This is important when studying the 
elationships and shared history of a group of stars as a whole, where
e are not primarily interested in finding groups but in studying the
ay in which the entire system is ordered and how this order might

ell us something about their evolutionary history. 
Second, the NJ algorithm is not designed to only cluster the

ata, but to visualize the amount of divergence between pairs of
bjects. This translates into branch lengths that have a meaning of
ifference. NJ trees therefore are not expected to have the objects
ligned at the tips of the tree, in contrast to other dendograms
btained by clustering algorithms such as DBSCAN or HDBSCAN 

Casamiquela et al. 2021b ) or other methods (Ratcliffe et al. 2020 ).
he procedure to define the branching pattern only depends on 

he distance matrix. Other clustering algorithms require to specify 
arameters of closeness and density in the parameter space, which 
annot be constrained in an objective way (Casamiquela et al. 
021b ). 
In fact, here, we are not primarily interested in finding clusters

nd quantifying the number of clusters and their properties, but 
o visualize how the data are structured in their hierarchical order.
ecause of the heritable information, we consider to build the trees,

hat order can be used to interpret shared histories, which is the
ssence of phylogenetics. 

.4.2 On the robustness of solar twin trees 

e comment on the poor support of our trees, where in the best
ase, we still have a large majority of nodes with a support below
0 per cent (see Fig. 9 ). Considering that the NJ algorithm takes a
istance matrix as input and joins the elements that are closest to
ach other, by construction, it will generate a tree that will reflect
he hierarchical order of the distance matrix. But when the range
f differences is small, a perturbation of that distribution given the
ncertainties will imply a very different tree. The distance method 
or tree reconstruction becomes uncertain if the distances are too 
mall for the entire sample (Yang 2014 ). 

There is another source of uncertainty here, which is the fact that by
onsidering loose stars in the disc, we can not rule out the possibility
hat two stars will have the same origin (e.g. be siblings of the same
tar formation episode of the same molecular cloud). The NJ will
lace these two stars in two different tips of leaves in the tree (by
onstruction), but they in fact represent one leave. Without a previous
election of stars belonging to distinct star formation episodes, the 
J algorithm will fail in ranking the leaves, because any hierarchical
rder obtained for stars from the same star formation episode will be
riven by the errors in the abundances and the intrinsic dispersion of
uch populations. 

We also have to keep in mind that there will be a noise because of
he ISM inhomogeneities that does not reflect evolution (Kos et al.
021 ; Ness et al. 2022 ). The hope is that noise is less than the change
ue to evolution (Manea, Hawkins & Maas 2022 ). In that sense,
odes of poor support could also be used to identify conatal stars.
o test these possibilities, simulated data are more suitable, because 

n that case, we know with certainty the origin of the data (de Brito
ilva et al. 2023 ). 
This translates on a node support of less than 50 per cent in the

ase of The Cannon , and below 30 per cent in the case of GALAH
R3 abundances, making the interpretation of the chemical–clock 

elations of the selected clans uncertain. Recently, de Brito Silva 
t al. ( 2023 ) showed using simulations that uncertainties below
.08 dex were necessary to have enough phylogenetic signal for 
MNRAS 529, 2946–2966 (2024) 
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istory reconstruction. That work ho we ver can not be directly applied
o our study, because our metallicity range is much smaller, our real
alaxy did not live in isolation like the simulated galaxy of de Brito
ilva et al. ( 2023 ), and our stars might come from the same birth
loud whereas de Brito Silva et al. ( 2023 ) had stellar particles which
ay reflect single stellar populations depending on the numerical

esolution of the simulation. 
We comment that repeating this analysis with different selections

f 200 stars did not reproduce the chemical clock trends found in
ig. 13 , making us conclude that the selection effects of our stars is
iasing our results, and that the phylogenetic signal for solar twins
n GALAH data is still too weak for this kind of study, regardless
f the high precision of our derived abundances. We need a sample
ith a more extended chemical space and metallicity range to keep

dvancing in this topic with observations. 

.4.3 On the chemical evolution of solar twins 

sing solar twins for this kind of study might also add further
hallenges in the interpretation of the results. Having a sample of
 restricted range in metallicity makes it impossible to trace back
he population that was formed from the pristine gas (e.g. with
o metals). The fact that all stars are metal enriched tells us that
e are studying a population from a stage in which considerable

hemical enrichment already happened. Stars of different ages and
ifferent [Y/Mg] but similar [Fe/H] might well be formed at different
alactic environments and arrive to the solar neighbourhood through
 dynamical process that can be radial migration or heating. 

Gi ven the dif ferent time-scales in the pollution of Mg, Y, and Fe
nto the ISM, it is not straightforward to interpret a clan which has
 tight relationship of [Y/Mg] and age but has a limited range in
Fe/H]. Is it that the NJ is simply clustering stars of different birth
adii which trace different evolutionary histories of the ISM? Perhaps
he AGB stars, which live longer than the progenitors of SN II , had
nough time to radially migrate and pollute the ISM with Y at a
ifferent location than their birth place in contrast to the pollution of
g by their massive siblings (Johnson et al. 2021 ). It is possible that

he ISM has a shared evolutionary history at a wider range in radii
ue to migration. The interplay between migration, heating, blurring,
nd mixing in the ISM of the Milky Way is still poorly understood
Feltzing, Bowers & Agertz 2020 ). Phylogenetic methods might thus
ffer an interesting opportunity to learn more about these processes.
We also need to remind ourselves of the selection effect in our

ample, where the selection of solar twins systematically underrep-
esents young stars. As explained in Sharma et al. ( 2018 ), the age
stimation for both the youngest and oldest stars via the isochrone
tting is biased towards intermediate ages. 
As seen from Figs 9 , 12 , and 13 , GALAH data still do not have the

recision in the abundances required to perform a robust phylogenetic
tudy. Ho we v er, GALAH data hav e been central for this analysis,
ecause The Cannon uses the best GALAH results to perform a
eanalysis which then allows us to apply phylogenetic techniques in
ther GALAH stars. Considering that future data releases of GALAH
re expected to increase in precision, the prospects of phylogenetic
tudies in GALAH are still very promising. 

 C O N C L U S I O N S  

n this paper, we have performed a systematic application of the
achine learning algorithm The Cannon to a set of solar twins

bserved and analysed in GALAH DR3 (Buder et al. 2021 ) with
NRAS 529, 2946–2966 (2024) 
he aim to provide a catalogue of high precision abundances of
8 716 solar twins and use a set of this catalogue for a phylogenetic
tudy of GALAH data. Other scientific applications of high-precision
bundances of solar twins include setting constraints on planet
ngulfment processes (Bedell et al. 2018 ; Maia et al. 2019 ) or the
evel of homogeneity in star formation regions such as open clusters
r wide binaries (Liu et al. 2019 ; Hawkins et al. 2020 ; Espinoza-
ojas et al. 2021 ). Therefore, our catalogue can be used to explore

hese subjects, in addition to our primary intention to perform a
hylogenetic analysis. 
In the systematic application of The Cannon for the generation of

his catalogue, we investigated the impact of the labels considering
ifferent training sets. We first varied the size of the training set, and
hen studied the label reco v ery when removing outliers. This analysis
elped us to conclude that a training set with 150 GALAH stars of
NR > 117 was sufficient for predicting precise labels of stellar
arameters and 14 chemical abundances of solar twins observed
ith GALAH. 
Our results agree within 50 K in temperature, 0.09 dex in log g ,

.03 in [Fe/H], and in 0.05 dex in abundances with GALAH for stars
NR > 50. For lower SNR, the results agree less, within 60 K in

emperature, 0.1 dex in gravity, 0.07 dex in metallicity and 0.1 dex in
he other abundances. This is expected considering that also GALAH
ata are more uncertain for lower SNR. The internal uncertainties
f our model at lower SNR do not significantly increase compared
o high-SNR results. The consistency of predicted labels for repeat
bservations remains comparable to the GALAH ones, provided
oth GALAH and The Cannon used the same pixels to extract the
nformation. 

Our new catalogue allows us to test phylogenetic studies on the
olar neighbourhood that require high precision abundances. We
nalysed 200 stars separated in two eccentricity groups, namely a
roup with circular orbits and another one with orbits of eccentricity
round 0.4, and we compared the trees obtained for these groups
sing GALAH and The Cannon abundances. In both cases, we
ere able to find clans which were distinct in eccentricities, with
ne clan notably grouping the stars with circular orbits. While the
ode support in the The Cannon tree is higher than for the GALAH
ree, the o v erall support in both trees is not outstanding. This is
xpected for a sample of stars which are so similar to each other that
he hierarchical differences between stars are very small and thus
ncertain. It is also possible that many of these solar twins are tracers
f the same star formation episode, causing a conflict in the tree
hape which is forced by the neighbour joining algorithm. To truly
tudy the support and amount of information carried out in chemical
bundances, simulated data should be used instead, even if simulated
ata are prone to systematic uncertainties (de Brito Silva et al.
023 ). 
The trees still allowed us to discuss the astrophysical nature of

he clans found. To this aim, we compared age–[Y/Mg] relation
e.g. chemical clock) of the clans with the literature (Nissen et al.
020 ), obtaining an agreement for one of our clans with our The
annon ab undances, b ut no agreement with the clans found in

he GALAH tree. The agreement between the chemical clock of
issen et al. ( 2020 ) and ours was obtained noting that the clan

ncluded mostly stars with circular orbits, but some older stars with
ccentric orbits as well. Indeed, the age–[Y/Mg] relation found for
nly stars with circular orbits does not agree with the chemical clock
btained by Nissen et al. ( 2020 ), because of the lack of old stars with
ircular orbits. We discussed that this result was highly dependent
n the selection of the stars. The full potential of phylogenetic
tudies in large catalogues can thus be further explored using
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tellar samples with more extended abundance ranges than solar 
wins. 

Our work sets a further basis for the promising future of Galactic
hylogenetics, in which we can use large spectroscopic surv e ys like
ALAH with machine learning to impro v e the chemical abundances 
hich then can be used as input for phylogenetic analyses and so

econstruct the history of our home Galaxy, the Milky Way. 
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Figure A1. Top panel: Bias in train as function of training size N . Bands 
represent the 16th and 84th percentile of the values obtained for the 10 
different trained models with training sets of size N . Bottom panel: Bias 
Median in test as function of training size. For better visualisation of the 
results, ef fecti ve temperature is not sho wn here. 
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PPENDIX  A :  I M PAC T  O F  T R A I N I N G  C H O I C E S
N  L A BEL  R E C OV E RY  WITH  T H E  C A N N O N  

n this appendix section, we discuss the results of different training
hoices on the label reco v ery of The Cannon . We perform the three
ain studies which are discussed in the following sections. The first

tudy is the impact of the predicted labels and their uncertainties for
ifferent training set sizes. The second study is the reliability of the
ov ariance uncertainties gi ven the different training set sizes, and the
hird study is the accuracy and precision of the predicted labels when
he training set has label outliers. 

1 Bias as function of training set size 

e consider only the high-SNR sample of 5028 stars described in
ection 2 . From there, we perform a random split where we take 80
er cent of this sample for training set selection, and the remaining
0 per cent as a fixed test set for the different models built. Thus,
e hav e fix ed 1006 stars for testing and 4022 stars to build different

raining sets. 
From the 4022 spectra available for training, we study training

izes N = 10, 20, 30, 50, 100, 150, 200, 250, 300, 350, 400, 500,
 000, 2 000, 3 000. We further choose randomly 10 subsamples of
ize N 1 = 10 and train 10 different The Cannon models, each one
sing a different subsample of size N 1 as its training set. This allows
s to e v aluate the impact of the choice of stars in each set. Then for
 2 = 20, we select the first subsample of size N 1 = 10 and randomly
dd the missing N 2 –N 1 spectra adding up to a training set of N 2 

pectra. This random addition of the first subsample of size N 1 is
one 10 times, generating 10 subsamples of size N 2 = 20. We again
rain 10 different The Cannon models, each one using a different
ubsample of size N 2 as its training set. This procedure is followed
or all the rest of the training sets and sizes. 

With these models, we predict the labels for the 1008 stars in our
est set and compare them with the values in GALAH DR3, which is
hown in Fig. A1 . In the top panel, we show the median difference
bias) between the predicted labels and GALAH DR3 in training as
unction of the training set size. Each line corresponds to a different
abel with error bands representing the 16th and 84th percentiles in
he distribution of the results obtained by the 10 different The Cannon

odels. Some labels are highlighted with colour as example. The bias
etween the predicted labels and GALAH DR3 in test as function of
raining size is shown in the bottom panel. The difference between the
ALAH DR3 labels and predicted The Cannon labels are small for

ll training sizes N . log g and [Y/Fe] show a minor bias increase with
NRAS 529, 2946–2966 (2024) 
 up to 0.01–0.02 de x. F or N = 10, the differences are essentially
ero for all the labels, showing the o v erfitting effect in The Cannon .

We comment the bias in the parameter log g and its similarity
ith [Y/Fe], which are highlighted with orange and brown colours,

espectively. GALAH DR3 surface gravities are not determined
irectly from the spectra, but from photometry and the parallax
Buder et al. 2021 ) because GALAH spectra do not contain sufficient
ependency of this parameter. It is hence expected that the The
annon model does a poor job in predicting this parameter. 
The impact of the bias in log g with [Y/Fe] is because the

ur The Cannon model considers the ionized Y lines in GALAH
pectra. Ionized lines have a dependency on surface gravity. If the
urface gravity is poorly determined, it is expected that a method
eriving abundance of ionized lines of a given strength will respond
y balancing the ill-determination of surface gravity with an ill-
etermination of that abundance. Most of the other abundances are
erived from neutral lines, which are less sensitive to gravity. From
he bottom panel of Fig. A1 , we observe that for most of the labels,
he differences show a decreasing trend with training size N . The
rend reaches a plateau at around N = 150 which is marked with a
ertical dashed line. 

To further assess the potential problems of o v erfitting in the
raining process, we compute the mean squared error (MSE) . This
llows us to assess the quality of the predictions made by the different

http://dx.doi.org/10.3847/1538-4357/ab9a46
https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stae280#supplementary-data
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Figure A2. Top panel: Median of MSE in train as function of training size 
N . Error bands represent the 16th and 84th percentile of the values obtained 
for the 10 different trained models with training sets of size N . Bottom panel: 
Median of MSE in test. Top and bottom panel normalized in value at training 
size N = 150. 

Figure A3. Median of the reported uncertainties in test as function of training 
size. Normalised at value in training size N = 150. Error bands represent the 
16th and 84th percentile of the values obtained for the 10 different trained 
models with training sets of size N . 

Figure A4. One-to-one comparison of stellar parameters T eff , log g , [Fe/H]. 
Comparison of 3 set-ups/models. Model 1: 150 spectra of minimum SNR of 
132 (left column), Model 2: 100 spectra of minimum SNR of 132 (middle 
column), and Model 3: 150 spectra of minimum SNR of 117 (right column). 
In x -axis, GALAH DR3 labels. In y -axis, The Cannon model estimates for 
labels. Outer dashed lines correspond to 2 σ and 3 σ boundaries for Model 1 
and Models 2, 3, respectiv ely. Ov erestimates abo v e the upper dashed line are 
plotted in red, underestimates below the lower dashed line are plotted in blue. 
Upper left and bottom right of each panel shows the median μ and standard 
deviation σ of the difference, and the number of outliers found outside each 
boundary , respectively . 
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he Cannon models in the test step, as well as the self-test , i.e. the
est/label prediction step o v er the training set itself. In other words,
e can e v aluate ho w well the model reco v ers the labels for the

tars considered in the training process. This is seen in Fig. A2 .
he top and bottom panel show the median MSE in training and

est, respectively, as a function of the training size N . Each line
orresponds to a different label. We normalize the results to the ones
btained at N = 150 for a better visualization, and the error bands
o v er the range of values between the 16th and 84th percentile o v er
he distribution of the results obtained by the 10 different The Cannon

odels. 
When N = 10, the MSE in train is large with a high discrepancy

etween the 10 different The Cannon models. The MSE significantly 
rops for N = 20, but starts increasing again with the training size.
he bottom panel shows that the MSE in test starts high for small

raining sets, decreasing monotonically until a training size of N =
50 and remain small for higher N . Our analysis shows that for
 training set smaller than 150 stars, The Cannon is affected by
 v erfitting if 14 labels from solar twin GALAH spectra are estimated.
or training sets larger than 150 stars, we do not see a significant

mpro v ement in the bias and the MSE of the model. Therefore, we
onclude that 150 stars is an optimal size for our The Cannon model
f solar twin stars. 
MNRAS 529, 2946–2966 (2024) 
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M

Figure A5. One-to-one comparisons for chemical abundances for the 3 set-ups/models. Model 1: 150 spectra of minimum SNR of 132 (left column), Model 
2: 100 spectra of minimum SNR of 132 (middle column), and Model 3: 150 spectra of minimum SNR of 117 (right column). In x -axis, GALAH DR3 labels. In 
y -axis, The Cannon model estimates for labels. Outer dashed lines correspond to 2 σ and 3 σ boundaries for Model 1 and Models 2, 3, respectiv ely. Ov erestimates 
abo v e the upper dashed line are plotted in red, underestimates below the lower dashed line are plotted in blue. Upper left and bottom right of each panel shows 
the median μ and standard deviation σ of the difference, and the number of outliers found outside each boundary, respectively. 
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2 Reliability of precision estimates (co v ariance uncertainties) 

n Fig. A3 , we show the median reported internal uncertainties for
he Cannon as a function of the training size N . The lines and error
ands follow the same definition as in Figs A1 and A2 . We recall
hat the internal uncertainties in SME are computed from the diagonal
NRAS 529, 2946–2966 (2024) 

a  
f the covariance matrix given by SME fitting procedures. With The
annon , we compute the internal uncertainties in the same way. 
There is a similar trend for all labels, where the median internal

ncertainties in test increase with N . The stellar parameters T eff 

nd [Fe/H] increase slowly, reaching a value up to 20 per cent
t N = 150. When focusing on Y, we find that values of 150 <
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 ≤ 300 reports smaller uncertainties, but steadily increase for 
arger N . For log g , Cr and Mn, after N = 150 the uncertainties
onsiderably increase, reaching values nearly 70 per cent higher in 
he case of log g and Cr, and 30 per cent higher for Mn. For the
mallest training set sizes, we attribute the low uncertainties to 
 v erfitting. In particular for log g , we attribute this increase to the
isagreement of spectroscopic and photometric log g (compare to 
op panel of Fig. A1 ). For GALAH DR3, log g was actually not
stimated from the spectra, but photometric information due to the 
sually lower information content in spectra. This approach can, 
o we ver, fail for a variety of reasons like binarity or wrong photo-
etric or astrometric information and thus introduce an increasingly 

ystematic trend in the training. While we tried to exclude peculiar 
pectra from our training set via visual inspection, we suspect that for
raining sizes abo v e 500, residual peculiar spectra caused the rise of
raining imperfections and the reported uncertainties. Some further 
mperfections are also not visible noted, and lead to training labels 
hich are incorrect. Such training imperfections, as evidenced by 

he rising MSE in Fig. A2 for Cr, can then propagate into the test 
ncertainties. 
Hereafter, we consider N = 150 stars as our final training set size.
e can conclude that this size is sufficient for making a The Cannon
odel that predicts most labels with high accuracy and sufficient 

recision. There is not much impro v ement in both accuracy and
recision for higher values of N . 

3 Robustness against outliers 

e investigate how robust is our The Cannon model against potential 
utliers in the training set. We choose the optimal size of 150 stars for
his analysis. To do so, we first select 150 stars with the highest SNR
n our sample (hereafter, Model 1). This yields a training set of stars
ith SNR abo v e 132 in all CCDs. Then, we train a The Cannon model

nd perform a self-test. The results for Model 1 can be found on the
eft panels in Fig. A4 for stellar parameters and Fig. A5 for chemical
bundances. We set up the 3 σ boundaries for all labels and define for
ach one of them the outliers those who lie outside this boundary. In
he figures, these outliers are plotted with red and blue colours that
ie outside the dashed lines . In general, the predictions about the
arameters agree with GALAH DR3. Ho we ver, in Fig. A5 , we begin
o see outliers for some of the chemical abundances, in particular as
a and Mn. There are four Ca lines, but two of them lie in telluric

ines where the correction may not al w ays be perfect (Buder et al.
018 ). In GALAH DR3, the spectrum uncertainty is increased for
hese lines to account for strong blends of the telluric lines. Here,
ith The Cannon , we take the spectrum uncertainty directly from the
ata base, obtaining o v erabundances of Ca because the model finds
 high absorption feature (Buder et al. ( 2018 )). 

We took two different approaches to deal with the outliers. The first 
ne was to remo v e all the 50 outliers found in the self-test and train
 new The Cannon model with the remaining 100 stars of minimum
NR 132 (hereafter, Model 2). The second one was to remo v e the
utliers in the first model and set a lower threshold in SNR to add
ore stars and build up a new training set of size 150 to then train a

ew The Cannon model. In this second case, that this model produced
ew outliers, so we reiterated the process by removing such outliers
nd setting a lower minimum SNR threshold to build a new training
et of size 150. After 4 iterations, we converged to a The Cannon
odel trained with a set of 150 stars with minimum SNR of 117

hereafter, Model 3). 
The results of these two approaches can be seen in the middle
nd right panels of Figs A4 and A5 , for Model 2 and Model 3,

igure A6. σ impro v ements with respect to Model 1 for all labels (in per-
entage). Impro v ement giv en by model 3 in blue bins and impro v ement/decay
n percentage made by model 2 in red lines. 

espectively. There are no outliers for the stellar parameters in both
pproaches. The same holds for the chemical abundances in Fig. A5
here most labels have either no outliers or very few. 

4 Choosing final training set 

rom Figs A4 and A5 , we can see that Models 2 and 3 are an
mpro v ement with respect to Model 1 in terms of agreement in
ith respect to GALAH DR3. Fig. A6 shows the o v erall percentage

mpro v ement of the dispersion σ in each label, given by the two
atter models with respect to Model 1. The blue bins represent
he percentage of impro v ement for Model 3, and the red lines
epresent the increment/decay in percentage of the impro v ement 
n σ by the Model 2. For stellar parameters, we observe a higher
mpro v ement giv en by Model 2, with a difference of 3.3 per cent,
nd 4.9 per cent for the T eff and metallicity , respectively . For log g ,
e have a considerable difference of 11.5 per cent in fa v our of Model
. For chemical abundances, we observe negligible differences for 
g, Ti, Mn, Ba where the differences are up to 1.4 per cent. For
l, Si, Ca, Sc, Cu, we find higher differences up to 13.7 per cent in

a v our of Model 2, and for Na, Cr, Ni, Zn, Y, we obtain differences
p to 11.9 per cent in fa v our of Model 3. The mean impro v ement
 v er all labels is 36.2 per cent and 34.8 per cent for models 2 and 3,
espectively. 

Taking into consideration that the o v erall difference of 2.6 per cent
n mean impro v ement for all the labels is v ery small, we choose

odel 3 for training. This model has an optimal size of 150 as well
s a better co v erage in the parameter space of stellar parameters and
4 chemical abundances for solar twins. 

PPENDI X  B:  STARS  SELECTED  F O R  

H Y L O G E N E T I C  ANALYSI S  

able B1 shows the ages and eccentricities of 50 stars used in the
ree. The information about the rest can be found online. 
MNRAS 529, 2946–2966 (2024) 
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Table B1. Example of 50 stars selected for phylogenetic analysis (see Fig. 
10 ). Tip ID corresponds to the integer displayed in the tips of the trees. For 
reference, we show the Gaia DR3 IDs, and the ages and eccentricities ( ε). 
The information of the rest of the stars can be found online as supplementary 
material. 

Tip ID Gaia DR3 ID Age (Gyr) ε

0 5396076243592498944 8.74 0.6303 
1 3814762674970623104 7.50 0.6109 
2 6690566020667409024 8.49 0.5699 
3 56608356156072448 10.90 0.5324 
4 2532978746890377472 10.26 0.5305 
5 6557301912844603264 10.53 0.5257 
6 4710178345898217728 10.76 0.5183 
7 3747102371529922560 10.11 0.5142 
8 2582225773914697728 5.00 0.5024 
9 6247059932386652288 3.91 0.4902 
10 6483285057806757376 9.39 0.4796 
11 4475030814892134912 11.21 0.4793 
12 5416434491653412480 9.05 0.4750 
13 3201058165300460928 9.51 0.4748 
14 3910048792175067648 10.14 0.4660 
15 5827969736762248192 5.17 0.4607 
16 6665136481380692992 5.97 0.4605 
17 6811053318039677184 10.53 0.4584 
18 6094499086259119360 9.81 0.4574 
19 2558440382468221184 10.33 0.4530 
20 5565471677892685184 10.29 0.4527 
21 3206464940714422144 7.26 0.4523 
22 3462833192176962688 8.99 0.4523 
23 3753282382791867904 9.78 0.4504 
24 6579941746317849344 5.57 0.4498 
25 3203847042185006080 11.39 0.4497 
26 2616281875274482560 9.26 0.4491 
27 685943836661554944 7.10 0.4469 
28 5566658772490401920 8.59 0.4453 
29 6687193131310348032 11.20 0.4448 
30 5780117135278458112 10.51 0.4446 
31 3857760795161492992 10.32 0.4433 
32 3405317601488435328 10.27 0.4410 
33 5484461722739849984 9.42 0.4406 
34 6583876554835641088 4.42 0.4405 
35 6140741109344938368 10.20 0.4404 
36 3393159923462202624 7.76 0.4404 
37 3694036023363825152 8.24 0.4401 
38 3618875671935767936 10.92 0.4401 
39 6033793262610025984 7.65 0.4314 
40 2600019239306534528 9.16 0.4310 
41 2715831692413101056 8.16 0.4301 
42 6147111267399070464 10.34 0.4301 
43 6379802489437427840 9.64 0.4297 
44 6456328640466199424 10.45 0.4292 
45 6144956155890048256 9.97 0.4289 
46 4823564043700716672 8.10 0.4282 
47 5722776126416465792 10.66 0.4274 
48 5582111338970433664 11.23 0.4265 
49 5451886835341219712 11.44 0.4260 
50 6656031455656664192 8.57 0.4257 
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