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Abstract

This thesis is part of the Aurora project, an ongoing long-term project investiga-

ting the potential use of robots to help children with autism overcome some of their

impairments in social interaction, communication and imagination. Autism is a spec-

trum disorder and children with autism have different abilities and needs. Related

research has shown that robots can play the role of a mediator for social interaction in

the context of autism. Robots can enable simple interactions, by initially providing

a relatively predictable environment for play. Progressively, the complexity of the

interaction can be increased.

The purpose of this thesis is to facilitate play between children with autism and

an autonomous robot. Children with autism have a potential for play but often

encounter obstacles to actualize this potential. Through play, children can develop

multidisciplinary skills, involving social interaction, communication and imagination.

Besides, play is a medium for self-expression. The purpose here is to enable children

with autism to experience a large range of play situations, ranging from dyadic play

with progressively better balanced interaction styles, to situations of triadic play with

both the robot and the experimenter. These triadic play situations could also involve

symbolic or pretend play.

This PhD work produced the following results:

• A new methodological approach of how to design, conduct and analyse robot-

assisted play was developed and evaluated. This approach draws inspiration

from non-directive play therapy where the child is the main leader for play and
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the experimenter participates in the play sessions. I introduced a regulation

process which enables the experimenter to intervene under precise conditions in

order to: i) prevent the child from entering or staying in repetitive behaviours,

ii) provide bootstrapping that helps the child reach a situation of play she is

about to enter and iii) ask the child questions dealing with affect or reasoning

about the robot. This method has been tested in a long-term study with six

children with autism. Video recordings of the play sessions were analysed in

detail according to three dimensions, namely Play, Reasoning and Affect. Re-

sults have shown the ability of this approach to meet each child’s specific needs

and abilities. Future work may develop this work towards a novel approach in

autism therapy.

• A novel and generic computational method for the automatic recognition of

human-robot interaction styles (specifically gentleness and frequency of touch

interaction) in real time was developed and tested experimentally. This method,

the Cascaded Information Bottleneck Method, is based on an information theo-

retic approach. It relies on the principle that the relevant information can be

progressively extracted from a time series with a cascade of successive bottle-

necks sharing the same cardinality of bottleneck states but trained successively.

This method has been tested with data that had been generated with a phy-

sical robot a) during human-robot interactions in laboratory conditions and

b) during child-robot interactions in school. The method shows a sound reco-

gnition of both short-term and mid-term time scale events. The recognition

process only involves a very short delay. The Cascaded Information Bottleneck

is a generic method that can potentially be applied to various applications of

socially interactive robots.

• A proof-of-concept system of an adaptive robot was demonstrated that is re-

sponsive to different styles of interaction in human-robot interaction. Its im-

pact was evaluated in a short-term study with seven children with autism. The

recognition process relies on the Cascaded Information Bottleneck Method. The

robot rewards well-balanced interaction styles. The study shows the potential

of the adaptive robot i) to encourage children to engage more in the interaction

and ii) to positively influence the children’s play styles towards better balanced

interaction styles.

It is hoped that this work is a step forward towards socially adaptive robots as

well as robot-assisted play for children with autism.



iii

Acknowledgements

This PhD research was supported by a research scholarship of the University of
Hertfordshire. The work was partially conducted within the EU Integrated Project
RobotCub (Robotic Open-architecture Technology for Cognition, Understanding and
Behaviours) and was partially funded by the European Commission through the E5
Unit (Cognition) of FP6-IST under contract FP6-004370.

I would like to thank my three supervisors, Kerstin Dautenhahn, Daniel Polani
and Stuart Powell, for their their guidance and support. Thank you to René te
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Chapter 1

Introduction

The research presented in this thesis is part of the Aurora project (Aurora, 2008), an

ongoing long-term project investigating the potential use of robots to help children

with autism overcome some of their impairments in social interactions (Dautenhahn

and Werry, 2004, 2000). The Aurora project is constituted of two main streams of

research. One stream focuses on the robot as an autonomous toy and, in particular,

addresses the question of real-time recognition and adaptation to human-robot inter-

action styles (François et al., 2007, 2008b). The second one focuses on the potential

role of the robot as a mediator (Davis et al., 2005; Robins et al., 2005a; François

et al., 2009), i.e. as a salient object that helps children interact with other children

or adults.

Children with autism have impairments in communication, social interaction and

imagination skills (National Autistic Society, 2008; Powell, 2000). Autism is a spec-

trum disorder and children with autism have different needs, abilities and skills (Asso-

ciation, 1994). The advantage of enabling the child to interact with a robotic platform

is to reduce the complexity of the interaction and to initially create a relatively pre-

dictable environment, so that it can be easier for the child with autism to feel at

ease. It also aims at enabling the child to understand better the interactions taking

place. Progressively, the complexity of the robot’s behaviours can be increased, along

with the child’s progress in coping with more complex social interactions, involving,

ideally, both the robot and other children or adults.

1
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1.1 Motivation

Through play, children can develop skills in various fields such as social, communica-

tive, imaginative, logical and abstract skills (Chaillé and Silvern, 1996; Piaget, 1945;

Boucher, 1999). Play is also a medium for self-expression. Research has shown that

children with autism have a potential for play (Boucher and Wolfberg, 2003), but,

unfortunately, often encounter obstacles to actualize this potential (Dautenhahn and

Werry, 2004; Fritz, 1989). A challenging goal is to find a way to facilitate their access

to various play situations despite this difficulty. The work presented in this thesis

focuses on facilitating play between children with autism and an autonomous robot.

The ultimate goal is to enable children to experiment with a variety of play situa-

tions, ranging from solitary (dyadic play with the robot) to social situations of play

in a triad, with both the robot and another person, and from basic tactile interaction

to more symbolic situations of play, involving possibly pretend play. It is hoped that

children would develop appropriate skills, while involved in specific play situations.

For instance, children may progressively understand some notions of causality: e.g.

‘when activating a sensor, the robot shows a reaction’. Another example is the no-

tion of chronology that is present in several games, such as ‘hide and seek’ or ‘story

telling’. More generally, if a child can play symbolically, she may develop imagination

skills. And if she manages to play in a triad with both the robot and another person,

she may deal with communicative and social skills. An additional challenge towards

this goal is to be able to adapt to each child’s specific needs and abilities. Autism

is a spectrum disorder and the abilities and needs can vary enormously. In addition,

we should try to make play with the robot as enjoying and fun as possible; thus, the

personalities of the children, their liking and disliking, should also be taken into ac-

count. Consequently, this challenging goal of facilitating play between children with

autism and an autonomous robot should be addressed along three axes:

• The design of the play sessions: How should the experimental sessions be de-

signed in order to adapt to the children’s needs and abilities? What should be

the role of the experimenter?

• The recognition of the interaction styles: How could the robot recognize the play

styles of the children in real time, in order to autonomously adapt to them?

• The adaptation of the robot: How could the robot adapt to the children’ s needs,

abilities and preferences so that fun and enjoyment are favored, and so that the

children learn from their interaction with the robot?
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1.2 Methodology and Practical Effort

The research presented in the thesis is really multidisciplinary, involving important

challenges, particularly in robot-assisted play and in pattern recognition. For this

work, I had to read about various areas: child development, developmental robotics,

developmental psychology, autism research, therapy, education, assistive technology,

robot-assisted play, social robotics and machine learning.

Concerning the research on pattern recognition, little research had been done

before in the recognition of interaction styles in real time. I investigated various

techniques. The prototypes for the interaction styles had to be generated under

controlled laboratory conditions, in interaction with the robot which was a very time

consuming process1. This notably implied to take into account the possible artifacts

due to real data. The testing of the techniques was done in two steps: first, I ran a

test with data generated under laboratory conditions, and, when successful, I applied

a further test with data generated in real situations of play between children with

autism and the robot. In the end, I developed a novel computational method for

time series analysis based upon the existing Information Bottleneck method.

Concerning the long-term experiments in school, I should mention that it requires

lots of practical effort. Firstly, it takes time to make contacts with schools. Schools

are very busy, and, in terms of logistics, it is not necessarily easy to be attributed

a room where the experiments can happen every week. In the context of this work,

the school already knew about the Aurora Project beforehand and it was therefore

faster to get the agreement to conduct the experiments in the school. Besides, for

each child, the parent’s written consent form is required before starting the trials,

as well as a CRB check plus ethics approval from the University Ethics Committee.

Furthermore, a documentary was broadcasted on 25th August 2008 on my research

on the German channel 3SAT. For this filming, I had to get firstly the authorization

from the school to film in the school and, secondly, specific consent forms from the

parents, so that the children could be filmed by the journalists. In particular, the

journalists filmed play sessions that I conducted with the children. The documentary

is now available online, on the internet site www.3sat.de, Rubric ‘Nano’, with the

title ‘Roboter soll Kommunikation autistischer Kinder foerdern’.

In terms of experiments, I conducted play sessions for more than a year on a

weekly basis (15 months, including holiday time). During the first four months, six

children participated in the trials. After the four first months, three other children

1There was no preexisting standardized databases which could have been used.
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joined the play sessions; thus in total, nine children were then involved in the play

sessions. Each play session was video recorded for a later analysis in details, which

represents a considerable amount of time. It should also be mentioned that the play

sessions require additional skills than scientific or technical ones. Extreme concen-

tration, organisation, adaptation, observation, empathy and listening are required at

all time.

1.3 Contribution to Knowledge

The research presented in this thesis contributes to several areas:

Robot-Assisted Play: I propose and experimentally test a new methodological

approach of how to design, conduct and analyse robot-assisted play.

This approach is inspired by non-directive play therapy. The experimenter par-

ticipates in the play sessions. The child is the main leader for play. However, under

specific conditions that are precisely defined, the experimenter intervenes proactively

in the play situations. This intervention aims at i) preventing the child from entering

or staying in repetitive behaviours; ii) providing bootstrapping that helps the child

reach a situation of play she is about to enter and iii) asking the child questions

dealing with reasoning or affect related to the robot.

This methodological approach focuses on three intertwined dimensions that are

play, reasoning and affect. The analysis of the play sessions relies on these three

dimensions with a qualitative analysis. Each dimension is analysed according to a

list of precise criteria.

This approach is tested with a long-term study with six children with autism in

school and proves capable to adapt to each child’s needs and abilities. Each child

makes progress in at least one dimension (Play, Reasoning or Affect). In particular,

children experiment with various situations of play that address specific aspects of

play such as the use of causality/reaction, social play, chronology, symbolic and

pretend play.

Pattern Recognition: I design a novel and generic computational method for the

automatic recognition of human-robot interaction styles in real time. This method is

experimentally tested with data that have been generated under laboratory controlled

conditions in real interactions with a robot and with data that have been produced

during child-robot interaction in school where children were not instructed how to
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play. Results show the capability of the method to recognize short-term and mid-

term time scale events correctly. The recognition is made with a very small delay.

This method is entirely generic for application with socially interactive robots. It

forms a step towards socially adaptive robots.

Human-Robot Interaction: I demonstrate a proof-of-concept system for an adap-

tive robot responsive to different styles of interaction in human-robot interaction. I

test its impact through a study with seven children with autism.

The adaptive robot uses the Cascaded Information Bottleneck Method for the

real-time recognition of the interaction styles. I design a schema for the robot’s

adaptation that is based on the principle of rewarding well-balanced styles of interac-

tion. In addition, the robot attempts to encourage children to engage in interaction

if they are disengaged. Results from the trials conducted show the positive impact

of this adaptive robot on the children’s play styles.

Developmental Robotics: I contribute to the understanding of social behaviour

and adaptation which are key topics in developmental robotics, inspired by research

on child development and autism therapy.

Autism Therapy: I conduct a study that potentially may be developed towards

a new method in autism therapy. At the moment, a roboticist is needed to deal with

the issues implied by the use of a robot. In future, play therapists could apply the

new methodological approach in robot-assisted play that is presented in this thesis.

1.4 Publications resulting from this work

Several publications resulted from this work:

• One journal paper (to appear): François et al. (2009);

• Two conference papers: François et al. (2008b, 2007);

• Two technical reports: François et al. (2008a,c);

• An abstract for a talk: This talk will be given on December 1st 2008, in Coven-

try University Technocentre, at the Conference RAatE 2008 (Recent Advances

in Assistive Technology and Engineering). The abstract is entitled ‘Robot As-

sisted Play: Detecting Interaction Styles of Children with Autism Playing with

a Zoomorphic Robot’ (authors: François, D., Dautenhahn, K., and Polani, D.).
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1.5 Outline of the thesis

Chapter 2 begins with background on Human-Robot Interaction, a fairly recent and

broad area of research, including Child-Robot Interaction and Robot-Assisted Ther-

apy and Education, for which the current state of research is presented.

Chapter 3 is dedicated to Play and Autism: Play is a vehicle for learning and for

experimenting with a multidisciplinary range of skills. Children with autism have a

potential for play but often encounter obstacles to actualize their potential. Several

approaches in psychology coexist with respect to learning and cognitive development.

More recent ones underlining the role of social interaction in the process of learning

are particularly highlighted. This leads to the formulation of the research questions

that structure this research on facilitating play between children with autism and an

autonomous robot.

In Chapter 4, I introduce a new methodological approach for designing, conduct-

ing and analysing robot-assisted play. This method is inspired by Non-Directive Play

Therapy and the role of the experimenter is clearly defined. In this approach, the

child is the main leader for play, but the experimenter participates in the play ses-

sions and can intervene under precise conditions in order to facilitate or bootstrap

the access to higher levels of play. This method is tested through a long-term study

with six children with autism. The results are analysed with a specific methodology

that focuses on three dimensions: Play, Reasoning and Affect.

Chapter 5 addresses the recognition of the interaction styles in real time. This

work was mainly conducted in parallel to Chapter 4. Chapter 5 starts with the

definition of basics concepts and a presentation of the related work. Then, it presents

an early approach for the online classification of human-robot interaction styles based

on Self-Organizing Maps which shows a good accuracy, but requires important hand-

tuning to obtain acceptable delay in the recognition process. Two other techniques

are therefore successively investigated, the Fisher Linear Discriminant Analysis and

Clustering by compression; however, both of them fail in separating the classes. It

leads me to design a novel computational method for the recognition of human-robot

interaction styles, the Cascaded Information Bottleneck Method, that is presented

in a third section of the chapter. This method extends the existing Information

Bottleneck Method developed by Tishby et al. (1999) by providing a cascade of

bottlenecks trained successively. Each bottleneck has the same amount of bottleneck

variables and a measure to extrapolate cases that have not been seen during the

training phase is introduced. The method is evaluated with both data generated
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in laboratory conditions (training set and cross-validation) and data obtained from

interactions in the school, between children and the robot.

Chapter 6 was informed by Chapter 5 and introduces the notion of an adaptive

robot. The main purpose of the real-time recognition of the interaction styles is

actually to enable the robot to adapt its behaviour according to the children’s play

styles. Such a robot is called an adaptive robot (in comparison with a ‘reactive’ robot

which reacts the same way whatever the play styles of the children are). Firstly, the

architecture underlying the adaptation process is detailed and, secondly, results from

a study investigating the impact of the adaptive robot on the play styles of children

with autism are reported.

Chapter 7 discusses the contribution of this thesis and concludes it. Chapter 8

draws directions for future work.

Several Appendices are enclosed in this thesis. Appendix A provides additional

figures for Chapter 6. Appendix B contains details about the children, in terms

of their age and their level of autism. Appendix C explains the methodology to

tailor the behaviours of the robot according to the children’s needs, abilities and

preferences. Appendix D shows the social story used for one child, in order to help

this child understand better how the play sessions proceeded. Appendix E lists the

publications resulting from this research. Appendix F presents the media coverage

on this work. Finally, implementation details can be found on the CD attached.



Chapter 2

Robot-Assisted Therapy and

Education

2.1 Human-Robot Interaction

Robot-Assisted Therapy and Education is one of the various domains of application

of Human-Robot Interaction (HRI), a multidisciplinary research area, which requires

the collaboration of researchers from different fields of expertise such as: psychology,

social sciences, cognitive science, linguistic, artificial intelligence, mathematics, com-

puter science, robotics, engineering and human-computer interaction (Dautenhahn,

2007a; Goodrich and Schultz, 2007).

HRI is a growing novel research field. It started to emerge in the mid 1990’s, and

numerous HRI studies have been conducted since, addressing a great diversity of ap-

plications, ranging from space applications to assistive robotics. Recently, Goodrich

and Schultz (2007) presented a review on HRI, focusing particularly on presenting

the main challenges in the various application domains and on extracting the first

accepted practices that govern the field. They define an HRI problem as the one

of “[understanding] and [shaping] the interactions between one or more humans and

one or more robots”. The goal is to make those interactions beneficial in some sense.

They also identified five main attributes on which the designer can have an impact,

which are the following: 1) level and behaviour of social autonomy, 2) nature of in-

formation exchange, 3) structure of the team, 4) adaptation, learning and training of

people and the robot, 5) shape of the task.

HRI studies can adopt various approaches, which are not mutually exclusive,

namely a robot-centred approach, a robot cognition-centred approach or a human-

8
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centred approach (Dautenhahn, 2007b). A robot-centred approach favors the view

of the robot as an autonomous entity that is pursuing its own goals and interacts

with people in order to pursue a precise goal. A human-centred approach focuses

very much on humans and on how the robot can fulfill a specific task in a way that is

acceptable by humans. A robot cognition-centred approach underlines the capability

of the robot to make decision on its own and solve problem autonomously.

Dautenhahn (2007b) emphasizes the necessity of focusing on social skills for

robots, which requirements may vary depending on the domain of application. Daut-

enhahn (2007b) actually defines a spectrum of requirements for robots’ social skills,

ranging from none for a remotely controlled robot, or a robot operating in a spatially-

temporally separated environment from humans, to essential, for robots in nursing

care, rehabilitation or therapy (e.g. autism therapy) and for robot companions in the

home. Besides, Dautenhahn (2007b) provides a conceptual space of HRI approaches,

where she addresses the notion of social robots and discusses some of its related con-

cepts, e.g. ‘socially evocative’ (Breazeal, 2002, 2003), ‘socially situated’ (Fong et al.,

2003) ‘sociable’ (Breazeal, 2002, 2003), ‘socially intelligent’ (Dautenhahn, 1998), and

‘socially interactive robots’ (Fong et al., 2003)).

Importantly, Dautenhahn (2007b) provides an enlightening grid for categorizing

HRI studies. This grid is based on four criteria, each of them being possibly derived

in a spectrum of intensity:

• ‘Contact with humans’ (spectrum ranging from ‘none’, to repeated, long-term

and physical)

• ‘Robot Functionalities’ (spectrum ranging from limited and clearly defined func-

tionalities to open, adaptive and shaped by learning)

• ‘Role of the robot’ (spectrum ranging from a machine tool to an assistant, a

companion or a partner)

• ‘Requirements of social skills’ (spectrum ranging from no social skills required

to essential)

2.2 Child-Robot Interaction

Numerous studies have been conducted in child-robot interaction research. Important

research questions addressed are whether and how a robot could contribute to the

social and cognitive development of the child, and how, under certain conditions, it
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could be used as a medium for social interaction. The main challenges are to identify

the natural means by which children interact with robots, and to encourage long-

term interaction by an appropriate design of the robots’ features and capabilities and

relevant scenarios.

Tanaka et al. (2006, 2005) lead an ongoing long-term study on child-robot inter-

action with a focus on the context of dancing. The main purpose of this ongoing

study, named “Ruby Project”, is to find principles for realizing long-term interaction

between children and a robot. In the first year of the project, typically developing

children, from age 18 to 24 months, encountered the Sony humanoid robot QRIO

at school, in the context of dancing. Off-line analysis of the interactions between

the children and QRIO showed that the children tended to progressively adapt their

behaviour to the robot’s characteristics. Besides, a further analysis on 45 successive

sequences of interaction of those children with QRIO spanning 5 months (Tanaka

et al., 2007) showed that those children tended to progressively consider QRIO as

their peer rather than as a toy: The way they touched the robot was reorganised so

that, in the end, the distribution of their touch towards the robot was converging to

the one observed when they were touching their peers. This study relies mainly on de-

sign by immersion, which means here that scientists, engineers and robots are present

in the everyday life environment of those children while shaping both hardware and

software and addressing scientific questions early in the development process (Movel-

lan et al., 2007). For instance, this design by immersion has enabled Tanaka et al.

(2006) to highlight some basic necessary units for long-term human-robot interaction,

respectively “sympathy” between the human and the robot and “variation” within

the interaction styles.

In a different study, the potential of communication robots for elementary schools

has been investigated with the robot Robovie (Kanda and Ishiguro, 2005). The focus

of this study was on two different aspects: the first one addressed the role of the robot

as a tutor for children’s learning (Kanda et al., 2004) and the second one dealt with

how it could be possible to encourage long-term child robot interaction (Kanda et al.,

2007). The first aspect was addressed through a two weeks trial where the robot

demonstrated positive effects for motivating children to learn foreign languages at

school. Children showed statistically significant improvements in their listening tests

which were linked to their interaction patterns with Robovie. Nevertheless, children

tended to get bored by the robot after a week of interaction. This illustrates that,

in order to enable long-term human-robot interaction, the robot should have addi-

tional features and capabilities, including some novelty. Besides, Kanda et al. (2007)
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reported on a long-term study they conducted in school with 37 children. Those

children could play freely with the robot on a school-daily basis for about 30 minutes

per session during 2 months. The robot was placed in a classroom and equipped with

two social communication abilities:

1) The capability of forming long-term relationship through 3 main principles of be-

haviour designs, which were the following: i) the robot called children by their names

(it uses RFID tags), ii) the robot adapted its behaviour to each child on the basis

of a pseudo development analysis: the more a child played with Robovie, the higher

the diversity of Robovie’s behaviours was, iii) Robovie told its personal matters to

the children who had interacted with it for a sufficiently high period of time.

2) The capability of evaluating the friendly relationship among the children: this

evaluation relied on the principle that people who spontaneously behaved as a group

were friend. Then, the robot estimated for each child in the group the relationship

with the child and the other children in the group.

Results showed that three main successive phases could be identified: 1) great ex-

citement, 2) stable interaction to satiation and 3) sorrow because the robot was

soon leaving (Kanda and Ishiguro, 2005). These experiments illustrate very well the

challenges of designing a robot and scenarios for enabling long-term human-robot

interaction. Communication robots for elementary school is a particular application

of the general research question on how robots can take part in human daily life by

playing the role of peers, playmate or partners.

2.3 Robot-Assisted Therapy and Education

Rehabilitation Robotics (also called Assistive Robotics) is a main application of HRI.

Rehabilitation robotics is the use of robots for people with special needs. It embraces

physical and cognitive impairment and also the effect of aging.

2.3.1 Robotic devices as tools for physical rehabilitation

In this case, the robot is the mean by which the human can recover some mobility

or agility, lost by the physical impairment. Two examples are a robotic wheelchair

(Yanco, 1998, 2001; Bailey et al., 2007), and a robotic arm mounted on a wheelchair

(Hillman, 2003; Hillman et al., 1999; Hagan et al., 1997; Kwee et al., 1989). The

latter may assist a person with physical impairments in i) eating and drinking, ii)

personal hygiene, iii) mobility and access (e.g. opening doors) and iv) tasks related

to reaching and/or moving objects (Hillman et al., 2001).
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A third example is the use of robotic platforms for visually impaired people (e.g.

Kulyukin et al. (2006); Lacey et al. (1999); Lacey and Dawnson-Howe (1998)). Elderly

people with visual impairments are potential users of such robotic platforms and the

challenge of providing both i) a physical support for the person walking and ii)

obstacles avoidance has been addressed in e.g. the PAM-AID project (Lacey and

Dawnson-Howe, 1998; Lacey et al., 1999).

Another use of robots in rehabilitation is for post-stroke rehabilitation (Kahn

et al., 2001; Kwakkel et al., 2008; Burgar et al., 2002; Mahoney et al., 2003; Matarić

et al., 2007). Stroke is an important cause of severe disability and can lead, in par-

ticular, to difficulties in accomplishing everyday movements activities. During the

critical post-stroke rehabilitation, it is possible to improve this loss of function which

is called “learned disuse”. Research in this specific application domain splits into

two different perspectives: 1)“hands-on” rehabilitation, during which the robot ac-

tively helps the patient repeat prescribed movements of a specific limb (e.g. Kwakkel

et al. (2008), Burgar et al. (2002) and Mahoney et al. (2003)); 2)“hands-off” reha-

bilitation (Gockley and Matarić, 2006; Eriksson et al., 2005), during which the robot

plays a social role rather than a physical role, described by Matarić et al. (2007)

as “socially assistive robotics”. In hands-off rehabilitation, the patient performs the

active exercises by himself/herself, without physical help from the robot; rather, the

robot interacts socially with the patient and encourages him/her in the rehabilitation

exercises. Note that ‘2)’ shifts from the pure notion of ‘tools’ for physical rehabili-

tation and steps towards robot-mediated rehabilitation through human-robot social

interaction.

2.3.2 The robot as a peer or a playmate for therapy and education

Long-term studies like some studies conducted with the seal robot Paro (Shibata

et al., 2005; Marti et al., 2005) have shown that specific everyday life situations exist

in which human-robot interaction can have a positive effect on well being of human

beings. The robot can play the role of a peer or a playmate which stimulates cognitive

and/or physical capacities and may be a medium for social interaction. Several main

domains of application are currently very actively addressed, respectively, 1) the

role of human-robot interaction in therapy for physical, cognitive, communicative or

social impairments, e.g. cerebral palsy and autism, and 2) human-robot interaction

for elderly people, either from a pure interactive point of view, to stimulate aged

people to interact, or on an assistive approach, whereby the robot could possibly

play the role of an assistant or a companion in order to enable aged people to live as
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long as possible independently in their homes. The following paragraphs illustrate

successively those domains of application.

Recent studies have investigated whether and how a robot could be introduced

in therapy protocols to enhance or accelerate the benefits of a therapy. A long-term

study with the seal robot Paro has shown that specific situations of human-robot in-

teraction can be a significant factor of performance in therapy. This study designed

engaging rehabilitation activities that would combine physical and cognitive rehabili-

tation (Marti et al., 2005). The participant, a child with severe cognitive and physical

delays, interacted with Paro on a weekly basis over three months as follows: Paro was

introduced in the context of the Bobath protocol and played the role of a playmate.

The Bobath protocol is a method used for the rehabilitation of physical functional

skills (Bobath protocol, 2008; Knox and Evans, 2002). It consists in training the child

to acquire basic behavioural primitives of movements and positioning such as head

control, grasping or equilibrium control during a movement or in case of a fall. In

the Bobath protocol, diverse toys are used to engage the child in the therapy process.

Here, Paro robot was used alternately in a passive way (i.e. like a simple toy) and

in an interactive mode. The activities were designed to be as similar as possible to

the ones used for the Bobath protocol. Results showed that the introduction of Paro

in the Bobath protocol may have strengthened the efficiency of the method for this

specific child by facilitating his active engagement in the rehabilitation exercises.

Several research laboratories address the particular case of autism and how child-

robot interaction could possibly help children with autism experiment with social

skills (Dautenhahn and Werry, 2004, 2000; Dautenhahn, 2007b; Kozima et al., 2005);

for instance, children with autism may experience non-autistic behaviours while en-

gaged in play with a robot (Stanton et al., 2008). Chapter 3 is dedicated to autism

and play, and Chapter 4 will provide more details on related work in robot-mediated

therapy and education for children with autism (refer to Section 4.3).

The potential use of robots for elderly people has been particularly addressed

with studies with the seal robot Paro. Shibata et al. (2005) conducted a long-term

study whereby Paro was introduced on a daily basis into the everyday life of some

elderly people in two different institutions, in one of them for a daily duration of

20 minutes over 6 weeks and in the second one for 1 hour over more than a year.

Elderly people were free to interact with the robot. Results showed that, on average,

interacting with Paro improved the mood state of the participants and made them

more active and more communicative with each other as well as with the caregivers.

The role of the robot as a cognitive robot companion is addressed by the Cogniron
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project1 (Cogniron, 2008; Syrdal et al., 2008; Otero et al., 2008). The purpose of this

European project is 1) to design the cognitive functions of a robot which would be

able to serve humans in their daily life, as assistant or companions, and 2) to study

and develop the capability of a continuous learning and education scheme of the robot

which would enable it to mature to a true companion. A direct application of this

project could be to provide companions in homes of elderly people to enable them

stay longer at home.

2.4 Methodology

A diversity of approaches coexists in this new field, which is still in its infancy.

Qualitative and quantitative analysis are used and experiments can be short-term or

long-term studies depending on the research questions that are addressed. At this

stage of development it may be valuable to be open to such a diversity of approaches,

allowing the exploration of many paths to address HRI challenges. However, as

Dautenhahn (2007a) underlined, it might also play a role in the difficulty to reproduce

results from experiments.

2.4.1 Safety

The safety of the participants is the main priority. Any trial must be first tested

under laboratory conditions in order to test the safety and the reliability of the

experimental conditions, including, in particular, the robot’s functionalities. Besides,

the experimenter must have Ethics approval. Here, the required ethics approval was

obtained from the University of Hertfordshire Ethics Committee.

2.4.2 Short-term / Long-term studies

Depending on the research questions addressed, the trials can be run short-term or

long-term. At the very extreme, a short-term interaction could be a zero-acquaintance

(Dautenhahn, 2007a). It means that the participant, who has not encountered the

robot before, interacts with the robot for one session only. At the far other extreme,

participants have the opportunity to progressively build a relationship with the robot,

or at least to get familiar with the robot. This may result in progressive changes in

the way he/she interacts with it. Such long-term studies are necessary for the design

1The Cogniron project focuses on a large range of possible users, not only elderly people; it does
consider the robot as a companion, that would assist in daily task in a social interactive way.
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by immersion of robots enabling long-term interaction (thus trying to counteract

the possibility of getting bored by limited functionalities of the robot) and are also

particularly relevant to therapeutic and assistive robotics applications.

2.4.3 Behavioural based data analyses

A main technique used in HRI trial analysis is the decomposition of behaviours

previously videotaped during the trial, according to a predefined grid of criteria. An

inter-rater reliability test should be applied which, in total, makes this analysis time

consuming. But still, it remains widely used in HRI. In particular, Kahn et al. (2003)

have developed a manual for the coding of child-robot interaction with a robotic pet.

They addressed both behavioural and reasoning issues. We will refer to this manual

in Chapter 4.

Moreover, it is useful to develop objective quantitative measurements of the in-

teraction, which would be complementary to video analysis and provide additional

insights on the interaction. The second part of the thesis focuses on such automatic

classification of the interaction, where related work will be detailed. In particu-

lar, Scassellati (2005a,b) investigated the development of objective measurement of

typical factors of autism through a robotic platform, which would provide a comple-

mentary insight to the traditional technique of diagnosis.

2.4.4 Self-reporting through questionnaires or semi-structured in-

terviews

Another useful input is the analysis of questionnaires or semi-structured interviews.

However, it should be noted that for our precise study with children with autism,

such techniques can not be directly used. Questionnaires can be given to the parents

or the teachers but trials in themselves must be evaluated through videos or objective

quantitative measurement of the robot’s sensor data.

2.5 Summary

In this chapter, we have introduced some background on Human-Robot Interaction

(HRI), a fairly recent and pretty broad research area. We have presented some

core concepts and methodological aspects, such as the grid proposed by Dautenhahn

(2007b), based on four criteria to characterize HRI studies. Each criterion, namely,
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‘Contact with Humans’, ‘Robot functionalities’, ‘Role of the robot’ and ‘Requirements

of social skills’, can be derived in a spectrum of intensity.

Further to this, we have presented the state of research in Child-Robot Interac-

tion, which principally addresses the questions on whether and how, under certain

conditions, a robot could be used as a medium for social interaction. The main chal-

lenges here are to identify the natural means by which children interact with robots,

and to encourage long-term interaction by an appropriate design of the robot’s fea-

tures and capabilities and relevant scenarios.

We have then presented Robot-Assisted Therapy and Education, which is a do-

main of application of HRI and can be addressed in the following ways:

• Developing robotic devices as tools for physical rehabilitation: Four examples are

a robotic wheelchair (Yanco, 2001; Bailey et al., 2007), a robotic arm mounted

on a wheelchair (Hillman, 2003; Hillman et al., 1999), robotic mobile platforms

for visually impaired people (Kulyukin et al., 2006; Lacey et al., 1999) and

robotic platforms for post-stroke rehabilitation (Kahn et al., 2001; Kwakkel

et al., 2008; Burgar et al., 2002; Mahoney et al., 2003; Matarić et al., 2007).

• The introduction of the robot as a peer or a playmate for therapy and education:

It embraces physical, cognitive (Marti et al., 2005), communicative and social

impairment (Aurora, 2008; Dautenhahn and Werry, 2004; Stanton et al., 2008;

Kozima et al., 2005), as well as the use of robots for elderly people, both from

a pure interactive perspective (Shibata et al., 2005) and from an approach of

assistance in daily tasks (Cogniron, 2008).

Finally, this chapter reported on methodology in Human-Robot Interaction stud-

ies, addressing in particular safety issues and classical techniques used for the analysis

of HRI trials.



Chapter 3

Autism and Play

3.1 Autism

Autistic Spectrum Disorders can appear at various degrees and refer to different skills

and abilities (Powell, 2000; Jordan, 1999). Detailed diagnostic criteria for autistic

spectrum disorders are provided in the Diagnostic and Statistical Manual of Mental

Disorders (Association, 1994)1.

3.1.1 Main impairments

The main impairments highlighted by the National Autistic Society (2008) are:

• Impaired social interaction: Difficulties to make sense of a relationship

with others, difficulties to guess or even understand what the other’s intentions,

feelings and mental states are.

• Impaired social communication: Difficulties with verbal and or non verbal

communication (for example, difficulties to understand facial gestures).

• Impaired imagination: e.g. Difficulties to have imaginative play.

As a consequence of the above impairments, children with autism often choose a

world of repetitive patterns and, for instance, often engage in playing in a repetitive

way. Different theories try to explain why those with autism prefer to live in a pre-

dictable world. One of them, the Theory of Mind (Baron-Cohen, 1997) explains that

1DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) was published
in 1994 and is the last major revision of the DSM.

17
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children with autism tend to have difficulties in identifying mental states of others,

i.e. in having a representation of what others may think. More precisely, it concerns

a full range of mental states (e.g. beliefs, desires, intentions, imagination, emotions)

that cause action (for a description of some of the manifestations of this impairment,

please refer to Baron-Cohen (2001)). Consequently, it can be very hard for them to

understand social interactions. In addition to this theory, they often lack the capabil-

ity to generalize (Baron-Cohen, 1997) and, as a consequence, to classify entities. For

example, two mugs may often appear to them as two completely distinct and uncor-

related items: it can be very hard for some of them to extract common properties of

objects and then categorize according to these properties. What happens to objects,

in this way, also happens to experience in life. It is most of the time impossible for

those with autism to generalize situations they encountered previously. Furthermore,

children with autism can distinguish between a human and an object but, in the most

severe cases of autism, their behaviour towards humans may have elements of how

they treat objects (Hobson, 2002). Moreover, since human beings are very complex

with all their essential expressiveness, they tend to prefer interacting with objects

which are simpler. This could be partly explained by a theory focusing on the sen-

sory dimension (Williams, 1996). The latter suggests that children with autism are

very sensitive to stimuli and that they prefer remaining in predictable environments

so that they can avoid being hurt by overpowering sensory stimuli (Gillingham, 1995).

3.1.2 Autobiographical accounts

Of course, autobiographical accounts do not replace research on autism, which is

the proper source of theory and knowledge on autism to build our research upon.

Nevertheless, autobiographical accounts are very inspiring. Below is a summary

of particularly relevant points to my research. Note, both of the persons whose

autobiography is mentioned here are high-functioning or have Asperger Syndrome.

Daniel Tammet’s autobiography (Tammet, 2006). Daniel Tammet, 26 years

old, has both Asperger Syndrom and synaesthesia. He managed to overcome some

of his impairments and to live in the world in which typically developed people live.

He practises a job in pedagogy where he provides e-learning for foreign languages.

Moreover he has a partner and close friends. Daniel Tammet provides an autobiog-

raphy, with in depth description of his specific aptitudes and his internal states or

feelings. He also directly contributes to research in autism by agreeing to become a

subject of study for research in autism.
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In his autobiography, Daniel Tammet implicitly refers to weak central coherence

theory by explaining the fact that as a child, he could not “read between the lines”: for

instance, he could not infer the implicit meaning of two logical correlated sentences;

he provides a metaphor to describe this impairment: “It is like joining the dots in a

children’s coloring book and seeing every dot but not what they create when joined

together”. Another point is his wishing, already when he was a child, to encounter

friendship at such a point that he invented himself an imaginary friend, an old woman

called Anne. As he said “People with Asperger syndrome do want to make friends,

but find it difficult to do so”. And, referring to the imaginary friend: “Looking back,

Anne was the personification of my feelings of loneliness and uncertainty”. Moreover,

Daniel Tammet had the feeling of being different from typically developing children.

Again, through his imaginary friendship, he asked Anne why he was different: “Once

I asked her why I was so different from the other children but she shook her head

and said that she could not say. I worried that the answer was terrible and that she

was trying to protect me, and so I didn’t ask her again”.

Temple Grandin’s autobiography (Grandin, 1986). Like Daniel Tammet,

Temple Grandin mentions the consciousness at some point of ‘being different’. One

trait of autism Temple Grandin was particularly suffering from is oversensitivity to

stimuli and irregularity of the reactions to stimulations. For instance, she writes

about her paradoxical reactions to sound, which made her, at some point, not react

to people speaking directly to her but react to, or even be annoyed by other sound

stimuli (e.g. bird’s song). Moreover, she was oversensitive to tactile stimulation too:

at a tactile stimulation, she could suddenly overreact. But it also appeared to her

that she could decrease her oversensitivity and anxiety through other specific tac-

tile stimulations (like for instance when she wrapped up in a blanket). Later, she

designed a therapeutic device relying on the principle of such tactile pressures.

Temple Grandin is now a designer of livestock handling facilities and a Professor

of Animal Science. She points out some persistent difficulties in the everyday life. She

indeed still finds it hard to understand human interaction; therefore, she tends to rely

on a library of experiences referring to various social situations and the corresponding

reactions of people to be able to predict what may happen in a current interaction.

In the same way, she tends to rely on explicit social rules concerning behaviours that

are usually intuitive for adults who do not have autism. For instance, one of the rules

is to smile back at someone smiling to yourself. Another rule is to remember to look

interested when someone is talking to you.
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In both autobiographies, the sustained effort made by the child, on the one hand,

and, on the other hand, the sustained education and the continuous emotional support

from the family, the friends, the teachers and the carers, emerged as important key

factors of success in dealing with impairments. Moreover, Daniel Tammet’s parents

seemed to have always encouraged their child to encounter new social situations, e.g.

through play with his brother and sisters, holiday with family of friends or activities

at which he was particularly good at such as chess in a chess club.

3.2 Play

3.2.1 What is play?

There is no precise definition of play partly because play covers a wide range of ac-

tivities (Chaillé and Silvern, 1996). There is no clear boundary between play and

not play. In fact, many disciplines deal with play and investigate this field differently

according to their specialty. Since play can be investigated from different perspec-

tives, various classifications can be found in literature. Some focuses on the result

of play. For example, play may take two different forms with reference to learning:

one is active and the other is passive learning. By this, it is meant that the child

can either play in a way that he/she will try to learn a lot or, on the contrary, just

play without efforts for learning. The first class, active learning, requires the child’s

interest, attention and mental activity so that knowledge construction can take place

(Chaillé and Silvern, 1996). For example, if a child is just manipulating an object

without applying mental activity, this will be classified as not active learning. On the

contrary, if the child manipulates the object, with the intention of trying to under-

stand what it can be used for and how it can be used, then this will be part of active

learning.

Another way of classifying play is trying to differentiate different kinds of activities

in play itself, like purely motor skills or abstract representation. A famous taxonomy

about play is given by Piaget (1945). He differentiates four kinds of play: Practice

play, symbolic play, games with rules and constructions. A different classification,

provided by Boucher (1999), distinguishes at least four classes which are: i) sensory

motor play, ii) manipulative and exploratory play, iii) rough-and-tumble play and

active physical play and iv) social play (see Fig. 3.1). This classification is particularly

interesting for this research study because it mixes the notion of exploration with the

idea of social interaction.
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Kind of play Specificities 
Sensory motor play “teaches young infant about their own bodies 

and about objects in the immediate 
environments” 
 

Manipulative and exploratory 
play 

“teaches the older infant more about objects 
and their properties, and about how we can 
influence the world around us” 
 

Rough-and-tumble play and 
active physical play 

“teaches the toddler and preschooler gross 
motor skills, and provides experience of whole 
body interaction with others and with objects 
in the environments” 
 

Social play “teaches children about social relationships 
and how to engage in them, as well as about 
cultural norms of the society the child is 
growing up in.” 
 

 

Figure 3.1: A classification of Play given by Boucher, quotations from Boucher (1999).

3.2.2 Children with autism and play

A relative potential for play Children with autism are able to play but the

nature of their play may be described as restricted. Indeed, according to the American

Psychiatric Association, “a lack of varied, spontaneous make-believe play is a defining

feature of autism” (Association, 1994). In other words, children with autism often

play in a repetitive way, which means that there is a lack of generating new behaviors

during play. This can be correlated to the fact that children with autism prefer

predictable environments. The other main idea emphasized in the previous quotation

points out the important difficulties children with autism encounter in symbolic play

(Chaillé and Silvern, 1996): only a few of them are able to draw properly (within

a symbolic mode) or to make models (again, that may be classed as symbolic).

So, children with autism lack some abilities for playing in the way that normally

developing children do though they can play in a certain (autistic) way. Moreover

they sometimes have a wrong perception of what play is since for example, they often

consider obsessional activities as play (Boucher and Wolfberg, 2003). This introduces

another notion, which is that children with autism have some obstacles for actualizing

their potential for play (Boucher and Wolfberg, 2003).

Obstacles for developing their potential for play Different possible obsta-

cles have been identified. Among them are impairments in socioemotional inter-

subjectivity, impairment in joint attention and impairment in Theory of Mind (Baron-
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Cohen, 1997). These impairments damage interaction in general and, more specif-

ically, must imply a lack of spontaneous and social reciprocity during play. The

disability in perceiving the coherence of categories and concepts can besides be a rea-

son why children with autism perceive objects in their parts and not as the wholes

which is part of a weak central coherence theory (Fritz, 1989; Dautenhahn and Werry,

2004). But today, causes for impaired play are still not very well understood. These

causes can vary for different children, depending notably on the personality of the

child and her past experience of play. One last point to underline is that it may be

very useful to encourage and support the child with autism while he/she is playing

though the way in which that encouragement and support is operationalised is a mat-

ter for debate. Certainly, the typical way in which caregivers interact with typically

developing children may not be the most appropriate model in autism.

3.2.3 Why focus on play?

Active education Through certain kinds of play, children can construct some un-

derstandings. Here, understanding means active construction of meaning. Children

can arrive at understanding by creating hypotheses about items and events that they

find interesting. They test hypotheses as they actively interact with the material and

events in their environment (Chaillé and Silvern, 1996). Piaget uses the notion of ac-

tive education to speak about the intentional process of constructing understanding.

Active education involves four elements: interest, play, genuine experimentation and

cooperation. Chaillé and Silvern (1996) argue that play (and the context of play)

already includes the three other components (i.e. interest, genuine experimentation

and cooperation) which would mean that (in certain conditions at least) play leads

directly to active education. In other words, play is a vehicle for learning in itself.

Multidisciplinary learning Play is a vehicle for learning in various fields. We

shall give a few examples:

• Logical memory and abstract thought : For example, trying to understand rela-

tionships between entities is a basis of logical mathematical knowledge.

• Communication skills: Children learn communication skills by constructing a

shared understanding of literal and non literal meaning. This suspension of

believe, which enables a child to become another person virtually, facilitates

the exploration of the language (oral and written). The child is actually not
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stuck by the correction or the constraints from real life and can feel free to test

new vocabulary, new parts of grammar and conjugation.

• Social skills: Through play, children can explore social roles and experiment

with social issues of conflicts, trust or compromise. It is a very good place

for the child to experiment with particularly difficult issues since he/she will

not take it too affectively because children are just playing roles which have, a

priori, no link with their real life.

It is important to note that the learning can really be interdisciplinary in the

sense that the child is guided to make some connections between different areas. For

example, by playing cards, the child has to be able to communicate and also to count.

Thus, each time he/she is playing cards, he/she will deal and experiment with these

two aspects and progressively develop skills.

Play for itself In the previous paragraph we justified the focus on play with the

argument that play is a vehicle for learning. In this paragraph we will underline the

fact that play is also an end in itself. Children usually enjoy playing (though this

might not be the case in autism). Their pleasure and motivation seem to increase

when they have the impression that they master the play situation (Boucher, 1999).

Consequently, if we try to help children with autism master situations of play, they

may have more fun playing which may contribute, even very modestly, to global

happiness. Another argument is that play is a medium for self-expression (Boucher,

1999). When a child plays, she shows some parts of her personality and can also

express personal feelings which she would maybe not show in ordinary life.

3.3 Approaches in learning in psychology

3.3.1 Behaviourist approach

The behaviourist approach is centred on the interaction between the human and

his/her surrounding environment and focuses on the study of observable behaviours

and the role of the environment as a factor influencing behaviours (Watson, 1913).

The original behaviourist approach rejects the use of references to mental states (Wat-

son, 1925), arguing that behaviours should be studied directly. It defends the idea

that behaviours can be explained as the product of learning, which, in the classi-

cal behaviourist context, consists of conditioning. Conditioning is defined by Colman

(2001) as “the process of learning through which the behaviour of organisms becomes
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dependent on environmental stimuli”2. It can take two forms: the classical condi-

tioning, defended by Pavlov (1927), and the operant conditioning (which introduces

the notion of ‘reinforcement’), proposed by Skinner (1974). Skinner’s ideas actually

differed3 from the original behaviourist approach established by Watson (1913, 1925).

In particular, he redefined the notion of ‘behaviour’ in order to include everything

that an organism does, which includes thinking, feeling and speaking (Skinner, 1974).

In contrast to the Watsonian pure behaviourist approach, the cognitive-behaviourist

perspective, argues that mental processes are key factors in the behaviour (Tolman,

1932). Tolman (1932), who was one of the first contributors of this cognitive-

behaviourist perspective, even defended the notion of goal-directed behaviour and

used the expression “purposive behaviour”. In this perspective, learning happens

through meaningful behaviours.

3.3.2 Piaget’s constructivist approach

The constructivist approach has been mainly driven by Piaget (Piaget, 1928), in

reaction to the behaviourist approach. Piaget did not deny the fact that learning was

fairly influenced by the environment. However, he defended the idea that learning was

mainly due to mental processes. According to Piaget (1928), the environment actually

plays an important role in the sense that it enables the child to experiment with new

situations and thus develop new skills. But these skills can only be actualised at

specific stages of the development of mental processes: Piaget (1928) indeed argued

that children’s cognitive development progressed through a series of stages that unfold

in a definite sequence.

It should be underlined that Piaget mostly focused on the child’s cognitive de-

velopment and did not emphasize much the role of social interaction in the cognitive

development (which may also be a reason why his classification of play focused on the

lonely child behaviour and did not highlight social aspects of play (Piaget, 1945)).

Piaget’s schema of stages of development received a few critics. In particular, Isaacs

(1930) was at first enthusiastic for Piaget’s theories on the cognitive development of

young children, but later criticised his schema4 (Isaacs, 1930). She reproached him

for using systematically the notion of ‘maturation’ without precautions, thus arriving

to the point of explaining with the notion of maturation some phenomena which, in

2The conditioning can be considered as a form of associationism.
3Skinner branched off a new version of behaviourism, called radical behaviourism.
4These critics were formulated in (Isaacs, 1930) and Piaget answered to those critics in (Piaget,

1931).
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fact, according to her, depend on experience (Isaacs, 1930). In addition, Isaacs (1930)

criticized Piaget’s tendency to rely on questionnaires, which, according to her, lead

to stereotypical situations and interfere with the results. Instead, she argued in favor

of her methodology, which relied on the observation of the children in their everyday

life setting (i.e. Malting House School): according to her, the direct observation of

the children and the cooperation between the children enabled a better objectivity in

the observation of the thought of the child (Isaacs, 1930). Isaacs (1933)’ approach to

play is, besides, particularly relevant to our focus on robot-assisted play for children

with autism. According to her, “Play is a child’s life and the means by which he

comes to understand the world he lives in” (Isaacs, 1933).

3.3.3 Vygotsky’s influence (socio-constructivist approach)

Vygotsky introduced the importance of social interaction in child’s development (Vy-

gotsky, 1978). He stated that learning must take place within social interaction (Vy-

gotsky, 1988). He defined the concept of zone of proximal development, as the zone of

potential learning for an individual child at a given time. Concretely, it corresponds

to what the child can possibly learn at a given time with the help of a peer or an

adult. The helping approach offered to a child by an adult that is sensitive to that

child’s current zone of proximal development is sometimes referred to as the ‘Vygot-

skian tutorial’. Unlike Piaget who stated that the child should wait to have reached

a given stage of development to be able to develop new skills, Vygotsky believed that

the most valuable learning for children was the one which was slightly in advance of

their development. According to Vygotsky (1988), children actually need to learn in

order to be motivated and this stretching of their possibilities is a boost.

3.3.4 Bruner’s approach

Vygotsky (1896-1934) became internationally famous only in the 1960’s and Bruner

has been one of the first psychologists to bring some of Vygotskian’s ideas in the

United States. Bruner has contributed a lot in educational psychology and in partic-

ular, developed the notion of ‘spiral curriculum’, which is also of importance in play:

spiral curriculum is the idea that children will revisit play materials and activities

over the years, but then use them differently because their development has pro-

gressed. Bruner insisted on the importance of the medium of children’s play, stating

that the material to be learned is ideally the highest motivation for learning.

Bruner was besides involved in the creation of the cultural psychology. This
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approach considers that language, and by extension human thinking, come from the

interaction between the individual and the culture in which he/she develops (Bruner,

1990). Bruner defines three modes of representation of the world; the first level

is ‘enactive’, i.e. the action is linked to the manipulation of objects. The second

level is ‘iconic’: the child uses pictures to make a representation of the environment.

The third level, the ‘symbolic representation’, can be reached with the acquisition

of language. At this level, Bruner argues that the culture will bring to the child

the basis for his/her cognitive development. Unlike Piaget, Bruner considers that

the environment and the culture play a preponderant role in the child’s development

(Bruner, 1983). Moreover, Bruner insists on the fact that education is an interactive

activity between the child, the teacher and the environment and he insists on the role

of the adults in the child’s mastering of activities (Bruner, 1996).

3.4 Summary

In this chapter we have presented the main specificities of autism. Autism is a spec-

trum disorder which means that we should take into account the singularity of needs

and abilities of each child with autism individually. Through play, children can ex-

periment with a variety of skills from different fields. Particularly, they can develop

social, communicative and imaginative skills, plus the ability to deal with more ab-

stract concepts through symbolic or pretend play. Children with autism can play

but often encounter obstacles to develop their potential. Through play, they may

experiment with a multiplicity of skills, in particular, imaginative, communicative

and social skills. Moreover, play is a medium for self-expression. We have then sum-

marized different approaches with respect to cognitive development. We have shown

that some approaches tend to focus more and more on the importance of the social

interaction in the process of learning such as the Vygotskian approach which states

that learning must take place within social interaction (Vygotsky, 1988). Unlike Pi-

aget who stated that the child should wait to reach a given stage of development to

be able to develop new skills, Vygotsky believed that the most valuable learning for

children was the one which was slightly in advance of their development and took

the approach that children need to learn in order to be motivated and this stretch-

ing of their possibilities is a boost. In the Vygotskian tutorial, the tutor (parents,

carer, educator) can help the child to develop cognitive skills by extending its zone

of proximal development.
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3.5 Research Questions

In the preceding chapter, we have presented background on Human-Robot Interaction

and Robot-Assisted Therapy and Education, showing, in particular, possible appli-

cations of the use of robots in rehabilitation. The present chapter has highlighted the

main specificities of autism and the role of play in the cognitive and social develop-

ment of children. We have shown that play is a vehicle for learning and that children

may experience with a diversity of skills while engaging in play situations. Besides,

typically developing children usually enjoy playing and, through play, children can

also express themselves. Children with autism have a potential for play but often

encounter obstacles to actualise this potential and we believe that, if we can facilitate

them the access to diverse play situations, they would experience play skills and may

develop some of them, in particular, communication, social and imagination skills.

Moreover, because robots are much simpler than humans, we believe, in the context

of the Aurora project, that robots can be a good medium for social interaction, in

particular through play. Besides, in contrast to a stuffed animal, a robot can be

embedded with specific behaviours, adapted to each child’s needs and abilities, that

may influence the children’s responses during the interaction.

The insight of different approaches in psychology related to learning and cognitive

development suggests a diversity of approaches that could be adopted in our specific

context of play whereby we would like to help the child progressively reach higher

levels of play, thus learn from play situations previously encountered. Vygotsky

very much considered that social interaction is a key factor for learning (Vygotsky,

1988) and, according to him, the adult (a parent, a carer, and, in our context, the

experimenter) plays a role and helps the child progress by extending its zone of

proximal development. On the other hand, Piaget states that the child should anyway

wait to reach a given stage of development to be able to develop new skills. In our

context of facilitating play, we should carefully address the role of the experimenter:

What should be the role of the experimenter in the play sessions? Should she stay

apart during the play sessions? Should she, on the contrary, take part in the play

sessions with the children? If we translate the Vygostkian approach in terms of play,

the experimenter should actively help the child reach higher levels of play. In contrast,

a Piagetian approach may not require such an intervention of the experimenter.

In addition to the role of the experimenter, the role of the robot should be defined.

It should be investigated in which terms the robot can adapt to the specific needs and

abilities of the children, in order to guide them towards more balanced interaction
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styles. What should be the robot’s behaviour? Should the robot react differently

according to specific play styles? How could it encourage children to engage in play?

Those questions related to the role and capabilities of the robot highlight further

issues: if the robot must adapt to the play styles of the children, how can it identify

those play styles in real time? What should be its schema of adaptation in order to

influence the children’s play styles positively and guide them towards more balanced

tactile interactions, i.e. interactions that are neither too weak, nor too forceful, and

that happen with an appropriate frequency (not too low, not too high)?

This leads to the following research questions:

• What approach for the play sessions could be adopted in robot-assisted play to

enable each child with autism to progress according to his/her specific needs and

abilities, that is, experiment with progressively higher levels of play and possibly

develop play skills which could further help him/her cope with more complex

situations of communication and social interaction, and develop imagination?

• How can a robot recognize the interaction styles of each child in real time?

• How could the robot best adapt to the children’s needs and abilities? Can a

robot that adapts to the play styles of the children in real time impact the

behaviour of the children? Could it, in this way, help the children engage

progressively in better balanced interactions?



Chapter 4

A Novel Approach in

Robot-Assisted Play Inspired by

Non-Directive Play Therapy

4.1 Introduction

Until now, research in robot-mediated therapy for children with autism has mainly

explored the use of specific games, such as imitation (Robins et al., 2005b, 2004) or

chasing games (Werry and Dautenhahn, 1999) and only recently started to involve

the experimenter in the trials, qualifying his role as the one of a “passive participant”.

This chapter presents a different perspective on robot-mediated therapy, which is not

“task-oriented” but rather draws inspiration from non-directive play therapy (Axline,

1946, 1947; Ryan, 1999; Josefi and Ryan, 2004) and which expands and clearly defines

the role of the experimenter1, who takes part in the trials and, whose role goes beyond

the one of a ‘passive participant’.

This method strongly encourages the child’s proactivity and initiative-taking with

respect to the choice of play, the rhythm of play and verbal communication. While

a task-oriented approach might expect the child to complete a specific task, such

as for instance performing imitation, this approach, here, inspired by non-directive

play therapy, enables the child to proactively experience various situations of play,

from simple exploration of the robot’s features and capabilities to more complex

1At the moment a roboticist is needed to deal with the programming issues, but in the future,
ideally, play therapists would be able to use this method as a new approach of robot-assisted play
in the context of play therapy.

29
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situations of play, possibly involving an understanding of the notion of causality as

well as an ability to play symbolically, or take on a specific role in play. Furthermore,

at any moment, the child can appeal to the experimenter’s participation in play, thus

enabling the child to experience triadic play.

Besides, beyond inspiration from non-directive play therapy, this approach intro-

duces a regulation process (see Section 4.4.3.1). This process notably enables the

experimenter to regulate the interaction in order to guide the child towards other

play styles when needed, modify slightly the rhythm of play if she feels the child is

‘standing still’, or ask questions to the child about reasoning or affect related to the

robot.

This chapter presents and explores the potential of this pioneering approach in

robot-assisted play2, through a long-term study with six children with autism. This

study should be regarded as a preliminary exploration of the feasibility of such a

technique in the context of robot-mediated therapy for children with autism. Several

research questions are addressed:

• Does such an approach for robot-assisted play, inspired by non-directive play

therapy, help the child experience higher levels of play and enable him/her to

develop new play skills?

• Does this approach encourage the child to play socially?

• Might this approach be appropriate for children who play solitarily and speak

mostly by onomatopoeia3? Might it help him/her experience social play? If

not, what might be the additional requirements necessary for such experience?

The remainder of this chapter is structured as follows. Section 4.2 presents back-

ground on non-directive play therapy. Related work is presented in Section 4.3.

Section 4.4 explains the method in terms of procedures and measures. Results are

then provided in Section 4.5 and discussed in Section 4.6. Finally, a conclusion (Sec-

tion 4.7) closes the chapter.

4.2 Non-directive Play Therapy

This section summarizes the core ideas of non-directive play therapy as mainly de-

veloped by Axline (1947) and explained and illustrated by case studies reported on

2Note that robot-assisted play is considered as a subfield of robot-mediated therapy
3Onomatopoeia is a word that imitates the sound(s) associated with objects or actions it refers

to, e.g. ‘buzz’.
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by Ryan and Wilson (1996).

Non-directive play therapy has its roots in Rogerian client-centred therapy with

adults (Rogers, 1976), adapted to child therapy with a focus on play as the principal

medium of communication (in contrast to verbal exchange). Rogerian theory relies

on the idea that all human beings have a drive for self-realisation; it means that any

human being tends to develop towards maturity, independence and self-direction.

The individual needs to completely accept himself/herself as well as be accepted by

others.

In non-directive play therapy, the child, rather than the therapist, chooses the

type of play and the activity in general in the playroom. This contrasts with other

play interventions. We shall cite Axline (1947) who primarily developed the method

of non-directive play therapy: “Non-directive play therapy is not meant to be a

means of substituting one type of behaviour, that is considered more desirable by

adult standards, for another ‘less desirable’. It is not an attempt to impose upon the

child the voice of authority that says ‘You have a problem. I want you to correct

it’.” A few limitations in the behaviour of the child are set which refers to safety and

security reasons.

A relationship is progressively built up between the child and the therapist. This

relationship enables the child to share his/her inner world with the therapist and,

“by sharing, (the child) extends the horizons of both their world” (Axline, 1947).

Ryan and Wilson (1996) state that this relationship, with the help of the therapist,

progressively facilitates the child to choose freely the feelings he/she wishes to focus

on as well as the way how he/she wants to explore them. Three mediums may be

used for communicating these feelings: action, language and play.

The therapist participates in the therapy. He/she observes, listens and answers to

the child. The therapist is reflecting the child’s feelings or emotionalized behaviours in

order to help him/her build a better understanding of himself/herself. The therapist’s

role has been characterized by eight basic principles set out by Axline (1947), see

Fig. 4.1.

It should be noted that in the study presented in this chapter, the experimenter

was not trying to engage in therapy; the study only drew inspiration from non-

directive play therapy, thus the context may be a therapeutic one, but the experi-

menter, a human-robot interaction researcher, was not behaving exactly like a ther-

apist. The experimenter was not applying strictly the eight principles set out by

Axline (1947), see Fig. 4.1. She very much drew inspiration from principles 1, 2, 3,
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1. 

 
``The therapist must develop a warm, friendly relationship with the child, in which good   
rapport is established as soon as possible.'' 

2. ``The therapist accepts the child exactly as he is.'' 
3. ``The therapist establishes a feeling of permissiveness in the relationship so that the child feels 

free to express his feelings completely.'' 
4. ``The therapist is alert to recognize the feelings the child is expressing and reflects those feelings 

back to him in such a manner that he gains insight into his behavior.'' 
5. ``The therapist maintains a deep respect for the child's ability to solve his own problems if given 

an opportunity to do so. The responsibility to make choices and to institute change is the 
child's.'' 

6. ``The therapist does not attempt to direct the child's actions or conversation in any manner. The 
child leads the way; the therapist follows.'' 

7. ``The therapist does not attempt to hurry the therapy along. It is a gradual process and is 
recognized as such by the therapist.'' 

8. ``The therapist establishes only those limitations that are necessary to anchor the therapy to the 
world of reality and to make the child aware of his responsibility in the relationship.'' 
 

 

Figure 4.1: Eight basic principles set out by Axline for practice of non-directive play
therapy, quotations from Axline (1947).

5 and 8, but she was not dealing with the fourth one; and, concerning principles 6

and 7, she was considering these principles with more flexibility. It is worthy of note

here that this study is a first step towards a proof-of-concept and required robotics

expertise; in future, play therapists may use this approach.

4.3 Related Work

4.3.1 Non-directive play therapy for children with autism

Non-directive play therapy has been largely used for children and adolescents with

a wide variety of emotional and behavioural problems (Ryan, 1999, 2001; Ryan and

Needham, 2004). Only recently have researchers started to investigate the feasibility

of such techniques with children with autism. A pioneering case study is presented

in 2004 by Josefi and Ryan (2004). In that paper, Josefi and Ryan (2004) present

a case study with a 6-year-old-boy with severe autism by using the non-directive

play therapy technique. Before starting the experiments, the boy was mostly com-

municating non-verbally, and hardly controlled his sudden excess of energy. He was

described as never playing with his brother and sisters and whenever he played, he

only engaged in playing mechanically with toys. The child attended 16 non-directive

play therapy sessions of an hour over a 5-month period in the child’s special school.

The room was empty except from specific materials selected for their “expressive,
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imaginative, relaxing and interactive properties”. Results were analysed both quali-

tatively and quantitatively. The findings showed an increase in the child’s autonomy

and initiative-taking. Besides, the child developed attachment to the therapist. Ac-

cording to Josefi and Ryan (2004) it was shown that non-directive play therapy itself

may provide children with autism with: “(i) emotional security and relaxation, (ii) an

enhanced and attentive adult environment in which playing together is emphasized,

and (iii) the acceptance by therapists of children’s ability to instigate therapeutic

change for themselves under favourable conditions”. These conditions constitute the

basis for therapeutic progress as written in play literature (Axline, 1947). Besides, the

child’s repertoire of play appeared to expand and the child managed to concentrate

progressively longer during the sessions. During the last sessions the child proactively

engaged in play requiring more joint attention and direct social interactions with the

therapist. He started to become more and more interested in toys that have symbolic

characteristics. He also communicated more and more verbally with the therapist. It

is perhaps worthy of note here that the symbolizing capacities have similarities with,

and may overlap capacities, to learn language during normal development; in return,

it is very likely that learning a language requires some symbolizing capacities and pro-

cesses. However, repetitive and obsessive behaviours were not considerably reduced.

As a conclusion, Josefi and Ryan (2004) stated that non-directive play therapy with

children with autism may be complementary to behaviour therapy, non-directive play

therapy likely to be more efficient in the child’s gaining autonomy, taking initiative,

joining attention and developing social and symbolic play, while behaviour therapy

would be more efficient in reducing ritualistic and obsessive behaviours.

4.3.2 Robot-mediated therapy in the context of autism

Within the Aurora Project, Robins et al. carried out several studies analyzing on

the one hand the role of the robot as a mediator (Robins et al., 2005a) and on the

other hand the role of the experimenter (Robins and Dautenhahn, 2006) in the trials.

Robins and Dautenhahn (2006) describe the role of the experimenter as the one of

a “passive participant” who responds to the children if they initiate interaction with

him/her. In Robins et al.’s experiments, children interacted with a small robotic doll,

Robota, by imitation of gestures, that is imitation of position or movement of arms

and legs. In these trials, Robota was either simulating a dance or being controlled

remotely by the experimenter. Thus, there was no autonomous reaction from the

robot to the child’s interactions in their study.

In different studies, Werry et al. focused on free-play with a mobile autonomous



CHAPTER 4. A NOVEL APPROACH IN ROBOT-ASSISTED PLAY 34

robotic platform, Labo-1, equipped with infrared and heat sensors (Werry and Daut-

enhahn, 1999; Dautenhahn et al., 2002; Werry et al., 2001). Its shape is rectangular

(30cm wide by 40cm long), it weights 6.5kg and does not have pure tactile sensors.

The play situations were mainly approach and avoidance games whereby turn-taking

emerged from the child-robot interactions (Dautenhahn, 2007b). The experimenter

did not take part in the games; they only responded to the child when the child ini-

tiated communication or interaction with them (Dautenhahn and Werry, 2002). The

child played therefore in a relatively unconstrained environment on his/her own with

the robot (Werry and Dautenhahn, 1999), or two children interacted at the same

time with the robot (Werry et al., 2001).

Outside the Aurora project, Kozima et al. (2005) used a small dancing creature-

like robot, Keepon, in a long-term study with children with autism, most of the time

in partly unconstrained conditions. During these experiments, the small creature-like

robot was manually controlled by the experimenter who was not part of the trials.

Rather, carers were part of the trials with the child. The experiments highlight the

role of Keepon as a pivot in triadic interaction by studying, in particular, the emer-

gence of joint attention. This result reinforces the idea that child-robot interaction

may be valuable for children with autism.

4.4 Method

4.4.1 Participants

All the children taking part in the experiments have a diagnosis of autism and are

from the same school based in Hertfordshire, UK. This school welcomes children

between 4 and 11 years old with moderate learning difficulties. In particular, an

Autism Base provides extra care and a specific education program for children with

autism to start within the school. When the child gets older or when he/she has

made sufficient progress (especially if he/she improved social skills) he/she can be

integrated in a more general class, which gathers children with specific needs and

abilities but not only children with autism.

For clarity and simplicity purposes, a consistent naming of the children will be

used in the whole thesis, starting with A and then, alphabetically, in order of ap-

pearance in the text.

Two boys from the Autism Base, Child A (seven years old) and Child B (eight

years old) were invited to take part in the experiments. Both of them find it hard

to express themselves verbally and their behaviour often includes onomatopeia and
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repetitive gestures. According to the teachers, Child A often shows apprehension

towards dogs and doors and Child B has a fascination for computers. Child C took

part in the experiments too. She is a seven years old girl. During the experiments, she

was part of the Autism Base but in the process of being integrated to another class

with children with moderate learning difficulties but not only children with autism.

She therefore started to follow part-time the education program of this class and

the rest of the time stayed in the Autism Base. She masters verbal communication

pretty well and teachers describe her behaviour as proactively social, as far as play

at playtime is concerned.

Three older children took also part in the experiments. All of them are inte-

grated in classes for general moderate learning difficulties. Child D, ten years old,

is described by his teacher as a solitary child. In the classroom the position of his

desk, fairly isolated from the others, gives him an ‘own’ space. Child D understands

pretty well when one addresses him verbally but mostly speaks by onomatopeia. At

school, he often uses the computer to do exercises, especially exercises on words and

writing. Two other children, Child E, ten years old and Child F, nine years old, took

also part in the study. They communicate verbally and are not described as solitary

children.

The children’s specific levels of autism are specified in Appendix B. The study

was carried out with approval of the University of Hertfordshire Ethics Committee.

The parents of all the children who took part in this study gave written consent,

including permission to videotape the children and utilize photos in publications.

4.4.2 Artifact

The main artifact used in this study was a white robotic mobile autonomous dog,

the Sony Aibo ERS-7, an off-the-shelf robot commercialised by Sony (Fig. 4.2). Aibo

ERS-7 weights approximately 1.65kg and measures approximately 180(w) x 278(h)

x 319(d) mm. It is equipped with a great variety of external sensors (e.g. infrared

sensors, stereo microphones, tactile sensors). In our study, tactile sensors that the

children can activate by stroking the robot played a major role. Those sensors are: the

head sensor, the chin sensor and the three back sensors. Aibo’s control programming

is achieved using URBI (Universal Real-Time Behaviour Interface (Baillie, 2005)).

URBI is a scripting interpreted language. It uses a client/server architecture, the

connection between the server (robot) and the client being made through a wireless

connection. The client can control the joints of the robot and access sensors and

any accessible part of the robot. URBI can be used with various robotics platforms
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and various languages (e.g. C++, java, etc) on the client side to control (program)

the robot. In particular, existing libraries (e.g. the C++ URBI library, liburbi-C++,

or the java URBI library, liburbi-java) provide simple ways to program a client and

make a powerful use of URBI’s functionalities. In this work, I developed my own

programs using liburbi-java.

 

Figure 4.2: Aibo ERS-7.

4.4.3 Procedures and Measures

4.4.3.1 Procedures

Experimental Setup. The experiments took place once a week, on Wednesday

mornings, in the school. Each child took part in a maximum of ten sessions. Not

everybody could take part in ten sessions because some of them may have been away

for a day or on a trip with their class. Note, an exception was made for one child

who showed some apprehension towards the robot: for this specific child, experiments

were stopped after five sessions and only restarted on the last day of the experiments

when he proactively came to the trial.

The rooms used for the experiments changed several times due to circumstances

at the school. In each case, the child may encounter possible distractive objects,

like toys or mirrors. Thus, these experiments took place in a context of possible

distraction. The different rooms used for these experiments are described in Fig. 4.3

and a list of the rooms used for each session is provided in Fig. 4.4.

Each trial involved one child with autism, the experimenter (myself) and possibly

another researcher from the Aurora project with whom the children were familiar.

The latter helped the experimenter film the trials and occasionally took part in a
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Room 
 

 

Description 
 

Dimensions 
 

Furniture in the room 
 

Objects in the room 
 

R 1 
 

Small room 
 

Approx.  
10feet * 8feet  

 

-small longitudinal window on the 
very top (children can’t see through 
it),  
-cupboard,  
-low rectangular table, 
-2 children’s chairs, 
-decoration on the wall (a clown’s 
head drawn on a paper board). 
 

 

Regular objects: 
- game with individual letters 
to form words, reflective blue 
metallic support, 
- coloured cubes (25mm*25mm) 
- rectangular paperboard 3D 
decoration, 1m*30cm*20cm ,  
vertically in a corner. 
On occasion: man’s like face 
drawn on a paperboard that 
children could hold in front of 
their face. 

 

R 2 
 

Small room in 
the Autism Base 

 

Approx.  
10feet * 12feet  

 

-big window on a wall,  
-second internal window (semi-
transparent, semi-reflective) with 
view on another classroom; 
 -vertical mirror, children can  see 
their whole body by reflection 
-shelves on the very top, children 
can’t access  
-table & small chairs (session8 only) 

 

- games in open boxes on the 
shelves (e.g. a doll); children 
can see them but can’t access 
them. 

 

R 3 
 

Large meeting 
Room: library, 
kitchen and living 
room corners. 
Experiments 
took place in the 
living room 
corner. 

 

-room: Approx. 
35feet * 40feet; 
 -living room 
corner, approx. 
10feet * 12feet 

 

-Large windows on two walls  
-2 sofas made of joint comfortable 
chairs  
-4 comfortable additional chairs 
-rectangular dinner table, 6 chairs  
-2 low  coffee tables  
-shelves (at the entrance) 
-kitchen corner 

 

-magazines on the coffee table 
-on the shelves, objects such as 
cloth samples in open boxes 
-small calculator 
-small alarm clock 

 

R 4 
 

Classroom; 
experiments took 
place in the 
library corner  

 

-room: Approx. 
30feet * 30feet;  
-library corner: 
approx.  
10feet *  7feet 
 

 

Library corner: 
-2 shelves separating the library 
corner from the rest of the classroom 
-small children’s bench 

 

Library corner: 
-books 

 

Figure 4.3: Description of the school’s rooms used for the experiments.

Session S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 
Room R1 R1 R1 R1 R1 R3 - Child C : R3 

- Other children : R4 
- Child C: R3 
- Other Children: R2 

R2 R2 

 

Figure 4.4: List of the school’s room(s) used for each session.

verbal communication process by answering a child’s question directly addressed to

her.

The duration of the sessions was variable. The child was free to play as long

as he/she wanted with the following restrictions: i) the upper limit of time was 40

minutes (so that the child did not miss too much of his/her courses at school); ii) if

the child had an obligation due to his/her planning, the session was shortened.

The Aibo robot was programmed in order to show simple behaviours, tailored

progressively by immersion according to each child’s needs and abilities. Note that

“tailored by immersion” means here that the repertoire of appropriate robot’s be-
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haviours with respect to each child specific needs, abilities, dislikes and preferences

was progressively refined as the experiments progressed. The mapping between the

sensors and the reactions of the robot (also called behaviour-mode) could therefore

vary from one session to the other and also during a session in order to meet as

close as possible the needs, abilities and demands of the child at a given moment.

The robot reacted autonomously to the activation of its sensors, with respect to

the specific behaviour-mode it had been endowed with. The switch between various

behaviour-modes was done manually by the experimenter through a wireless connec-

tion with a laptop. The laptop was located in the same room as the children, and

thus constituted an additional source of distraction for the children.

Methodology of the approach. During the session, the child was invited to play

with the Sony robotic pet Aibo. The experimenter took part in the experiment.

The child was the major leader for play: the child was free to choose the game

to focus on, the pace of play and he/she could engage in free-play (unconstrained

play) with the robot and/or the experimenter; he/she was also free to engage in

communication with the experimenter whenever he/she wanted. If the child appealed

to the experimenter’s participation, then the experimenter did take part in the game.

If the child initiated verbal or non-verbal (e.g. smile, eye gazing) communication

with the experimenter then the experimenter answered appropriately. With respect

to verbal communication, the experimenter tried to answer every question of the

child and rewarded him/her verbally whenever appropriate. Note that this approach

is mainly child-centred, relies strongly on the child capabilities of designing his/her

own trajectory of progression and on total respect and consideration towards the

child from the experimenter. In this sense, this approach draws inspiration from

non-directive play therapy.

Beyond inspiration from non-directive play therapy, this approach adds a regula-

tion process under specific circumstances which are detailed below:

a) to prevent from or get rid of a repetitive behaviour : If the child was starting or

about to start a repetitive behaviour, the experimenter intervened and tried to

help the child play a different game;

b) to help the child engage in play : if the child did not engage in interaction with

the robot, then the experimenter encouraged him/her to play with the robot,

verbally and/or non-verbally (e.g. by stroking the robot and encouraging verbally

imitation);



CHAPTER 4. A NOVEL APPROACH IN ROBOT-ASSISTED PLAY 39

c) to give a better pace to the game if already experienced by the child : If the game was

“standing still” but the child already experienced this game and had shown he/she

was capable to play this specific game, then the experimenter could intervene

punctually to confer a better pace to the game;

d) to bootstrap a higher level of play : if the child was about to reach an higher level of

play but still needed some bootstrapping (some light guidance), the experimenter

could provide it;

e) to proactively ask questions related to affect or reasoning : the experimenter could

proactively ask the child simple questions related to affect or reasoning such as:

“Do you think Aibo is happy today?” or “Do you like playing with Aibo?”.

Note that e) enables: i) to test the ability of the child to answer and/or ii) to show

the child a specific point for reasoning. We shall give several examples within various

levels of reasoning:

1. technical issue: show the child how to change the battery of the robot so that

he/she can do it next time in a context of cooperative task;

2. ask the child if he/she thinks Aibo is happy;

3. help the child reason on causal effect: stimulation of a sensor implies a specific

reaction of the robotic dog;

4. show the child that a reaction can be interpreted: e.g. if I press this specific

button, then Aibo wags the tail; and wagging the tail can mean that Aibo is

happy; thus if you press this button, you can show that Aibo is happy.

4.4.3.2 Measures

Each session was filmed unless the child explicitly asked for not being filmed which

rarely happened. First, the experimenter viewed the video recordings and wrote

down notes on the events constituting each session. These notes described the events

in detail and contained as few interpretation as possible. As a second step, the ex-

perimenter analysed the data in terms of more abstract criteria that would enable

her to identify, for each child, both the profile according to the three dimensions

(Play, Reasoning and Affect) and the progresses made over the 10 sessions. This

methodology allows to first gather as much information as possible before deciding

on the specific criteria; it has the advantage of not restricting the analysis to pre-

defined criteria which might reveal a posteriori not being the optimal ones to base
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the analysis upon. This is especially relevant in the case of an exploratory study.

This procedure follows the procedure described by Schatzman and Strauss (1973),

stating that: “the researcher requires recording tactics that will provide him with

an ongoing developmental dialogue”. Schatzman and Strauss (1973) underline the

importance of recording observations from the very beginning of research. They also

suggest taking notes separately, categorizing notes into three different packages: a)

“observational notes” based on events, without interpretation; b) “theoretical notes”

representing an attempt to confer or denote the meaning from an observational note;

c) “methodological notes” dedicated to methodological comments.

Results of the experiments were analyzed according to three (intertwined) dimen-

sions, respectively Play, Reasoning and Affect.

Play This study aims at testing the feasibility of this approach to encourage the

child to learn new play skills and enable him/her to experience more and more com-

plex play situations with respect to the following main criteria:

a) social aspect of play,

b) proportion of symbolic and/or pretend play,

c) understanding/use of causality,

d) ability to handle the pace of a specific play and possibly the chronology or the

transitions between two logical segments of play.

That is why, concerning the dimension of Play, what particularly matters is 1) to

extract information qualitatively about play situations that the child has experienced

in each session, and 2) see if the child really experienced a large repertoire of play

and more complex levels of play gradually over the sessions.

For this purpose, a Play Grid was built (after the play sessions) based on the

children’s plays objectively observed during the experiments. This grid is exhaustive

with respect to the variety of play situations which took place at least once during

the experiments for at least one of the children. Besides, the different play situations

were classified into 6 sets, each set denoting a specific level of complexity of play

(Level 1 being the lowest and then gradually incrementing the level of complexity

until Level 6). The level of complexity is defined according to four criteria:

a) social play,

b) proportion of pretend and/or symbolic play,
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c) exploration of the use of causality/reaction,

d) chronology and/or number of different phases in the play, e.g. a simple reaction

to a sensor is constituted of two phases while a search and rescue game involves

many phases to handle chronologically: i) initial situation, ii) search phase, iii)

rescue phase, iv) final situation.

The level of complexity is then deduced from an average evaluation over the four

components which explains that the same level may contain play situations with a

predominant component of “d)” and others with a predominant component of “b)”.

Consequently, within a same level of complexity, the different play situations are not

ordered since they may be very different in nature. Ideally, the child would experience

higher levels of play over the time and, within a same level of complexity, different

play situations in nature.

The systematic analysis with the grid for each child and each session shows the

trajectory of each child (i.e. the profile of the child). Each cell in the grid is filled

in if and only if it corresponds to a play situation experienced by the child at least

once during that specific session; and the content depends on the play situation being

acted proactively or reactively (i.e. the child was slightly guided towards this play

situation by the experimenter).

However, this grid is much enlightening for children who manage to play socially

and manage to diversify their play. For those who do not interact a lot with the robot

and, when playing, tend to experience mainly solitary play through the exploration of

the robot’s features and behaviours, a more adapted tool to evaluate their progresses

was used. That evaluation was quantitative and relied on measuring for the whole

duration of each session:

1. the total time spent in interaction with the robot,

2. the duration for each single uninterrupted phase (period) of pure interaction

(note that the total duration is the sum of the duration of each single uninter-

rupted phase of play),

3. the amount of gestures imitated by the child and the number of gestures ex-

plicitly asked by the experimenter to be imitated.

Reasoning Through play, children can notably construct some understanding of

social situations and gain experience of some situations they encountered while play-

ing. If a child can reason on abstract concepts, infer mental states and make a sense of
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social rapports, it will be easier for him/her to play symbolically. Reciprocally, while

the child experiences symbolic play, he/she manipulates abstract concepts such as

inferring an emotion or handling social rapports. Both play styles and reasoning are

therefore intertwined and both views should therefore be used to analyse the results

of the experiments carried out for this study. Note that with respect to ‘Reasoning’,

what is particularly relevant are both questions and answers emerging from play

situations. The context of play enables the use of imagination, whereby Aibo may

be assigned a specific role by the child, and it allows the child to attribute specific

capacities to the robot such has having mental states (e.g. it enables to imagine that

Aibo is taking on a specific role and make further assumptions on his mental state

or his social status). Consequently, the context of play enables the robotic pet to be

attributed with mental states as well as a social role, and possibly moral standing.

In this way, it is possible to explore quite largely the reasoning part of the coding

manual developed by Kahn et al. (2003) for the analysis of children’s conception of

the Aibo robot, by exploring the four following categories used in Kahn et al. (2003):

“Essence”, “Mental States”, “Social Rapport” and “Moral Standing”. According to

Kahn et al. (2003), those categories “reflect a “quadrology” of children’s conceptions

of Aibo and Shanti4”.

For each of those four categories a list of related questions can be formulated

(Kahn et al., 2003):

a) “Essence”: Does the child consider Aibo as an artefact or a biological entity?

b) “Mental states”: Does the child attribute mental states to Aibo? Does the

child consider that the robot develops in terms of age for instance? Does the child

consider Aibo has a personality? Does he consider Aibo could live autonomously?

c) “Social rapport”: How does the child position Aibo relatively to himself/herself;

d) “Moral standing”: Can Aibo be physically or morally hurt? Can he be held

responsible for something? Can Aibo be punished when necessary? Could Aibo

be praised?

Note that Kahn et al.’s coding manual has been developed in a different context than

the one of this study: they targetted typically developing preschool children who only

encountered Aibo once and afterwards immediately answered specific questions about

“reasoning” (Kahn et al., 2003, 2006) - while answering questions, children could

4Shanti is the name of the stuffed dog that was used in Kahn et al. (2003)’s study as a basis for
comparison.
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however carry on interacting with the robot. Here, the context used in our study

is different since the succession of sessions enables the child to progressively build

some reasoning and understanding, along with the progressive building of a shared

space of expressions and routine activities between the child and the experimenter.

Therefore, the reasoning related to the robot can be enriched. Besides, ‘reasoning’

here is part of play in itself. In the study presented in this chapter, the context of play

is actually used to enable the child to explore issues such as mental states or social

rapports, and the robot in itself is a support for embodying such issues through the

imaginary context that comes with play. Moreover, since the experimenter takes part

in the experiments, not only social rapport between the child and the robot should

be considered, but also the child’s view on the notion of social rapport between

the robot and the experimenter and between himself/herself and the experimenter.

Consequently, here, the dimension of ‘Reasoning’ is analysed as follows:

1. The main features of the four categories (“Essence”, “Mental States”, “So-

cial Rapport” and “Moral Standing”) are extracted from Kahn et al.’s coding

manual (Kahn et al., 2003);

2. The issue of whether and how the child addresses those features is investigated

for each child, in a perspective of questioning through play rather than giving

firm answers.

Note that since the experimenter is not a therapist, and since the behaviour of children

with autism might sometimes be interpreted differently from typically developing

children, in the analysis we only consider events which are objectively and reliably

identifiable. Verbal events are particularly reliable events; they can be statements

or questions arising from the child (major events) or answer to the experimenter’s

question (minor events). Below are some examples: a) Essence: “He’s a robot, he is

a robot dog”, “He has short teeth, he doesn’t bite. Robot dogs don’t bite, do some

do?”; b) Mental states: “Aibo is happy”, “How old is Aibo”, “Aibo, answer me, do

you like toys?”; c) Social Rapport: “It is your robot”; d) Moral standing: the child

accidently kicks the robot and apologized verbally to the robot directly. Besides, in

many cases, as already explained, reasoning and play are intertwined; for instance,

when the child and the robot’s relative social position in an enacted situation of

pretend play is well-defined by the child (e.g. a competition with two participants,

the child and Aibo), the notion of social rapports is certainly addressed. Another

example is a play situation of asking the robot about its mental states and answering

with the activation of a sensor.
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As a further step in reasoning, the child may tackle a more general issue related

to his/her mental states for instance, or to social rapport, concerning himself/herself

or even the experimenter. This is a relevant point for this study: it would show the

potential reuse in another context of skills the child may develop or practise through

reasoning about the robot during play.

 
 
1) 

 
Proactive (major) event related to affect: 
 

i) Child’s statement or question referring directly to himself/herself liking the robot or the robot 
liking him/her. No hug or kiss from the child to the robot.  
Examples: ``I like Aibo'', ``Aibo likes me''. 

ii) Child’s verbal compliment to/concerning the robot. No hug or kiss from the child to the robot. 
Examples: ``good doggy'', ``nice dog'', “he is a nice dog”. 

iii) Child’s hug to the robot, clearly identifiable, accompanied by a kind word from the child 
to/concerning the robot or verbal statement qualifying the hug. 
Example: the child hugs the dog and asks the experimenter to hug the dog: ``Put your hands 
and hug, hug, hug!'' 

iv) Child’s kiss to the robot, clearly identifiable, accompanied by a kind word from the child 
to/concerning the robot. 
Example: the child gives a kiss to Aibo after saying ``Goodbye Aibo, have a good sleep'' 
 

 

2) 
 

Reactive (minor) event related to affect: 
 

i) Child’s answer to a question about himself/herself liking the robot or the robot liking the 
child. 
Example: the experimenter asks the child: ``Is it a nice robot?'' and the child answers ``Yes''.    

ii) Child’s answer to a question about himself/herself being happy to play with the robot. 
Example: the experimenter asks the child: ``You are happy playing with the robot?'' and the 
child answers ``Yes''. 
 

Note, reactive events related to affect are considered very cautiously in this study; they are not 
considered as sufficient to make firm deductions about the child addressing the notion of ``Affect''. 
 

 

Figure 4.5: Criteria for coding events related to Affect. An event is related to ‘Affect’ if it
corresponds to one of the items provided in the table; in some of the following figures, events related to affect
are qualified by a corresponding code: the code of an event related to affect is given by its corresponding
item’s index, e.g. “I like Aibo” is [1i].

Affect The ‘Affect’ dimension represents any expression indicating whether the

child likes the robot or not, or if the child makes an assumption on the robot liking

him/her. Here, only obvious signs of like/dislike are considered, in order to ensure

that events considered as related to affect are clearly identifiable (see Fig. 4.5 provides

the table of criteria for the coding of events related to affect). For instance, a gentle

stroke is not classified as an event related to affect in this study, neither a gesture

such as a kiss or a hug, if it is not accompanied by an appropriate child’s statement.
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4.4.4 Coding and Reliability

Inter-rater reliability testing was carried out for each of the three dimensions, respec-

tively, play, reasoning and affect. A second coder who was not familiar with the aims

of the study re-coded part5 of the data. Good reliability was shown: a) On play,

80.7% agreement (13min50s of videos coded divided among two children, Child E

and Child C); b) On reasoning, 80.3% agreement (18min24s of videos coded divided

among two children, Child E and Child F); c) On affect, 93.3% agreement (22min of

Child C’s videos coded).

4.5 Results

Child A Child A showed some apprehension towards the robot and did not interact

at all during the five first sessions. The experimenter therefore decided not to require

the child to come for the following sessions and let the child proactively decide whether

he wanted to take part in the further trials or not. In the last session (Session 10),

Child A proactively came for the trial. In that session he engaged in an interaction

with the robot with the help of the experimenter: one interaction event happened

between the child and the robot, during which the experimenter showed the child

how to stroke the robot and the child imitated (Fig. 4.6). Afterwards, the child

both showed signs of light apprehension (he moved his body slightly backwards) and

enjoyment (he smiled).

Child B Child B took part in 9 sessions (Fig. 4.7). Child B naturally showed

attempts to play with the laptop rather than with the robot. It was a big challenge

to get the child away from the laptop and get his attention focused on something

else. The experimenter used a simple trick by hiding the laptop with a cloth. But

for practicality reasons (e.g. to connect or reconnect Aibo during the session), the

cloth had to be removed from times to times during the session thus introducing an

important source of distraction for Child B. Progressively, the child seems to have

understood that he was allowed to punctually have a look at the laptop (as part of

his well-being) but that he should mostly engage in interactions with the robot. The

table provided in Fig. 4.8 shows the average amount of time Child B spent engaging

5The recoded segments contained only high involvement of the children in interaction. High
involvement is characterised by the fact that i) children do not stop interacting for a period longer
than a few seconds, and ii) children experience many situations of play, reasoning or affect related to
the robot. Therefore, the density of events to identify and code is very high in the recoded segments
which makes the evaluation highly meticulous.
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 1 2 3 4 5 6 7 8 9 10 

Solitary Exploration           
“Imitation” of robot’s bark           

L
1 

Solitary mirror play – look at oneself in the robot’s reflecting face           
L
2 

“Pre-social” or basic-social exploration – stroke Aibo immediately  
after the experimenter (possibly basic imitation of the gesture) 

         P 

Social exploration (social play)            
Simple Bite/Save or Give/Food -  no use of the sensors            
Position or locomotion game – with verbal qualification of the game           
Cooperative technical task: change the battery, or turn on/off Aibo           
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up”           
Basic pretend & social play – imitate Aibo’s snoring & verbal comment           
Basic play on affective gestures – give/receive a kiss and/or a lip 
to/from Aibo 

          

Repeat after me - ask the experimenter to repeat verbal expressions           
Look at Aibo through the camera 
(Possibly stroke Aibo & look at its reaction through the camera) 

          

Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French           
Show Aibo to other children (social play) 
Express verbally the willing/intention to show Aibo to the other children 

          

Simple play with accessory (symbolic play)           
Social Mirror play (social play) - look at oneself (and possibly at the 
experimenter) in the robot’s reflecting face & express verbal comments, e.g. 
“Look at my arm!” 

          

L
3 

Social Hug – hug Aibo & ask the experimenter or the second researcher 
to hug Aibo   

          

Complex Give Food/Drink (cause-reaction play & symbolic play & 
social play) - use of sensors 

          

Complex Bite/Save (cause-reaction play & pretend play & 
cooperative play) - use of sensors 

          

Complex turn off Aibo to sleep (symbolic play)            
Speak directly to Aibo about Aibo’s feeling (symbolic play)           
Cause-reaction play & mental states: 
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor 

          

Cause-reaction play, 
Aim at a physical reaction of the robot, show it with a sensor 

          

Cause-reaction play & basic pretend play, “caught on the act”           

L
4 

Telling a story           
Cause-reaction play and explicit Social rapport: 
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which 
opens the mouth), translate verbally the answer for the experimenter 

          

Symbolic & pretend play Complex play with an accessory           
Symbolic & pretend play Complex nap with Aibo           
Symbolic & extrapolation play  : “RobotCat” - Speak about  the idea 
of a robotic cat (possibly imagine how one would play with it) 

          

Causal composition of plays: Bite/Save & Give Food/Drink           
Causal composition of plays: Kiss & Bite/Save           

L
5 

Pretend play & causal reaction & social rapports: 
Ask verbally Aibo to act a situation,  use of sensors  

          

Pretend play & focus on Aibo’s mental states: 
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry 

          

Pretend play & social rapports: Look after Aibo and set up rules           
Pretend & symbolic & chronological play & social rapports:  
Search and rescue 

          

L
6 

Pretend & symbolic play & social rapport & cause-reaction  
play & chronological play: competition (drink fast) between the child or 
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor 

          

Figure 4.6: Child A. Play Grid. The first column describes the corresponding level of play, the
second column details the various play situations for each level that the child experienced at least once; the
following columns refer to the sessions, ordered chronologically. The table is then completed according to
the following rules: a) if the child did not experience the play situation during the specific session, leave the
corresponding cell blank; b) if the child experienced the specific play situation at least once during the session,
then write “P” (if the child experienced it proactively only – i.e. it was his/her own initiative). Write “r”
if the child never experienced it proactively (only reactively: the experimenter guided the child towards the
play situation). Write “B” if the child experienced this play situation many times , sometimes proactively
and sometimes reactively. Note that Child A did not take part in the play sessions 6, 7, 8 and 9.
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 1 2 3 4 5 6 7 8 9 10 

Solitary Exploration P B B P r   B P B 
“Imitation” of robot’s bark           

L
1 

Solitary mirror play – look at oneself in the robot’s reflecting face           
L
2 

“Pre-social” or basic-social exploration – stroke Aibo immediately  
after the experimenter (possibly basic imitation of the gesture) 

       r r B 

Social exploration (social play)            
Simple Bite/Save or Give/Food -  no use of the sensors            
Position or locomotion game – with verbal qualification of the game           
Cooperative technical task: change the battery, or turn on/off Aibo           
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up”           
Basic pretend & social play – imitate Aibo’s snoring & verbal comment           
Basic play on affective gestures – give/receive a kiss and/or a lip 
to/from Aibo 

          

Repeat after me - ask the experimenter to repeat verbal expressions           
Look at Aibo through the camera 
(Possibly stroke Aibo & look at its reaction through the camera) 

          

Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French           
Show Aibo to other children (social play) 
Express verbally the willing/intention to show Aibo to the other children 

          

Simple play with accessory (symbolic play)           
Social Mirror play (social play) - look at oneself (and possibly at the 
experimenter) in the robot’s reflecting face & express verbal comments, e.g. 
“Look at my arm!” 

          

L
3 

Social Hug – hug Aibo & ask the experimenter or the second researcher 
to hug Aibo   

          

Complex Give Food/Drink (cause-reaction play & symbolic play & 
social play) - use of sensors 

          

Complex Bite/Save (cause-reaction play & pretend play & 
cooperative play) - use of sensors 

          

Complex turn off Aibo to sleep (symbolic play)            
Speak directly to Aibo about Aibo’s feeling (symbolic play)           
Cause-reaction play & mental states: 
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor 

          

Cause-reaction play, 
Aim at a physical reaction of the robot, show it with a sensor 

          

Cause-reaction play & basic pretend play, “caught on the act”           

L
4 

Telling a story           
Cause-reaction play and explicit Social rapport: 
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which 
opens the mouth), translate verbally the answer for the experimenter 

          

Symbolic & pretend play Complex play with an accessory           
Symbolic & pretend play Complex nap with Aibo           
Symbolic & extrapolation play  : “RobotCat” - Speak about  the idea 
of a robotic cat (possibly imagine how one would play with it) 

          

Causal composition of plays: Bite/Save & Give Food/Drink           
Causal composition of plays: Kiss & Bite/Save           

L
5 

Pretend play & causal reaction & social rapports: 
Ask verbally Aibo to act a situation,  use of sensors  

          

Pretend play & focus on Aibo’s mental states: 
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry 

          

Pretend play & social rapports: Look after Aibo and set up rules           
Pretend & symbolic & chronological play & social rapports:  
Search and rescue 

          

L
6 

Pretend & symbolic play & social rapport & cause-reaction  
play & chronological play: competition (drink fast) between the child or 
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor 

          

Figure 4.7: Child B. Play Grid. See Fig. 4.6 for a detailed caption. Note that Child B was away
for Session 7.
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Aspects of imitation: 
In each single phase of play, 
numbers of gestures: 

 Total 
duration 
of play 
(min:sec) 

Repartition of the play 
time in single phases of 
play  
(min:sec and + between 2 
single phases) 

Imitated 
by the 
child 

Explicitely asked 
by the 
experimenter to 
be imitated 

Verbal 
expression 
involving either 
the word ‘dog’ 
or ‘robot’ 

Session1 0:06 0:06 0 0  
Session2 1:30 1:00 

+ 0:30 (mostly looking 
attentively at Aibo) 

0 0  

Session3 0:40 0:40 0 0  
Session4 Almost 

null 
Almost null 0 0 ‘The little dog 

was easy’ 
Session5 0:15 0:15  

the experimenter helps 
by holding the child’s 
hand to show him 

0 0  

Session6 0:00 0:00 0 0  
Session7 away     
Session8 1:05 1:05 1 2  
Session9 2:21 0:40  

+1:16  
+0:16 

0 
+1  
+0 

0 
+2  
+0 

 

Session10 5:24 0:20  
+1:47  
+0:18 
+2:46 

0 
+3 
+0 
+3 

0 
+3 
+0 
+1 

 

 

Figure 4.8: Child B. Dimension of play: quantitative results: For each session, the following
indicators are reported: a) total duration of play; b) duration for each specific single session of play ; c)
aspects of imitation with respect to i) the occurrence of gestures (touch or stroke of the robot) that the child
imitated and ii) the occurrence of gestures that the experimenter explicitly asked the child to imitate; d)
verbal expressions including the word “dog” or “robot”.

in play with the robot during each session. The tendency is clearly that the child

played longer with the robot in the two last sessions than in the previous ones and

almost doubled his play time between the 9th and 10th session. If we consider in

detail the duration of single phases of play, i.e. uninterrupted periods of time when

the child continuously played with the robot, then, again, this table shows that the

child experienced longer uninterrupted periods of play with the robot during the

last sessions. Typically, two uninterrupted periods of play are often separated by an

attempt of the child to play with the laptop. This shows that the child progressively

learnt to focus more and more on the robot and on engaging in play with the robot.

Nevertheless, the experimenter also often intervened to help the child carry on playing

and keep focusing his total attention to the robot; this intervention usually happened

in two ways: a) encouraging and rewarding the child verbally, or b) showing an

example, e.g. stroking the robot and asking for the child to do the same. In this

context, ‘b)’ is very relevant indeed since the child does not speak verbally and

encouraging imitation is favourable for both relaunching the child’s engagement in
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play and bootstrapping social play. It should be noted that in this specific context,

imitation is very rudimentary: the experimenter either touches a specific sensor or

gently strokes the robot (e.g. on the head) and explicitly asks the child to do the same.

The child is considered to imitate the experimenter’s gesture if he initiates within 10

seconds the same nature of gesture, i.e. either a touch of a sensor or a stroke, and

if the gesture is applied on the same part of the robot’s body; for instance, i) the

experimenter touches the head sensor and, within 10 seconds, the child presses the

same sensor (with or without activation depending on the child’s precision of touch) ;

or ii) the experimenter gives a gentle stroke on the back of the robot and, within ten

seconds, the child gives a stroke on the back of the robot. Results show that Child

B progressively experienced more situations of imitation. Besides, they also reveal

that during the last session he imitated some gestures proactively, i.e. without being

explicitly asked by the experimenter to imitate.

Concerning the “Reasoning” dimension, Child B did not address the issue ver-

bally. Thus, no firm conclusions should be drawn. However, the detailed study of the

child’s gestures shows that the exploration of the child became progressively richer

and richer over the sessions. The child varied his position relative to the robot, from

sitting to kneeing and lying, and thus looked at the robot from various viewpoints.

Moreover, he progressively varied his way of touching the robot: during the first ses-

sions, he progressively abandoned random-like touch to develop more targeted touch.

Note that targeted touch can be, for instance, trying to touch a single sensor precisely

or stroke the robot gently and then activate many sensors. Besides, during the last

session, the child experienced proactively a combination of two previous sensor acti-

vations: first, he imitated the experimenter and stroke the back of the robot; second,

he imitated the experimenter again and touched the head; third, his next behaviour

was the simultaneous activation of back sensors and the head sensor.

Concerning the third dimension, “Affect”, no event that was related to affect

(with respect to Fig. 4.5) was recorded.

Child D Child D was away for Session 3 and Session 6 and therefore took part

in 8 sessions in total. The analysis of the Play Grid in Fig. 4.9 shows that Child

D played mostly solitarily. He engaged largely in exploratory play which became

progressively more and more enriched. Two main aspects objectively illustrate the

phenomenon a) a progressive change of position (from sitting orthogonal to the robot

and not facing the experimenter to facing the robot and the experimenter) and b) a
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 1 2 3 4 5 6 7 8 9 10 

Solitary Exploration P P  P   P P P P 
“Imitation” of robot’s bark           

L
1 

Solitary mirror play – look at oneself in the robot’s reflecting face P   P P  P P P P 
L
2 

“Pre-social” or basic-social exploration – stroke Aibo immediately  
after the experimenter (possibly basic imitation of the gesture) 

   P P  P B   

Social exploration (social play)            
Simple Bite/Save or Give/Food -  no use of the sensors            
Position or locomotion game – with verbal qualification of the game           
Cooperative technical task: change the battery, or turn on/off Aibo    P P  B P P B 
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up”           
Basic pretend & social play – imitate Aibo’s snoring & verbal comment           
Basic play on affective gestures – give/receive a kiss and/or a lip 
to/from Aibo 

          

Repeat after me - ask the experimenter to repeat verbal expressions           
Look at Aibo through the camera 
(Possibly stroke Aibo & look at its reaction through the camera) 

          

Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French           
Show Aibo to other children (social play) 
Express verbally the willing/intention to show Aibo to the other children 

          

Simple play with accessory (symbolic play)           
Social Mirror play (social play) - look at oneself (and possibly at the 
experimenter) in the robot’s reflecting face & express verbal comments, e.g. 
“Look at my arm!” 

          

L
3 

Social Hug – hug Aibo & ask the experimenter or the second researcher 
to hug Aibo   

          

Complex Give Food/Drink (cause-reaction play & symbolic play & 
social play) - use of sensors 

          

Complex Bite/Save (cause-reaction play & pretend play & 
cooperative play) - use of sensors 

          

Complex turn off Aibo to sleep (symbolic play)           
Speak directly to Aibo about Aibo’s feeling (symbolic play)           
Cause-reaction play & mental states: 
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor 

          

Cause-reaction play, 
Aim at a physical reaction of the robot, show it with a sensor 

          

Cause-reaction play & basic pretend play, “caught on the act”           

L
4 

Telling a story         P P 
Cause-reaction play and explicit Social rapport: 
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which 
opens the mouth), translate verbally the answer for the experimenter 

          

Symbolic & pretend play Complex play with an accessory           
Symbolic & pretend play Complex nap with Aibo           
Symbolic & extrapolation play  : “RobotCat” - Speak about  the idea 
of a robotic cat (possibly imagine how one would play with it) 

          

Causal composition of plays: Bite/Save & Give Food/Drink           
Causal composition of plays: Kiss & Bite/Save           

L
5 

Pretend play & causal reaction & social rapports: 
Ask verbally Aibo to act a situation,  use of sensors  

          

Pretend play & focus on Aibo’s mental states: 
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry 

          

Pretend play & social rapports: Look after Aibo and set up rules           
Pretend & symbolic & chronological play & social rapports:  
Search and rescue 

          

L
6 

Pretend & symbolic play & social rapport & cause-reaction  
play & chronological play: competition (drink fast) between the child or 
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor 

          

Figure 4.9: Child D. Play Grid. The first column describes the corresponding level of play, the
second column details the various play situations for each level that the child experienced at least once; the
following columns refer to the sessions, ordered chronologically. The table is then completed according to
the following rules: a) if the child did not experience the play situation during the specific session, leave the
corresponding cell blank; b) if the child experienced the specific play situation at least once during the session,
then write “P” (if the child experienced it proactively only – i.e. it was his/her own initiative). Write “r”
if the child never experienced it proactively (only reactively: the experimenter guided the child towards the
play situation). Write “B” if the child experienced this play situation many times , sometimes proactively
and sometimes reactively. Note, Child D was away for Session 3 and Session 6.
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more diversified way of touching the sensors. Moreover, the child practised “solitary

mirror play” frequently. It consists in looking at one’s image in the robot’s reflecting

face. Child D experienced situations of looking at his image with other reflecting

surfaces too, such as a window, partially reflecting, or a mirror, perfectly reflecting

(room R2 contained a mirror). All of these play situations, consisting in looking at

one’s image, were often fascinating for Child D, and sometimes prevented him from

engaging in other kinds of play situations. Besides, Child D did not experience play

involving explicitly causal reactions, such as showing a specific reaction of the robot

through the sensors’ activation.

However, progressively, Child D experienced situations with some components of

social play. From a cooperative point of view, the child did take part, both reac-

tively and proactively in cooperative technical tasks such as turning on the robot.

Furthermore, Child D, who mostly speaks by onomatopeia did develop some ways

of expressing himself, by dancing in front of the mirror and/or the robot and even

probably telling a story by using not proper words but onomatopeia. The situation

described below, that Child D experienced, may actually be interpreted, with cau-

tion, as a storytelling situation: Child D chronologically a) pressed the button to

“wake up” Aibo (i.e. turn Aibo on), then b) stood in front of the wall mirror in the

room, still watching Aibo “waking up”; c) once Aibo had woken up, the child started

dancing and saying onomatopeia in front of the mirror. At some point, the robot

disconnected. During the whole process the experimenter told Child D many times

that she thought he was telling a story and asked him if she was right. She got no an-

swer. When the robot disconnected the child stopped dancing and the experimenter

reiterated her question: “Was it a story that you were telling me? Yes or no?” and

the child answered “Yes”. Then she asked: “Can you tell me another story, yes or

no?” and the child answered “yes”. Then the child repeated the same succession of

behaviours ‘a)’, ‘b)’ and ‘c)’ and she asked: “Is it about a boy the story?” And he

answered “Yes”. It is worthy of note here that the child might have simply repeated

the word ‘yes’ after each question without giving a ‘real’ answer to the questions.

Nonetheless, that example shows how the child may have progressively opened up to

more communication with his surrounding social environment for play (notably the

experimenter).

This storytelling situation took place in the last sessions while the child was

starting to answer some questions about reasoning as well as using proactively verbal

expressions to express intention. An in depth study of the verbal answers the child
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formulated shows that over the first sessions, the child almost only answered “yes” or

“no”, whenever he answered. Then, progressively, the child answered some questions

by repeating words from the question: e.g. in Session 4 the experimenter asked “Do

you want to play with the robot or go back to the classroom?”. The child answered:

“play with the robot”. And in the last two sessions, the child did use expressions to

express his own intentions; for instance, the expression “sitting down” means that

he wants to remain sitting down on the ground to carry on playing with the robot.

In Session 9, the experimenter actually asked the child: “Do you want to go back

to the classroom or play with him (the robot)?” and the child answered “play with

him”. Then later in the session, the experimenter asked the question “Shall we go

back to the classroom now?”. And the child answered: “Sitting down”. During the

last session, the child reused exactly the same expression (“sitting down”) to answer

the experimenter’s question: “Would you like to go back to the classroom soon?”.

Regarding the analysis of the reasoning dimension, the child answered reactively

very basic questions about Aibo’s mental states, such as “Do you think Aibo is happy

today?” or about his own mental state: “Do you like playing with the robot?” but

there was no proactivity from the child with respect to mental states.

Concerning “Social rapport”, the child progressively grasped the fact that Aibo

belonged to the experimenter. In the first sessions, the experimenter had to explain

many times to the child that he could not take the robot with him back to the

classroom. In contrast, at the end of the last session, the child hesitated a short time

and gave the robot back to the experimenter proactively. Apart from that, the child

did not explicitly show any reasoning on “Social rapports”. Neither did he on Aibo’s

“Moral standing”.

The dimension of Affect has been mostly addressed indirectly (Fig. 4.10), through

simple questions from the experimenter: in Session 4, the child answered affirmatively

to the following questions: a) “Is it a nice robot?” and b) “You are happy playing

with the robot?”. Later, in session 9, the child answered affirmatively to the question

“Do you think Aibo likes you?” And in Session 10, the child answered affirmatively

to the question “You like the robot?”. Note that since these inputs did not emerge

proactively we should be careful with too much interpretation. Nonetheless, it should

be underlined that most of the time the child said he preferred playing with the robot

rather than going back to the classroom, which shows the child was having fun playing

with the robot. It is perhaps worthy of note here that the experimenter is aware that
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Session 
 

Events objectively related to Affect (ordered chronologically with respect to first 
appearance, event only mentioned once per session) 
 

S1  
S2 · [2i] “Do you like it?” (Experimenter); “Yes” (Child D) 
S3  
S4 · [2i] “Is it a nice robot? (Experimenter); “Yes” (Child D); 

· [2ii] “You are happy playing with the robot? (Experimenter); “Yes” (Child D) 
S5  
S6  
S7  
S8  
S9 · [2i] “Do you think Aibo likes you?” (Experimenter); “Yes” (Child D) 
S10 · [2i] “You like the robot?” (Experimenter); “Yes” (Child D) 
 

Figure 4.10: Child D. Events related to Affect. Events are separated by bullet points, and
provided with their context (normal font) in the table. Events written in bold are coded according to Fig. 4.5
(the code is provided in brackets in front of the event); please note, that when the child answers a question,
the event in itself is the child’s answer, but, in this table, in order to make it clear to the reader, the question
that the answers refers to is also written in bold.

the child may just have given a stereotypical answer6.

Child C Child C was away for Session 7 and thus took part in 9 sessions in total

(note that in Session 6 she had a very limited time of play, approximately 10 minutes,

because of a class trip). The Play Grid in Fig. 4.12 shows that Child C experienced

more and more complex levels of play during the sessions (see Fig. 4.11). She expe-

rienced in play situations involving the activation of a specific sensor to generate a

precise reaction only a bit. She rather proactively experienced firstly play situations

where “affect” is largely addressed (e.g. “Social Hug”). Secondly, she developed play

situations where the robot embodied a character in a story she was telling. Finally,

in a third and last phase, she initiated play situations where she was able to tackle

issues on social rapports or mental states (Session 10: “look after Aibo and set up

rules” and “search and rescue” play situations).

The “looking after Aibo” game dealt with deciding that she and the experimenter

would take care of Aibo, and Child C proactively suggested that, as a consequence,

she and the experimenter would have to define rules the robot would have to respect;

and she enumerated the rules (among them, a detailed list of what the robot is not

allowed to eat, and the statement: “dogs must go outside and must walk”, followed

by “I need to make him walk”). This game also gave rise to proactive inferences of

state, the child even saying: “Look! He is smiling!” in the proper context. The social

6For instance, the experimenter did not ask the question: “Does the robot hate you?”, which the
child might have said “yes” to as well.
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Figure 4.11: Child C involved in social play with the experimenter. 2 sequences are
displayed, one on each line. Each sequence is organised chronologically; on the first line, picture on the right
and on the second line, picture in the middle, Child C is making eye contact with the experimenter.

status that she took of taking care of Aibo led her to show the experimenter how to

do specific things such as to make Aibo go forward: “You see, you must do like this,

see”.

Furthermore, this game was followed by a “search and rescue game” which was

extremely rich in many ways:

a) The child led the rhythm, the pace, and the three steps of the play situation

(chronologically):

• step 1: initial situation where Aibo is lost, the goal of finding Aibo is stated,

• step 2: the experimenter and the child are looking for the dog,

• step 3: final situation: the experimenter and the child find the dog.

b) The child slightly dilated step 2 over time so that she could deal with emotional

states, particularly sadness: “You think we’ve lost him forever” said Child C;

“Oh, that’s sad” said the experimenter; and the child replied: “I think we’re sad

actually” thus conferring a socio-dramatic dimension to the current play situation.

c) During step 3, when the robot was found, the child introduced some reasoning

about categories: she introduced the notion that it might be another robot than

Aibo that she and the experimenter had found; she introduced this reasoning step

by step and she might not have been really at ease with these concepts, but the

point is that she practised them through experiencing them: Child C’s reasoning

started with “Oh no, there are two Aibos here” and, after several steps in the

reasoning, she drew the following conclusion: “No there are two dogs, only one



CHAPTER 4. A NOVEL APPROACH IN ROBOT-ASSISTED PLAY 55

 1 2 3 4 5 6 7 8 9 10 

Solitary Exploration           
“Imitation” of robot’s bark    P P   P   

L
1 

Solitary mirror play – look at oneself in the robot’s reflecting face           
L
2 

“Pre-social” or basic-social exploration – stroke Aibo immediately  
after the experimenter (possibly basic imitation of the gesture) 

          

Social exploration (social play)  P P P P P P  P P P 
Simple Bite/Save or Give/Food -  no use of the sensors       r    P 
Position or locomotion game – with verbal qualification of the game P    P P  P   
Cooperative technical task: change the battery, or turn on/off Aibo  P P P  r  r P  
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up”  P P P    P P P 
Basic pretend & social play – imitate Aibo’s snoring & verbal comment  P         
Basic play on affective gestures – give/receive a kiss and/or a lip 
to/from Aibo 

  P P P P     

Repeat after me - ask the experimenter to repeat verbal expressions          P 
Look at Aibo through the camera 
(Possibly stroke Aibo & look at its reaction through the camera) 

   P       

Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French           
Show Aibo to other children (social play) 
Express verbally the willing/intention to show Aibo to the other children 

          

Simple play with accessory (symbolic play)           
Social Mirror play (social play) - look at oneself (and possibly at the 
experimenter) in the robot’s reflecting face & express verbal comments, e.g. 
“Look at my arm!” 

          

L
3 

Social Hug – hug Aibo & ask the experimenter or the second researcher 
to hug Aibo   

  P        

Complex Give Food/Drink (cause-reaction play & symbolic play & 
social play) - use of sensors 

       B B P 

Complex Bite/Save (cause-reaction play & pretend play & 
cooperative play) - use of sensors 

          

Complex turn off Aibo to sleep (symbolic play)            
Speak directly to Aibo about Aibo’s feeling (symbolic play)           
Cause-reaction play & mental states: 
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor 

     P     

Cause-reaction play, 
Aim at a physical reaction of the robot, show it with a sensor 

     r  P  r 

Cause-reaction play & basic pretend play, “caught on the act”           

L
4 

Telling a story    P  P  P P  
Cause-reaction play and explicit Social rapport: 
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which 
opens the mouth), translate verbally the answer for the experimenter 

          

Symbolic & pretend play Complex play with an accessory           
Symbolic & pretend play Complex nap with Aibo           
Symbolic & extrapolation play  : “RobotCat” - Speak about  the idea 
of a robotic cat (possibly imagine how one would play with it) 

          

Causal composition of plays: Bite/Save & Give Food/Drink           
Causal composition of plays: Kiss & Bite/Save           

L
5 

Pretend play & causal reaction & social rapports: 
Ask verbally Aibo to act a situation,  use of sensors  

          

Pretend play & focus on Aibo’s mental states: 
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry 

          

Pretend play & social rapports: Look after Aibo and set up rules          P 
Pretend & symbolic & chronological play & social rapports:  
Search and rescue 

         P 

L
6 

Pretend & symbolic play & social rapport & cause-reaction  
play & chronological play: competition (drink fast) between the child or 
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor 

          

Figure 4.12: Child C. Play Grid. See Fig. 4.9 for a detailed caption. Note, Child C was away for
Session 7.
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Figure 4.13: Child C’s social hug to the robot. photos ordered chronologically. The child brings
the robot to a second researcher (who helped out during this trial) while saying “Put your hands and hug,
hug, hug” and both of them hug the dog. On the third picture from the left, Child C makes eye contact with
the researcher.

Aibo. The clever one!” and she threw up her hands accompanied by a big smile.

Again, here is illustrated that both “reasoning” and “play” dimensions are highly

intertwined.

Concerning the notion of “Essence” for the Reasoning dimension, Child C mixed

the use of artifacts and biological statements such as saying within the same session:

“He’s a robot, he’s a robot dog” and “Nice dog”, “He is a nice dog”, “I love dogs”,

“A boy or a girl?” (Session 10).

Except in the last session, the notion of “Mental states”, was addressed mostly

reactively: the child answered to questions asked by the experimenter such as “Do you

think Aibo is hungry” (which usually initiates the game “Give food/drink”). There

were two exceptions: a) the child proactively said that the robot liked her, and b) the

child could sometimes refer to mental states when telling stories she adapted from

well-known children’s books. During the last session, the child proactively referred

to mental states of the robot as mentioned above in both “look after” and “search

and rescue” play situations. During the “look after” play situation, she said: “We

play, want to make the dog happy, make the dog feel pretty”.

Moreover, as already mentioned above too, she experienced “Social rapports” a

lot e.g. either simply by saying (in Session 9) “Look at Aibo, Aibo is your dog” or in

taking on specific social roles in more elaborated play situations (e.g. in Session 10,

during “look after” and “search and rescue” games).

Concerning “Moral standing”, no objective event related to it happened.

The dimension of affect played an important role for the child (Fig. 4.14). In

Session 1 already, she started saying “good doggy” with respect to the robot. Then,

in Session 3 she introduced the notion of social hug (see Fig. 4.13), which consisted in

asking the experimenter (or the second researcher present) to help her hug the dog:
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Session 
 

Events objectively related to Affect (ordered chronologically with respect to first 
appearance, event only mentioned once per session) 
 

S1 
· [1ii] “Good doggy” (Child C) while stroking the robot and looking at the 
experimenter (eye contact) 

S2  

S3 

· [1iii] “Help me hug the dog: put your hands and hug, hug, hug” (Child C) while 
bringing the robot near the assistant and showing how to hug 
· [1ii] “Good doggy” (Child C) 
· [1i] “The dog really likes me” (Child C). The experimenter answer “yes” 
· [2i] “Do you like it? (Experimenter). “Yes” (Child C) 

S4 
· [1ii] “Good doggy” (Child C), while stroking the robot 
· [1i] “The dog really likes me” (Child C) and she starts mimicking the noise that 
would do the dog by lapping her. 

S5 
· [1ii] “Good doggy” (Child C) and she looks at the experimenter; “yes very good 
doggy” (Experimenter). 

S6  
S7  
S8 · [1ii] “Good doggy” (Child C) after the robot has “woken up” (i.e. is connected) 
S9 · [2i] Are you happy to see Aibo? (Experimenter); “Yes” (Child C) 

S10 

· [1ii] “Nice dog” (Child C) 
· [1i] “I love Aibo. I love Aibo” (Child C) and she strokes the robot 
· [1ii] “Good boy, good boy” (Child C) and she strokes the robot 
· [1i] “Do you like the walk C, please tell me? (Experimenter); “Yes, this is all about 
dogs like me” (Child C) 
· [2i] You like Aibo, right? (Experimenter); “Yes” (Child C) 

 

Figure 4.14: Child C. Events related to Affect. See caption of Fig. 4.10 for details.

“Put your hands and hug, hug, hug” Child C asked. Later in the same session, as well

as in session 4, the child said, “The dog really likes me”. Note that end of session 3

is the first time she answered to the question “Do you like it(Aibo)?” (she answered

affirmatively). From that session onwards, the child confirmed several times the fact

that Aibo liked her (e.g. session 4 “The dog really likes me”) and that she liked Aibo

(e.g. in session 10: “I love Aibo” and “Nice dog”).

Child E. Child E took part in the 10 sessions of experiments. The Play Grid

in Fig. 4.15 shows that Child E progressively experienced more and more complex

levels of play over the sessions. During the first sessions, he attentively explored the

reactions of the robot and in the following sessions, he experienced more and more

simple causal reactions through the following games: a) “ask about a feeling, answer

with a sensor”, e.g. in Session 10 the child asked: “are you happy?” and pressed the

head button which made the robot wave the mouth as to say “yes”. b) “aim at a

physical reaction, show it with sensors”: e.g. the experimenter asked “Do you think
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 1 2 3 4 5 6 7 8 9 10 

Solitary Exploration           
“Imitation” of robot’s bark           

L
1 

Solitary mirror play – look at oneself in the robot’s reflecting face   P        
L
2 

“Pre-social” or basic-social exploration – stroke Aibo immediately  
after the experimenter (possibly basic imitation of the gesture) 

          

Social exploration (social play)  P P P P P P P P P P 
Simple Bite/Save or Give/Food -  no use of the sensors       r r    
Position or locomotion game – with verbal qualification of the game P  P     P  P 
Cooperative technical task: change the battery, or turn on/off Aibo P P P P B P P P P P 
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up”  P   P      
Basic pretend & social play – imitate Aibo’s snoring & verbal comment           
Basic play on affective gestures – give/receive a kiss and/or a lip 
to/from Aibo 

          

Repeat after me - ask the experimenter to repeat verbal expressions           
Look at Aibo through the camera 
(Possibly stroke Aibo & look at its reaction through the camera) 

          

Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French           
Show Aibo to other children (social play) 
Express verbally the willing/intention to show Aibo to the other children 

          

Simple play with accessory (symbolic play)       P    
Social Mirror play (social play) - look at oneself (and possibly at the 
experimenter) in the robot’s reflecting face & express verbal comments, e.g. 
“Look at my arm!” 

 P P  P P P P   

L
3 

Social Hug – hug Aibo & ask the experimenter or the second researcher 
to hug Aibo   

          

Complex Give Food/Drink (cause-reaction play & symbolic play & 
social play) - use of sensors 

     B B B B B 

Complex Bite/Save (cause-reaction play & pretend play & 
cooperative play) - use of sensors 

  P  B r P P P P 

Complex turn off Aibo to sleep (symbolic play)       P    
Speak directly to Aibo about Aibo’s feeling (symbolic play)      P P  P P 
Cause-reaction play & mental states: 
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor 

    r  r  P P 

Cause-reaction play, 
Aim at a physical reaction of the robot, show it with a sensor 

  r  B   r  r 

Cause-reaction play & basic pretend play, “caught on the act”          P 

L
4 

Telling a story           
Cause-reaction play and explicit Social rapport: 
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which 
opens the mouth), translate verbally the answer for the experimenter 

     P  P P  

Symbolic & pretend play Complex play with an accessory           
Symbolic & pretend play Complex nap with Aibo           
Symbolic & extrapolation play  : “RobotCat” - Speak about  the idea 
of a robotic cat (possibly imagine how one would play with it) 

          

Causal composition of plays: Bite/Save & Give Food/Drink       P   r 
Causal composition of plays: Kiss & Bite/Save           

L
5 

Pretend play & causal reaction & social rapports: 
Ask verbally Aibo to act a situation,  use of sensors  

        P  

Pretend play & focus on Aibo’s mental states: 
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry 

          

Pretend play & social rapports: Look after Aibo and set up rules           
Pretend & symbolic & chronological play & social rapports:  
Search and rescue 

          

L
6 

Pretend & symbolic play & social rapport & cause-reaction  
play & chronological play: competition (drink fast) between the child or 
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor 

      P    

Figure 4.15: Child E. Play Grid. See Fig. 4.9 for a detailed caption.
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Tornado (the name the child gave to the robot) can wag the tail today?” and Child E

activated the right sensor at the first attempt and commented: “That’s the tail one”.

Child E also proactively played the game of giving food or drink to the robot as well

as a cooperative play situation of Bite/Save (see Fig. 4.16). Bite/Save play situation

consisted of two chronologically steps: i) the robot bit the finger of either the child

or the experimenter (through the use of the sensors) and ii) the person remaining

(child or experimenter) saved the latter by freeing her/his finger: the freeing was

done either by activating the sensor (“Complex Bite/Save”) or by directly taking the

finger out of the mouth of the robot (“Simple Bite/Save”).

Furthermore, in Session 7, the child proactively combined 2 games, “Give food/-

drink” and “Bite/save” and said: “He (the robot) is saying: give me a drink or I bite

your fingers”.

Another interesting play situation the child proactively experienced in Session 7

consisted of a competition between the robot and himself: both of them had to drink

as fast as possible their invisible drink; the robot could only drink with the help of

the experimenter (the experimenter was asked to activate the sensor linked to the

opening of the mouth as fast as possible). At the end of the competition, Child E

decided that the robot had won. Thus, in this play situation Child E experimented

with:

a) dealing with rules of competition,

b) handling the temporal aspects of the game and the various chronological phases,

c) taking on the role of the participant (as a competitor) and the one of the organizer

who announces the winner,

d) playing with abstract entities (invisible drink),

e) playing socially.

Concerning the reasoning dimension, it should be first noted that the child decided

to rename the robot after the first session and call him “Tornado”. Moreover, in

the first sessions, most of his questions addressed the issue of the robot’s technical

capabilities and how to control the robot. In Session 2, for instance, the child said:

“How is he doing that?” and “What’s being on the head to make him walk?” (because

when he touched the head and activated the head sensor, the robot walked). And later

in the same session, while looking at the laptop he said “this must be the controller”.
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Figure 4.16: Child E. playing the game ‘Bite/Save’ with the experimenter. Chronological
order of the photos: from left to right and top to bottom. First photo: the child activates the head sensor
of the robot which make the robot open the mouth and enable the robot to ‘bite’ his finger. Second photo:
the experimenter brings her hand close to the head of the robot in order to activate the head sensor. Third
photo: the experimenter activates the robot’s head sensor to make Aibo open the mouth in order to ‘save’
the child’s finger; when the mouth opens, the child pull of his finger (third and fourth photos).
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Furthermore, in Session 3, the child said: “I found how he might open his mouth”;

the experimenter asked “is he moving the mouth?” and the child answered: “yes,

when I stroke on the head, you see”. This example illustrates that the child actively

developed technical and causal reasoning about behaviours and capabilities of the

robot. This questioning can be related to the category “Essence” and shows that the

child considered primarily Aibo (Tornado) as a proper robot. It should be noted here

that the child invented the concept of “invisible drink” as well as the way of calling

it (very logically): “invisible robot drink”. This illustrates the ability of the child

to make links with real dog’s life while adapting it correctly to the characteristics of

robots.

The category “Mental state” was addressed during later sessions (from session 5

onwards). In session 5 the child actually said “he is wagging the tail”; the experi-

menter answered: “yes, that shows he is happy”; and the child replied “He likes me”

and he stroked the robot. The experimenter reinforced the positive feeling: “yes,

he likes you”. That first step was expanded into the game “speak directly to Aibo

about Aibo’s feeling”. In session 6 and onwards, the child addressed proactively the

question of emotions but he tended to deal with a restricted repertoire of emotions

only, such as “ being scared” or “being terrified” (e.g. session 7 the child said: “You’re

scared Tornado, in fact you’re terrified”).

Child E dealt with “Moral standing” in session 5 when he accidentally kicked the

robot and, in return, apologized to him directly (“Sorry Tornado”) and comforted

him by stroking him.

Finally, Child E addressed indirectly the question of “Social rapports” through

play. For instance, in session 10, he conferred a specific role to the robot for the

competition; the robot thus became his adversary, but on a very kind level, since

the child decided at the end of the game that the robot had won the competition.

Another example took place in Session 8 where the child asked directly questions

to the robot (e.g. “Do you want to drink something Tornado?”). Then, he made

the robot bark as an answer and the child “translated” the answer verbally for the

experimenter: “He said yes”. In this case, the child proactively played the social role

of an intermediary position between the experimenter and the robot.

The dimension of affect (Fig. 4.17) appeared from Session 5 and onwards where

the child proactively said “he (the robot) likes me”. And the experimenter replied

“Yes he likes you. You like him?” The child then answered “Yes”. Then later, in

Session 8, the child said “he (the robot) is very happy”. The experimenter agreed with
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Session 
 

Events objectively related to Affect (ordered chronologically with respect to first 
appearance, event only mentioned once per session) 
 

S1  
S2  
S3  
S4  

S5 
· [1i] “Yes that shows he (the robot) is happy” (Experimenter); “He likes me” 
 (Child E); “Yes he likes you” (Experimenter); 
· [2i] “You like him (the robot)?” (Experimenter); “Yes” (Child E) 

S6  
S7  

S8 
· [1i] “He (the robot) is very happy” (Child E) while making the robot bark; “Yes he is” 
(Experimenter),“Tornado likes me” (Child E); “Yes he likes you” (Experimenter) 

S9 · [1ii] “Tornado is very friendly, isn’t it?” (Child E); “yes, he is”(Experimenter) 
S10  
 

Figure 4.17: Child E. Events related to Affect. See caption of Fig. 4.10 for details.

him and then Child E added “Tornado likes me” and the experimenter reinforced the

positive feeling: “Yes he likes you”. In Session 9, Child E commented on the robot,

qualifying him as ‘friendly’: “Tornado is very friendly, isn’t it?” and the experimenter

agreed verbally.

Child F. Child F was away for session 5. Thus he took part in 9 sessions. Note that

on his explicit demand, session 7 and session 8 were not recorded (the experimenter

had permission from the parents to videotape the child but she decided to value the

child’s request); thus information from sessions 7 and 8 is missing in the corresponding

columns in the Play Grid. The Play Grid Fig. 4.18 shows that Child F engaged in

social play almost all the time. He used verbal language a lot and progressively

experienced some more complex levels of play notably pretend play with respect to

“play with accessory”. The first situations of “play with accessory” happened in

Session 3. In this session, the child borrowed the mouse of the laptop and put it on

the ground in front of Aibo at approximately 30 cm distance and asked the robot to

touch the mouse with the paw. Then he activated the right sensor to make Aibo walk

forward and approach the mouse. The child carried the robot for the 5 remaining

centimetres separating the robot’s paw from the mouse and finally the robot touched

the mouse with his paw. Later, in session 4, the child experienced further situations

of “play with accessory” in two successive steps. As a first step, he proactively played

very simply with an accessory. For instance, Child F used the face of a character

drawn on a piece of cardboard that he held in front of his face and told Aibo: “Stay
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 1 2 3 4 5 6 7 8 9 10 

Solitary Exploration           
“Imitation” of robot’s bark P P P   P   P  

L
1 

Solitary mirror play – look at oneself in the robot’s reflecting face           
L
2 

“Pre-social” or basic-social exploration – stroke Aibo immediately  
after the experimenter (possibly basic imitation of the gesture) 

          

Social exploration (social play)  P P P P  P   P P 
Simple Bite/Save or Give/Food -  no use of the sensors          P P 
Position or locomotion game – with verbal qualification of the game P   P  B   B P 
Cooperative technical task: change the battery, or turn on/off Aibo r  P B  r   P B 
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up” P P P P     B P 
Basic pretend & social play – imitate Aibo’s snoring & verbal comment           
Basic play on affective gestures – give/receive a kiss and/or a lip 
to/from Aibo 

        P P 

Repeat after me - ask the experimenter to repeat verbal expressions          P 
Look at Aibo through the camera 
(Possibly stroke Aibo & look at its reaction through the camera) 

  P P  P   P P 

Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French    r  B    r 
Show Aibo to other children (social play) 
Express verbally the willing/intention to show Aibo to the other children 

P P         

Simple play with accessory (symbolic play)   P P       
Social Mirror play (social play) - look at oneself (and possibly at the 
experimenter) in the robot’s reflecting face & express verbal comments, e.g. 
“Look at my arm!” 

          

L
3 

Social Hug – hug Aibo & ask the experimenter or the second researcher 
to hug Aibo   

          

Complex Give Food/Drink (cause-reaction play & symbolic play & 
social play) - use of sensors 

          

Complex Bite/Save (cause-reaction play & pretend play & 
cooperative play) - use of sensors 

          

Complex turn off Aibo to sleep (symbolic play)      P    P 
Speak directly to Aibo about Aibo’s feeling (symbolic play)  P         
Cause-reaction play & mental states: 
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor 

 B P r  B     

Cause-reaction play, 
Aim at a physical reaction of the robot, show it with a sensor 

 P B B  r   P P 

Cause-reaction play & basic pretend play, “caught on the act”           

L
4 

Telling a story           
Cause-reaction play and explicit Social rapport: 
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which 
opens the mouth), translate verbally the answer for the experimenter 

          

Symbolic & pretend play Complex play with an accessory   P P  P     
Symbolic & pretend play Complex nap with Aibo    P       
Symbolic & extrapolation play  : “RobotCat” - Speak about  the idea 
of a robotic cat (possibly imagine how one would play with it) 

        P P 

Causal composition of plays: Bite/Save & Give Food/Drink           
Causal composition of plays: Kiss & Bite/Save          P 

L
5 

Pretend play & causal reaction & social rapports: 
Ask verbally Aibo to act a situation,  use of sensors  

          

Pretend play & focus on Aibo’s mental states: 
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry 

         P 

Pretend play & social rapports: Look after Aibo and set up rules           
Pretend & symbolic & chronological play & social rapports:  
Search and rescue 

          

L
6 

Pretend & symbolic play & social rapport & cause-reaction  
play & chronological play: competition (drink fast) between the child or 
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor 

          

Figure 4.18: Child F. Play Grid. See Fig. 4.9 for a detailed caption. Note, Child F was away for
Session 5 and, on his request, was not filmed during Sessions 7 and 8.
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here Aivo, I’ve got something to show you”. Note that the child slightly changed the

pronunciation of the name of the robot and referred to Aibo as ‘Aivo’. As a second

step, later in the same session, the child proactively played a more complex accessory

game with the robot, the “ghost dog”. That play situation consisted in putting a

cloth on top of Aibo and pretending Aibo was a ghost dog (Child F told Aibo: “You

can be a ghost dog Aivo”); vocally, the child used classical onomatopeia mimicking

ghost’s “voice and presence”. Moreover, in Session 6, the child decided to make the

robot wear clothes and this game was expanded by:

a) a series of questions on inferring states of the robot with respect to like/dislike,

b) a direct communication with the robot to explain him what he was wearing (Child

F told Aibo: “Look at you Aivo! You’ve got some paper on to be black”);

c) a version of the game “aim at a physical reaction of the robot, show it with

a sensor” (the experimenter asked “How do you make him walk with all these

clothes?”, the child replied “Walk?”, and the child made the robot walk).

In addition to the accessory games, the child experimented with pretend play

with the robot in a social context, e.g. pretending having a nap with the robot (in

session 4) in a detailed (and complex) way resulting of:

1. using a cloth as a blanket to cover both of them,

2. deciding on the duration of sleep and asking for watching the clock to respect

the time predefined for the nap,

3. pretending to snore,

4. both of them waking up again.

Besides, another way of tackling pretend play as well as robot’s mental states hap-

pened in session 10 when the child imitated Aibo’s crying, and then argued that Aibo

was not crying but pretending to cry. And this notion of pretending to cry for the

robot was reused many times during the last session (e.g. Child F said: “No, he’s not

crying, he is only pretending to cry.”).

The reasoning dimension is really an important component of the profile of

Child F. Child F principally addressed three of the four components, respectively,

“Essence”, “Mental States” and “Social Rapport”, and, in minor importance, the

issue of “Moral statement”.
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Concerning “Essence”, the child really tackled the question of artefact or biologi-

cal features, processes and categories. Categorywise, he often questioned about robot

dogs boundaries, e.g. in Session 2: “Have you seen dogs that are not robot dogs, yes

or no?” he asked the experimenter, and later in the same session: “He has short

teeth, he doesn’t bite. Robot dogs don’t bite, do some do?”

The part on “mental states” is very rich since the child addressed all the aspects

defined in the coding manual of Kahn et al. (2003) except probably the “autonomy”

one. Actually, he attributed “intentions” to the robot in Sessions 1 and 2. He

explicitly considered robot’s “emotional states” in sessions 2, 4, 6 and 10. He also

both tackled “emotional states” of the robot and his “personality” when he asked

him questions about his likes/dislikes (e.g. Session 4: “Do you like toys Aivo, yes

or no?”). Furthermore, he pretended the robot had some “cognitive abilities” and

developed play upon it: in Session 4, for instance, he disguised himself with an

accessory in order to “show” Aibo and thus presupposed -for the game- that Aibo

could see. Later, in Session 6, again, the child presupposed for the game that the

robot could see and told him: “Look at you Aivo. You’ve got some paper on to

be black”. The last aspect of “mental states” is the notion of “development” of the

robot. Child F really questioned about it, from the very beginning of the sessions

onwards. More than the notion of development, the child seems to have been willing

to build a biography for the robot (i.e. the past of the robot) and therefore asked

questions to the experimenter such as: a) in Session 1: “Where was this robot dog

from?”; b) in Session 2: “Where was he born?” and “Has he travelled in a car?”; c)

in Session 3: “Where did you get him from?”, “Where does he live?”, “How old is

he?”, etc.

Concerning the part on “Social rapports”, the child really investigated the social

links between the robot and the experimenter, who was considered by the child as

being the “mum” of the robot (Child F told the experimenter “it’s your dog son”,

meaning that Aibo is the experimenter’s dog, and that the experimenter, in a way, is

considered as being Aibo’s ‘mum’). Besides, he investigated the social links between

the robot and himself, through situations of pretend play but also verbally. In Session

2 for instance, the child presupposed that there was a social rapport between the

robot and himself since he told the robot: “When it is lunch time Aivo I got to go.

And don’t cry Aivo”. Later, in Session 6, the child stated that the robot was his

cousin: “Aivo is my cousin”. And when the experimenter asked: “Aivo, do you like

playing with F7? Can you tell me? Can you ask for his answer F?” then the child

7Child F is designed by F in the dialogue.
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Session 
 

Events objectively related to Affect (ordered chronologically with respect to first 
appearance, event only mentioned once per session) 
 

S1 · [1ii] “Ooh he is a nice dog” (Child F) and he strokes the robot 
S2  
S3  

S4 
· [1ii] Child F brings a towel to put on the robot : “Put this on Aivo, my dog, my 
friend, Aivo” (Child F) 

S5  

S6 
· [1i] “Aibo, do you like me? You’re my cousin. I’m your cousin Aivo” (Child F) 
· [1iv] Child F gives a kiss to the robot on the muzzle after saying “OK, Goodbye 
Aivo, have a good sleep” 

S7  
S8  
S9  

S10 
· [1iv] Child F has covered Aibo with a coat; he gives the robot a kiss on the forehead 
and says “Goodnight Aivo”  

 

Figure 4.19: Child F. Events related to Affect. See caption of Fig. 4.10 for details.

told Aibo: “Aivo do you like me? You’re my cousin. I’m your cousin Aivo”. Besides,

the child investigated beyond social rapports involving Aibo and, for instance asked

the experimenter a few questions about her family: a) in Session 4, the child asked

about the experimenter’s French accent8: “What accent do you speak”, which was

further investigated in Session 6: “Why do you speak French?” and “Why were you

born in France?”; b) in Session 6, he asked her about her family: “What are your

parents’ names?”; he investigated further questions on the experimenter’s family in

session 10.

On the affect level (Fig. 4.19), the child expressed himself a lot, both by gestures

(e.g. giving a kiss to Aibo after saying “Goodbye Aivo, have a good sleep” in Session

6) and verbal expressions (e.g. in Session 4 when he dressed up Aibo: “Put this on,

Aivo, my dog, my friend, Aivo”). It is perhaps worthy of note here that it might be

the case that some gestures related to affect from a non-autistic perception (e.g. giving

a kiss), do not have the same interpretation for a child with autism: for a child with

autism, giving a kiss might, for instance, just be an imitated response. Concerning

Child F, it might be the case that the child reproduced the gesture “giving a kiss”

from a situation he had encountered or witnessed before; nonetheless it should be

mentioned that his gesture was made proactively, with no previous reference from

the experimenter to such a gesture.

8Child F masters some French vocabulary.
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4.6 Discussion

Results from these experiments show that the children progressed differently, and

that their profiles according to the three (intertwined) dimensions Play - Reasoning

- Affect are unique. This highlights how the experimental approach presented in this

study allows many trajectories for progressing and, more specifically, how it can meet

the child’s specific needs and abilities.

Furthermore, concerning the dimension of play, and, more precisely, concerning the

children’s progression with respect to solitary vs. social play, three groups can be

highlighted. The first one, group 1, consists of children who mostly played solitarily

and possibly encountered rudimentary situations of imitation, but no further com-

ponents of social play. This group includes Child A who encountered imitation in

session 10 and Child B. Note, both of them find it very hard to communicate ver-

bally. For the children whose current play with the robot is mainly dyadic, it is

particularly relevant to enable the robot to adapt automatically to their play styles

in real time so that they can benefit from this dyadic play and progressively reach

well balanced and potentially higher levels of play. This issue will be addressed in

the next chapters of this thesis. The second group, group 2, consists of Child D who

communicated mainly non-verbally yet progressively experienced situations of verbal

communication and showed pre-social or basic social play during the last sessions.

The third group, group 3, consists of Child C, E and F. Those children proactively

played socially (i.e. in a triad including both the robot and the experimenter).

For those three groups, results shows that a) Child B (group 1) experienced pro-

gressively longer uninterrupted periods of play and engaged in basic imitation during

the last sessions; b) children from group 3 tended to experience higher levels of play

gradually over the sessions and constructed more and more reasoning about the robot

(and sometimes experienced specific reasoning about real life situations as well). At

a more basic stage, Child D (group 2) also experienced higher levels of play progres-

sively. He started to reason about technical aspects of the robot as well, e.g. ‘turning

on/off’ the robot and changing the battery. In the last sessions different elements

suggested that he may also have experienced some reasoning about social rapport.

Besides, the children’s proactivity was encouraged, enabling them to take initiative

and express intentions (cf. the proportion of proactive activities vs. reactive activities

in the Play Grids).

These results are in agreement with Josefi and Ryan (2004)’s findings who have
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shown in the case study9 they conducted that non-directive play therapy had encour-

aged the child’s initiative-taking. Further to this, Josefi and Ryan (2004)’s study

has shown that non-directive play therapy may encourage symbolic play, which is

an important finding of our approach, too: In our study, children from group 3

progressively experienced situations of symbolic or pretend play. Note that, as al-

ready explained in Section 4.2, the study presented in this chapter took place in a

therapeutic context but the experimenter was not behaving exactly like a therapist.

Besides, we identify several advantages in introducing an autonomous robotic pet in

the experimental setup (Josefi and Ryan (2004) used non robotic toys):

a) the use of a robot allows to simplify the interaction and to create a more pre-

dictable environment for play to begin with, thus facilitating the child’s under-

standing of the interaction (e.g. by giving the robot a simple predictable behaviour

to start with);

b) children tend to express interest in the robot, and occasionally affect towards

Aibo, as our findings show;

c) here, one of the findings is that, in these experiments with this new approach,

children tend to develop reasoning, and make comparisons to real dogs’ lives

through play with the robotic pet.

Thus, the robotic pet can be considered as a good medium for developing reasoning on

mental states and social rapports upon, and for learning about basic causal reactions,

too.

Davis et al. (2005) compared different robotic or computer platforms used in

the Aurora project and compared their specific focus. She showed that mobile au-

tonomous robots were adequate to unconstrained play situations, while the use of

the humanoid robot Robota focused mostly on imitation of movements and gestures.

However limited attention has been accorded so far to proper unconstrained play

situations with an autonomous mobile robot and most experiments have been car-

ried out using Robota and focusing on imitation. In Robins et al.’s studies with the

non-mobile doll-like robot Robota (see Section 4.3), situations of child-robot inter-

actions which actually happened were mostly restricted to situations of imitation of

a gesture or a movement (Robins et al., 2004). Thus, even if the experiments may

not have been qualified as such, they were in fact much more task-oriented, at least

9Josefi and Ryan (2004)’s experiments and results have been detailed in Section 4.3 of this chapter.
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with respect to the dyadic child-robot interaction. Nadel et al. (1999) showed that

imitation skills have a significant impact on the acquisition of social skills for children

with autism. However focusing on imitation tasks only may not be sufficient when

the child reaches some higher levels of play (cf. children from group 3 in the exper-

iments presented in this study); Howlin and Rutter (1987) underlined the necessity

of incorporating developmental aspects in pure behaviour principles.

Werry et al.’s trials (presented in Section 4.3) tended to encourage relatively uncon-

strained situations of play by using a mobile autonomous robotic platform (Werry

et al., 2001; Werry and Dautenhahn, 1999). Shape, weight, sensors and the range of

possible behaviours of the robot used (Labo-1, see more details in Section 4.3) are in

contrast with Aibo’s properties: Labo-1 is heavier, not pet-like, and has only a few

sensors. Thus, interactions enabled by the robotic platform Labo-1 were very differ-

ent in nature from the ones enabled by the use of Aibo. Besides, compared to Aibo’s

rich behaviour repertoire that we used in this study, the repertoire of behaviours of

Labo-1 was fairly limited and situations of play were mainly approach and avoidance

games. Note that in the present study, Child E most of the time asked for Aibo not

to walk: the use of Aibo in trials enabled the child to play with Aibo either in a

mobile or non-mobile mode (robot walking or non-walking mode), whatever the child

prefers. Even when not walking, Aibo can still react in various ways (e.g. turning

head, wagging the tail, barking etc.).

Moreover, in Werry et al.’s experiments, none of the experimenters participated

in the experiments. The child played on his/her own with the robot (Werry and

Dautenhahn, 1999), or two children interacted at the same time with the robot (Werry

et al., 2001), but none of the experimenters did take part in the trials -they only

responded to the child when the child initiated communication or interaction with

them (Dautenhahn and Werry, 2002). In contrast, Robins and Dautenhahn (2006)

started to investigate the role of the experimenter. Robins and Dautenhahn (2006)

argued that the participation of the experimenter in the trials was necessary and

described the experimenter’s role as the one of a “passive participant” who responds

to the children solicitation whenever they initiate interaction with him/her (Robins

and Dautenhahn, 2006).

The study presented in this chapter goes beyond these previous experiments, since

it provides the child with a relatively highly unconstrained environment of play: due

to the mobile autonomous robotic pet, the child can engage in a larger repertoire of

play situations (note that Robota is fixed in place) and notably experience causal

reaction play and symbolic play. Imitation is used as a bootstrap to initiate more
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complex situations of interaction or to help the child reengage in the interaction. Be-

sides, the experimenter is part of the trial and her role goes beyond the one described

by Robins and Dautenhahn (2006) and is defined more precisely and formalized. In

our method, the experimenter answers the child’s solicitations and rewards him/her.

In addition, her role is empowered under specific circumstances:

a) if the child is about to enter a repetitive behaviour, then the experimenter proac-

tively intervenes to try to prevent the child from entering that repetitive behaviour

or help the child change the game; note that “a)” aims at counterbalancing the fact

that repetitive behaviours may not be considerably reduced by pure non-directive

play therapy as stated in Josefi and Ryan (2004)’s study.

b) if the child does not engage in the interaction, then the experimenter encourages

him/her to engage in playing with the robot,

c) if the game is “standing still” but the child has already experienced this play and

has shown he/she is capable to play this specific game, then the experimenter can

punctually intervene to give a better pace to the game;

d) if the child is about to reach a higher level of play but still needs some bootstrap-

ping (or some guidance), then the experimenter can provide it;

e) the experimenter can proactively ask the child simple questions related to reason-

ing or affect such as: “do you think Aibo is happy today?” or “do you like playing

with Aibo?”.

Moreover, in this study, I have adopted a qualitative approach for the analysis of

each dimension, Play, Reasoning and Affect. I was actually interested in the emer-

gence and in the specificities of the play styles, questions or statements related to

reasoning and events that could be objectively related to affect, rather than in the

occurrences or the duration of each of them. In particular, two similar games might

actually happen to be different in the way the child experiences them, such as for

example, the fluency, the rhythm, the coherence etc. Consequently, unlike a quan-

titative analysis which often relies on micro-behaviour analyses10 (Dautenhahn and

Werry, 2002; Tardif et al., 1995), this qualitative analysis here focused on a bigger

10Micro-behaviour analysis is the analysis of videos based on the coding of low level behaviours
such as eye gaze, eye contact, touch, etc.
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scale, i.e. an intermediary scale11. This intermediary scale enabled us to consider

events constituting a game as connected events and, in particular, to describe the

structure of a specific play situation in possibly different (chronological) phases or

identify in this play situation, the presence of social play, the proportion of symbolic

or pretend play, and the use of causality.

The research presented in this chapter has provided novel insights into the method-

ology of using robots in robot-assisted play, going beyond previous work in this area.

Results from trials with children with autism are very encouraging. Based on these

results from an exploratory study, future research in this domain can extend and

further develop and test this approach e.g. with larger user groups or specific control

conditions that allow to specify in more detail the particular features of this approach

that contributes to robot-assisted therapy for children with autism.

4.7 Conclusion

This chapter highlighted a new approach in the context of robot-mediated therapy

with children with autism. This approach draws its inspiration from non-directive

play therapy, notably encouraging the child’s proactivity and initiative-taking. Be-

yond inspiration from non-directive play therapy, the approach introduces a regu-

lation process. The experimenter, who takes part in the experiment, can indeed

regulate the interaction under specific conditions detailed in Section 3; in brief:

a) to discourage repetitive behaviours,

b) to help the child engage in play,

c) to give a better pace to the game if it has already been experienced by the child,

d) to bootstrap a higher level of play,

e) to ask questions related to reasoning or affect.

A long-term study was carried out with six children which highlighted the capabil-

ity of the method to adapt to the child’s specific needs and abilities through a unique

11To make the parallel with the notion of micro-analysis used in (Tardif et al., 1995) that refers to
the coding of micro-behaviours, one could qualify our approach here as a mesoscopic approach or a
meso-analysis. The prefix ‘meso’ comes from the Greek word ‘mesos’, meaning middle. “Mesoscopic”
is an intermediary scale between “microscopic” and “macroscopic”. Those terms are commonly used
in Physics and Chemistry, and can be transposed metaphorically to our context.
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trajectory of progression with respect to the three dimensions, Play-Reasoning-Affect.

In particular, each child made progress with respect to at least one of the three di-

mensions progressively over the sessions. Moreover, with respect to play, and, more

precisely, solitary vs. social play, children could be categorized into three groups.

Besides, the children who managed to play socially experienced progressively higher

levels of play and constructed progressively more reasoning related to the robot; they

also tended to express some interest towards the robot, including on occasions inter-

est involving positive affect. This preliminary long-term study has therefore shown

promising results for this new approach in robot-assisted play. It is a first study that

potentially may be developed towards a new method in autism therapy.



Chapter 5

Real-Time Recognition of

Human-Robot Interaction Styles

5.1 Introduction

5.1.1 Motivation

In the previous chapter, we have presented a novel approach for the play sessions, in-

spired by non-directive play therapy. We have shown through a long-term study how

this approach could meet the specific needs and abilities of the children and encourage

them experiment with progressively higher levels of play. Nevertheless, the study has

highlighted that a few children (e.g. Child B) played a lot dyadically although they

started to progressively experience some basic situations of social play, particularly

in imitation games while stroking the robot. Besides, this dyadic interaction with

the robot was mainly a tactile interaction.

It is therefore particularly relevant to enable those children to develop basic play

skills through this tactile dyadic interaction, in order to help them reach progressively

better balanced tactile interaction styles and higher levels of play. To this end, the

robot should be able to appropriately adapt to the child’s needs and abilities and to

autonomously encourage the child’s progress towards well-balanced and progressively

more complex play styles. Combined with the novel approach in robot-assisted play

presented in Chapter 4 where the experimenter takes part in the play sessions, such

an ‘adaptive’ robot might also provide the child with additional opportunities to

engage in triadic interaction with both the robot and the experimenter.

A first step towards this challenging goal of enabling the robot to guide the

children towards well-balanced interaction styles is to enable the robot to recognize

73
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in real time the children’s play styles. This is the main focus of this chapter.

5.1.2 Criteria to describe an interaction

An interaction can be characterised by various criteria. Here, in the contexts of

autism and child-robot tactile interaction, the criteria should be very simple, in order

to fit first levels of interaction.

Gentleness of the interaction This criterion refers to the forcefulness of an in-

teraction. It may happen that a child touches the robot too forcefully. In this case,

we want the child to learn to play less forcefully, which means, in a way, control the

strength of its gesture towards other partners of interaction (a robot in this case).

An interaction is classified as ‘gentle’ if the participant strokes the robot gently,

without signs of force. On the contrary, if the participant touches the robot with

signs of force, then the interaction is classified as ‘strong’.

Frequency of the interaction In our everyday life, we are involved in various

interactions whose respective frequency can vary among a realistic spectrum. Here,

we want the child to learn to play in a well-balanced frequency of interaction, i.e. not

too low and not too high: if the frequency is too low, then the interaction is rare; at

the other end, the higher the frequency is, the more difficult it may be, for a child,

to understand the reaction to a specific stimulus. Thus, the frequency of interaction

is categorised into four classes, defined by their typical periodicity of interaction:

• very low (S0): the elapsed time between two tactile interactions is greater than

15 seconds. We will refer to it by saying that, for class S0 the ‘periodicity’ is

greater than 15 seconds.

• middle inferior (S1): the elapsed time between two tactile interactions is lower

or equal to 15 seconds and greater than 5 seconds. We will refer to it by saying

that, for class S1 the ‘periodicity’ is lower or equal to 15 seconds and greater

than 5 seconds.

• middle superior (S2): the elapsed time between two tactile interactions is lower

or equal to 5 seconds and greater than 1 second. We will refer to it by saying

that, for class S2 the ‘periodicity’ is lower or equal to 5 seconds and greater

than 1 second.
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• very high (S3): the elapsed time between two tactile interactions is lower or

equal to 1 second. We will refer to it by saying that, for class S3 the ‘periodicity’

is lower or equal to 1 second.

In this context S1 and S2 are considered as well-balanced frequencies of interaction,

while S0 corresponds to a rare interaction and S3 to a very intense interaction.

In future work, other criteria, possibly more complex ones, could be investigated

for the children who already master the first levels of interaction defined by these

criteria.

5.1.3 Related Work

The role of tactile human-robot interaction in educational and therapeutic applica-

tions has been well highlighted by long-term studies with the seal robot Paro which

have proven that specific everyday life situations exists in which human-robot inter-

action can have a positive effect on well-being of human beings (Shibata et al., 2005;

Wada and Shibata, 2006) and even play a role in a therapeutic context of cognitive

and physical rehabilitation (Marti et al., 2005). Tactile interaction is the primary

means of interaction with the seal robot Paro, which is equipped with ubiquitous

tactile sensors (Shibata, 2004). These sensors are sensible both to the pressure and

the position on a flexible curved surface. Paro has internal states that influence its

behaviour which can be proactive or reactive, i.e. in response to a sensor stimulation

(Wada and Shibata, 2006). Moreover, the Huggable robot, a teddy-bear like robot,

equipped with a full body sense of touch, has proven to be a promising support to in-

vestigate the quantitative characterisation of social affective content of touch (Stiehl

et al., 2006).

Besides, offline characterisation of interaction styles in general, has been inves-

tigated recently with diverse approaches. Scassellati (2005b) focused on providing

quantitative and objective measurements to assist in the diagnosis of autism. Mea-

surements refer to the position in the room, vocal prosody and gaze pattern – whose

characterisation relies on Linear Discriminant Analysis. Kanda et al. (2002) con-

ducted a study that highlighted the feasibility to link quantitative robot’s and hu-

man’s data characterizing body movements with a subjective evaluation made by the

participant. Later, Salter et al. (2006) showed the possibility, in the context of child-

robot interaction, to reflect some traits of personality of the children with an offline

clustering technique based on the empirical probability distribution of the activation

of the sensors.
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Concerning real-time classification of interaction styles, Salter et al. (2007) have

presented a real-time simple recognition algorithm for four interaction styles (‘alone’,

‘interacting’, ‘carrying’ and ‘spinning’) using the robotic platform Roball. The al-

gorithm is based on a decision tree whose conditions are set up manually, by visual

inspection of sensor data. Moreover, Derakhshan et al. (2006) have developed a real-

time classification algorithm of interaction styles for children playing on an adaptive

playground that is made of tiles equipped with sensors. The algorithm relies on

a multi-agent system approach of BDI (Belief—Desire—Intention) in combination

with neural networks using supervised learning. It shall be further noted that in the

slightly different context of gesture recognition, Hidden Markov Models have been

used quite a lot for real-time recognition (e.g. Kim et al. (2007); Lee and Xu (1996);

Calinon and Billard (2004)). An HMM is specified1 by its number of hidden states,

the initial state probability distribution and the two following probability matrices:

the transition matrix, describing the conditional probability, given the state S at time

step t, to be in the state S′ at time step t + 1, and the emission matrix, defining the

conditional probability of emitting a signal O, given the state S. Current research

on gesture recognition, e.g. as in Lee and Xu (1996), Calinon and Billard (2004) and

Kim et al. (2007), usually implicitly refers to homogeneous HMMs, i.e. for a given

HMM, the transition matrix does not change over time2. Classifying an observation

with HMMs consists in finding, among all the different HMMs3, the one which has

the highest probability of emitting this observation (Lee and Xu, 1996).

5.1.4 Artifact and Sensors

Any robot or embodied agent situated and acting in an environment should have

sensors through which it can receive information about itself and about its surround-

ing environment. Examples of sensors dedicated to the surrounding environment are:

visual sensors, infra-red distance sensors, sonar sensors. Those sensing the internal

state of the robot are, typically, motor position, internal temperature sensors and

gyroscopic accelerometers. At the border between the external surrounding envi-

ronment and the internal state of the robot, the tactile sensors play a major role,

providing possibly information on the internal state of the robot. Also, more impor-

1For more detail on HMMs the reader can refer to Rabiner (1989).
2Note that homogeneous HMMs are usually simply referred to as HMMs. In contrast to homo-

geneous HMMs, with inhomogeneous HMMs, the transition matrix varies over time. One example
of application of inhomogeneous HMMs is presented in Borodovsky and McIninch (1993) for gene
finding.

3One HMM per class to distinguish.
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tantly for our study here, some of them, which we call here external tactile sensors,

can give information on the tactile interaction the robot is involved in as an embodied

agent.

Artifact and external tactile sensors The robot used in the whole study is

the AIBO ERS-7 commercialised by Sony. It is equipped with five external sensors,

namely, the chin sensor, a boolean sensor, and four continuous sensors, the head

sensor, the front back sensor, the middle back sensor and the rear back sensor. These

sensors are the ones directly involved in tactile human-robot interaction.

Normalization of the sensor values Consider a sensor S, whose values st (con-

tinuous or discrete) are comprised between Smin and Smax, Smin ≤ Smax. Then, st

can be normalised as follows:

norm(st) =
st − Smin

Smax − Smin
(5.1)

Global Variable From the individual external sensor data, a global variable G can

be built. The global variable is obtained by summing, at a moment t0, the sensor

values that must have been either normalized or binned beforehand. G removes the

spatial information on the sensor data but allows a simplification of the input data

to analyse.

Quantitative Binning Binning the data principally enables one to reduce the

complexity of the data to analyse by grouping them under specific constraints. The

binning is a mapping from a discrete or a continuous space, to a subset of N, BN =

[0, 1, ...N − 1], where N > 0 is the cardinality of the binning (i.e. the number of

bins). The binning can be done according to various criteria and the choice of these

criteria is of great influence for a further analysis. For instance, bins can be defined

according to the value, and in such a way that all bins have the same size, in terms of

the range of possible values. In this case, a sensor st, with normalised value norm(st),

is mapped into a bin b(st) as follows:

b(st) = IntegerPart(norm(st) ∗N)− 1 (5.2)

where IntegerPart is the function extracting the integer part of a real number.

The binning considered in this thesis is different from the one defined in Equa-

tion 5.2. In the present thesis, the data are still binned according to their value
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(quantitative binning) but the bins are defined in such a way that the probability to

belong to a bin i, (except for one bin which represents the null value), is empirically

equilikely. A bin i is described by its extreme values, (respectively the lowest bmin(i)

and the highest value bmax(i)). These values are defined by the empirical probability

distribution of the variable that is binned4. Thus a normalised sensor value, norm(st)

belongs to the bin i if and only if bmin(i) ≤ norm(st) ≤ bmax(i).

Time Series We consider any temporal variable X (typically a sensor or the global

variable G in our context) observed from the moment t0 over a temporal horizon h,

h > 0 with the sequence of values [x(t0), x(t0 + 1), ...x(t0 + h− 1)]. This sequence is

a time series of the variable X.

5.1.5 Summary

This section has explained the motivations and rationale for enabling a robot to adapt

to specific play styles of the children. A main motivation is to guide the children

towards better balanced interaction styles (e.g. for the criterion ‘Gentleness’, neither

too forceful nor too weak strokes) and, progressively, towards higher levels of play.

We have then presented the two criteria of interaction which we will focus on in this

thesis: the ‘gentleness’ and the ‘frequency’ of the interaction. Further to this, we have

introduced the artifact and its sensors, in particular the external tactile sensors. The

external tactile sensors are, in this study, the sensors involved in the characterisation

of the interaction styles. Basic definitions useful for the preprocessing of the sensor

data close the section.

5.2 Classification with Self-Organizing Maps

This section describes an early approach I adopted (François et al., 2007), using self-

organizing maps (SOMs) for the classification of interaction styles. Because I used no

a priori knowledge on the structure of the input data, this unsupervised non-linear

mapping deemed to be a good first approach. In this section, I present a proof-of-

concept of the method which led to a good recognition of the different styles for the

criterion ‘Gentleness’. However, the recognition was made with a fairly high delay

that I then attempted to cut down.

4In our context, the extreme values describing the bins are determined by trials with the real
robot: the empirical probability distribution of the sensor data is based on those experiments.
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5.2.1 Preliminary Trials

Preliminary trials were conducted in order to generate, under controlled laboratory

conditions, the prototypes for the interaction styles. During each trial, the participant

interacted either on a gentle or on a strong mode exclusively with the robot. Five runs

generated by two different adults were used for this study, three on the gentle mode

and two on the strong mode of interaction. Each run lasted around five minutes.

Every 32ms the robot Aibo sent an update of its sensors’ values through a wireless

LAN to the laptop. Finally, for each run, 9532 updates of the sensors’ data were used

for the further analysis, which means a total of 47660 updates of the sensors’ values.

Values were stored by runs and for each run sequentially (chronologically).

In this preliminary study, the five external sensor data were involved. At each

time step, the value of each sensor data was binned and the five binned data were

summed into a global variable G. Note, since the original focus was on information

theory, binning was applied to the sensor data. This binning had not been removed

for the first step of this study. In a second step where I optimised the delay for the

recognition of the interaction styles, the binning had been removed, but this did not

significantly change the results. I was interested to keep this binning because I had

in mind to possibly go back to information theoretic techniques in a further step of

this work.

Visual inspection of the variable G showed important differences of shape between

time series originating from strong interactions and the ones originating from gentle

interactions (see an example in Fig. 5.1 and Fig. 5.2). The ones originating from

gentle interactions were characterised by typical blobs while those originating from

strong interactions showed typical peaks.
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Figure 5.1: Typical time series from a gentle interaction.

This characterization by blobs and peaks in addition to the property of shift
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Figure 5.2: Typical time series from a strong interaction.

invariance led me to apply Fourier Transform. For each interaction style, the modulus

of the Fast Fourier Transform (FFT) was calculated componentwise for a sliding

window on G values. This preprocessing led to a new high-dimensional space to

analyse (we call this space ‘FFTInputSpace’ and the length of the vectors resulting

from this preprocessing is n). I used no other knowledge about the FFTInputSpace

and sought a method to classify the data of this space according to the criterion

gentleness5. Moreover, I wanted to get some insight on how the data were spatially

organised in the FFTInputSpace. That is why I decided to use the Self-Organizing

Maps (SOMs) which provide a non-linear projection from a high dimensional space

to a lower dimensional space and is topology preserving (Kohonen, 2001).

5.2.2 Self-Organizing Maps

Self-Organizing Maps provide a non-linear projection from a high dimensional space

to a lower dimensionality space and is topology preserving (Kohonen, 2001). In this

study, SOMs were used as a classifier, i.e. as a method which classifies data from the

high dimensional space (Wünstel et al., 2000).

SOMs are a specific class of Artificial Neural Networks, which rely on unsuper-

vised, competitive learning. In a Self-Organizing Map, the neurons are placed at the

nodes of a lattice that is usually one or two-dimensional. The neurons are selectively

tuned to various input patterns in the course of a competitive learning process. A

specific weight, from the same dimension as the input data, is attached to each neu-

ron (node) of the lattice. Each node is connected to the adjacent ones according to

a neighbourhood rule which derives from the topology of the map. The SOM is used

5The input vectors which originated from a ‘strong’ interaction should be separated from those
which originated from a ‘gentle’ interaction.
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in two phases: the training phase during which weights of the nodes are updated and

the mapping phase, during which the classification or categorization of data can be

made.

5.2.2.1 Training phase

First of all the network is initialized (either by random initialization, by initial sam-

ples, or through linear initialization). This process defines initial weight vectors, one

for each node6 of the network. Then, input data7 are presented one by one to the

network by a random selection. For each input data v, the distance between v and

each weight of the network is measured according to a predefined metric8 between

the input vector and each node of the network. The node i∗ minimizing the distance

d is called the Best Matching Unit (BMU). Its corresponding weight wi∗(v) satisfies

the following equation:

wi∗(v) = arg min
wi

d(wi, v) (5.3)

Afterwards, the weights are updated according to the following equation:

w′
j = wj + ǫ(t) · ht(j, i

∗) · (v − wj) , j = 1, ..., ‖K‖ (5.4)

where:

wj is the weight for the node j

w′
j is the updated weight for the node j

‖K‖ is the size of neighbourhood K(i∗) for the winner node i∗.

ht(j, i
∗) = exp(−d(j,i∗)2)

σ(t)2
) ∀j ∈ K(i∗)

ǫ and σ are monotonic decreasing functions of time.

To simplify, we can say that time t being static, the closer a node is from the BMU,

the more it will learn; and globally, the network will learn less and less when time t

is growing.

The whole process of finding the BMU, identifying the neighourhood and updating

the selected nodes is often identified as a three step process:

1. competitive process: selection of the BMU,

2. cooperative process: the BMU is the center of a topological neighbourhood of

cooperative neurons; the latter is defined by the choice of ht,

6A node is also called a unit.
7These input data are the training data.
8The metric usually used is the Euclidean distance.
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3. adaptive process: this is the update of the weight of the neurons according to

equation 5.4.

The presentation of the entire set of input data constitutes what we call an epoch.

A training phase results from the succession of many epochs. The learning-rate pa-

rameter ǫ, in the upper equation, is decreasing over-time and contributes to a con-

vergence of the feature map. Kohonen (1982, 1997) actually described the existence

of two successive phases in the adaptive process:

1. a self-organizing phase also called ordering phase during which the topological

ordering of the weight vectors happens;

2. the convergence phase during which the feature map is finely tuned.
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Figure 5.3: One Epoch of training.

Fig. 5.3 represents one epoch of training of the SOM in the context of this study.

5.2.2.2 Mapping phase

Once the network has been trained, it can be used for classifying (categorizing) data

from the same space as the space where the input data used for the training phase

come from. A data from this space is presented to the nodes successively. The node

activated is the node corresponding to the BMU with respect to the same metric as

the one used for the training phase (Eq. 5.3).

5.2.3 The recognition algorithm

Preprocessing for the SOM The temporal sensor data G was preprocessed in

order to be used in the process of classification. The preprocessing resulted from the
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computation of the componentwise modulus of the FFT on a sliding window on G.

Characterisation of the nodes of the SOM feature map After the training

phase of the SOM, a ‘preliminary’ mapping phase was conducted with the training

set of data (Section 5.2.2.2) in order to characterize each node of the SOM feature

map. The characterization was made according to the following criteria:

• A node activated by data originating from gentle interactions only was renamed

gentle node.

• A node activated by data originating from strong interactions only was renamed

strong node.

• A node activated by both types of data data was renamed hybrid node.

• A node never activated was renamed null node.

The training phase (Fig. 5.3) and the characterisation of the nodes of the SOM feature

maps were made off-line.

Recognition of the interaction styles The algorithm operated on-line for the

recognition of the interaction styles and the real-time adaptation of the robot. The

whole process of classification of the interaction styles is summarized in Fig. 5.4.

At each classification, the mapping phase of the SOM led to the activation of one

specific node. According to its characterisation (gentle, strong, hybrid or null) the

current state (gentle or strong) that determined the robot’s behaviour was updated

as follows:

• The initial state of the interaction was set to gentle

• If the node activated on the SOM feature map was a gentle node, then the

current state was gentle;

• If the node activated on the SOM feature map was a strong node, then the

current state was strong;

• If the node activated on the SOM feature map was a hybrid or a null node, it

resulted in no change in the current state (as for the robot’s behaviours, they

did not change).



CHAPTER 5. REAL-TIME RECOGNITION OF HRI STYLES 84

 

Style of 
interaction 
recognised 

Input 
vector 
for the 
SOM 
 
 

 
Window 
on the 
temporal 
data 

Preprocessing 
 
 
 
Compute the  
modulus of the 
FFT  

Adaptation 
 
 
 
Update the 
robot’s 
behaviour 

Classification 
 
Mapping phase 
of the SOM:  
find the node 
activated 
 

Deduce the 
style of 
interaction 
equivalent to 
the node 
activated 

Robot’s 
behaviour 
updated 

Figure 5.4: Unit process of classification and adaptation to the interaction style.

5.2.4 Implementation

5.2.4.1 Communication process

The robot used in this study was the Sony Aibo ERS-7. Its control programming

was achieved using URBI, Universal Real-Time Behaviour Interface, (Baillie, 2005).

Sensor/motor data were transmitted through a wireless LAN to a laptop. The Aibo

sent current values of its sensors every 32ms. The laptop analyzed periodically the

sensor data, classifying on-line the interaction correspondingly and sending the infor-

mation back to the Aibo which then changed its behaviour accordingly. The process

of classification of the interaction was written in Java.

5.2.4.2 Parameters for the process of classification

The parameters had to be finely tuned experimentally. Input vectors had to be suffi-

ciently big to give enough information about the mode (gentle or strong) it originated

from, so that it would be easier to ‘separate’ gentle and strong input vectors on the

SOM Feature Map. This had to be well tuned with the size of the Feature Map,

which, in a way, influenced the scale of the mapping. Different input vector’s sizes

and network’s sizes were experimentally tested. The best results were obtained for

an input window on temporal data from size 512 and a rectangular network of size

10*10. Each component of the input vector for the classification with the SOM was

respectively the component of the modulus of the vector resulting from the FFT. The

network was randomly initialized and trained (off-line) with 5 epoch.

Once the training phase had been finished, the behaviour classification was made

on-line, the FFT algorithm being computed on-line as well as the activation of nodes

for the SOM. However, since this process was time consuming, and since the modulus
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of the Fourier transform did not change significantly over a few time steps, I decided

to set a frequency which would be more suitable. Experimentally it was found that

updating the modulus on the FFT once in 120 updates of the sensor data was fast and

precise. After each update of the interaction state through the classification process,

the Aibo was informed of the result in order to adapt its own behaviour on-line.

5.2.5 Validation of the model

5.2.5.1 Validation of the topology of the SOM map

In order to have a precise and coherent classification of the interaction, a necessary

condition was that the SOM map clearly distinguished topologically two regions,

one corresponding to the gentle nodes and the second regrouping the strong nodes.

Moreover, the proportion of hybrid and null nodes had to be very low compared to

the proportion of gentle and strong nodes so that there were not two many cases in

which the Aibo was not able to really ‘decide’ between strong and gentle interaction

and relied on the previous state detected. Besides, hybrid nodes should rather be on

the border or next to the border between gentle and strong regions (rather than in

the inner part of the regions); this would suggest a smooth transition between the

two regions.

Two SOM maps were successively trained. Both of them gave good results (see

Fig. 5.5 which provides a graph of the first map). For each of them, the number of

hybrid nodes was respectively 9 and 7 out of 100, while the number of null nodes

was respectively 1 and 0. For the first map, all the hybrid nodes were on the border.

For the second map, 3 hybrid nodes were not directly on the border but 2 of them

were first neighbours of border nodes and the third one was second neighbour. This

corresponded to a smoother transition between the two regions.

5.2.5.2 Validation of the real-time classification and adaptation

In order to evaluate the capability of the algorithm to recognize the interaction styles

correctly within a short delay, four different trials were conducted whereby the algo-

rithm operated online and the robot updated its behaviour accordingly in real time.

The set of Aibo’s possible behaviors remained the same in the four experiments: Aibo

was standing and waiting for at least one of its five external sensors to be activated.

Whenever one of the latter sensors was activated, it a) wagged the tail if it had de-

tected a gentle interaction, or b) barked if it had detected a strong interaction. We

shall remind the reader that the activation of a hybrid or null node in the SOM feature
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Figure 5.5: Map of a SOM. Legend: white for a ’gentle’ node, black for a ’strong’ node,
stripes for a ’hybrid’ node, blobs for a ’null’ node.

map was interpreted as the state remaining the same as before (i.e. gentle if it was

gentle, strong otherwise): in terms of robot’s behaviour, the robot’s current reaction

to tactile stimuli remained the same. The robot’s initial state corresponded to a gen-

tle interaction. The rationale behind this choice was as follows: in child-robot play

we want the robot to be able to maintain a well-balanced interaction style, i.e. for this

criterion Gentleness, the interactions should be neither too forceful nor too weak. In

this work, barking was used as a representative behaviour that might induce a human

to back off, thus calming the interaction. Wagging the tail was used as an indicator

to encourage interaction. Note that this proof-of-concept was carried out before I

started the trials with the children with autism. Thus, those behaviours should be

regarded as representative from the point of view of typically developed adults and

are not representative of the specific interests, needs and abilities of children with

autism. During the long-term experiments with the children I have conducted after

this preliminary study, the concrete choice of the behaviours of the robot have been

specifically tailored towards each child’s interests and abilities (Appendix C).

The succession of interaction styles detected by the robot and the corresponding

node activated on the SOM map were stored. According to the experiment, the

participant had to play either gently or strongly, or alternating gentle and strong

interactions. The participant had to maintain the same style of interaction until the

Aibo had classified and adapted to this style. Each time the participant changed her

way of interacting with the robot, the time at which it happened was stored as well
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as the time at which the Aibo adapted its behavior accordingly. Note, this study is a

proof of concept; future work should cope with more frequent changes in play style,

since child users will not be instructed how to play.

Experiment 1: This experiment tested the capability of the algorithm to recognize

the style of interaction (i.e. gentle or strong) in the simple case where there was no

transitions between gentle and strong strokes. This first trial therefore only tested

the correctness of the recognition of the style and did not focus on the delay in the

recognition process.

Two runs of three minutes each were conducted. In the first run, the participant

interacted with the robot only gently. In the second run she interacted with the

robot only in a strong style. Each run gave rise to 42 classifications computed by the

algorithm which resulted in:

i) In the first run (gentle interaction), 39 activations of a gentle node, 3 activations

of a hybrid or null node, no activation of strong nodes;

ii) In the second run (strong interaction), 41 activations of a strong node, 1 activa-

tion of a null node, no activation of gentle nodes.

We shall remind the reader that whenever a null node or a hybrid node was activated,

the decision-making process led to the current state remaining the same as before

(i.e. ‘gentle’ if the previous style recognised was gentle, ‘strong’ if the previous style

recognized was strong). Consequently, in the first run, the current state was always

gentle, and in the second run, the current state was always strong: in the two trials,

there were no error in the recognition of the interaction styles and the robot adapted

correctly to them.

Experiment 2: The purpose of this experiment was to test the Aibo’s capability

of adaptation over time involving all five tactile sensors. This experiment focused

principally on the delay for recognizing the interaction style. The participant was

asked to interact during eight minutes with the robot, alternating gentle and strong

strokes. The participant tagged each stroke (i.e. she named the style of the stroke

while interacting, e.g. ‘gentle’ or ‘strong’). This process refers to the ‘interaction

subjectively evaluated’ displayed in Fig. 5.6. Moreover, the participant was asked to

vary the sensors she activated. Results showed that the robot adapted correctly to

the interaction but with a fairly high delay which varied between 10s and 19s. Fig. 5.6

shows an example of the dynamics of the robot’s adaptation to the interaction for four
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transitions in the interaction style. It compares the transitions in Aibo’s behaviour

(as a consequence of adaptation) to the changes in the participant’s behaviour scored

subjectively. 
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Figure 5.6: Example of the dynamics of the robot’s adaptation to the interaction:
The first graph represents the real interaction style over time; the second graph shows the
robot’s adaptation, which is accurate with a delay. On the y-axis, 1 stands for ’strong’ and
0 for ’gentle.

Experiment 3: This experiment aimed at testing the impact of the nature of the

sensor (continuous or boolean) on the recognition process. The two previous experi-

ments have shown that, when the participant varied the sensors that she activated,

the robot could adapt correctly to the interaction style although the delay to adapt

was pretty high. However, because the sensors involved in tactile interactions could

be from two kinds here (continuous or boolean) the algorithm had to be tested with

each sensor separately. This setting was particularly inspired by situations of repet-

itive play, where children pursue the same action for a long time. Children with

autism sometimes play in a repetitive way; thus, a situation where a child carries on

touching the same sensor for a while was likely to happen in applications involving

children with autism and therefore had to be tested beforehand in laboratory condi-

tions.

Five runs were conducted. For each of them, the participant had to touch only one

sensor, respectively the chin sensor, the head sensor and the three back sensors. For

each run, the participant could vary the style of interaction (from gentle to strong,

from strong to gentle) whenever she wanted. She tagged each stroke (‘gentle’ or

‘strong’). Results showed that the Aibo adapted correctly to the interaction for

trials involving the activation of a continuous sensor. However, the Aibo had diffi-
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culties to adapt correctly to the interaction styles when the sensor was boolean. In

the case of the boolean sensor, two types of errors indeed happened: a) the Aibo

was not able to detect a gentle interaction within 1 minute (1 minute is a long time

compared to the average time of adaptation to a new interaction style), or b) the

Aibo had detected a gentle interaction for a very short time (around 4 seconds), the

participant was keeping interacting subjectively gently but the Aibo started barking,

which means that the algorithm had recognised a strong interaction style. This error

in the recognition of the interaction style for the boolean sensor could be explained

by the fact that its binned value could only be 0 or 9 and that the model used for

classifying the data took mainly two factors into account: i) the relative modulus of

the frequencies of the Fast Fourier Transform of one vector of sensor data indicates

which frequencies are predominant; ii) the FFT respects the linear property.

This experiment showed therefore a limitation of this model. The relative percentage

of activation of boolean sensors should be relatively small compared to the one of

continuous sensors. Experiment 1 and 2 have shown that in the case of one boolean

sensor in five where there was a fairly well-balanced repartition of the strokes among

the different sensors, the recognition process worked correctly.

Experiment 4: In the present experiment, in order to avoid the risk of having

errors induced by the use of a boolean sensor the participant had to respect the

constraint of not touching the chin sensor, but she could touch all the four other

sensors. She could change from one style of interaction to another (gentle, strong)

whenever she wanted but she tried to vary the duration of time between the time

the Aibo adapted to the current interaction and the time she changed the interaction

afterwards. The idea was to check experimentally that the delay of adaptation was

not directly influenced by the rhythm of changes in the subjective interaction. This

idea is linked to the fact that we used a finite sliding window on the data to classify

the interaction. This means that we took into account only a limited history of the

interaction.

This experiment consisted in one run of seven minutes, whereby the participant

alternated longer periods of changes in behaviour and shorter periods of changes.

The longest duration of an interaction was 50 seconds, the shortest was 17 seconds.

Fig. 5.7 represents on the x-axis the duration of a style of interaction and on the

y-axis the delay of the adaptation to the next interaction style (e.g. length of gentle

interaction and delay to adapt to the next kind of interaction which will be strong).

The graph shows that there was no linear relationship between the period of changes
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in behavior and the delay for adaptation.
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Figure 5.7: Experiment 4 : the graph represents the delay in the process of classification
and adaptation (y-axis) and the corresponding duration of the previous interaction style
(x-axis).

5.2.6 Discussion

These experiments have shown that the model was capable to classify pretty well

the interaction styles, but with a remaining important delay. It is a main issue in

human-robot interaction, because the robot should be able to give feedback and/or

adapt rapidly enough in order to make the whole interaction process consistent with

a human-centred perspective and worth maintaining.

I tried to optimise9 the delay by reducing the size of the input window on the tem-

poral data, thus limiting the amount of information the algorithm was dealing with

to a shorter past (a window of size 512 corresponds to 16.4 seconds of interaction).

However, while reducing its size, the SOM Feature Map was affected: the separation

between zones for gentle and strong nodes became less and less obvious, the amount

of null nodes and hybrid nodes increased. A null node is a node not activated dur-

ing the training process. A hybrid node is a node activated by two types of input

data used in the training phase, some originating from gentle interactions and others

generated during strong interactions. In order to counteract this, a postprocessing

was applied (first manually, and then automatically), in order to confer additional

meaning to the map. This postprocessing was defined empirically under a probabilis-

tic constraint. For this, additional runs with gentle and strong styles were generated

9For this optimisation I only considered the four continuous sensors. I tested it (separately) with
binned sensor data and with normalised continuous data.
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under controlled conditions. Null nodes that were activated with these new input

data were tagged according to the following rule: a null node activated was renamed

‘gentle’ (respectively ‘strong’) if it was activated more often for gentle (respectively

strong) behaviours than for strong (respectively gentle) behaviours. The delay could

therefore be reduced to a few seconds (approx. 3-4 seconds). However, this method

required important hand-tuning which made the solution very specific to one set-

ting. This is an important issue for our main goal which was to find a method which

enabled to classify not only strong and gentle behaviours, but could also be easily

used to classify other criteria from tactile interaction, with the least ‘hand-tuning’ as

possible.

5.2.7 Other methods

In order to find a more generic solution, I investigated other techniques using different

approaches, i) the testing of the linear separability of the data with the Fisher Linear

Discriminant Analysis (LDA) (Elizondo, 2006), and ii) the extraction of common

features from the input data by compression (Cilibrasi and Vitanyi, 2005). In order

to extend the domain of criteria, I also tested these methods with data generated

for the specific context of the ‘frequency of the interaction’; data were generated in

the same way as those for the criterion gentle/strong: runs with exclusively one class

(very low, middle inferior, middle superior, very high) were conducted in order to

collect data specific to each class for this criterion.

5.2.7.1 The Fisher Linear Discriminant Analysis

This method enables to test the linear separability of different classes. It relies on an

informative projection of the data on an axis that satisfies the following condition:

when the data from the classes are projected onto this axis (defined by its direction

w∗), the ratio ‘distance between the classes projected’ to ‘distance of the projected

cases within a class’ is maximized. This condition corresponds to a maximization of

the Fisher Criterion (Equation 5.7).

For each class c, we consider the number of cases, Nc, the mean of these cases10,

µc , and its within class scatter matrix, SW , defined by:

SW =
∑

c

∑

i∈c

(xi − µc)(xi − µc)
T (5.5)

10The mean µc of the cases originated from a class c is defined by: µc = 1
Nc

·
∑

i∈c xi.
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The total number of cases over different classes is N and the mean of these cases11

is µ. The between class scatter matrix, SB, is defined by:

SB =
∑

c

Nc · (µc − µ)(µc − µ)T (5.6)

The Fisher criterion is defined by the following equation:

J(w) =
wT · SB · w

wT · SW · w
(5.7)

For two classes c1 and c2, with means, respectively, µ1 and µ2, a vector w∗ that

maximizes Equation 5.7 satisfies the following equation12:

∃α ∈ R such as w∗ = α · S−1
W · (µ1 − µ2) (5.8)

Among the set of possible solutions of Eq. 5.8, we take w∗ for which α = 1. In

order to evaluate whether the two classes are well separated with this projection,

we now consider the hyperplane13 defined by the normal vector w∗ and the bias

b. The bias b is determined in such a way that the hyperplane lies between the two

means of the training data projected onto direction w∗. Thus, b satisfies the following

equation14:

b = −
1

2
· (< w∗, µ1 > + < w∗, µ2 >) (5.10)

where < w∗, µc > is the scalar product between w∗ and µc (which corresponds to

the projection of the mean of the cases from class c onto direction w∗). If the two

classes were separated by the LDA, then two decision regions would be separated by

this hyperplane defined by its normal vector w∗ and bias b, i.e. the hyperplane would

separate the space in two regions, each one corresponding to a different class.

This method was applied successively for the criterion ‘Gentleness’ and for the

criterion ‘Frequency’ of the interaction. For the criterion ‘Gentleness’, the LDA did

not separate the two classes (gentle and strong). As for the criterion ‘Frequency’,

attempts to separate contiguous classes two-by-two (i.e. firstly S0 and S1, secondly

11The mean µ of all the cases is defined by µ = 1

N
·
∑

i
xi, i.e µ = 1

N
·
∑

c
Nc ∗ µc.

12For more details on how we obtain this equation the reader should refer to Haykin (1998).
13In an affine space of finite dimension n, a hyperplane is defined by its normal vector w and the

bias b. A vector x from this space belong to this hyperplane if and only if it satisfies the following
equation:

w
T
· x + b = 0 (5.9)

14For an illustration of this method the reader can refer to Elizondo (2006).
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S1 and S2 and finally S2 and S3) with the LDA did not work either. Therefore, the

LDA was not further pursued.

5.2.7.2 Clustering by compression (Cilibrasi and Vitanyi, 2005)

This method takes inspiration from the Kolmogorov complexity and its related Nor-

malized Information Distance (NID) which is non-computable in the Turing sense

(Li et al., 2004; Li and Vitanyi, 2002). It provides a measure of similarity which

is computable, the Normalised Compression Distance (NCD). Ususally, for an ap-

proximation of the NCD, standard compressors are used, like gzip. In this case, the

NCD can be seen as the result of the approximation of the NID by a real compressor

(Cilibrasi and Vitanyi, 2005). Clustering according to the NCD relies on grouping

sequences that are similar according to features, but the knowledge of those features

is not explicit (Cilibrasi and Vitanyi, 2005).

This technique was applied for each criterion of interaction (firstly the gentleness

and secondly the frequency of the interaction). The test compared different compres-

sion rates. We shall illustrate this technique with a simple example. In this example,

we consider two different classes S0 and S1 and two reference strings s0 and s1 (in

our case the reference strings were windows on sensor data, each window originated

from a different class, e.g. one from ‘gentle’, the other from ‘strong’). We consider

now an unknown string (a window on data) s, which belongs either to S0 or to S1.

We concatenate successively s0 and s1 with s, ie. concat(s0, s) and concat(s1, s) and

take the ratio of compression R of each concatenated string with a real compressor

(in our case gzip), namely R(concat(s0, s)) and R(concat(s1, s)). If the classes are

well separated by the clustering by compression, then the ratios R(concat(s0, s)) and

R(concat(s1, s)) should be very different: if s originates from the source S0, then

R(concat(s0, s)) should be much smaller than R(concat(s1, s)); on the contrary, if

s originates from the source S1, then R(concat(s1, s)) should be much smaller than

R(concat(s0, s)). It turned out that, in our application, this method was not really

reliable for separating the classes (neither for the criterion gentle nor for the frequency

of the interaction). Therefore, this method was not further pursued.

5.2.8 Summary

The purpose of this section was to present a proof-of-concept of the first model I used

for the online recognition and adaptation to human-robot interaction styles. This

method relied on Self-Organizing Maps, applied to the modulus of the Fast Fourier
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Transform on windows on the input data. Results from a first level of testing have

shown that the algorithm was able to classify pretty well the interaction styles for the

criterion gentle/strong, but with a pretty high delay. It was possible to reduce this

delay but it required important hand-tuning and made the solution very specific to

a particular setting. Further to this I started investigating other techniques, firstly

the Linear Discriminant Analysis which showed that the classes were not linearly

separable and, secondly, Clustering by compression, which did not properly separate

the classes. The next step of my research focused on the use of the Information

Bottleneck Method, upon which I built a novel method for real-time classification of

the interaction styles, which I present in the next section.

5.3 The Cascaded Information Bottleneck Method

5.3.1 Introduction

This section presents a novel method for time series analysis, the Cascaded Informa-

tion Bottleneck Method, which I applied to the real-time recognition of human-robot

interaction styles. This method, which enables time-filtering, is based on the concept

of Information as introduced by Shannon (1949) and builds upon from the Informa-

tion Bottleneck Method developed by Tishby et al. (1999).

Importantly, this work goes beyond prior work (see related work in Section 5.1.3)

that either classified and characterized interactions off-line, i.e. after the interactions

had taken place, or relied on explicit criteria tuned by hand (vs. automated training

phase of the recognition algorithm). It also goes beyond the work I presented in

Section 5.2 which enabled real-time recognition of interaction styles with respect to

one criterion, the gentleness, using a different method, based on self-organizing maps

(François et al., 2007). The Cascaded Information Bottleneck Method is entirely

generic for applications with socially interactive robots.

5.3.2 Background: Information theory

This subsection summarizes basic notions of Information Theory15 (Shannon, 1949).

5.3.2.1 Entropy

The entropy is a measure of the uncertainty of a random variable. It is a way to mea-

sure the amount of information required on the average to describe a random variable.

15For more details, the reader can refer to Cover and Thomas (1991); Crutchfield (1990)
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Definition: Let X be a discrete random variable with alphabet X and probability

mass function p(x), x ∈ X . The entropy H(X) of the random variable X is defined

by

H(X) = −
∑

x∈X

p(x) log p(x) (5.11)

where the function log stands for the logarithm in base 2.

5.3.2.2 Joint Entropy and Conditional Entropy

In the previous subsection we have defined the entropy of a single random variable.

Here we extend the definition to a pair of random variables.

Definition: Let X and Y be discrete random variables with alphabet, respectively

X and Y, and a joint distribution p(x, y), whatever x ∈ X and y ∈ Y. The joint

entropy H(X, Y ) of the pair of discrete random variables (X, Y ) is defined as:

H(X, Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y) (5.12)

where the function log stands for the logarithm in base 2.

Definition: Let X and Y be discrete random variables with alphabet, respectively

X and Y and a joint distribution p(x, y), whatever x ∈ X and y ∈ Y. The conditional

entropy H(Y |X) of the pair of discrete random variables (X, Y ) is defined as:

H(Y |X) =
∑

x∈X

p(x)H(Y |X = x) (5.13)

5.3.2.3 Relative Entropy

The relative entropy is a measure of the distance between two distributions.

Definition: The relative entropy or Kullback Leibler distance between two prob-

ability mass functions p(x) and q(x) is defined as:

DKL(p||q) =
∑

x∈X

p(x) log
p(x)

q(x)
(5.14)

with the following conventions: a) 0 log 0/q = 0 ; b) p log p/0 =∞.



CHAPTER 5. REAL-TIME RECOGNITION OF HRI STYLES 96

A very useful property of the relative entropy is that it is always non negative

and is equal to zero if and only if p = q. However, the relative entropy is not a true

distance between the distribution since it does not satisfy the property of symmetry.

5.3.2.4 Mutual Information

The mutual information is a measure of the amount of information that one random

variable contains about another random variable. The mutual information between

the random variable X and the random variable Y corresponds to the reduction in

the uncertainty of one random variable (X or Y ) due to the knowledge of the other

one (respectively Y or X).

Definition: let X and Y be two random variables; let p(x, y) be their joint prob-

ability mass function and p(x) and p(y) be respectively their marginal probability

mass function. The mutual information I(X; Y ) is the relative entropy between the

joint distribution and the product distribution p(x)p(y):

I(X; Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(5.15)

The mutual information is symmetric and it is very easy to show that:

I(X; Y ) = H(X)−H(X|Y ) (5.16)

Note that I(X; X) = H(X).

5.3.3 Background: The Information Bottleneck Method

The Information Bottleneck Method (Tishby et al., 1999) is a clustering method

based on an information theoretic approach (Shannon, 1949) whose purpose is to

extract the relevant information16 in a signal x ∈ X that is, extract features of a

random variable (r.v.) X that are relevant to the prediction of Y . This problem is

modeled by the following Bayesian network with Markov condition: X̃ ←− X ←− Y

where X̃ is the variable that extracts information about Y through X.

This method provides an alternative to ‘rate distortion theory’ techniques which

constitute a standard approach to lossy source compression. In the Information

Bottleneck method, the relevance is not addressed through distortion but directly

16In this context, the relevant information is defined as the information that the signal x ∈ X

provides about another signal y ∈ Y.
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through a new variational principle. The rationale is that the best trade-off between

the compression of the signal and the preservation of the relevant information is the

one that keeps a fixed amount of relevant information about the relevant signal Y

while minimizing the number of bits from the original signal X, i.e. maximizing the

compression. The optimal assignment can be found by minimizing the functional

L[p(x̃|x)] = I(X̃; X)− βI(X̃; Y ) (5.17)

I(X; Y ) stands for the mutual information between X and Y. For β and the car-

dinal of X̃ fixed, an expression can be given which specifies implicitly the solution

and leads to a fixed point iteration. β can be considered as the inverse of the tem-

perature. This method uses a stochastic clustering top-down approach. The notion

of stochastic refers here to the fact that the clustering is soft and that the input data

are mapped to the different elements of X̃ with a particular probability. For that

information bottleneck setting, the Kullback-Leibler divergence DKL(p(y|x)||p(y|x̃))

replaces the distortion function.

The Agglomerative Information Bottleneck algorithm (Slonim and Tishby, 1999)

makes the assumption that β tends to∞ in the Lagrangian equation (Eq. 5.17). When

β goes to∞, the first priority is to look for a solution that keeps all information about

Y that X contains. The second priority is to remove all unnecessary information

from X. In terms of mutual information, the mutual information between X̃ and Y

is maximized and a hard partition of the data into subsets is induced, each subset

corresponding to a bottleneck state x̃: for a fixed cardinal of X̃ (i.e. a fixed number

of subsets - also called states - in the bottleneck), each member of the input signal

x ∈ X belongs to one and only one subset x̃ ∈ X̃ and x̃ is the subset (the state) for

which p(y|x̃) has the smallest DKL(p(y|x)||p(y|x̃)). The hard partition can be soften

afterwards, with reverse annealing. The pseudo-code of the algorithm can be found

in Slonim and Tishby (1999).

5.3.4 The Cascaded Information Bottleneck Method

5.3.4.1 The principle

Based on the Information Bottleneck Method, I have developed a novel time-filtering

method particularly adapted for pattern recognition in time series. Let x ∈ X be

the time series input signal of length l, x = [x0, ..., xl−1]. We take k and S ∈ N,

with l = k ∗ S, such that x can be divided into S disjoined parts of cardinality k, Xs,

s = 0, ..., (S − 1) in the following way:
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x0 ... xk−1 xk ... x2k−1 ... xk∗S−1

X0 X1

The Cascaded Information Bottleneck method relies on the principle that the rel-

evant information can be progressively extracted from the time series with a cascade

of successive bottlenecks sharing the same cardinality of bottleneck states but trained

successively. The agglomerative information bottleneck algorithm is applied to each

bottleneck successively, the first one being trained in the standard way while the next

ones depend on the previous bottleneck states, as the following graph shows:

X̃S−1
...X̃2X̃1X̃0

XS−1...X2X1X0

Y

5.3.4.2 Extrapolation

The Cascaded Information Bottleneck method progressively extracts the relevant

information from an input sample X = [X0, ..., XS−1] by a recall on the successive

components (X0 for the first step of the cascade, (X̃s−1, Xs) for the other steps s).

Each bottleneck is characterized by a hard mapping between: i) X0 and X̃0 for the

first step, and ii) (X̃s−1, Xs) and X̃s for the other steps of the cascade. At each step

s of the cascade, the algorithm looks for the equivalent x̃s given the input (x̃s−1, xs)

according to the hard mapping at step s: the equivalent x̃s satisfies the equation

p(x̃s|(x̃s−1, xs)) = 1. This means that if a pair has been observed during the training

phase of the cascade, then there is only one outcome for the equivalent bottleneck

state X̃. Note that the input (x̃s−1, xs) corresponds to the input x in the original

information bottleneck method.

It can happen that at a specific step s of the cascade, the pair (x̃s−1, xs) for which

we need to find the equivalent X̃s has never been encountered during the training

process of this bottleneck. This pair is called an unseen pair. In the case of an unseen

pair (x̃s−1, xs) at step s, the cascade can a priori make no inference on X̃s because

there is no preexisting default continuation of the cascade, due to the fact that the

bottlenecks have been trained successively. In other words, for each pair (x̃s−1, xs)

which was not part of the training set data, p(x̃s|(x̃s−1, xs)) is a priori undefined,

whatever x̃s we take. For such cases, it is necessary to introduce a ‘default’ way
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leading from X̃s−1 to X̃s, i.e. we have to introduce an artificial identification of

successive bottleneck states which consists in matching two bottleneck states (one at

step s − 1 and one at step s). Therefore I apply a reorganisation of the bottleneck

states at each possible step s (i.e. a one-to-one mapping of the bottleneck states at

step s − 1 and the ones at step s which we call a permutation). For this purpose, I

introduce the following measure d(s−1,s) allowing to directly compare the reorganised

bottleneck states from step s with those from step s− 1. Let X̃s−1 (respectively X̃s)

be the set of bottleneck states x̃s−1 (respectively x̃s) and p(x̃s−1) (respectively p(x̃s))

the empirical probability; for each permutation r of the bottleneck states X̃s:

d(s−1,s)(r) = −
∑

x̃s−1∈X̃s−1

p(x̃s−1) log p̃(X̃s = r(x̃s−1)|X̃s−1 = x̃s−1) (5.18)

Note that if p̃(X̃s = r(x̃s−1)|X̃s−1 = x̃s−1) = 0 then, by convention, d(s−1,s)(r) is ∞.

The logarithm measures the unpredictability of the next case (i.e. the unpredictability

of X̃s given x̃s−1). We want to choose r to minimize that unpredictability and weight

for the probability that the state x̃s−1 actually happens (because there is no sense

in penalizing a deviation if the state does not happen.). We call this permutation

R(s− 1, s).

The permutation of the bottleneck states that extracts the most similarity between

bottleneck states at step s− 1 and those at step s, R(s− 1, s), is given by:

R(s− 1, s) = arg min rd(s−1,s)(r) (5.19)

We consider R(s−1, s) as the ‘default’ path between X̃s−1 and X̃s, i.e. as the criteria

for extrapolating an unseen event at step s.

5.3.5 Implementation

In the following subsections we present an application of the Cascaded Information

Bottleneck Method with real data which addresses the issue of interest in the present

thesis: the automatic recognition of tactile interaction styles in the context of human-

robot interaction. I conducted two series of trials, the first one under laboratory

conditions and the second one in school where several children could interact (one

child at a time) freely with the robot. In all experiments the robot used was the Sony

Aibo ERS-7 and I focused on characterizing the tactile interactions according to two

criteria, namely the gentleness and the frequency of the interaction. As defined in

Section 5.1.2:
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• An interaction is classified as ‘gentle’ (respectively ‘strong’) if the participant

strokes the robot gently, without signs of force (respectively with signs of force).

• The frequency of interaction is categorized into four classes Si, i = 0...3, defined

by their typical periodicity of interaction T (in seconds): i) S0: ‘very low’

(T > 15), ii) S1: ‘middle inferior’ (5 < T ≤ 15), iii) S2: ‘middle superior’

(1 < T ≤ 5), and iv) S3: ‘very high’ (T ≤ 1).

5.3.5.1 Implementation

Two cascades of bottlenecks were generated, one for the criterion gentleness and one

for the criterion frequency of the interaction. The lengths of the cascades differed

in these two different cases in order to meet the specificity of each criterion: the

gentleness is a short-term time scale event while the frequency of the interaction is a

mid-term time scale event, thus the length of the cascade for the criterion frequency

was bigger than the one for the criterion gentleness. The whole list of parameters for

each cascade of bottlenecks is provided in Fig. 5.8. The samples for the training of

the cascade were generated during interactions with the Aibo ERS-7 in laboratory

conditions within different runs. Each run contained one class exclusively, i.e. for

the criterion gentleness, the samples generated within a same run contained only

gentle or only strong styles of interaction (i.e. only gentle or only strong strokes were

generated during a same run), and for the criterion frequency of the interaction, the

samples generated within a same run contained only one type of frequency (i.e. S0,

S1, S2 or S3 exclusively). 
 
Criteria  Classes Length of the input vector 

(window size), l 
Length of the 
individual 
subsequences, k 

Length of the 
cascade, S 

Number of 
bottleneck 
states, m 

Gentleness 2 classes: 
gentle/strong 

50 
(equivalent to 1.6 seconds) 2 25 4 

Frequency 4 classes: 
S0, S1, S2, S3 

472 
(equivalent to 15.1 seconds) 2 236 6 

 

Figure 5.8: Parameters for each cascade of bottlenecks.

Preprocessing Each criterion (gentleness and frequency of the interaction) is stud-

ied independently. In each case, the time series studied is the quantitatively binned

sum of the normalized sensors values17 involved in the type of interaction: the pre-

processing normalizes each sensor data, sums these normalised values originated at

17The robot’s sensor data are updated every 32ms.
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the same time step, and bins this sum. Note that FFT is not applied contrary to

the previous technique with SOMs presented in Section 5.2. For the criterion gen-

tle/strong, the sensors involved are the four continuous external sensors, while the

criterion frequency includes all five external sensors, i.e the four continuous sensors

plus the boolean one18.

Extra-conditions for the training

• for the criterion ‘gentleness’, the algorithm does not learn null samples (i.e.

samples made of null events only),

• for the frequency of interaction, the system deals only with samples whose first

component is not null.

In both cases, a sliding window proceeds on the sensor data time series. For the

criterion gentleness, the window size is 50 while for the criterion frequency of the

interaction, it is 472.

Postprocessing The postprocessing relies on a ‘winner takes all’ principle: The

selected (winner state) is defined by arg maxy∈Y p(y|x̃S−1).

5.3.5.2 Features of the trained cascade

The mutual information for the training set between the last bottleneck variable X̃S−1

and Y is 0.8 bit for the criteria gentle/strong and 1.9 bits for the frequency of the

interaction. The conditional entropy H(X̃s+1|X̃s) (Fig. 5.9) is globally decreasing

over the cascade, pretty quickly, which suggests that a structure is progressively

and rapidly emerging over the cascade: at the beginning of the cascade, a lot of new

information is needed to deduce the next bottleneck state and then, when progressing

in the cascade, less and less new information is needed. However, for the frequency of

interaction, H(X̃s+1|X̃s) has some small local peaks, both at the very beginning of the

cascade and at the very end19, which suggest that at these steps s, the input data Xs

18In this application, X is a window on the quantitatively binned sum of the normalised sensors
data and Y is the class, i.e. the style of interaction, e.g. gentle or strong for the criterion gentleness
and S0, S1, S2 or S3 for the criterion frequency of the interaction.

19Note that the small local peaks at the end of the cascade may reflect the importance of the last
steps for distinguishing the classes S0 and S1. S0 is defined by a periodicity greater to 15s while S1

is defined by a periodicity greater to 10s and inferior or equal to 15s. These small peaks in the end
of the cascade appear at approximately 14s (the peaks appear just after s = 220, for k = 2 and the
systems send updates of the sensor data every 32ms, thus the duration is : 220×2×32ms = 14.08s).
I hypothesize that they reflect the typical periodicity of events from S1.
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Figure 5.9: Conditional entropy H(X̃s+1|X̃s). There are four main parameters for the
cascade: l (length of the input vector), k (length of the individual subsequences), S (length
of the cascade), m (number of bottleneck states). For the frequency of interaction, l = 472
(equivalent to 15.1 seconds) , k = 2, S = 236, and m = 6. For the criterion gentle/strong,
the corresponding parameters are: l = 50 (1.6 seconds), k = 2, S = 25 and m = 4.

may influence a bit more in the choice of next equivalent state X̃s+1. This measure

is correlated with the reorganisation measure for extrapolating ds−1,s(R(s − 1, s))

(equation (5.18) and equation (5.19)) which presents, respectively to each criterion

of interaction, profiles similar to the conditional entropy with peaks positioned at the

same place in the cascade (the mean of ds−1,s(R(s−1, s)) is equal to, respectively, for

Gentle/Strong, 0.037 bits, and, for the frequency of interaction 0.129 bits): when the

distance becomes bigger, it means that there is less similarity between the successive

bottleneck steps according to the measure ds−1,s(R(s − 1, s)). This is equivalent to

say that more new information is needed to find the equivalent bottleneck state,

which corresponds to a peak in Fig. 5.9. In the rest of the study, the algorithm will

extrapolate between step 5 and 24 (respectively 5 and 216) of the cascade for the

gentleness (respectively frequency of interaction).

5.3.6 Experiments

These experiments aim at assessing statistically:
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• The soundness of the recognition of interaction styles by our algorithm, i.e., i)

for the criterion ‘gentleness’, whether a behaviour that has been classified as

gentle (respectively strong) by a human is indeed going to be classified as gentle

(respectively strong) by our algorithm, or ii) for the frequency of interaction,

whether a frequency of interaction that has been tagged by a human is indeed

going to be correctly recognised by the algorithm.

• The delay for the recognition of local events.

Importantly, the criterion ‘gentle/strong’ characterizes local events, and the algo-

rithm should be able to recognise each specific event ‘gentle’ or ‘strong’ within a

short delay. In contrast, the criterion ‘frequency of the interaction’ requires the algo-

rithm to classify mid-term time scale events. This study deliberately focuses on such

different criteria in order to show the flexibility of the algorithm.

Experimental setup under laboratory conditions These trials are used as

a first step in the statistical assessment of the soundness of the recognition of the

interaction styles.

They involve one participant at a time who is asked to interact with the robot for a

few minutes in a predefined way which is one of the following:

• for the ‘Frequency of the interaction’: only ‘pure styles of interaction’, i.e one

class20 exclusively.

• for the criterion ‘Gentle/Strong’: In a first step, it is pure styles exclusively21. In

a second step, the participant is asked to alternate gentle and strong behaviour

and, just before generating the first event of the new class, he/she must name

the style (i.e. “gentle” or “strong”). All the sessions are video recorded and

this tagging enables to determine very precisely the transitions for a further

measure of the delay of the recognition process.

Experimental setup in school A further step in the validation of the algorithm is

the testing with data obtained under natural situations of Human-Robot interaction.

These experiments took place in a small classroom dedicated to the study, one child

at a time being present in the room. Each child was invited to play freely for several

minutes with the robot (the duration of play depended on the child’s needs and

abilities) in an unconstrained environment.

20very low (S0), middle inferior (S1), middle superior (S2), or very high (S3).
21gentle or strong only.
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5.3.6.1 Measures

The experiments were all video-recorded and sensor data were stored. Note, the

validation of the algorithm must be assessed offline but the recognition algorithm is

designed to operate in real time. The evaluation follows two main successive steps:

firstly the testing with the trained data and, secondly, cross-validation with, on the

one hand, data generated under laboratory conditions and, on the other hand, data

generated in school during interaction between children and the robot.

Samples excluding transitions from one class to another The profile of the

classification made by the algorithm can be analysed with a confusion matrix which

displays the probability distribution that events from class Si are recognised by the

algorithm as events of class S′
i (i = 0 or 1 for gentle/strong, i = 0...3 for the frequency

of interaction).

Samples with transitions for the criterion gentle/strong These samples en-

able us to test the ability of the algorithm to recognise a transition and reach, after

a short transition phase, a new equilibrium phase. One can model this process by a

temporal curve that would indicate the state of the system for a transition happening

at time t0. Three typical domains can be identified: for t < t0 the curve is constant,

indicating a stable state; from t = t0, the curve’s value alternates to indicate an hes-

itation between the two possible states (thus identifying a change in the behaviour

observed); from t = t0 + τ the curve would keep the same value (the new state). Ide-

ally, the second phase should be very short (i.e. τ is very small). I study three typical

measures here: a) the number of transitions recognised by the algorithm; b) the time

elapsed to reach the new equilibrium state, c) the ratio of errors made within this new

equilibrium state. Note, a transition will be considered broadly as either a transition

from a gentle (respectively strong) behaviour to a strong (respectively gentle) one,

or from a state where no classification occurred (i.e. no interaction occurred during

the past 1.6 seconds) to gentle or strong.

Samples with hybrid behaviours for the frequency of interaction Because

this criterion is based on a mid-term time scale analysis, some samples generated in

school can be hybrid, i.e contain a mix of features from different classes. In order to

encapsulate hybrid behaviours, the human classifies the behaviours on a ‘two choices’

basis, i.e. he/she can select the two styles characterising the hybridity. In this case,
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the algorithm’s classification is successful if it agrees with one of the two choices made

by visual inspection.

Practically, the video and graphs of the temporal global variable are first manually

tagged. In a second step, the classifications Si resulting from the manual tagging are

compared with the classifications S′
i made by the algorithm.

5.3.7 Results

In this subsection, we present the results for the two criteria of interaction succes-

sively, firstly the gentleness of the interaction and secondly the frequency of the

interaction. Note that here we will refer to the samples of data that were classified

without using the extrapolation22, i.e. the samples that contained no unseen cases at

any step of the cascade, as samples classified without extrapolation. In contrast, the

samples of data that required an extrapolation at one or more steps of the cascade,

i.e. the samples for which there were unseen cases to extrapolate 23 (i.e. cases that

had not been encountered during the training phase of the algorithm), will be referred

to as samples classified with extrapolation.

5.3.7.1 Results for the criterion ‘Gentle/Strong’

In the four following paragraphs, we report on the results for the criterion ‘gentleness

of the interaction’. For this criterion, the algorithm was evaluated successively with

a) the data from the training set, b) new samples of data generated under controlled

conditions excluding transitions (cross-validation), c) new samples of data generated

under controlled conditions including transitions (cross-validation) and d) samples of

data generated in school by the children (cross-validation).

Training set of data: The 20, 018 samples used for the training were classified

by the algorithm with an overall success of 97.82% and, respectively, for gentle and

strong, 96.83% and 98.81%.

Samples excluding transitions: They constitute 1 hour 2 minutes 49 seconds

of interaction. 100, 111 samples were classified with a ratio of success for correct

classification of 0.948.

22Those samples were classified by recall according to the hard mapping defined during the training
phase of the algorithm; since there were no unseen cases in these samples, those samples never used
the extrapolation for their classification.

23Those samples were extrapolated according to the measure provided in Section 5.3.4.2
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97.7% of samples were classified without extrapolation with 95.22% of success while

the samples classified with extrapolation (3.3%) were well classified in 75.54% of cases

which, considering that it results from an extrapolation, is quite a good result. Note

that the parameters of the Cascaded Information Bottleneck Method were chosen

in such a way to have a good balance between the extrapolation and the precision,

which is reflected here in the low percentage of cases extrapolated.

Samples with transitions under laboratory conditions: The four runs con-

stitute 19 minutes and 40 seconds of interaction to analyse. They contain 53, 192

samples to classify and 0.01% of the samples were not classified because they could

not be extrapolated by the algorithm24. 212 transitions were to be recognised, 99.1%

of which were indeed well classified by the algorithm25 with an average delay of 0.17

seconds. The cumulative probability distribution of the delay is displayed in Fig. 5.10.

The curve grows very rapidly, thus showing that most of the delays are very small.

Transitions recognised without any delay occur particularly in the case of a transition

from no event to classify to any event to classify. The longest delay is 2.05 seconds,

which I consider very acceptable for human-robot interaction kinesics. The average

error ratio in the equilibrium phase is 0.02 and the cumulative probability distribu-

tion is displayed in Fig. 5.11. Here again, the curve grows rapidly and shows that

the probability of the highest error ratio is very low and remains acceptable for real

human-robot interaction.

Samples generated by the children in the school: Videos from five different

children were analysed, which constitute 12 minutes and 52 seconds of interaction.

These runs contain 6, 660 samples to classify: 97.49% of these samples were classified

by the algorithm. These samples contain 45 transitions. 91.1% of these transitions

were indeed well classified by the algorithm within an average delay of 0.17 seconds.

The cumulative probability distribution of the delay is represented in Fig. 5.10. The

curve grows very rapidly, thus showing that most of the delays are very low. Transi-

tions recognised without any delay occur, and, at the far end, the highest delay is 1.54

seconds, which is very acceptable for human-robot interaction kinesics. The mean

24These samples had to be extrapolated outside the range of steps considered for the extrapolation.
The range of steps considered for the extrapolation is the range of steps where the algorithm is allowed
to extrapolate unseen events. For the gentleness of the interaction, is it between step 5 and step 24;
for the frequency of the interaction, the range of steps for extrapolation is between step 5 and step
216 of the cascade. If a sample had to be extrapolated outside this range, then it was not classified.

25A transition is considered as wrongly classified if the transition phase is very long compared to
the new equilibrium phase.
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Figure 5.10: Cumulative probability distribution of the delay for recognising the
transition. We display the cumulative probability, i.e. the probability that an event is recognised within
(less or equal) n seconds for a given n. The delay corresponds to the length of the transition phase when a
transition occurs.
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Figure 5.11: Cumulative probability distribution of the error ratio for the equilibrium
phase. The ratio measures the number of errors of classification made during a phase of equilibrium divided
by the number of samples to classify during this phase. The figure displayed gives, for a given r, the cumulative
probability, i.e the probability that the error ratio is inferior or equal to r.

error ratio in the equilibrium phase is 0.1 and the cumulative probability distribution

of this ratio is displayed in Fig. 5.11. Here again, the curve grows rapidly. It is wor-

thy of note that the highest value obtained is 0.44 and the second one is much lower

(0.26) which indicates that the first highest value can be seen as an extraordinary

case. Looking at the sequential classification of the results, it appears that this high-

est error ratio was obtained while a child interacted in a very instable way that is,

within 1.76 seconds three successive transitions were observed that are 1) no event to

gentle (gentle phase lasted 1.37 seconds), 2) gentle to strong (the phase with strong

style lasted only 0.26 seconds), 3) strong to gentle. It is the strong phase, after the

transition from gentle to strong behaviour that was recognised with the highest error
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ratio (0.44), but it lasted for such a short time that it is not really a concern here

(0.26 seconds is very low compared to the typical time for human-robot interaction

which usually lasts a few seconds). Therefore, we can consider to omit this highest

value 0.44 in the probability distribution and, looking at the resulting values, the

results are good and comparable to the results obtained in the laboratory.

5.3.7.2 Results for the criterion ‘Frequency of the interaction’

In the three following paragraphs, we report on the results for the criterion ‘frequency

of the interaction’. For this criterion, the algorithm was evaluated successively with

a) the data from the training set, b) samples of data generated under controlled

conditions excluding transition between classes (cross-validation), c) samples of data

generated in school by the children (cross-validation).

 S’0 S’1 S’2 S’3 
S0 1 0 0 0 

S1 0.0008 0.9992 0 0 

S2 0 0 1 0 

S3 0 0 0 1 
 

Figure 5.12: Confusion Matrix for the training set. The ratio is the one among events from
type Si. Si represents the real class and S′

i the recognised class, 0 ≤ i < 4.

Training set of data: It constitutes 36 minutes 34 seconds of interaction and

contains 4, 865 samples to classify (respectively, 450 for S0, 1, 208 for S1, 1, 484 for S2

and 1, 723 for S3). 99.98% of these samples were well classified; the ratio of success

specific to each class is displayed in Fig. 5.12.

Samples generated under laboratory conditions: They constitute 51 minutes

44 seconds of interaction and contain 5, 395 samples to classify (respectively 1, 017

for S0, 855 for S1, 1, 933 for S2 and 1, 590 for S3) 91.16% of which were classified with

an overall ratio of success of 0.922. 99.4% of the samples not extrapolated were well

classified, and 76.41% of samples classified through extrapolation were well classified.

Fig. 5.13 displays the confusion matrices.

Samples generated by the children in the school: Three runs of interaction

were used for the validation of the frequency of interaction in a real situation, from

three different children. They constitute 14 minutes 41 seconds of interaction and
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0.9940.00600S3

0.0010.99900S2

00.0280.9720S1

0001S0

S’3S’2S’1S’0
No 
Extrapolation

0.6320.36800S3

0.0030.7680.1460.083S2

00.0220.8640.115S1

0001S0

S’3S’2S’1S’0
Extrapolation

Figure 5.13: Confusion Matrices for pure sets of data (cross-validation) for, respec-
tively, non extrapolated and extrapolated samples. Non extrapolated samples are samples
which were classified without the need to use the extrapolation, because none of the cases were unseen cases
(relatively to the training set samples). The results for those samples is provided in the table with mention
‘No extrapolation’. On the contrary, extrapolated samples are samples that used the extrapolation at least
once in the cascade (those samples contained at least one unseen case in the cascade, i.e. a case that had
not been encountered during the training). The results for those samples are provided in the table with the
mention ‘Extrapolation’. See Fig. 5.12 for more details on the notion of confusion matrix.

contain 5, 288 samples to classify. 91% were classified (including 26.81% that had to

be extrapolated) and 93% were classified correctly. Among samples classified with

no extrapolation, the ratio of success for a sound classification was 0.96 while for

samples classified with extrapolation, it was 0.84.

5.3.8 Discussion

The Cascaded Information Bottleneck Method has proven sound for the recognition

of the two criteria of interaction. Concerning the criterion gentle/strong, results

show that the two classes are well recognised and the delays very acceptable for

human-robot interaction. The extrapolation works well, which shows the capabil-

ity of the system to make a sound decision in case of unseen events. These results

can be compared with the preliminary study presented in Section 5.2 where I used

Self-Organizing Maps to classify this criterion of interaction (François et al., 2007),

whereby the average delay to recognize transitions was much higher and the postpro-

cessing required more effort.

Importantly, one might wish to define the styles slightly differently to the definition

given here, such as, for instance, focusing on more details (in order to describe sub-

styles for instance). This can be easily done by adjusting relevant parameters, mainly

the number of bottleneck states, the binning and the training sets which condition

the learning. One can also control how much information is being left by tuning the

parameter β that is introduced in Eq. 5.17: in this thesis we used the limit ‘β goes

to ∞’ but one could go back to a finite β which enables to control the quantity of

information that X contains about Y that is being left.
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The algorithm has also proved very capable of classifying real data over a mid-

term time scale (cf. the criterion frequency of the interaction) which illustrates the

ability of the method to make use of an existing temporal structure not only of

short-term time scales but also mid-term ones. This ability is enabled by the use

of different bottlenecks (thus different mappings) over the cascade. Besides, the

process for extracting the information is transparent: we can say how much and

which information is extracted at which step of the cascade, which gives a fine-

grained control over what information is taken from the input data and where that

information is taken in the cascade (at which step of the cascade). In contrast, with

homogeneous HMMs, as used for gesture recognition in e.g. Lee and Xu (1996)

and Calinon and Billard (2004), the mapping would be the same all over the time

series26, and, by trying to squeeze all temporal information into one flat transition

structure, it might actually prevent homogeneous HMMs from a powerful exploitation

of an existing temporal structure of the data. This hypothesis about homogeneous

HMMs needs to be explored in future work which should include a comparison of the

Cascaded Information Bottleneck Method with HMMs in these scenarios.

This method is designed for real-time use during natural human-robot interaction

and little research had been done so far on real-time recognition of tactile interaction

styles. Salter et al. (2007)’s adaptation algorithm was a first important step towards

real adaptation. Yet, that system did not learn its own categorisation, which was

completely described by a hand-tuned decision tree. In the present study, the recog-

nition and the decision are made algorithmically, after a real learning phase and with

a capacity to extrapolate unseen events, with very small delays. Furthermore, the

method is very easy of use and can be tuned easily to adapt to other criteria of in-

teraction. This method is entirely generic for different applications involving socially

interactive (humanoid and non-humanoid) robots.

5.3.9 Summary

In this section, I have presented a novel method for time series analysis for detecting

interaction styles in the context of Human-Robot Interaction. This method, namely

the Cascaded Information Bottleneck Method, has its roots in the Information Bot-

tleneck Method (Tishby et al., 1999) and relies on the principle that the relevant

information can be progressively extracted from the time series with a cascade of

successive bottlenecks sharing the same cardinality of bottleneck states but trained

26For more detail on homogeneous HMMs, the reader can refer to Section 5.1.3



CHAPTER 5. REAL-TIME RECOGNITION OF HRI STYLES 111

successively. The first bottleneck is trained in the standard way while the next ones

depend on the previous bottleneck states. This importantly contributes to enable

the method to make a powerful exploitation of an existing temporal structure of the

time series. Moreover, a structure progressively emerges through this cascade of bot-

tlenecks, and I introduced a measure for extrapolating unseen cases, which are cases

that have not been seen during the training phase of the algorithm. The Cascaded

Information Bottleneck method is thus transparent and provides a fine-grained con-

trol over how much and what information is taken from the input data and where,

in the cascade, this information is extracted.

I have applied this novel computational method to real-time recognition of human-

robot interaction styles, in a detailed study, by implementing the algorithm for in-

teractions with a real robot. The testing of the method had to be done offline, i.e.

after the interactions had taken place, but the algorithm is designed to operate in

real time in order to enable real-time adaptation of robots to the interaction styles.

I have shown the soundness of the method through extensive experiments, using

successively samples of data generated under laboratory conditions and samples from

natural situations of child-robot interaction in a school for children with autism. The

algorithm was able to recognize short term events very well within an average delay

of 0.17 seconds (the highest delay being 2.07 seconds). It was also able to recognise

mid-term time scale events very well (during cross-validation, the percentage of events

correctly classified was 92.2% under laboratory conditions and 93% with data from

the child-robot interactions). This study has shown the soundness of the method for

pattern recognition and illustrated its capability of time-filtering on real data. The

method is entirely generic for applications with socially interactive robots.

The next chapter will focus on the application of the method in autism therapy

where we find a strong need for socially adaptive robots. The ability of a robot

to classify in real time human-robot interaction styles is a first step towards the

challenging goal of enabling an autonomous robot to influence positively children’s

interaction styles to guide him/her progressively towards different therapeutically

relevant levels of interaction.



Chapter 6

The Adaptive Robot in

Robot-Assisted Play

This chapter addresses the role of the adaptive robot in robot-assisted play. A robot

that is ‘adaptive’ can recognize interaction styles in real time and adapt to them

appropriately. In other words, an adaptive robot reacts differently depending both

on the origin of the stimulation (i.e. which sensor(s) is (are) activated) and on the

styles of interaction recognised. In contrast, by ‘reactive’ robot, we mean here a robot

that can only react differently depending on the origin of the stimulation, and which

will not change its behaviour according to the interaction styles.

This chapter presents a proof-of-concept system of an adaptive robot responsive

to different styles of interaction in human-robot interaction. The adaptive robot

uses the Cascaded Information Bottleneck Method to recognize in real time the in-

teraction styles and adapt its behaviour accordingly. The potential of this adaptive

robot to influence the children’s play styles is investigated experimentally through a

short-term study with seven children with autism. The long-term goal of this study

is to investigate whether an adaptive robot might help children with autism reach

therapeutically relevant levels of interaction.

6.1 Schema of adaptation: the reward basis

The adaptive mode relies on a reward basis for well-balanced interaction styles: the

child should get a positive feedback (also called reward) from the robot when he/she

112
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plays in an appropriate style of interaction1. The idea behind is the same all along this

thesis: the child should always be encouraged and rewarded for every progress he/she

made. With this approach, we hope to comfort the child in gaining self-confidence,

enjoying himself/herself, and progressively acquiring a better understanding of the

interactions he/she is involved in. It is hoped that the rewarding process can in-

directly play the role of a trigger: the child wants to get the reward and therefore

changes his/her behaviour until he/she actually gets it. Concretely, the robot should

help regulate the interaction: if the child plays in a well-balanced interaction style,

the robot reacts appropriately to the stimulation; on the contrary, if the interaction

is, for instance, too strong, the robot does not show any reaction.

Moreover, the child should be encouraged engaging in the interaction if he/she

does not. Therefore, the robot should be both rewarding and engaging2.

6.1.1 Schema of adaptation

The reward is a physical reaction of the robot, which can be a gesture, a movement,

a light or a sound. The concrete instantiation of these behaviours has been designed

by immersion for each child beforehand (Appendix C), during long-term studies with

each child, whereby the experimenter tested different robot’s behaviours with each

child in order to evaluate 1) whether the specific child liked it or not, 2) whether

he/she conferred a specific meaning to the reaction and, particularly, whether the

reaction had, in his/her view, a connotation of the robot being happy or sad. In

this way, it appeared that the robot’s barking was mostly interpreted by the children

as the robot being very happy, which is contradictory to our a priori hypothesis

that the robot’s barking would induce a back off, thus calming the interaction (cf.

Chapter 5.2).

We shall now detail the notion of reward: each time the child activates a sensor,

the robot evaluates the interaction style in terms of gentleness and in terms of fre-

quency and gives a reward, separately according to each criterion. If the interaction

is gentle, then the robot shows a reaction to the child. The reaction depends on

the sensor activated (there is a deterministic mapping between the sensors and the

1The feedback is designed specifically for each child and results in robot’s specific behaviours. The
robot’s behaviours are chosen specifically for each child to ensure that each child reacts positively to
them and thus, receives a positive feedback when he/she plays on an appropriate style of interaction;
this positive feedback is viewed as a reward. Note that those behaviours have been designed during
a long-term study described in Appendix C.

2The robot could try to ‘trigger’ or bootstrap the interaction if the child is not engaged in the
interaction.
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reactions of the robot for each child). If the stimulation takes place in a good overall

frequency of interaction , i.e. a well-balanced frequency of interaction, two LEDs turn

on on the robot’s face (which is sometimes interpreted by the children as the robot’s

eyes). Note that a well-balanced frequency of interaction is a frequency not too low

and not too high, represented in this thesis by the classes S1 and S2 as defined in

Section 5.1.2. This model is totally generic and can be applied with different criteria

of interactions.

Besides, future work could expand this model by focusing on a larger grid of crite-

ria for the interaction styles: while the child progresses, the robot could increase the

range of criteria it considers for characterizing the interaction and thus on which the

decision is based for the reward for the child. In contrast, when the child encounters

some difficulties, then the robot could simplify the range of criteria on which the

reward for the child is based, so that the child can get a better understanding of

the interactions happening. This progressive refinement in the adaptation process of

the robot to the child’s play styles could be linked, in some sense, to the notions of

‘discrete development’ and ‘(Alternate) Freezing and Freeing of Degrees of Freedom’3

which has been widely used in developmental robotics (Berthouze and Lungarella,

2004; Lungarella and Berthouze, 2002; Gómez et al., 2004). This technique, typically

applied for a system learning motor skills, can actually be transposed to a social sys-

tem, constituted here by the child and the robot (see Fig. 6.1): this social system is

freezing some complexity in the interaction to learn more efficiently how to deal with

interaction in general. The adaptation in real time from the robot to the interaction

styles is directly linked to the social potential of the robot. If the system has done

enough progress with respect to the interaction styles then the system can release

some degrees of freedom in the interaction i.e reach a more complex level of interac-

tion. The process of reaching a more complex level of interaction could be enabled

by the robot triggering more complex criteria of interaction and maybe also by the

robot adopting more complex behaviours in response to the child’s stimulations. A

simple example of this discrete social development could be modeled by three levels

(in terms of complexity, level 0 < level 1 < level 2 ):

• level 0 : the robot only adapts to ‘no interaction’ by trying to engage the child in

the interaction; whatever the stimulation from the child, it then gives feedback

• level 1 : the robot adapts to the criterion gentle/strong and additionally rewards

3The notion of degrees of freedom can be used in different areas. In mechanics, it is defined as the
set of independent displacements and rotations that describes completely the displaced or deformed
position and orientation of a system.
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for a good frequency of interaction

• level 2 : the robot adapts to the criterion gentle/strong and to the frequency

of the interaction (i.e both criteria have to be satisfied in order for the child to

get a feedback from the robot).

It is beyond the scope of this thesis to test this model. We first need to show the

potential role of an adaptive robot in robot-assisted play before starting longer and

more complex trials that would necessitate the investigation of the potential of this

model. But this should be done in future work, because this model seems a priori

really valuable; in particular, it favors the flexibility potential of an adaptive robot

(in comparison with a reactive robot), its capacity to embed a model of gradual (dis-

crete) social development, and therefore, we hypothesize that the robot’s behaviours

determined by this model might be a relevant playmate to the children, which would

be both entertaining and educating, by adapting the complexity of the interaction

triggered to the specific needs and abilities of any child at a specific time.

System Target 
Internal 

Evaluation 
Source of the increase in 

complexity  

{Robot} Motor skills Locomotion 

 

- Mechanical degrees of freedom 
(Lungarella & Berthouze, 2002) 

or 
- Concurrently (Gòmez et al., 2004):  

• mechanical degrees of 
freedom,     

• sensor resolution   
• neural capabilities  
 

{Robot, Child} Interaction level Interaction 

 

- Range of the interaction styles to 
which the robot adapts 
- Range of the robot’s behaviours 
 

 

Figure 6.1: Discrete Development: comparison of two systems. The first system is a
robot learning motor skills; two examples are given. In the first one, the robot alternatively
freezes and frees mechanical degrees of freedom (Lungarella and Berthouze, 2002). The
second example focuses on the concurrent increase in complexity in the mechanical degrees
of freedom, the sensor resolution and the neural structure (Gómez et al., 2004). The second
system consists of the child and the robot; this systems ‘learns’ social interaction.

6.1.2 Adaptation according to two criteria

We shall now go back to our principal focus here, which is the adaptation of the robot

according to two criteria, the gentleness and the frequency, where the child gets the

feedback from the robot if he/she stroke the robot gently with an additional reward
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(LEDs turning on and off) for a good frequency (thus corresponding to level 1 in the

preceding model of discrete development).

6.1.2.1 Schema of adaptation for the two criteria

Fig. 6.2 presents the general Reward’s schema for the two criteria.

 

Reward for Gentle 
 +  

Reward for well-balanced 
Frequency 

Engaging, proactive 

Reward for Gentle 

Reward for Gentle 

Reward for Gentle 
 +  

Reward for well-balanced 
Frequency 

No interaction 

No interaction 

S0 

S1 

S2 

S3 

GENTLE STRONG 

No Reward 

No Reward 

No Reward 

No Reward 

Gentleness 

Frequency 

Figure 6.2: Reward Schema for the two criteria of interaction.

6.1.2.2 Architecture for Decision-Making on the interaction styles

The purpose here is to enable the robot:

• To give an appropriate feedback to the child after the child has activated a

sensor of the robot, within a very short delay. In order to give the appropriate

feedback, the robot must first detect the play style of the child, that is, i)

whether the child’s stroke is gentle or strong and ii) if the child’s stroke took

place in a context of a good frequency of interaction (i.e. the frequency of

interaction is not too low and not too high);

• To detect whether the child is not interacting with the robot, i.e. not engaging in

the interaction in order to try to encourage the child to engage in the interaction.
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The first point is addressed as follows. The real-time recognition of the interaction

styles uses the Cascaded Information Bottleneck Method. As we have shown in Chap-

ter 5.3, the recognition process of the criterion Gentle/Strong is done with a possible

small delay. We have modeled this delay by a curve with a transition phase, followed

by an equilibrium phase. In order to completely automate the decision process, this

transition phase must be taken into account and the decision-making process should

be given enough time in order not to be altered by the transition phase. This wait is

modeled by a pause in the decision-making process, that is a small latency (600ms)

during which the algorithm ignores the current interaction style. After the sleep,

the decision-making process looks at the successive classifications that are made by

the Cascaded Information Bottleneck algorithm during a fixed short amount of time

and counts the occurrences of Strong behaviours recognised. If it is above a fixed

predefined threshold then the final choice (i.e. the decision) is that the behaviour is

‘strong interaction style’ and the child will not get the reaction from the robot to

his/her stimulation. If it is under this threshold, then the decision is ‘gentle interac-

tion style’ and the child gets the reaction from the robot corresponding to the sensor

activated. Besides, the robot updates the criterion frequency of interaction with a 1

second periodicity according to the Cascaded Information Bottleneck method (differ-

ent threads for the gentleness and the frequency of interaction running in parallel).

If, when the child strokes the robot gently, the current frequency of interaction is S1

or S2, then the child will get the additional reward of the two lights illuminating on

the robot’s face, while the robot also shows the specific reaction correlated to the

gentle stimulation.

Note that this decision-making process really reflects the variety of the interaction

styles considered here, the criterion ‘gentle/strong’ corresponding to a short-term

time scale event and the criterion ‘frequency of the interaction’ corresponding to a

mid-term time scale event.

The second point (detecting an absence of engagement in tactile play from the

child) is addressed as follows: we consider that the child should be encouraged to

play with the robot if he/she has not stroked the robot for a specific time that we

define here as just above 15 seconds (more exactly, the length of the window size

for classifying the frequency of the interaction which is 472 × 32 ms). Thus the

decision-making process here is straightforward: at each update of the frequency of

the interaction, the algorithm checks if the input vector is null or not. If it is null,

it means that the child has not engaged in tactile interaction with the robot for, at

least, 15 seconds and the robot starts its engaging behaviour.
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6.2 Can an adaptive robot influence children’s play styles?

A short-term study

6.2.1 Motivation

This study investigated whether an adaptive robot might impact the child’s play

styles in comparison with a reactive robot. Different research questions were ad-

dressed here:

• Does the adaptive robot encourage the children or, on the contrary, discourage

the children from engaging in the interaction? Is their engagement in play

similar to the one with a reactive robot?

• Does the child’s play patterns differ when the robot is adaptive from when the

robot is reactive? This question contains two subquestions as follows:

i) Are the strokes qualitatively different (ideally more gentle) when the child

plays with an adaptive robot?

ii) Is the frequency of the interaction differently (ideally better) balanced

when the child plays with the adaptive robot?

6.2.2 Method

6.2.2.1 Participants

Seven children with autism participated in the experiments which took place in the

same school as the one described in Chapter 4. All these children had had the

chance to play with the robot during several months beforehand: therefore, they

were familiar with both the robot and the experimenter and had already experienced

various situations of play with the robot and, possibly, the experimenter. In particu-

lar, they had already experimented with play sessions with the approach inspired by

non-directive play therapy. Note that among the nine children involved in the play

sessions on a regular basis in the school, only seven children could participate in the

trials described in this chapter. This was due to the fact that it would have been

too hard for those two remaining children to cope with the experimental setup: for

them, the sessions would have been too long and too complicated.
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6.2.2.2 Artifact

The robot was the Aibo ERS7. It behaved autonomously; the range of its behaviours

depended on the specific child. Those behaviours have been designed by immersion

for the children through a long-term study (Appendix C). Note that ‘design by im-

mersion’ means progressively developing the robot’s behaviour as the children play,

so that the behaviours can correspond to the children’s needs, abilities and prefer-

ences. This means observing the children’s reaction when a precise robot’s behaviour

occurs, and identifying whether the child shows any hesitation towards it, or, on the

contrary, whether he/she feels really at ease with that behaviour; note that, in par-

ticular, some children expressed verbally their reactions towards robot’s behaviours,

and other started smiling and laughing when specific robot’s behaviours started.

The robot was either adaptive or reactive. In both cases the mapping between

the sensors and the robot’s reactions was the same except from the LEDs flashing

for a good frequency of interaction, which was an additional feature for the adaptive

robot, as well as wagging the tail when no interaction was detected. The behaviour

mapping used for this specific study is detailed in Fig. 6.3.

 
 

Sensor Corresponding behaviour 
 

Chin sensor Emit “bark” sound while opening-closing the mouth 
Head sensor Turn head (Head tilt) 
Back front sensor - Wag the tail (used for Child E) 

- Walk forward, turn right, stand, turn left, walk backwards 
(used for the other children) 

Back middle sensor Turn head (Head pan) 
Back rear sensor Emit “drum” sound while wagging the tail  

Figure 6.3: Mapping between the external tactile sensors of the robot and its be-
haviours. In both modes (reactive and adaptive) the mapping between the sensors and robot’s reactions is

the same for a specific child. For child E, the walking has been removed and replaced by the robot’s wagging

the tail. The difference between the two modes is that in the adaptive mode, the robot’s reaction happens

only if the interaction style is gentle, and an additional reward is provided (flashing LEDs) if the stroke

happens in a context of well-balanced frequency of interaction; plus, in the adaptive mode, the robot has an

engaging behaviour, wagging the tail, when the child has not stroked the robot for more than 15 seconds.

6.2.2.3 Procedures and Measures

Procedures (experimental approach, methodology): Each child participated

in two sessions and the experiments involved one child at a time. Each session
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consisted in three successive steps4 (also called games or runs), each step being defined

by the mode of the robot– reactive (R) or adaptive (A)– which alternated between

two successive steps.

As a result, a session was defined by its setting which was either A-R-A or R-A-R.

Each child experimented with both settings (each during a different session). Three

children started with the setting A-R-A. The four remaining started with R-A-R

(Fig. 6.4).

Child Setting 1 Setting 2 
Child A A-R-A R-A-R 
Child G R-A-R A-R-A 
Child H A-R-A R-A-R 
Child C R-A-R A-R-A 
Child E R-A-R A-R-A 
Child F A-R-A R-A-R 
Child D R-A-R A-R-A 

 

Figure 6.4: Settings for the different children. Setting 1 corresponds to session 1 and setting 2

corresponds to session 2.

Each robot’s mode was signaled to the child by a sticker with a specific geometrical

form drawn on it (a triangle for adaptive and a circle for reactive); the right sticker

was put on the back of the robot at the beginning of each step. At each step, the

child was told which game he/she was now playing, i.e game 1 for step 1, game 2 for

step 2 and game 3 for step 3 and the child could see the experimenter putting the

sticker on the back of the robot. The sticker was used as a way to give a sign to the

child that something could be different between situations where the robot has the

triangle and those where the robot has circle. But the child had no information about

the existence of adaptive and reactive modes; he/she could only possibly observe the

difference in the reactions of the robot. The different stickers were used so that it

was not too hard for the child to understand that the game was different.

During each game, the child could freely interact with the robot. Before the

beginning of each game, the experimenter:

1. paused the algorithm (for game 2 and 3),

2. congratulated the child and told him/her that now he/she would move on to

game 2 (respectively 3),

4A session resulted in three steps also called games, which are, successively, step 1 (game 1), step
2 (game 2) and step 3 (game 3).
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3. put the corresponding sticker on,

4. sent the ‘new robot’s mode’ through a wireless connection to the robot,

5. resumed the algorithm for the detection of play styles with the new robot’s

mode.

Each game lasted several minutes (depending on the children’s specific needs and

abilities); the minimum duration of each step was approximately 3 minutes. The

experimenter did not touch the robot during the trials, except for putting on the

sticker at the beginning of each step (but, of course, sensors data were not collected

at this stage), neither did she try to influence the child’s behaviour in any way. In

this part, the experimenter did not take part in the interactions taking place with

the robot in order not to interfere with the purpose of this study which had to focus

on dyadic natural interactions between the child and the robot, in order to test the

potential of an adaptive robot in terms of influencing the children’s play styles5.

Measures The experiments were video recorded. The sensor’s data and the in-

teraction styles detected with respect to the gentleness and the frequency of the

interaction were recorded. These data were then analysed quantitatively. For the

criterion gentle/strong, we actually looked at the overall proportion of sensor’s ac-

tivation and at the ratio of strong interaction styles. For the criterion ‘frequency of

the interaction’, we took into account its evolution over time, which means here that

we looked at the whole set of classifications, that is every 32 ms.

6.2.3 Results

6.2.3.1 Statistical analysis on the engagement in the interaction and on

the gentleness of the strokes

Engagement in the interaction: In this paragraph, we study whether the adap-

tive robot may have a positive impact on the engagement of the children in play.

Here, we do not consider the specificity of the strokes, i.e. whether they are gentle

or strong. Instead, we are interested, for each child, in the total number of sensors’

activations, that we want to compare for adaptive and reactive modes.

5Future work could consider introducing the adaptive robot in the approach inspired by non-
directive play therapy where the experimenter participates in the experiments (Chapter 4).
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Figure 6.5: Mean, Standard Error of the Mean (SE) and Confidence Intervals for the
sensors’ activation on the two modes. The x-axis represents the two modes; the y-axis represents
the repartition in percentage of the sensors’s activation.

For each child and for each mode, we take the total number of times sensors were

activated (each sensor6 activated counts as one activation whatever the continuous

external sensor it is), namely, N(Reactive), for the reactive mode7, and N(Adaptive),

for the adaptive mode8; for each child, we analyse the relative ratio of each mode9,

as follows:

r(Reactive) = N(Reactive)
N(Reactive)+N(Adaptive)

r(Adaptive) = N(Adaptive)
N(Reactive)+N(Adaptive)

The Wilcoxon test is applied to the data from the seven children for the two

following variables (Fig 6.6 and Fig 6.7): r(Adaptive), representing the adaptive

mode, and r(Reactive), representing the reactive mode. The test shows that there

6Here we consider the activation of any of the four continuous external sensors, that are: head
sensor, back sensor front, back sensor middle and back sensor back.

7N(Reactive) is the sum over all runs conducted in the reactive mode, for a specific child.
8N(Adaptive) is the sum over all runs conducted in the adaptive mode, for a specific child.
9Some children will naturally interact a lot with the robot, while others may stroke the robot

only a few time during a session, thus we prefer to look at relative ratios.
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Child 
r(Adaptive) in percentage 
Relative percentage of the number of 
activations on the adaptive mode (per child) 

r(Reactive) in percentage 
Relative percentage of the  number of 
activations on the reactive mode (per child) 

Child A 72.22 27.78 
Child G 87.84 12.16 
Child H 44.74 55.26 
Child C 82.01 17.99 
Child E 57 43 
Child F 75.56 24.44 
Child D 90.48 9.52 

 

Figure 6.6: Table of data for the Wilcoxon test to compare the engagement of the
children on adaptive and reactive modes.
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Figure 6.7: Graph showing the relative engagement of the children in adaptive and
reactive modes.

is a significant effect of the experimental conditions adaptive versus reactive10 (for

T = 1.000, p < 0.028, with N = 7, Fig. 6.5). Thus, we can conclude that the

children engage significantly more in the interaction11 when the robot is adaptive (in

comparison with reactive). It is worth noting that those results include all settings

(A-R-A and R-A-R) and all steps12 constituting a session: step 1, 2 and 3.

10In brief (more details on the Wilcoxon test can be found in (Siegel and Castellan, 1988)), for
Tobserved (this is the T calculated, in this case, T = 1.00),

• If p(T <= Tobserved) < 0.05: i) rejects H0, ii) accept HA: there is a significant difference
between the conditions adaptive and reactive.

• If p(T <= Tobserved) >= 0.05, i) accept H0: there is no significant difference between the
conditions adaptive and reactive, ii) reject HA.

11In this context, we measure the engagement of the child in terms of how many times he/she
activates sensors. Those sensors are the continuous external sensors. Thus, when we say that a child
‘interacts more with the robot’ or ‘engages more in the interaction’, it implicitly means that the child
activates a higher number of times these sensors.

12We shall remind the reader that each step is defined by the mode of the robot, two successive
steps are defined by different modes.
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Gentleness of the interaction: We are interested in this paragraph in the nature

of the activation in terms of gentleness, i.e whether an activation is gentle or strong.

We therefore consider here the percentage of strong strokes (also called strong acti-

vations) among the total number of sensors’ activations, per run and per child. For

each child and for each mode, we take the average of this percentage over the runs

from the two sessions13 (Fig. 6.8).

Child Average percentage of strong 
activations in the adaptive mode 

Average percentage of strong 
activations in the reactive mode 

Child A 20.52 71.97 
Child G 2.08 12.50 
Child H 5.56 9.09 
Child C 3.53 11.75 
Child E 15.23 15.79 
Child F 17.51 67.74 
Child D 60.58 33.33 

 

Figure 6.8: Table providing the average percentage of strong strokes in each mode
for each child.

The Wilcoxon test is applied to the data from the seven children for the two

following variables (Fig 6.8): the average of the percentage of strong strokes in the

adaptive mode and the average of the percentage of strong strokes in the reactive

mode. The test shows that there is no significant effect of the experimental conditions

on the gentleness of the strokes (N = 7 and, for T = 5.00, on gets p < 0.128): there is

no significant difference in the amplitude of the average percentage of strong strokes

between adaptive and reactive modes. However, the proportion of cases where this

average is smaller in the adaptive mode is 6 cases out of 7. The probability of

obtaining such a deviation (6 or more cases out of 7) from a fifty-fifty ratio is 0.016

(two-tailed probability in the binomial test14) which shows that, in the adaptive

mode, the percentage of children who react less strongly in the adaptive mode deviates

significantly from a fifty-fifty ratio.

6.2.3.2 Detailed analysis per child on the engagement in the interaction

and on the gentleness of the strokes

In order to analyse results in more details, we conduct a detailed analysis per child.

Each child’s analysis starts with a description of the impact of the adaptive robot

13Concerning the criterion Gentleness, we want to encourage children to play more gently. Thus,
we are looking at the ratio of strong activations and investigate whether this ratio is inferior when
the robot is in the adaptive mode, compared with when the robot is in the reactive mode.

14A probability of deviation lower to 5% points to a significant outcome.
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Figure 6.9: Total of activations for Children H, A and F. Setting A-R-A followed by
R-A-R.

on his/her engagement in the interaction. Then, the nature of these activations is

described in terms of gentleness, and how the adaptive mode might encourage a higher

proportion of gentle strokes (in comparison with strong strokes). To this end, in this

subsection, we analyse the changes not only in terms of average over the runs from

the two sessions, but also in detail for each session. This detailed analysis enables

to characterize the changes in the gentleness of the strokes between two successive

runs of a same session, one in reactive mode and the other in adaptive mode. In

other words, this detailed analysis characterizes, for each session, the differences

in the proportion of gentle strokes when the robot was adaptive and when it was

reactive. Such an analysis notably enables to get additional insight on the impact of

the adaptive robot by reporting, for each child separately, on common tendencies or

changes between Session 1 and Session 2.

Child A Fig 6.9 shows that Child A engaged much more in activating the contin-

uous external sensors when the robot was in the adaptive mode. The video analysis

shows, in particular, that the engaging behaviour of the robot (‘wagging the tail’)

had a real impact on the child, since it managed to attract the child’s attention,

which was usually distracted by the presence of doors. The ‘wagging the tail’ of the

robot, resulting from the fact that no interaction was detected, actually attracted the

child’s attention and often resulted in the child stroking the robot. Besides, in the

adaptive mode, Child A also tended to reiterate the activation of the sensors until he

actually got a feedback from the robot. Fig. 6.10 shows that, within each session, the
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Figure 6.10: Percentage of Strong activations (versus Gentle activation) for Children
H, A and F. A-R-A followed by R-A-R. The graph represents the percentage of strong

activations among all the activations (the activations can be either gentle or strong). When

a bar is absent, it means that the child did not activate any external sensor during the

corresponding run. The precise values are displayed in Fig. A.2.

ratio of strong strokes was clearly higher when the robot was in the reactive mode (in

comparison with the adaptive mode). This means that the child played much more

gently while the robot was in the adaptive mode than when it was in the reactive

mode, whatever the order (A-R, R-A) or the setting (A-R-A, R-A-R).

Child G Fig. 6.11 shows that Child G engaged much more in activating the contin-

uous external sensors when the robot was in the adaptive mode. During the long-term

study carried out beforehand to observe the child’s play styles and tailor the robot’s

behaviours appropriately according to his needs and abilities15 (Appendix C), Child

G actually tended to interact in a way that could be qualified as a bit ‘shy’ as i)

he tended to stroke so lightly the sensors they would not be activated16, and ii) he

regularly ‘avoided’ zones with sensors to stroke non sensing parts of the robot. Here,

the adaptive robot has clearly encouraged the child to stroke and even activate the

sensors of the robot. In particular, the video analysis shows that when the robot

wagged the tail (as an engaging behaviour) the child tried to activate sensors17. Note

15During these long-term trials the robot was in the reactive mode.
16In order for a sensor to be considered as ‘activated’, its value must reach a predefined threshold.
17In brief, in the adaptive mode: 1) the stroke of any external sensor stopped the robot’s engaging

behaviour (i.e. it made the tail stop wagging) and 2) a gentle activation of any sensors gave rise to
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Figure 6.11: Total of activations for Children D, G, C and E. Setting R-A-R followed
by A-R-A.

that the duration of a session might have been a bit too long for this child, which

might partly explain that he did not interact at all with the robot on the last step of

the first session when the robot was in the reactive mode.

Concerning the proportion of gentle (versus strong) strokes, Fig. 6.8 indicates

that, on average, Child G interacted more gently with the robot in the adaptive

mode. The analysis in detail of each session (Fig. 6.12) shows that in the first session

(setting R-A-R) the child clearly interacted more gently in the first run in adaptive

mode than in the run in reactive mode. As already reported on, in the last run, the

child did not activate any sensor. During the second session (setting A-R-A), child G

did not stroke the robot strongly, both in the first run (adaptive mode) as well as in

the second run (reactive mode); he showed a few strong behaviours in the last step

of the session (third run), when the robot was back in the adaptive mode.

Child H Child H tended to interact slightly more in the reactive mode than in the

adaptive mode as show Fig. 6.7 and Fig 6.9. In each session, the child did not activate

the robot’s sensors during the last step of the session, which might suggest that the

sessions were a bit too long for him. In order to understand better those results,

it should be noted that during the preceding long-term study for the design of the

robot’s behaviours (Appendix C), Child H was always very interested in playing with

the robot and he always showed lots of concentration on exploring the features and

capabilities of the robot. Child H did not use verbal communication but rather used

an appropriate robot’s behaviour as a positive feedback to the child.
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Figure 6.12: Percentage of Strong activations (versus Gentle activation) for Children
D, G, C and E. R-A-R followed by A-R-A; for more details on the graph, refer to Fig 6.10.

The precise values are displayed in Fig. A.3.

tactile interaction a lot, looking at the robot from various positions. The analysis of

the video shows that the engaging behaviour of the robot (i.e. wagging the tail when

the child did not interact) may have had the contrary effect to the one expected for

Child H: he actually seems to have been discouraged (at least in the first -early- stage)

to interact with the robot since he positioned himself rather as an observer than as

an actor in the game. Child H may actually have understood that, during this game,

where the robot was in the adaptive mode, he should rather look at the robot than

stroke it, which is what he actually mainly did. This particular case shows, again,

how difficult it is to design appropriate solutions that would possibly encompass the

diversity of profiles, needs, abilities and personalities that recover autism; this is also

a reason why statistical results must always be considered cautiously when analysing

studies with those with autism.

Concerning the criterion gentle/strong, Fig. 6.8 indicates that, on average, Child

H interacted more gently with the robot in the adaptive mode. The analysis of each

session in detail for this child shows however that there is no clear tendency in the

changes on the gentleness of the interaction between two successive runs of a same

session, one when the robot is adaptive and one when the robot is reactive (Fig. 6.10).

In the first session, the percentage of strong strokes was higher in the reactive mode

while, in Session 2, this percentage was higher in the adaptive mode. It seems that

child H tended to interact more strongly during second steps than during the first
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ones in both settings (setting one : A-R-A, setting 2: R-A-R), whatever the mode it

corresponds to. Should we compare those two runs, the percentage of strong strokes

from the adaptive mode is slightly smaller.

Child C Child C engaged on average a lot more in the interaction when the robot

was adaptive than when it was reactive (Fig. 6.7). The analysis in detail per session

shows however that Child C interacted much more in the second session with the robot

(Fig. 6.11). The video analysis indicates that Child C showed at first some hesitation

because the play session was not as ‘usually’. In particular, the experimenter did not

join the games. This can be explained by the fact that Child C naturally used lots

of verbal communication and, during the long-term study presented in Chapter 4,

she showed very capable of playing socially. In the long-term study presented in

Chapter 4, she actually experimented with more situations of social play with both

the robot and the experimenter, than with dyadic situations of play with the robot

only. Here, because of the purpose of this study on adaptation, the experimenter

had to not take part in the trials and it might have taken some time to Child C to

really engage in the dyadic interaction. It should be further noted that, during the

long-term study presented in Chapter 4, Child C experienced many and various play

situations involving pretend and symbolic play. But the time where she naturally

engaged in pure tactile dyadic play were not very long compared to other situations

of play. She tended to embed those tactile interactions in a story or in a game of

hugging the robot. However, the fact that her engagement increased a lot between

Session 1 and Session 2 suggests that Child C progressively coped with (and even

maybe adapted to) this new game and actively engaged in it.

Looking now at the percentage of strong strokes (versus gentle strokes) per run,

Fig. 6.8 indicates that, on average over the two sessions, Child C interacted more

gently with the robot in the adaptive mode. Nonetheless, the analysis of each session

in detail suggests different tendencies (Fig. 6.12): in the first session, the percentage

of strong strokes was clearly lower in the adaptive mode while, in the second session,

this percentage was slightly higher in the adaptive mode.

Child E Child E tended to interact more with the robot when the robot was in the

adaptive mode than when it was in the reactive mode (except one case), especially

in session 2, for the setting A-R-A (Fig. 6.11).

Concerning the percentage of strong strokes per run, it was slightly lower on average

in the adaptive mode (Fig. 6.8). During the first session, with the setting R-A-R,
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Child E interacted more gently in the adaptive mode than in the reactive mode

(Fig. 6.12). However, during the second session, with the setting A-R-A, Child E

interacted slightly more gently in the reactive mode (Fig A.3). In both settings

Child E interacted more gently in step 2. For this child, further trials should be

carried on to be able to refine the characterisation of the impact of the robot’s mode

on the gentleness of the interaction.

It is interesting to note that, in the previous play sessions conducted, like Child

H, Child E was always very interested and concentrated on investigating the possible

features and capabilities of the robot. He liked exploring tactile interaction with the

robot. The difference with Child H is that Child E used verbal communication a

lot, and, during the long term study described in chapter 4, he did experience with

social play and symbolic and pretend play situations a lot. Child H did also take

part in play sessions with the approach inspired by non-directive play therapy18. He

did progress a lot, but, unlike Child E, did not experiment with symbolic or pretend

play. He did play with accessories and he did play socially with both the robot and

the experimenter, but the situations of social play were ‘limited’ to the game ‘ask for

a physical reaction, show it with a sensor’19.

Child F Child F engaged much more in the interaction in the robot’s adaptive

mode, compared to the robot’s reactive mode, whatever the setting (A-R-A or R-A-

R) and the order (A-R or R-A), see Fig 6.9. Concerning the nature of the strokes,

Fig. 6.8 shows that the proportion of strong strokes per run was, on average, fairly

lower in the adaptive mode than in the reactive mode. The detailed analysis of

each session indicates only one case in which Child N interacted more gently in the

reactive mode than in the adaptive mode in a same session. This happened in Session

2 (Setting R-A-R): in the first run (reactive mode) the percentage of strong strokes

was 30 while in the second run (adaptive mode), this percentage was 46.1 (Fig. 6.10).

Child D Child D engaged more in the interaction in the robot’s adaptive mode

than in the robot’s reactive mode, except on the last step of session 2 where the child

did not interact at all with the robot (Fig. 6.11). For child D, it might be that the

session lasted a bit too long for ensuring him to be playing with the robot during the

three steps of each session. Child D usually often needs to be encouraged to engage in

18These play sessions with Child H were conducted after the ones presented in Chapter 4.
19In the game ‘ask for a physical reaction, show it with a sensor’, the experimenter asks the child

to show a physical reaction of the robot; the child then tries to activate the right robot’s sensor that
leads to that specific behaviour of the robot.
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the interaction and the robot’s engaging behaviour (wagging the tail) in the adaptive

mode, seems to have encouraged him a lot playing with the robot.

Concerning the strokes, the adaptive mode did not encourage the child to play

more gently, as Fig. 6.8 and Fig. 6.12 show. During playtime in school, Child D stays

very much isolated instead of playing with other children (for more details, refer

to Section 4.4.1). When using the approach inspired by non-directive play therapy,

Child D progressed a lot, progressively opening to some basic situations of social

play (Section 4.5). In later stages of the long-term study with the approach inspired

by non-directive play therapy (later stages than the ones reported in Chapter 4),

Child D even played a lot the game ‘aim at a physical reaction, show it with a

sensor’. Nevertheless, he may need more time and might need some additional slight

guidance from the experimenter to become sensible to the actual quality of touch

(gentle/strong). At his stage, he seems to rather focus on the spatial distribution of

touches.

6.2.3.3 Impact of the adaptive robot on the frequency of interaction

To analyse the impact of the adaptive robot on the frequency of interaction, we look

at the four classes S0, S1, S2, S3 and how their occurrence varies, in a same session,

between a run in the robot’s reactive mode and a run in the robot’s adaptive mode.

We define R as the set of the three runs (steps) within a session for a specific

child and NSi
(r) as the number of events from a class Si for a specific run r. For

each class Si, each child, and each session, we define the relative ratio ρSi
(r) for a

given run r, defined as follows:

ρSi
(r) =

NSi
(r)∑

r̃∈R
NSi

(r̃)
(6.1)

For each child, for each mode m (adaptive or reactive) and for each class Si, the

average relative ratio over the two sessions is called Avm(ρSi
). For each child and for

each mode m, the average relative ratio over the four classes is called Avm(ρ).

Note that the division by the factor
∑

r̃∈R
NSi

(r̃) in Eq. 6.1 enables:

• to normalize the data according to the average activity for each class during a

session, which enables to compare the effect of the adaptive mode i) for a spe-

cific class Si between different sessions (the average richness and engagement

of a child may vary from one session to the other) and ii) for different classes

(each child may play with a particular tendency to favor some frequencies of
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Figure 6.13: Mean, Standard Error of the Mean (SE) and Confidence Intervals. The
richness of the interaction is measured in terms of occurrences of events happening in each
class S0, S1, S2, S3.

interaction –i.e. some classes may be more present than others; the normalisa-

tion enables to look at variations between adaptive and reactive modes with a

comparable scale for the different classes);

• to remove any possible artefact on a possible not equilikely probability distri-

bution over the classes, which would be due to i) the inherent definition of

the classes and ii) the Cascaded Information Bottleneck Algorithm, which, as

implemented for these experiments, concerning the frequency of interaction,

only classifies events (sensors data frames) starting with a non null value (see

Section 5.3.5.1). Given the definition of the classes, this constraint may thus

naturally lead, for a same duration of interaction in two different frequencies,

to the classification of more events for higher frequencies than for lower ones.

Thus, we can then compare the different Avm(ρSi
) for the different classes in order to

determine which classes are particularly positively impacted by the robot’s adaptive

mode (in comparison with reactive).

The Wilcoxon test is firstly applied to the two following variables: AvAdaptive(ρ)

(representing the adaptive mode) and AvReactive(ρ) (representing the reactive mode).

The test shows that there is a significant effect of the experimental conditions (adap-

tive versus reactive) since for T = 0, one has p < 0.018, with N = 7 (Fig. 6.13).
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We can conclude that, in the adaptive mode, the interactions are significantly richer

than in the reactive mode.

Secondly, the Wilcoxon test is applied for each class i separately, to the follow-

ing variables: AvAdaptive(ρSi
) (representing the adaptive mode) and AvReactive(ρSi

)

(representing the reactive mode) with the following results:

• class S0 (Fig. 6.14): for T = 5.000, p < 0.128 (N = 7), thus there is no

significant difference between the two experimental conditions (adaptive versus

reactive) for the class S0: there is no significant difference in the amplitude of

the average relative ratios AvAdaptive(ρS0
) and AvReactive(ρS0

). However, the

proportion of cases where AvAdaptive(ρS0
) > AvReactive(ρS0

) is 6 cases out of 7.

The probability of obtaining such a deviation (6 or more cases out of 7) from a

fifty-fifty ratio is 0.016 (two-tailed probability in the binomial test) which shows

that the percentage of children for which there are more events related to S0

in the adaptive mode than in the reactive mode deviates significantly from a

fifty-fifty ratio.

Child 
AvAdaptive(

�
S0) 

 
AvReactive(

�
S0) 

 
Child A 0.430 0.237 
Child G 0.230 0.437 
Child H 0.393 0.274 
Child C 0.461 0.205 
Child E 0.369 0.298 
Child F 0.406 0.261 
Child D 0.531 0.136 

 

Figure 6.14: InputData for the Wilcoxon test applied to S0.

Child AvAdaptive(�S1) 
 

AvReactive(�S1) 
 

Child A 0.423 0.243 
Child G 0.667 0 
Child H 0.133 0.533 
Child C 0.556 0.111 
Child E 0.360 0.306 
Child F 0.333 0.333 
Child D 0.333 0 

 

Figure 6.15: InputData for the Wilcoxon test applied to S1.

• class S1 (Fig. 6.15): for T = 4.000, p < 0.173 (N = 7), thus there is no

significant difference between the two experimental conditions (adaptive versus

reactive) for the class S1: there is no significant difference in the amplitude of
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Box & Whisker Plot
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Figure 6.16: Mean, Standard Error of the Mean (SE) and Confidence Intervals for
S2. The two variables are AvAdaptive(ρS2

) and AvReactive(ρS2
).
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Figure 6.17: Mean, Standard Error of the Mean (SE) and Confidence Intervals for
S3 The two variables are AvAdaptive(ρS3

) and AvReactive(ρS3
)..

the average relative ratios AvAdaptive(ρS1
) and AvReactive(ρS1

). However, the

proportion of cases where AvAdaptive(ρS1
) > AvReactive(ρS1

) is 6 cases out of 7.

The probability of obtaining such a deviation (6 or more cases out of 7) from a

fifty-fifty ratio is 0.016 (two-tailed probability in the binomial test) which shows
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Figure 6.18: Average of δSi over the two sessions per child. The precise values are provided

in Fig. A.4.

that the percentage of children for which there are more events related to S0

in the adaptive mode than in the reactive mode deviates significantly from a

fifty-fifty ratio.

• class S2 (Fig. A.6): for T = 1.000, p < 0.028 (N = 7, Fig. 6.16) thus, there is

a significant effect of the experimental conditions Adaptive and Reactive with

respect to the class S2: in the adaptive mode, there are significantly more events

from class S2 than in the reactive mode.

• class S3 (Fig. A.7): for T = 0.000, p < 0.018 (N = 7, Fig. 6.17) thus, there is

a significant effect of the experimental conditions Adaptive and Reactive with

respect to the class S3: in the adaptive mode, there are significantly more events

from class S3 than in the reactive mode.

We shall now describe in detail the results for each child. For each child, each

class and each session, we look at the parameter δ(Si), which measures the difference

between the adaptive mode and the reactive mode in terms of events from a class Si

for two successive runs in a same session. It is defined as follows:

δSi
= ρSi

(Adaptive)− ρSi
(Reactive) (6.2)

For each child and each session, we get two measures of δSi
(see the table on
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Figure 6.19: Comparison of δSi
for Child A. The precise values are provided in Fig. A.16 .

Fig. A.16 in Appendix A):

• for the setting A-R-A: δSi
between the first adaptive run and the reactive run,

and δSi
between the last adaptive run and the reactive run;

• for the setting R-A-R: δSi
between the adaptive run and the first reactive run,

and δSi
between the adaptive run and the last reactive run.

δSi therefore compares the distribution of the events from a class Si between two

successive runs from a same session (one adaptive and one reactive): δSi is positive

if and only if there are more events from class Si in the run in the adaptive mode

than in the run in the reactive mode. The average of δSi on the runs from the two

sessions per child is called Av(δSi) and is provided in Fig 6.18.

Child A On average over the two sessions, for Child A, the adaptive robot encour-

aged principally the frequencies represented by the classes S3 and S2 (Fig 6.18). In

the first session (setting A-R-A) the δ(Si) of the four classes stayed quite close to

each other (i.e. one group) while in the second session (setting R-A-R) S2 and S3 did

increase a lot, while the two others (S0 and S1) decreased significantly compared to

session 1 (Fig. 6.19). This suggests that the adaptive mode of the robot tended, for

Child A, to trigger higher frequencies (first position for S3 and second one for S2).
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Figure 6.20: Comparison of δSi
for Child G. The precise values are provided in Fig. A.16 .

Given the profile of Child A20 (see Section 4.4.1), this result highlights the po-

tential of the adaptive robot’s mode to keep longer the attention of the child, that

is, an uninterrupted period of play with the robot (i.e. typically, a phase of play with

the robot between two phases of looking at doors) tended to be richer in interactions

when the robot is adaptive. Child A might also have progressed or learned between

session 1 and 2 since the profiles of the classes fairly differ (Fig. 6.19). Note that this

assumption should be further confirmed with a long-term study in future work. Here

we carefully describe tendencies.

Child G The presence of S1, S2 and S3 globally significantly increased (their re-

spective δSi
is greater and sometimes even much greater than 0) in the adaptive mode

while S0 decreased (i.e. δS0
was negative), except from one run where it did slightly

increase. δS3
is always bigger (or approximately equal) than δS2

(Fig. 6.20). In both

sessions, the adaptive mode encouraged the apparition of events from class S1 which

did not happen during the reactive runs.

Child H On average, the biggest increase in terms of δSi
concerned the class S2

(Fig 6.18). Concerning the detailed analysis for each session, the graph provided in

Fig. 6.21 shows two different tendencies: in session 1 (setting A-R-A) S0 is the leader,

20Child A is fascinated by doors and often looks at them, even during play sessions with the robot.
He often alternates stroking the robot and looking at doors.
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Figure 6.21: Comparison of δSi
for Child H. The precise values are provided in Fig. A.16 .

S2 is just behind, in second position. S3 is on third position. In session 2 (Setting

R-A-R), S3 is the leader and S2 is just behind (second position). As described in the

analysis on the criterion Gentle/Strong, during the first session, Child H tended to

observe the robot rather than engage in play with it while the mode was adaptive. In

particular, during the last run of the first session, Child H did not stroke the robot

at all. Results from the second session show that the frequency of interaction has

been pretty high in the adaptive mode compared with the reactive mode21. This

indicates that the child’s reaction to the adaptive robot may have changed between

Session 1 and Session 2. Having observed the child during long-term studies and

with the highlight of the video analysis, my hypothesis is that the child is naturally

interacting a lot with the robot and that he might have been a bit surprised when

the robot showed a reaction by itself without stimulations. As I described in the

paragraph on the criterion gentle/strong, he might first have understood that the

new game was in this case looking at the robot rather than stroking the robot, or he

might simply have felt a bit hesitating. In session 2 he was far less hesitating with the

adaptive mode and engaged longer in the interaction with the robot and with higher

frequencies. This suggests that Child H might have progressively ‘adapted to’ the

adaptive mode, and particularly to the engaging behaviour of the robot. However,

since Child H is naturally engaging a lot in the interaction (he usually removes his

21In both sessions, the high absolute values of δSi
for the two last runs might also be explained

by the fact that the sessions were a bit too long and that the child was less involved in the last run
than in the two first ones.
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attention from playing with the robot only when it is time for him to go back to the

classroom), this engaging behaviour from the robot could certainly be removed for

future experiments with Child H.
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Figure 6.22: Comparison of δSi
for Child C. The precise values are provided in Fig. A.16 .

Child C On average, the adaptive robot encouraged principally frequencies from

class S1 and S2, which correspond to a well-balanced frequency of interaction (Fig 6.18).

A detailed analysis for each session shows (Fig. 6.22): a) in session 1 (setting R-A-R),

S1, closely followed by S2, have the highest δSi; b) in Session 2 (setting A-R-A), the

first adaptive run has principally favoured S3 with respect to δSi while, in the second

adaptive run, S1, closely followed by S2, had the highest δSi.

Child E The detailed analysis of each session shows that variations in terms of

frequencies between the adaptive and the reactive modes are small for Child E

(Fig. 6.23), except S1 whose δSi moved from a negative value in Session 1 to a

high positive value in session 2 (setting A-R-A). In the first session, the adaptive

mode triggered, on average, mainly events from the class S0, while, in the second ses-

sion, it triggered mainly events from the class S1. This suggests that Child E tended

to slightly adjust the frequency of interaction in order to get the additional reward.

This result must be linked with the analysis of the video which shows that Child E

very much focused his attention on the additional reward he could get, that is the

LED turning on and off (simulating the eyes of the robot): each time it happened,



CHAPTER 6. THE ADAPTIVE ROBOT IN ROBOT-ASSISTED PLAY 140

 

R-A A-R A-R R-A 
S0

S1 S2 S3 
-0.4
-0.3
-0.2
-0.1

0 
0.1
0.2
0.3
0.4
0.5
0.6

 �Si 

Order

Class

Comparison of the �Si for Child E 
in the two experimental  settings 

S0 
S1 
S2 
S3 

Figure 6.23: Comparison of δSi
for Child E. The precise values are provided in Fig. A.16 .

the child actually mentioned it to the experimenter. It is not clear whether the child

explicitly understood that it was linked to a specific frequency of interaction. What

is important here, is that the child tried to reproduce gestures that made him achieve

the flashing LEDs (i.e. the reward for a good frequency), or adjust the strokes and

persevere until he got the reward.

Child F In the first session (setting A-R-A) S1, S2 and S3 increased a lot when

the robot was in the adaptive mode, with δS2 and δS3 approximately equal to each

other (Fig. 6.24). Unlike the other classes δS0 decreased quite importantly between

the order A-R and R-A. In the second session, the adaptive mode does not really

appear to have been a facilitator factor because the δSi are all negative or null for

the comparison with the first reactive run, and only two of them (δS0 and δS3) are

non negative in the comparison with the last reactive run. Note, results from the

second session should be taken very cautiously, because during this trial, Child F

seemed less receptive and less actively focused than usually.

Child D The different classes have a high δSi
(except from S1 in the first session) in

all runs but the last one in session 2, where the child did not interact at all (Fig. 6.25

and Fig 6.18). It is probably due to the fact that the session lasted a bit too long for

him. Thus the last run is ignored for the analysis. There was no presence of S1 in the

first session (R-A-R). In session 2, the adaptive mode facilitated the occurrence of S1
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Figure 6.24: Comparison of δSi
for Child F. The precise values are provided in Fig. A.16 .
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Figure 6.25: Comparison of δSi
for Child D. The precise values are provided in Fig. A.16 .

(S1 occurred 20 times, see Fig. A.8). During this session, the δS0
decreased compared

to Session 1, while all the others increased or kept the same value over time. In all

cases, S3 was absent from all runs in the reactive mode, and importantly present in

the runs in adaptive mode (the number of occurrences on the first session was 182,

and 22 on the second session, see Fig. A.8 in Appendix A).
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6.2.4 Discussion

This study has shown that the children engaged significantly more in interaction with

the robot when the robot was in the adaptive mode, in comparison with the reactive

mode. Moreover, the adaptive mode had some positive effects on the nature of the

interaction, with respect to the gentleness of the interaction. On average over the

runs from the two sessions, all the children except one child interacted more gently

with the robot when it was adaptive than when it was reactive.

Furthermore, the analysis in detail per child of the changes in the percentage of strong

strokes for two successive runs from a same session (one run in the adaptive mode,

the other in the reactive mode) shows that the tendency to play more gently for each

run in the adaptive mode (compared with reactive mode) within each session was

very clear for Child A. It was also the case for Child F (except one run), and, to a

more basic extent for Child G. For several other children, the tendency is slightly less

clear and further trials should be conducted to get a better idea of the impact on the

gentleness of the interaction on a long-term basis.

Besides, the adaptive mode induced significant changing in the frequency of inter-

action of the children. The tactile interactions were significantly richer in the robot’s

adaptive mode (in comparison with reactive mode). The very high frequency (class

S3) and a well-balanced frequency (class S2) were both significantly more present

while the robot was in the adaptive mode than in the reactive one.

Further to this, a detailed analysis per child has enabled to highlight some individual

tendencies. It is clear that, for Child A, the adaptive mode has encouraged higher

frequencies of interaction (mainly the very high frequency S3, and the well-balanced

one S2, Fig 6.18). Concerning Child G, the adaptive mode has encouraged higher

frequencies and, on average, mainly a well-balanced frequency (S1) followed by the

very high one (S3) (Fig 6.18). For Child C, the adaptive mode has mainly encouraged

a well-balanced frequency of interaction (i.e. is S1 and S2). It is moreover interesting

to underline that in some cases, the adaptive mode has triggered the apparition of

classes that were absent in the reactive mode: for instance, the well-balanced fre-

quency S1 and the very high one (S3) did happen for Child D in at least one run in

the adaptive mode although they were absent in the reactive mode. Nevertheless, it

seems that, while for some children the tendency is pretty clear (Child A, Child G,

Child C and Child D), for some others, it would be useful to conduct further experi-

ments to investigate some observations and hypothesis formulated here. Importantly,

it also seems that, for some children, the frequency of interaction has already changed

between the first and the second session (e.g. Child H and Child E). It would be very
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interesting to observe further evolutions on a long-term study.

The research questions motivating this study can now be answered directly (see

Section 6.2.1):

• The adaptive robot does encourage the children to engage in the interaction,

and the children engage significantly more in the interaction with the adaptive

robot, compared with the reactive robot.

• The children’s play patterns differ when the robot is adaptive from when the

robot is reactive:

i) the strokes are qualitatively different and significantly more children play

more gently with the robot in the adaptive mode; ii) the frequency of interaction

differs: the tactile interactions are significantly richer in the adaptive mode and

the well-balanced frequencies (S2) and high frequencies (S3) are significantly

more present. The detailed analysis per child has enabled to identify several

children for whom a clear tendency could be established, with respect to the

impact of the adaptive robot on the frequency of the interaction. It has clearly

a positive influence on Child A, Child G, Child C and Child D. Child H and

Child E’s frequency of interaction seems to have already changed and further

changes should be investigated in a long-term study. Future work could also

define the classes slightly differently, maybe looking at a shorter window frame

for the frequency of interaction, so that this criterion might be more directly

‘accessible’ to the children22.

Finally, it should be noted that, among the children (Child A, G, H and D) who,

during the play sessions conducted with the approach described in Chapter 4, tended

to engage mainly in tactile exploration games with the robot (and possibly engaged

in the triadic play situation ‘ask for a physical reaction show it with a sensor’ which

involves the direct use of tactile sensors to induce a precise reaction of the robot),

the majority of those children (Child A, G and D) had their play styles importantly

positively impacted by the robot.

22Looking at the periodicity over approximately 15 seconds is meaningful in this context. However,
it might be sometimes difficult for the child to deal directly with this period of time which could be
a bit long for some children.
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6.3 Summary

In this chapter, we have presented the adaptive robot, which recognizes the play styles

of the children with the Cascaded Information Bottleneck Method, and gives feedback

according to those styles to the children, based on a schema for adaptation, that relies

on a reward basis. We have briefly discussed the notion of discrete social potential of

an adaptive robot, which relies on a transposition of the technique of ‘Freezing and

Freeing Degrees of Freedom’ which is commonly used to learn motor skills, and which

can be transposed for the context of human-robot social interaction in robot-assisted

play. Further to this, we have presented a study investigating the potential role of an

adaptive robot. This study was conducted in school with seven children with autism,

over two sessions. We have shown that the adaptive robot did significantly positively

impact the children’s play styles, in terms of engagement in the interaction and in

terms of the richness of the interactions generated. Those two aspects have been

established with statistical techniques. The Wilcoxon test separately applied for S2

and S3 has besides shown that, events from class S2 (i.e. well-balanced frequencies)

and events from class S3 (i.e. very high frequencies) happened significantly more in

the adaptive mode than in the reactive mode. Moreover, on average over the two

sessions, significantly more children interacted more gently with the robot in the

adaptive mode (in comparison with the reactive mode).

In addition, a detailed analysis per child was conducted, which notably compared

within each session the proportion of strong strokes in adaptive runs and in reactive

runs. It showed that for several children, within each session, the adaptive robot

clearly increased the ratio of gentle strokes. As for the frequency of the interaction,

the adaptive robot triggered, for several children, frequencies that had not occurred

in the reactive mode (typically S1 and S3 for Child D, S1 for Child G).

This study is a step forward in the investigation of the potential role that adaptive

robots can play in robot-assisted play for children with autism.



Chapter 7

Discussion and Conclusion

7.1 Limitations

This thesis has addressed a large range of issues in order to facilitate play between

children with autism and an autonomous robot. Nevertheless, it presents some limi-

tations that are exposed in this section.

Constraints on the input data for the Cascaded Information Bottleneck

Method: The algorithm works on a restricted range of input windows. Concerning

the criterion Gentleness of the interaction, it is perfectly fine because the restriction

is limited to non null events only: only null events will not get a classification, which

is perfectly fine since a null event is not categorised into gentle or strong anyway.

In contrast, for the criterion ‘Frequency of the interaction’, the constraint is a bit

bigger since it only classifies events starting with a non null value, i.e. the first value

of the input data has to be non null. This constraint is nevertheless largely inherent

to the nature of this criterion and, additionally, to the fact that, for each criterion,

the algorithm considers a fixed window’s length.

The criteria of the interaction: In this thesis, we only consider two criteria of

interaction. It might be interesting to extend the analysis to a larger range of criteria.

A strong point in our analysis here is that we encompass both short-term (criterion

Gentleness) and mid-term (Frequency of the interaction) time scale analyses.

It might also be useful to add an additional triggering on the frequency of interac-

tion that would guide the children more directly in the first stages of their progress.

For instance, one could add a second classification of the frequency over the 5 to 7

last seconds of interaction.

145
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The trials in school: The trials involved one experimenter only and a small num-

ber of children. The long-term study presented in Chapter 4 involved six children.

Seven children participated in the trials with the adaptive robot (Chapter 6). Note

that when I started the experiments in school, six children took part in the play ses-

sions, and the trials reported in Chapter 4 involve all of them. Three other children

joined the play sessions a few month later. In the study reported in Chapter 6, two

children were not involved because these sessions would have been too long and too

complicated for them.

The session’s length in the trials on the adaptive robot (Chapter 6): For

one or two children, it happened that the sessions may have been slightly too long

since they did not interact during the last run, or only a bit. Finding the right balance

for the session’s length is challenging: on the one hand, the child’s motivation to play

should not be affected by a too long trial; on the other hand, enough data should be

collected for the further analysis. This challenge was principally due to the fact that

the three runs had to be conducted on the same day. This decision was taken because

children’s mood can importantly vary from one day to the other and, therefore, I

thought it would be more consistent to be able to make direct comparisons between

adaptive and reactive runs that happened on the same day1.

The small number of sessions in the trials on the adaptive robot (Chap-

ter 6): The experiments lasted only two sessions. Thus, it was possible to analyze

the immediate impact of the adaptive robot that was compared, within a same ses-

sion, with the reactive robot. It was also possible to see the first progress between the

first and the second session. But it would be interesting to run a further long-term

study that would focus on long-term changes in the play styles of the children with

the adaptive robot (in comparison with the reactive robot), as well as study whether

the impact of the adaptive robot might change over time, for instance, progressively

while the children themselves get a better understanding of this mode2.

1Moreover, the tendencies described in each session could then be compared in order to get
additional insight on the possible stability or changes in the child’s profile.

2A better understanding of the adaptive mode could, for instance, be to understand that the
robot only reacts under specific strokes, and a second step would be that the child purposefully
reproduces the strokes that bring the robot’s reaction.
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7.2 Contributions

In this thesis, I have addressed the issue of facilitating play between children with

autism and an autonomous robot. I have adopted a multidisciplinary approach, which

notably enabled to contribute to three main domains, the domain of robot-assisted

play, the field of pattern recognition and the dimension of robots’ adaptation to social

contexts. We shall now go back to the research questions formulated in Section 3.5

and discuss how I answered them.

Research Question 1: What approach for the play sessions could be adopted in

robot-assisted play to enable each child with autism to progress according to his/her

specific needs and abilities, that is, experiment with progressively higher levels of play

and possibly develop play skills which could further help him/her cope with more com-

plex situations of communication and social interaction, and develop imagination?

I have designed a novel method inspired by non-directive play therapy. This

method precisely describes which of the eight principles (Fig 4.1) proposed by Axline

(1947), underlying the non-directive play therapy approach, are considered in our

context of robot-mediated play for children with autism.

Beyond inspiration from non-directive play therapy, this method adds a regulation

process which enables the experimenter to intervene under precise circumstances, in

brief:

• to discourage repetitive behaviours

• to help the child engage in play

• to give a better pace to the game if it has already been experienced by the child

• to bootstrap a higher level of play

• to ask questions related to reasoning or affect

This method is a new step in robot-assisted play, which, traditionally tended

to focus on a restricted repertoire of games for the trials, such as imitation with

a remotely controlled robotic doll (Robins et al., 2004) or chasing games with a

rectangular robotic platform (Werry and Dautenhahn, 1999), while, here, we address

a large range of games with the autonomous robotic pet. Moreover, trials in robot-

assisted play have, for a long time, kept the experimenter physically apart or not

involved in the situations of interaction. Robins et al. started to introduce the role
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of the experimenter, qualifying her role as the one of a ‘passive participant’ (Robins

and Dautenhahn, 2006). Our method goes beyond and proposes a precise definition

of the role of the experimenter who can intervene and regulate the interaction under

specific conditions that are detailed and formalized. A main goal here is to facilitate

the access to higher levels of play and to reasoning related to the robot.

Results from a long-term experiment in school with six children with autism have

been analysed with a specific qualitative method which enables to focus on three

dimensions, Play, Reasoning and Affect. For each dimension, I proposed a method-

ology: i) I defined a Play Grid for the analysis of play situations; ii) For the analysis

of reasoning about the robot I referred to four categories of the reasoning part of the

coding manual developed by Kahn et al. (2003), namely “Essence”, “Mental States”,

“Social Rapport” and “Moral Standing”; iii) I coded the ‘Affect’ dimension according

to precise explicit criteria.

Results have shown that this method is capable to adapt to the children’s specific

needs and abilities since all the children progressed, and progressed differently, ac-

cording to their needs, abilities and preferences. Moreover, with respect to play

and more specifically solitary vs. social play, children could be categorized into three

groups. The first group is constituted by children not playing or mostly engaged

in dyadic play with the robot. The second group is constituted by those initially

playing solitarily and communicating mostly non-verbally but progressively experi-

encing more complex situations of verbal play as well as few pre-social or basic social

situations of play. The third group is constituted by the children who managed to

play socially (i.e. play in a triad including both the robot and the experimenter). It

was found that:

• Children from the first group tended to progressively experience longer periods

of uninterrupted play with the robot and started engaging in basic imitation

during the last sessions;

• Children from the third group and, at a more basic stage, those from the second

group, tended to experience higher levels of play gradually over the sessions

and constructed more and more reasoning related to the robot; they sometimes

demonstrated specific reasoning on real life situations as well.

Last but not least, children from the second and third group tended to express ver-

bally or physically some interest in the robot, including on occasion interest involving

affect. Finally, it was globally found that this approach did encourage proactivity

and initiative-taking.
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Research Question 2: How can a robot recognize the interaction styles of each

child in real time?

The real-time recognition of the interaction styles has been investigated with sev-

eral techniques, firstly with the Self-Organizing Maps, which showed a good accuracy

to classify strokes according to the gentleness. Attempts to reduce the delay led to

substantial hand-tuning and I preferred a solution that would be more easily gen-

eralizable to other criteria of interaction. I therefore applied successively two other

techniques. Firstly, the Linear Discriminant Analysis and secondly, the clustering by

compression (Cilibrasi and Vitanyi, 2005) did not lead to a separation of the classes

and therefore were not further pursued.

I designed a novel method for the real-time recognition of Human-Robot Interac-

tion Styles, the Cascaded Information Bottleneck Method, which extends the existing

Information Bottleneck Method (Tishby et al., 1999). It relies on a succession of bot-

tlenecks, trained successively, with the same cardinality of bottleneck states. The

first bottleneck is trained in the standard way (Tishby et al., 1999) while the next

ones depend on the previous bottleneck states. This successive training of the bottle-

necks notably favours a powerful exploitation of the temporal structure of the data.

Further to this, I introduced a measure which evaluates the similarity between states

from two successive bottlenecks in order to extrapolate events that have not been

encountered during the training phase of the algorithm.

I have shown the soundness of this method through extensive testing, with both

i) data generated under laboratory conditions (training data and cross-validation)

during human-robot interactions with a physical robot and ii) samples from natural

situations of child-robot interaction in a school for children with autism. The algo-

rithm was able to recognize short term events very well within and average delay of

0.17 seconds (the highest delay being 2.07 seconds). It was also able to recognise mid-

term time scale events very well (the percentage of events correctly classified was 92%

under laboratory conditions and 93% with data from the child-robot interactions).

The method is entirely generic for applications with socially interactive (humanoid

and non-humanoid) robots. The ability of a robot to classify in real time human-

robot interaction styles is a first step towards the challenging goal of enabling an

autonomous robot to influence positively children’s interaction styles to guide them

progressively towards different therapeutically relevant levels of interaction.
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Research Question 3: How could the robot best adapt to the children’s needs and

abilities? Can a robot that adapts to the play styles of the children in real time im-

pact the behaviour of the children? Could it, in this way, help the children engage

progressively in better balanced interactions?

I investigated the role of an adaptive autonomous robot, which reacts differently

according to the child’s play styles (in comparison with a reactive autonomous robot).

I designed a schema of adaptation which relies on a reward basis. The interaction

styles are categorised in real time with the algorithm I developed, the Cascaded Infor-

mation Bottleneck Method. The robot’s behaviours have been tailored by immersion

according to each child’s specific needs and abilities (Appendix C).

I tested the impact of the robot in a study in school with seven children with

autism, over two sessions. I analysed the results, firstly with nonparametric statis-

tics, which showed that children engaged significantly more in the interaction and

generated richer interaction when the robot was adaptive (in comparison with re-

active). They interacted significantly more on higher frequencies (both very high

frequencies represented by S3 and well-balanced ones represented by S2) in the adap-

tive mode. Besides, the binomial test was applied on the average relative ratio of

strong strokes over the runs from the two sessions for respectively the adaptive and

reactive modes. It showed that significantly more children played, on average over

the two sessions, more gently with the adaptive robot. Furthermore, I conducted a

detailed analysis for each child combining qualitative and quantitative analysis. Re-

sults have shown that, in terms of the gentleness of the strokes, the adaptive robot

clearly (and importantly) impacted the play styles of several children who generated

within a same session, a higher ratio of gentle strokes (in comparison with strong

strokes) while the robot was adaptive. As for the frequency of the interaction, the

detailed analysis per child showed that, for some children, the adaptive robot even

triggered frequencies of interaction (e.g. S1 and S3) which did not happened in the

reactive mode. The adaptive robot therefore positively impacted the children’s play

styles and, in particular, it was found that, for most of the children who belonged

to the first and second groups as defined in the study with the method inspired by

non-directive play (Section 4.6), this positive impact tended to be very important.

It is a valuable result because, during the play sessions conducted with the novel

approach described in Chapter 4, these children tended to naturally mostly engage

in exploration games by stroking the robot. Some of them had experienced the game

‘ask for a physical reaction, show it with a sensor’, too, which implies interaction
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with both the robot and the experimenter. Nonetheless, those children did not use

much of verbal communication which would facilitate them access to proper situa-

tions of symbolic play with both the robot and the experimenter. Therefore, for those

children, at this stage, tactile play remains the main means by which they interact

with the robot and, it is very important to have found that their play styles can be

positively impacted by the adaptive robot. It means that this dyadic interaction may

enable them to learn more balanced levels of interactions.

7.3 Conclusion

In this thesis, I have adopted a multidisciplinary approach to address the issue of

facilitating play between children with autism and an autonomous robot. This led

me firstly to develop a novel approach for the design of play sessions in robot-assisted

play. This approach draws inspiration from non-directive play therapy and adds a

regulation process that enables the experimenter to guide the child towards other play

styles under specific conditions or ask questions on reasoning of affect related to the

robot. The long-term study that I conducted showed that this method can adapt to

the specific needs and abilities of the children and encourage them explore a diversity

of play situations and, in particular, social play. Three groups were highlighted based

on the capacity of the children to progressively play socially or not with both the

robot and the experimenter. It was shown that for the children who play mostly

dyadically with the robot, the interactions with the robot tended to last longer over

the sessions and some situations of imitations happened, which constitute a very first

step towards triadic interaction. For the children who played socially with both the

robot and the experimenter, higher levels of play were progressively experienced as

well as reasoning and possibly affect related to the robot. This preliminary long-term

study has therefore shown promising results for this new approach in robot-assisted

play. It is a first study that potentially may be developed towards a new method in

autism therapy.

Secondly, I have tested different methods for the real-time recognition of human-

robot interaction styles and proposed a new method. The first technique I tested,

based on Self-Organizing Maps, showed capable of classifying the criterion ‘gen-

tle/strong’. However, in order to have a recognition made within a reasonable delay,

important hand-tuning was required which made the solution very specific to that

particular criterion and was time-consuming. Two other methods were then succes-

sively tested, firstly the Fisher Linear Discriminant Analysis and secondly Clustering
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by compression which did not enable a separation of the classes. Thus, those two

methods were not further pursued and I developed a new method, the Cascaded Infor-

mation Bottleneck Method. This method consists of a cascade of bottlenecks trained

successively. I have shown that a structure over the cascade emerges and I have in-

troduced a measure for extrapolating unseen events. This measure enables to control

the degrees of freedom of the system and is a first way to prevent the system from

over-learning. An additional way to control how much and what new information

is taken at which step of the cascade would be to move back from the agglomer-

ative setting to a finite β setting. This shows how the method is transparent and

enables control over how much and what new information is taken at which step of

the cascade. The method was evaluated with two criteria of interaction, the criterion

‘gentle/strong’ which corresponds to a short-term time scale event and the criterion

‘frequency of the interaction’ which corresponds to a mid-term time scale event, both

with, successively, trained data and cross-validation. The algorithm showed sound for

recognizing both of these criteria. The short-term time scale events were recognized

with a very small delay and the method made a powerful exploitation of the existing

temporal structure of mid-term time scale events. Note that the algorithm was also

tested with data generated in school with children with autism, whereby they could

play freely, i.e. they were not instructed how to play. This method is entirely generic

to applications with socially interactive robots and is a step towards socially adaptive

robots.

Thirdly, I investigated the role of the adaptive robot in robot-assisted play in a

study with children with autism in school. I designed a schema of adaptation based on

a reward which uses the Cascaded Information Bottleneck Method for the recognition

of the interaction styles in real time. The study showed the positive impact of the

adaptive robot on the children’s play styles. The adaptive mode encouraged the

children to engage significantly more in tactile interaction by activating the sensors

more often within a session. Besides, on average over the two sessions, the proportion

of gentle strokes increased when the robot was in the adaptive mode (except for

one child). It was moreover found that for several children, this tendency was very

clear within each session. Furthermore, the analysis of the criterion ‘frequency of

the interaction’ showed that the interactions were significantly richer in the adaptive

mode. In particular, higher frequencies were significantly more present in the adaptive

mode, including notably frequencies that we qualified as well-balanced. For some

children, the adaptive robot even triggered some frequencies that were absent from the

reactive runs within a same session. This study is a step forward in the investigation
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of the potential role that adaptive robots can play in robot-assisted play for children

with autism.

To summarize, this thesis contributes to a wide range of areas:

• Robot Assisted Play: I proposed and experimentally tested a new method-

ological approach of how to design, conduct and analyse robot-assisted play.

• Machine Learning: I proposed and experimentally tested a novel and generic

computational method.

• Human-Robot Interaction: I demonstrated a proof-of-concept system of

an adaptive robot responsive to different styles of interactions in human-robot

interactions and tested its impact through a study with children with autism.

• Developmental Robotics: I contributed to the understanding of social be-

haviour and adaptation which are key topics in developmental robotics, inspired

by research on child development and autism therapy.

• Autism Therapy: I conducted a study that potentially may be developed

towards a new method in autism therapy.



Chapter 8

Future Work

In this chapter we draw some directions for future work.

Application of the Cascaded Information Bottleneck Method to other cri-

teria of interaction: The real-time recognition of human-robot interaction styles

is a step towards socially adaptive robots (Dautenhahn, 2007b, 1998). The Cascaded

Information Bottleneck Method is entirely generic for applications with socially inter-

active robots. A further step could be to generalize this method to the recognition of

additional criteria of interaction. Note that this method could also be tested and used

in different contexts of pattern recognition than HRI, since the method is a powerful

time filtering process that progressively extracts information from time series and

makes a good exploitation of the temporal structure of the data with transparency

and the possibility to control how much and what new information is taken at which

step of the cascade.

Comparison of the Cascaded Information Bottleneck Method with other

methods: Future work could include, in these scenarios of Human Robot inter-

action, a comparison of the Cascaded Information Bottleneck Method with other

methods used for pattern recognition such as HMMs. My hypothesis is that classi-

cal homogeneous HMMs as used in e.g. Lee and Xu (1996) and Calinon and Billard

(2004) might have difficulties to model an existing mid-term temporal structure of the

data by trying to squeeze all temporal information into one flat transition structure1.

On the contrary, the Cascaded Information Bottleneck Method relies on different

1In order to get more insight on how the HMMs would be used in this specific context, please
refer to the detailed description provided in Section 5.1.3
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bottlenecks trained successively (i.e. different mappings over a time series), thus en-

abling a powerful exploitation of the temporal structure of the data. The problem

with a cascade of bottlenecks trained successively could be here that the system has

too many degrees of freedom and could overlearn. The extrapolation with the mea-

sure that I have introduced is a first step in the control of the degrees of freedom of

the system. In addition, the overlearning can be tightly controlled by penalizing the

intake of novel information. For this, we would have to move from the agglomerative

model (where β goes to∞) to a model with a finite β that would control the informa-

tion intake per step. This shows how the Cascaded Information Bottleneck method

is transparent and gives more control over how much and what new information is

taken at which step in the cascade. Since the method is so transparent and easy to

control, there could be even further enhancements and improvements that use these

properties.

A complementary long-term study with the adaptive robot: It would be

enlightening to conduct a long-term study with the adaptive robot, complementary

to the short-term study presented in Chapter 6 that would analyse on a long-term

basis the impact of the adaptive robot, compared to the reactive robot as follows:

i) How do the children’s play styles change over many sessions with the adaptive

robot (in comparison with the reactive robot)?

ii) Does the impact of the adaptive robot change over time (in comparison with the

reactive robot)?

During this long-term study, one might also wish to adapt slightly the reward schema

of the robot for Child H who might have been a bit confused by the engaging be-

haviour of the robot2. This could result, for this specific child, in modifying the

engaging behaviour of the robot, or even removing the engaging behaviour and only

focusing on the robot’s rewards for gentle strokes and good frequencies of interaction.

The impact of the familiarity with the robot on the children’s play styles:

An additional study could involve children who would have met the robot only during

a few (several) sessions so that they have not had a chance to become too familiar with

the robot yet. However, the number of sessions should reach a minimum threshold

2We should remind here that Child H usually interacts a lot with the robot. However, when the
robot started the engaging behaviour, i.e. wagging the tail, Child H tended to rather look at the
robot than stroke it. For this specific child, the engaging behaviour of the robot may thus have had
the reverse effect, that is disengaging the child from the tactile interaction with the robot.
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in order to enable the experimenter to get basic clues to tailor the robot’s behaviours

according to the children’s specific needs and abilities (Appendix C). It would be

interesting to see whether the impact of the robot on those children would be different

to the one on the children of this present study who all participated, beforehand,

in a long-term study with the method inspired by non-directive play and, through

it, became familiar with the robot and experimented with play skills with both the

robot and the experimenter. Note that between the long-term study with the method

inspired by non-directive play and the trials investigating the impact of the adaptive

robot on the children’s play styles, those children had several play sessions during

which the experimenter progressively decreased her participation in the games, in

order to ensure a progressive transition with the study on the adaptive robot whereby

the experimenter did not take part in the experiments3.

Investigating the social potential of the robot: A further step both in robot-

assisted play and towards socially adaptive robots would be the implementation of the

different discrete levels of the social potential of the robot as described in Section 6.1.1

and its testing in the context of robot-assisted play: in this context the robot would

be able to select its level of adaptation according to the child’s progresses, needs and

current abilities, by following the transposed principle of “Alternate Freezing and

Freeing of Degrees of Freedom”, as illustrated in Fig. 6.1. The robot would therefore

adapt to the interaction styles but also select its level of adaptation according to the

child’s profile, needs, progresses and abilities. In this sense, one may imagine that,

following the example of discrete social potential given in Section 6.1.1, the robot

first adapts to the criterion Gentleness, and, when the child has shown capable to

stroke the robot gently many times, it moves up to a higher level where it will classify

both the gentleness and the frequency of interaction. But, if this level appears, at

some point, to be too complicated for the child, the robot might go back to the easier

level where it only triggers the Gentleness of the interaction.

In this context, one might also think about extending the social potential of the robot

by adding more criteria of interaction for the recognition of the children’s play styles.

In Section 6.1.1, I suggested one possibility for the discrete social development of

the robot that would follow three levels and take into account at most two criteria,

the gentleness and the frequency of the interaction. One could actually imagine to

3The experimenter did not take part in these trials, i.e. she only responded to the children’s
questions. This was made in order not to interfere with the main purpose of this study which was
to test the impact of the adaptive robot. In future work, the adaptive robot could be introduced in
play sessions where the experimenter takes part in the play sessions.
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extend the discrete social development of the robot to more levels that would include

other criteria of interaction, such as, for instance, an additional classification of the

frequency of the interaction based on a smaller range of frequencies with a 5 to 7

seconds analysis, and, the topological diversity of the interaction, that is the variety

in terms of which sensors are activated.

Robot-assisted play at home and with play therapists: Those two approaches,

on the one hand, the method inspired by non-directive play therapy, and, on the other

hand, the adaptive robot, could, in future, be used by play therapists with children

with autism. At the moment, a roboticist is needed to deal with all the technical

issues addressed by the use of a robot. But the goal is to enable play therapists to

apply these methods, in future, as a complementary approach to existing therapies

in autism. Moreover, ideally, in future, children would be able to play in schools or

even at home with the adaptive robot, which might be additionally equipped with a

discrete social potential (if it appears to be positive for the children). Of course, such

play sessions would necessarily be supervised by an adult, in order to check safety

issues. Ideally, the child would meet a play therapist regularly, who could (re)adjust

the robot’s behaviours and its social potential for the following days, according to

the child’s needs, abilities, progresses and preferences.

This thesis has focused on facilitating play between children with autism and

an autonomous robot and has addressed the issue with a multidisciplinary approach

which led to a number of novel results and contributions. It has firstly enabled the de-

sign of a new methodological approach in robot-assisted play that was experimentally

tested in school. Secondly, it led to the development of a novel and generic compu-

tational method for the real-time recognition of the interaction styles. Thirdly, it

demonstrated a proof-of-concept system of an adaptive robot responsive to different

styles of interaction in human-robot interaction. A study evaluated its impact on the

play styles of children with autism. Taken together, I hope that these achievements

represent a step forward in socially adaptive robots and in robot-assisted play for

children with autism.

I conducted play sessions in school for more than a year with children with autism.

Personally, those play sessions with the children were a wonderful and unforgettable

experience. I would like to thank those children and I dedicate this thesis to them.



Appendix A

Short-term Study: Figures

Child 
Average percentage 
 of activations  
on the adaptive mode 

Average percentage 
of activations 
on the reactive mode 

Child A 72.22 27.78 
Child G 87.84 12.16 
Child H 44.74 55.26 
Child C 82.01 17.99 
Child E 57 43 
Child F 75.56 24.44 
Child D 90.48 9.52 

 
Figure A.1: Table providing the average relative engagement of the children in adap-
tive and reactive modes.

Setting A-R-A Setting R-A-R 
Child 

A R A R A R 
Child A 19.05 75.00 12.50 50.00 30.00 90.91 
Child H 0 18.18  0 11.11  
Child F 6.38 87.50 0 30.00 46.15 85.71 
 

Figure A.2: Table providing the percentage of strong strokes among all the strokes
(the strokes can be gentle or strong) for the children A, H and F. A void cell means
that, for the run corresponding to the cell, the child did not activate sensors.
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Setting R-A-R Setting A-R-A 
Child 

R A R A R A 
Child G 25.00 0  0 0 6.25 
Child C 0 0 35.25 1.96 0 8.62 
Child E 15.00 7.14 16.98 16.67 15.38 21.88 
Child D 0 75.00 0 46.15 100  
 

Figure A.3: Table providing the percentage of strong strokes among all the strokes
(the strokes can be gentle or strong) for the children G, C, E and D. A void cell means
that, for the run corresponding to the cell, the child did not activate sensors.

Child Av( �S0) Av(�S1) Av(�S2) Av(�S3) 
Child A 0.217 0.202 0.508 0.750 
Child G -0.233 0.750 0.284 0.614 
Child H 0.133 -0.450 0.222 0.151 
Child C 0.288 0.500 0.451 0.058 
Child E 0.081 0.061 -0.017 0.054 
Child F 0.164 0 0.108 0.170 
Child D 0.444 0.250 0.516 0.750 

 
Figure A.4: Table providing the average of δSi over the two sessions per child.

Child AvAdaptive(�) 
 

AvReactive(�) 
 

Child A 0.520 0.147 
Child G 0.491 0.176 
Child H 0.340 0.327 
Child C 0.477 0.189 
Child E 0.353 0.313 
Child F 0.382 0.284 
Child D 0.523 0.060 

 

Figure A.5: Input Data for the Wilcoxon test to measure the richness of the interac-
tion.
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Child AvAdaptive(
S2) 
 

AvReactive(
S2) 
 

Child A 0.559 0.108 
Child G 0.459 0.207 
Child H 0.432 0.235 
Child C 0.534 0.133 
Child E 0.326 0.341 
Child F 0.381 0.285 
Child D 0.563 0.104 

 

Figure A.6: InputData for the Wilcoxon test applied to S2.

Child AvAdaptive(�S3) 
 

AvReactive(�S3) 
 

Child A 0.667 0 
Child G 0.606 0.060 
Child H 0.400 0.266 
Child C 0.359 0.308 
Child E 0.357 0.309 
Child F 0.409 0.258 
Child D 0.667 0 

 

Figure A.7: InputData for the Wilcoxon test applied to S3.
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Child Setting Mode N(S0) N(S1) N(S2) N(S3) 
A 193 15 178 198 
R 35 0 0 0 

A-R-A 
 
 A 226 21 177 121 

R 95 28 1 0 
A 90 24 21 125 

Child A 
 
 
 
 
 

R-A-R 
 
 R 61 37 9 0 

R 201 0 84 93 
A 33 1 97 735 

R-A-R 
 
 R 0 0 0 0 

A 75 0 412 226 
R 106 0 142 42 

Child G 
 
 
 
 
 

A-R-A 
 
 A 54 22 346 345 

A 153 0 85 75 
R 79 55 51 77 

A-R-A 
 
 A 0 0 0 0 

R 160 21 46 19 
A 172 14 94 46 

Child H 
 
 
 
 
 

R-A-R 
 
 R 0 0 0 0 

R 30 0 0 0 
A 78 16 94 45 

R-A-R 
 
 R 60 8 56 538 

A 138 0 69 204 
R 28 0 9 0 

Child C 
 
 
 
 
 

A-R-A 
 
 A 181 17 273 139 

R 59 33 391 416 
A 98 6 449 808 

R-A-R 
 
 R 72 35 436 753 

A 125 16 367 496 
R 84 0 557 460 

Child E 
 
 
 
 
 

A-R-A 
 
 A 53 11 566 410 

A 120 15 500 850 
R 24 0 0 0 

A-R-A 
 
 A 47 15 611 1041 

R 167 0 94 274 
A 118 0 19 86 

Child F 
 
 
 
 
 

R-A-R 
 
 R 58 6 19 19 

R 8 0 0 0 
A 44 0 28 182 

R-A-R 
 
 R 0 0 11 0 

A 91 20 64 22 
R 31 0 2 0 

Child D 
 
 
 
 
 

A-R-A 
 
 A 0 0 0 0 

 
Figure A.8: Table providing the number of occurences for each class Si, N(Si).
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Figure A.9: Distribution of the events per session and per class for Child A.
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Figure A.10: Distribution of the events per session and per class for Child G.
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Figure A.11: Distribution of the events per session and per class for Child H.
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Figure A.12: Distribution of the events per session and per class for Child C.
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Figure A.13: Distribution of the events per session and per class for Child E.
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Figure A.14: Distribution of the events per session and per class for Child F.
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Figure A.15: Distribution of the events per session and per class for Child D.
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Child Setting Order �S0 �S1 �S2 �S3 
A-R 0.348 0.417 0.501 0.621 A-R-A 

  R-A 0.421 0.583 0.499 0.379 
R-A -0.020 -0.045 0.645 1.000 

Child A 
 
 
 

R-A-R 
  A-R 0.118 -0.146 0.387 1.000 

R-A -0.718 1.000 0.072 0.775 R-A-R 
  A-R 0.141 1.000 0.536 0.888 

A-R -0.132 0 0.300 0.300 

Child G 
 
 
 

A-R-A 
  R-A -0.221 1.000 0.227 0.494 

A-R 0.319 -1.000 0.250 -0.013 A-R-A 
  R-A -0.341 -1.000 -0.375 -0.507 

R-A 0.036 -0.200 0.343 0.415 

Child H 
 
 
 

R-A-R 
  A-R 0.518 0.400 0.671 0.708 

R-A 0.286 0.666 0.626 0.077 R-A-R 
  A-R 0.107 0.333 0.253 -0.846 

A-R 0.317 0 0.170 0.595 

Child C 
 
 
 

A-R-A 
  R-A 0.441 1.000 0.752 0.405 

R-A 0.170 -0.365 0.045 0.198 R-A-R 
  A-R 0.114 -0.392 0.010 0.028 

A-R 0.156 0.593 -0.128 0.026 

Child E 
 
 
 

A-R-A 
  R-A -0.118 0.407 0.006 -0.037 

A-R 0.503 0.500 0.450 0.449 A-R-A 
  R-A 0.120 0.500 0.550 0.551 

R-A -0.143 0 -0.568 -0.496 

Child F 
 
 
 

R-A-R 
  A-R 0.175 -1.000 0 0.177 

R-A 0.692   0.718 1.000 R-A-R 
  A-R 0.846   0.436 1.000 

A-R 0.492 1.000 0.939 1.000 

Child D 
 
 
 

A-R-A 
  R-A -0.254 0 -0.030 0 

 

Figure A.16: Table providing the δSi for each session for each child.



Appendix B

Children’s age and level of

autism

In the school where the play sessions were conducted, the level of autism of the

children was evaluated with the Childhood Autism Rating Scale (CARS) (Schopler

et al., 1980). It is one of the most widely used standardised instruments specifically

designed to aid in the diagnosis of autism. It can be used for children from two-years

old and more. The test is organised in 15 areas which are detailed in Fig. B.1.

 1. Relating to people 
 2. Imitation 
 3. Emotional response 
 4. Body use 
 5. Object use 
 6. Adaptation to change 
 7. Visual response 
 8. Listening response 
 9. Taste, smell, and touch response and use 
10. Fear and nervousness 
11. Verbal communication 
12. Nonverbal communication 
13. Activity level 
14. Level and consistency of intellectual response 
15. General impressions 
 

Figure B.1: The fifteen areas in the Childhood Autism Rating Scale.

For each area, the child gets a rate from 1 (which means ‘normal for the child’s

age’) to 4 (which means ‘severely abnormal for the child’s age’). The individual rates

from these 15 areas are then summed up. The total indicates whether the child has
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autism or not, and whether the autism is mild-to-moderate or severe. A score greater

or equal to 30 means that the child has autism. If the score is greater or equal to 37,

then the child has severe autism.

Fig. B.2 provides, for each child involved in the experiments, the CARS score.
 

Child 
Chronological age 
at the beginning 

of the trials 
CARS 

Child A   7 years old 51 
Child B   8 years old 48 
Child C   7 years old  35 
Child D 10 years old 42 
Child E 10 years old 35 
Child F   9 years old 38 
Child G   5 years old 41 
Child H   5 years old 45 
Child I   7 years old NA 
 

Figure B.2: Children’s profile of autism according to the Childhood Autism Rating
Scale (CARS).



Appendix C

Tailoring the robot’s behaviours

The robot’s behaviours have been tailored, for each child, by immersion. This means

that the repertoire of appropriate robot’s behaviours with respect to each child spe-

cific needs, abilities, dislikes and preferences was progressively designed and refined as

the experiments progressed. During these trials, several sources of stimulation were

successively tested: sound (e.g. barking) and movement (e.g. head turning, walking).

The speed of the movements was also progressively tuned to fit each child’s specific

needs and preferences. The idea was to start very simply and, progressively, add

some diversity and complexity in the robot’s behaviours1, in order to identify the

reaction of the child and the possible interpretation he/she gave to a specific robot’s

behaviour.

If the child liked the behaviour, then the behaviour was adopted for the robot.

For example, the first time the robot’s walking was enabled, Child I stroked the

robot, the robot walked and Child I suddenly laughed and smiled. During the whole

session, whenever the robot’s walk happened, she smiled and laughed again. Child I

did not communicate verbally during the play sessions. Here, her laughing expressed

a positive reaction to the robot’s behaviour.

In contrast, if it was felt that a child showed some hesitation in front of a new

behaviour of the robot, then this behaviour was removed. For instance, the robot’s

1Firstly, ‘robot’s barking’ as well as ‘slowly moving head’ and ‘wagging tail’ were tested. Then,
the robot’s walking was introduced. Further to this, the range of robot’s gestures was expanded, as
well as its walking, which could be forward and backwards. This phase notably included the testing
of some behaviours that would last a bit longer (approximately 2-3 seconds) than the ones developed
in further stages (0-2 seconds). Because the children were very interested in robot’s emitting sounds,
and because one child even asked for it, a new sound was finally introduced, in addition to the
barking. In addition to the nature of the behaviour, different mappings were also tested, in order to
i) make the child experiment with changes in the robot’s reactions, and ii) adapt to the children’s
play styles, preferences and demands.
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walking was removed for Child E.

Further to this, if a child was asking for a specific behaviour (among the range of

realistic behaviours in this context of play), then the experimenter would update the

robot’s behaviour immediately to make the specific reaction happen2. A first example

is about Child F liking a specific sound that the robot could play (this sound sounded

like a drumming sound). When this behaviour arose the first time, Child F liked it

very much and called it ‘electric stroke’ (when he was stroking the robot on one of

the back sensors, this sound arose). In the following sessions, he always asked to have

this behaviour on the robot. A second example is about correlated behaviours of the

robot: during an advanced session, Child F asked why the robot was not opening the

mouth when barking. The experimenter asked him whether he would like the robot

to do that, and he said yes. Therefore, the robot was immediately programmed to

bark and open the mouth at the same time. In later stages of this study, Child F had

encountered different mappings3 for the robot’s behaviours. Depending on the play

situation he was involved with (e.g. give food to the robot, make the robot ‘walk in

the air’, explore the robot’s features by stroking him, etc.) he sometimes asked for a

specific4 mapping.

2The behaviours were programmed with URBI (Baillie, 2005).
3By ‘mapping’ we mean here a one to one deterministic mapping between the robot’s external

sensors and its behaviour.
4In particular, when he gave food to the robot, he wanted the barking to be removed when the

robot opened the mouth. But once he was finished, he wanted to have it back.



Appendix D

Social Story

 

Figure D.1: Social Story used for Child A. In order to help Child A understand how
the play sessions proceeded, a social story was made by the teachers of the autism
base. The name of the child has been erased and both faces of the child and the
teacher have been hidden.
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Publication List

Several publications resulted from this research:

Journal Paper (to appear):

François, D., Powell, S., and Dautenhahn, K. (2009). A long-term study of chil-

dren with autism playing with a robotic pet: Taking inspirations from non-directive

play therapy to encourage children’s proactivity and initiative taking. To appear

in: Interaction Studies. Special Issue: Robots in the Wild: Exploring Human-Robot

Interactions in Naturalistic Environments.

Conference Papers:

François, D., Polani, D., and Dautenhahn, K. (2007). On-line behaviour classifi-

cation and adaptation to human-robot interaction styles. In Proc. 2nd ACM/IEEE

International Conference on Human-robot Interaction (HRI 07), pages 295-302.

François, D., Polani, D., and Dautenhahn, K. (2008b). Towards socially adaptive

robots: A novel method for real time recognition of human-robot interaction styles.

Proc. IEEE-RAS International Conference on Humanoid Robots (Humanoids 08),

pages 353–359.

Abstract for a talk:

François, D., Dautenhahn, K., and Polani, D. (2008). Robot Assisted Play: De-

tecting Interaction Styles of Children with Autism Playing with a Zoomorphic Robot.

Abstract for talk to be given on December 1st 2008, in Conventry University Tech-

nocentre, at the Conference RAatE 2008 (Recent Advances in Assistive Technology

and Engineering).
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Technical Reports:

François, D., Polani, D., and Dautenhahn, K. (2008a). Real time recognition

of human-robot interaction styles with cascaded information bottlenecks. Technical

report 478, School of Computer Science, Faculty of Engineering and Information

Sciences, University of Hertfordshire.

François, D., Powell, S., and Dautenhahn, K. (2008c). A long-term study of chil-

dren with autism playing with a robotic pet: Taking inspirations from non-directive

play therapy to encourage children’s proactivity and initiative taking. Technical

report 477, School of Computer Science, Faculty of Engineering and Information

Sciences, University of Hertfordshire.



Appendix F

Media

”Roboterhund hilft bei Autismus”: Documentary broadcasted on 25th August

2008 on the German Channel 3SAT (http://www.3sat.de/). Rebroadcasts on 3Sat

and the partner channels MDR, SF, RBB and BRalpha.

This five minute documentary reported on my research. The filming took place

both in the school (where the journalists filmed several play sessions with the chil-

dren) and in the Science and Technology Research Institute, at the University of

Hertfordshire.
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Powell, S. (2000). Helping Children with Autism to Learn. David Fulton Publish.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications

in speech recognition. Proceedings of the IEEE, 77(2):257–286.



BIBLIOGRAPHY 183

Robins, B. and Dautenhahn, K. (2006). The role of the experimenter in HRI research

- a case study evaluation of children with autism interacting with a robotic toy. In

Proc. 15th IEEE Int. Symposium on Robot and Human Interactive Communication

(RO-MAN 06), pages 646–651.

Robins, B., Dautenhahn, K., and Dubowski, J. (2005a). Robots as isolators or medi-

ators for children with autism? A cautionary tale. In Proc. AISB’05 Symposium

on Robot Companion Hard Problem and Open Challenges in Human-Robot Inter-

action, pages 82–88.

Robins, B., Dautenhahn, K., te Boekhorst, R., and Billard, A. (2005b). Robotic

assistants in therapy and education of children with autism: Can a small humanoid

robot help encourage social interaction skills? Universal Access in the Information

Society (UAIS), pages 105–120.

Robins, B., Dickerson, P., Stribling, P., and Dautenhahn, K. (2004). Robot-mediated

joint attention in children with autism: A case study in robot-human interaction.

Interaction Studies, 5(2):161–198.

Rogers, C. (1976). Client-Centred Therapy. Constable.

Ryan, V. (1999). Developmental delay, symbolic play and non-directive play therapy.

Clinical child Psychology and Psychiatry, 4(2):167–185.

Ryan, V. (2001). Non-directive play therapy with children experiencing psychic

trauma. Clinical child Psychology and Psychiatry, 6(3):437–453.

Ryan, V. and Needham, C. (2004). Non-directive play therapy with children experi-

encing psychic trauma. Clinical child Psychology and Psychiatry, 9(1):75–87.

Ryan, V. and Wilson, K. (1996). Case-Studies in Non-Directive Play Therapy.

Baillière Tindall.

Salter, T., Dautenhahn, K., and te Boekhorst, R. (2006). Learning about natural

human-robot interaction. Robotics and Autonomous Systems, 54(2):127–134.

Salter, T., Michaud, F., Lee, D., and Werry, I. P. (2007). Using proprioceptive sensors

for categorizing human-robot interactions. In Proc. of the 2nd Int. Conference on

Human-Robot Interaction HRI07, pages 105–112.



BIBLIOGRAPHY 184

Scassellati, B. (2005a). How social robots will help us to diagnose, treat, and under-

stand autism. In Proc. 12th Int. Symposium of Robotics Research (ISSR), pages

552–563.

Scassellati, B. (2005b). Quantitative metrics of social response for autism diagnosis.

In Proc. 14th IEEE Int. Workshop on Robot and Human Interactive Communica-

tion (RO-MAN), pages 585–590.

Schatzman, L. and Strauss, A. (1973). Strategy for recording. Schatzmann, L.,

Strauss, A.L. Eds. Field Research. Strategies for a natural sociology. Prentice Hall.

Schopler, E., Reichler, R. J., Vellis, R. F. D., and Dally, K. (1980). Towards objective

classification of childhood autism: Childhood autism rating scale (CARS). Journal

of Autism Developmental Disorders, 10(1):91–103.

Shannon, C. E. (1949). The mathematical theory of communication. The University

of Illinois Press, Urbana.

Shibata, T. (2004). Ubiquitous surface tactile sensor. In Proc. 2004 1st IEEE TEx-

CRA on Robotics and Automation, pages 5–6.

Shibata, T., Wada, K., Saito, T., and Tanie, K. (2005). Human interactive robot

for psychological enrichment and therapy. In Proc. AISB’05 Symposium on Robot

Companion Hard Problem and Open Challenges in Human-Robot Interaction, pages

98–109.

Siegel, S. and Castellan, N. J. (1988). Nonparametric Statistics for the behavioral

sciences. McGraw-Hill International Editions.

Skinner, B. F. (1974). About Behaviourism. New York: Vintage.

Slonim, N. and Tishby, N. (1999). Agglomerative information bottleneck. In Proc.

of Neural Information Processing Systems (NIPS 99), pages 617–623.

Stanton, C. M., Kahn, P. H., Severson, R. L., Ruckert, J. H., and Gill, B. T. (2008).

Robotic animals might aid in the social development of children with autism. In

Proceedings of the 3rd International Conference on Human-Robot Interaction.

Stiehl, W. D., Lieberman, J., Breazeal, C., Basel, L., Lalla, L., and Wolf, M. (2006).

The design of the huggable: A therapeutic robotic companion for relational, affec-

tive touch. In AAAI Fall Symposium on Caring Machines: AI in Eldercare.



BIBLIOGRAPHY 185

Syrdal, D. S., Walters, M. L., Koay, K. L., and Dautenhahn, K. (2008). The role of

autonomy and interaction type on spatial comfort in an HRI scenario. In Proceed-

ings of ‘Robotic Helpers: User Interaction, Interfaces and Companions in Assistive

and Therapy Robotics’, a workshop at ACM/IEEE HRI 2008, pages 27–29.

Tammet, D. (2006). Born on a blue day: A Memoir of Asperger and an Extraordinary

Mind. Hodder and Stoughton.

Tanaka, F., Cicourel, F., and Movellan, J. R. (2007). Socialization between tod-

dlers and robots at an early childhood education center. In Proc. of the National

Academy of Sciences of the USA (PNAS) 104(46), pages 17954–17958.

Tanaka, F., Fortenberry, B., Aisaka, K., and Movellan, J. R. (2005). Developing

dance interaction between qrio and toddlers in a classroom environment: Plans for

the first steps. In Proc. 14th IEEE Int. Workshop on Robot and Human Interactive

Communication (RO-MAN), pages 223–228.

Tanaka, F., Movellan, J. R., Fortenberry, B., and Aisaka, K. (2006). Daily hri eval-

uation at a classroom environment: Reports from dance interaction experiments.

In Proc. 1st Annual Conf. on Human-Robot Interaction (HRI), pages 3–9.

Tardif, C., Plumet, M.-H., Beaudichon, J., Waller, D., Bouvard, M., and Leboyer, M.

(1995). Micro-analysis of social interactions between autistic children and normal

adults in semi-structured play situations. International Journal of Behavioural

Development, 18(4):727–747.

Tishby, N., Pereira, F. C., and Bialek, W. (1999). The information bottleneck

method. In Proc. of the 37-th annual Allerton Conference on Communication,

Control and Computing, pages 368–377.

Tolman, E. C. (1932). Purposive behavior in animals and men. New York: Appleton.

Vygotsky, L. (1988). The genesis of higher mental functions. Richardson, K. and

Sheldon S. (eds) Learning to think, London, Routledge/The Open University.

Vygotsky, L. S. (1978). Mind in Society: Development of Higher Psychological Pro-

cesses. Harvard University Press.

Wada, K. and Shibata, T. (2006). Robot therapy in a care house - Its sociopsycho-

logical and physiological effects on the residents. In Proc. 2006 IEEE International

Conference on Robotics and Automation, pages 3966–3971.



BIBLIOGRAPHY 186

Watson, J. B. (1913). Psychology as the behaviourist views it. Psychological Review,

20:158–177.

Watson, J. B. (1925). Behaviourism. New York, Norton.

Werry, I. and Dautenhahn, K. (1999). Applying mobile robot technology to the reha-

bilitation of autistic children. In Proc. SIRS99, 7th Int. Symposium on Intelligent

Robotics Systems, pages 265–272.

Werry, I., Dautenhahn, K., Ogden, B., and Harwin, W. (2001). Can social interac-

tion skills be taught by a social agent? The role of a robotic mediator in autism

therapy. In Proc. 4th Int. Conference on Cognitive Technology: Instruments of

Minds (CT2001), pages 57–74.

Williams, D. (1996). Autism: an Inside-Out approach. Jessika Kingsley Publishers.

Wünstel, M., Polani, D., Uthmann, T., and Perl, J. (2000). Behavior classification

with self-organizing maps. In Proc. 4th Int. RoboCup Workshop, pages 179–188.

Yanco, H. (1998). Integrating robotic research: A survey of robotic wheelchair de-

velopment. In AAAI Spring Symposium on Integrating Robotic Research.

Yanco, H. (2001). Development and testing of a robotic wheelchair system for outdoor

navigation. In Proceedings of the 2001 Conference of the Rehabilitation Engineering

and Assistive Technology Society of North America.


