
An Introduction to Slice-Based Cohesion and Coupling Metrics

Pam Green
Peter C.R. Lane
Austen Rainer

Sven-Bodo Scholz

June 2009

Technical Report No.488
School of Computer Science
University of Hertfordshire

Contents

1 Introduction 3

2 Output variables 5

2.1 Sources . 5

2.2 The elements . 5

2.3 Analysis . 6

2.4 Summary . 8

3 Slice-based cohesion metrics 10

3.1 Background and Development . 10

3.1.1 Weiser . 10

3.1.2 Longworth . 11

3.1.3 Ott and Thuss . 11

3.1.4 The evolution of overlap . 12

3.1.5 Bieman and Ott . 12

3.1.6 Krinke . 13

3.1.7 Meyers and Binkley . 13

3.1.8 Formulae . 13

3.2 Worked examples . 16

3.2.1 Example program . 16

3.2.2 Line-based calculations . 16

3.2.3 Parallelism, a line-based example . 17

3.2.4 Bieman and Ott’s adhesion measure . 18

3.2.5 Vertex-based calculations . 18

3.3 Discussion: slice-based cohesion . 20

4 Slice-based coupling metrics 23

4.1 Background . 23

4.1.1 Definitions . 23

4.1.2 Implementation algorithm . 24

4.2 Worked Examples . 26

4.2.1 Line-based calculations . 26

4.2.2 Vertex-based calculations . 28

4.3 Discussion: slice-based coupling metrics . 29

5 Summary 29

2

Abstract

This report provides an overview of slice-based software metrics. It brings together informa-
tion about the development of the metrics from Weiser’s original idea that program slices may be
used in the measurement of program complexity, with alternative slice-based measures proposed by
other researchers. In particular, it details two aspects of slice-based metric calculation not covered
elsewhere in the literature: output variables and worked examples of the calculations.

First, output variables are explained, their use explored and standard reference terms and usage
proposed. Calculating slice-based metrics requires a clear understanding of ‘output variables’ be-
cause they form the basis for extracting the program slices on which the calculations depend. This
report includes a survey of the variation in the definition of output variables used by different re-
search groups and suggests standard terms of reference for these variables. Our study identifies four
elements which are combined in the definition of output variables. These are the function return
value, modified global variables, modified reference parameters and variables printed or otherwise
output by the module.

Second, slice-based metric calculations are explained with the aid of worked examples, to assist
newcomers to the field. Step-by-step calculations of slice-based cohesion and coupling metrics
based on the vertices output by the static analysis tool CodeSurfer R© are presented and compared
with line-based calculations.

1 Introduction

There are various forms of static source code analysis which are aimed at improving software quality.
Examples include finding security vulnerabilities [4], bug detection [8, 18, 40] and locating regions
of code which may benefit from reengineering [7, 23]. The reduction of code complexity is another
area which can be aided by static source code analysis. Yourdon and Constantine [39] suggest that
increasing modularisation of program code decreases its complexity. Static analysis techniques can
provide code quality metrics to aid code modularisation both by highlighting complex sections of code
and by quantifying improvements.

Two measures of a program’s modularity are cohesion and coupling. The cohesion of a module is a
measure of the degree to which the functions that the module performs are related. Ideally a module will
contain a single function or a very closely related set of functions. Cohesion is described by Page-Jones
as “the measure of the strength of functional relatedness of the elements within a module.” [32, Chap.6].

Stevens et al. [35] proposed a set of seven qualitative levels of cohesion based on the associations
between processing elements in a module; an element being defined as a set of statements in the module
performing one task. These levels, in descending order of cohesion strength, are functional, sequential,
communicational, procedural, temporal, logical and coincidental. Stevens et al. consider the cohesion
levels to be non-linear in scale; functional cohesion is deemed to be much stronger than the other levels,
with coincidental and logical cohesion very much weaker than the intermediate levels.

Coupling is a measure of the degree of interdependence between the modules in a system. Page-
Jones [32] suggests that faults and changes are less likely to be propagated through the program by
the smaller number of connections which are associated with low coupling between modules. The
recommended best practice is for a system to have high cohesion and low coupling, reducing errors [34]
and simplifying maintenance and understanding [16]. Ideally, highly cohesive code will not be strongly
coupled and vice versa [39].

3

Examples of traditional measures of coupling are Henry and Kafura’s complexity metric [15] or the
Shepperd complexity measure [19], both of which are based on the information flow between modules.
Information flow is measured in terms of the variables defined in one module and used in another.

In 1979 Mark Weiser [37] introduced the concept of program slicing, taking the way that program-
mers debug their code as his inspiration. His idea was to remove any lines of code not affecting the
values computed at the point under consideration, as long as the removal did not impede the running of
the program. Slicing algorithms act on intermediate representations of the program. Automatic slicing
tools parse the program code to create one or more of these representations, such as control flow graphs
(CFG), abstract syntax trees (AST) or system dependence graph (SDG). Weiser sliced using data flow
analysis; modern tools generally trace the transitive control and data dependences by traversal of the
SDG.

A slice is taken in respect of a variable or set of variables at a point in the program. The simplest
form of slicing is static slicing; this includes all statements affecting or affected by the variable(s) at
the point of interest, for all possible inputs to the program. There are other types of slicing which aim
to reduce the size of slices; for example, dynamic slicing considers a particular set of input values,
which may reduce the slice, as branches of the program not executed when using these inputs will be
excluded; amorphous slicing reduces the slice by the use of transformations to the program. For each
of these, in simple terms, backward slicing will result in the set of program statements, or points, which
affect the calculation of the value of the variable at the point of interest. Forward slicing finds the set of
program statements, or points, which will be affected by computation at the point of interest. See, for
example, [2, 6, 9, 13, 36] for more detailed information on slicing.

Program slices offer a basis for measuring module cohesion. The slices used in calculating slice-
based cohesion metrics are derived from the individual tasks performed by a module. Metrics based
on these slices provide a means of quantifying the interaction between the computational strands of the
module, and thus its cohesion. Meyers and Binkley report that their longitudinal study of slice-based
cohesion metrics indicates that the metrics quantify overall code quality [29, p.2].

A slice-based metric also offers a finer-grained measure for coupling than traditional measures such
as Henry and Kafura’s. The former measures how much of the code in an interprocedural slice is external
to the module, while the latter considers only whether a connection exists between modules [14].

The tasks of a module are represented by the variables changed or output in its execution. The
slices used in the calculation of slice-based metrics are taken in respect of these variables at the last
point of change, or at the point of output. The variables on which the slices are based are known as
“output variables”. However, there appears to be no standard definition or use of these variables in slice-
based metrics and their description by different research groups varies. Section 2 explores this lack of
consistency and offers a suggestion for standardising references to, and use of, output variables.

The rest of the document is in two main parts: Section 3 focuses on slice-based cohesion metrics
and Section 4 on slice-based coupling metrics. Each of these sections has two main purposes. The first
is to provide a background to the development of the metrics, and introduce the methods for calculating
slice-based metrics proposed by different research groups. The second is to give a clear explanation of
the metric formulae and clarify their calculation with worked examples based on a sample program.

This report covers two aspects of slice-based metric calculation not found elsewhere in the litera-
ture. First, output variables are explained, their use explored and standard reference terms and usage
proposed. Second, slice-based metric calculations are explained with the aid of worked examples to
assist newcomers to the field.

Note that the words ‘module’ and ‘procedure’ are used interchangably in this document.

4

2 Output variables

Research into slice-based metrics requires a clear understanding of ‘output variables’, sometimes
referred to as ‘principal variables’. These variables form the basis for extracting the program slices nec-
essary for the calculation of slice-based metrics. Unfortunately, existing definitions lack consistency; the
results of an investigation aiming to establish a uniform point of reference is presented in this section.
Section 2.1 shows the literature selected for analysis. The elements which are combined to describe out-
put variables are discussed in Section 2.2, followed by an analysis of their use in Section 2.3. Section 2.4
summarises.

2.1 Sources

To survey the definitions of ‘output variables’ in the literature on program slicing, the following
strategy was used to select publications on the subject. A search was made of the IEEE, ACM and
Google Scholar bibliographic databases using the terms “output variables”, “principal variables”, “pro-
gram slicing” and “slice-based metrics” separately. The papers resulting from this search were used as
the basis for further search. This included papers referenced by and referencing the selected papers and
those written by authors of the selected papers. The results were filtered to remove those papers not
describing output variables and those where the author had duplicated a description found in one of their
previous papers. This strategy resulted in the selection of the eleven publications shown in Table 1.

Table 1: Paper index numbers (P-n) used to refer to the reviewed papers in sections 2.2 and 2.3

P-n Author Date Title Ref. Page

P-1 Ott and Thuss 1989 The relationship between slices and module cohesion. [30] 201
P-2 Lakhotia 1993 Rule-based approach to computing module cohesion. [22] 37
P-3 Bieman and Ott 1994 Measuring functional cohesion [1] 645
P-4 Karstu 1994 An examination of the behaviour of slice based cohesion measures. [20] 7-8
P-5 Harman et al. 1995 Cohesion metrics. [11] 3
P-6 Harman 1997 Cleaving together - program cohesion with slices [10] 36
P-7 Meyers and Binkley 2004 A longitudinal and comparative study of slice-based metrics [27] 2
P-8 Meyers and Binkley 2004 Slice-based cohesion metrics and software intervention. [29] 257
P-9 Pan et al. 2005 Bug classification using slicing metrics. [33] 32

P-10 Meyers and Binkley 2007 An empirical study of slice-based cohesionand coupling metrics. [28] 5
P-11 Binkley et al. 2007 Empirical study of optimization techniques for massive slicing. [3] 3

2.2 The elements

Consideration of the eleven selected publications and of similar work by these authors leads us to
identify four ‘elements’ underlying the definitions found in these papers. These are: the return value of
a function; global variables modified by the function; parameters passed by reference to, and modified
by, a function; and any variables printed, written to file, or otherwise output to the external environment.

5

Table 2 provides short code examples for each of these different elements. In each example the
output variable is shown in bold text and an intraprocedural backward slice on the output variable will
include all of the statements in the function. Except in the print example, the variable ‘total’, external to
the function, is the one modified. In the print example, the local variable ‘sum’ is output to the external
environment by printing.

F. Function return value.

In the example (Table 2, column 1), the value of the variable ‘sum’ is returned to the calling func-
tion; this is the function return value.

G. Modified global variable.

Variables with scope outside a function which are modified by that function are considered to be
modified global variables. The example given (Table 2, column 2), shows the variable ‘total’,
defined outside of the function, being changed in the function add.

P. Printed output.

The third column in Table 2 provides an example of a printed variable. In this case the value of
the variable ‘sum’ is printed to the standard output. This category of output variable also contains,
for example, variables written to file, variables controlling graphical output and variables output to
control an external device.

R. Reference parameter.

Reference parameters are those whose address is passed to a function. The contents of this address
may then be modified by the function, as shown in columns 4 and 5 of Table 2. This is useful
where a function alters more than one value, or to save passing large data objects, such as arrays, as
parameters. In column 4 the pointer ‘ptr’ is set to the value of the address of the variable ‘total’. The
pointer is passed to the function, where the value ‘*ptr’ means the contents of the address held in
‘ptr’, thus ‘total’ is modified. In the last column in Table 2, the address of ‘total’ is passed directly;
this facility is available in C++ but not in C.

2.3 Analysis

There is a seven-year gap between earlier (1-6) and later (7-10) papers. This is partly because
relevant publications in the intervening years were by authors whose papers are already included and
whose definitions are similar in meaning (for example, Harman et al. [12], which echoes Harman [10])
and partly due to renewed interest in the study of slice-based metrics enabled by the use of CodeSurfer R©,
a mature commercial tool for the analysis of C or C++ programs, based on their dependence graphs [5].

Earlier papers (1-6) do not mention function returns specifically, but some allude to it obliquely,
for example, Harman, paper 4, “this value must be visible outside the function” [10] or Ott and Thuss,
paper 1, “If slices are obtained for all of the module’s outputs, their union will completely encompass
the module (unless it contains unused or “dead” code).” [30] Later papers (7-10) all use clear terms such
as “a function’s return value”.

Papers 1, 3, 4, 5 and 6 include ‘printed’ output variables in their descriptions, for example, Karstu,
paper 4, “also included in outputs would be any direct output from the module to files or devices” [20] or
Bieman and Ott, paper 3, “any single value explicitly output to a file (or user output)” [1]. Later papers,

6

Table 2: Sample C code to sum the n elements of an array, showing examples of each of the ‘elements’

F. Function return G. Modified globals. P. Printed or similar. R. Reference parameter 1. R. Reference parameter 2.

. . . int total = 0;

int main() int main() int main() int main() int main()
.
. int *ptr = & total; . . .
total = add (sizes, n); add (sizes, n); add (sizes, n); add (sizes, n, ptr); add (sizes, n, total);
.

int add (int sizes[], int n) int add (int sizes[], int n) int add (int sizes[], int n) int add (int sizes[], int add (int sizes[],
int n, int *ptr) int n, int &total)

{ { { { {
int sum = 0; int sum = 0; int sum = 0;
int j; int j; int j; int j; int j;
for (j = 0; j < n; j++) for (j = 0; j < n; j++) for (j = 0; j < n; j++) for (j = 0; j < n; j++) for (j = 0; j < n; j++)
{ { { { {

sum = sum + sizes[j]; total = total + sizes[j]; sum = sum + sizes[j]; sum = sum + sizes[j]; total = total + sizes[j];
} } } } }
return sum; printf (”total=%d”, sum); *ptr = *ptr + sum;
} } } } }

7 and 8, include the printed variables as examples, but paper 10 explains that these are not included in
the calculation of the metrics.

Global variables feature in all of the papers except for paper 7, however the other Meyers and
Binkley papers, 8 and 10, do include the words “those globals modified by the function” [28, 29]. The
descriptions for this are generally straightforward, for example, Bieman and Ott, paper 3, “an assignment
to a global variable” [1].

Direct mention is made of reference parameters as output variables in papers 1, 2, 5 and 6, while
Karstu, paper 4, says “all data tokens that will be accessible from the outside of the module that have
been modified by the module: e.g. variable parameters, global variables” [20]. Of the later papers, only
9 and 11 mention reference parameters.

Table 3 summarises the elements found in each of the papers. Each row represents one paper; if the
definition given in a paper includes an element, the corresponding column in the table is marked. The
last column, combination, gives a new number to each different combination of the elements found. The
four elements are used in seven different combinations, three of which are repeated.

Papers 1, 2, 3 and 5 are theoretical, paper 6 is a magazine article and 4, 7, 8, 9 and 10 are based
on empirical studies; of these, all except for the work reported in paper 4 use CodeSurfer as the analysis
tool.

There are many functions provided by CodeSurfer to aid the analysis process, one of which allows
the extraction of both the function return values and the global variables modified by the function. The
comparative ease of isolating these two output variable types offers a simple explanation for the choice
of output variables by both the research groups using this tool. The set of modified global variables
generated by the analysis process will include “generated formal parameters representing a set of globals
modified in a function immediately or transitively” [5]. Therefore parameters passed by reference will, if
modified, be in the set returned by the CodeSurfer function used to extract function returns and modified
globals.

Ott and Thuss [30], Karstu [20] and Harman [10] offer a definition which includes all of the iden-
tified elements. Of these, only Karstu performed a practical study, made possible by the slicing tools

7

Table 3: Combinations of elements described in the papers.
Paper Biblio- Function Global Variables Reference Comb-

Reference graphy Author Date return variables printed parameters ination
P-n ref. F G P R No.

P-1 [30] Ott and Thuss 1989 F G P R 1
P-2 [22] Lakhotia 1993 G R 2
P-3 [1] Bieman and Ott 1994 F G P 3
P-4 [20] Karstu 1994 F G P R 1
P-5 [11] Harman et al. 1995 G P R 4
P-6 [10] Harman 1997 F G P R 1
P-7 [27] Meyers and Binkley 2004 F P 5*
P-8 [29] Meyers and Binkley 2004 F G P 3*
P-9 [33] Pan et al. 2005 F G R 6
P-10 [28] Meyers and Binkley 2007 F G 7
P-11 [3] Binkley et al. 2007 G P R 4

∗Paper 10 offers clarification of the work in papers 7 and 8, explaining that, in spite of the examples given, the studies did not encompass
those variables printed or similarly output.

he developed, however these have certain limitations [28], for example “pointers are treated as regular
variables” [20, p.17].

It could be argued that the inclusive definition of output variables would provide a sound basis
for further work involving slice-based metrics, as this represents the intention of Ott and Thuss [30] to
analyse all of the module except for ‘dead’ code. By using CodeSurfer, it is possible to include three
of the four elements with comparative ease; however the printed, or similarly output, variables are more
difficult to capture.

Most examples in the slicing literature have been with programs written in C/C++. CodeSurfer
also works with C/C++ programs. Of interest is whether this analysis would potentially transfer to other
programming languages or paradigms. One difficulty here is that terminology is not fixed. For example,
Java only permits ‘pass by value’, but as every reference to an object is through a pointer, the effect
is similar to C++’s use of a reference parameter; objects passed as references to Java methods may be
directly modified. This situation holds for other languages permitting side-effects, such as Lisp, Python,
Ruby and Scheme; these languages support all four of the elements. Languages from other paradigms,
such as functional programming, do not offer all the elements; for example Haskell provides function
returns [F] and printed variables [P] only. However, these elements appear to provide a useful structure
for comparing the definitions of output variables between projects and across languages.

2.4 Summary

This study shows that the definition of an output variable could be broken down into a set of four
elements: function return value, modified global variable, ‘printed’ variable, and modified reference
parameter. The authors of eleven previous papers have defined output variables in different ways. This
analysis shows that each paper’s definition can be captured in terms of four elements. The different
combinations of the elements presented in the papers as definitions for output variables are tabulated.

There does not appear to be a standard to determine which elements, if not all, should be used in a
definition of ‘output variables.’ Certainly, the available tools for obtaining these variables affect which

8

definition is convenient at any time. However, what is clear is that for source-code analysis to offer
meaningful lessons between and across projects, it is important to define clearly which of the elements
are being used as the output variables.

The effect of the choice of output variables is partly dictated by the nature of the program being
analysed. For example, the slice-based metrics for a program without global variables will be unaffected
if the ‘global’ element is excluded from the set of variables used for slicing. However, it is difficult to
imagine a program which does not have some output stream; therefore the decision about exclusion of
the variables ‘printed’, or otherwise written to the external environment, is more important.

9

3 Slice-based cohesion metrics

There are two parts to this section. Section 3.1 traces the development of slice-based cohesion
metrics and details the formulae used in their calculation. Worked examples, illustrating the calculation
of slice-based cohesion metrics for a small program, follow in Section 3.2.

3.1 Background and Development

This section traces the history of the development of slice-based cohesion metrics. As part of his
work on slicing as a debugging tool, Weiser [38] suggested that metrics based on program slices might
bear a relationship to program complexity; his proposals are given in Section 3.1.1. Weiser’s ideas were
investigated and developed by Longworth in his Master’s thesis [24], for which his advisor was Linda
Ott; details of this work are in Section 3.1.2. Subsequently, Ott worked with Thuss [31] to refine the
set of metrics; their studies and revised set of metrics are described in Section 3.1.3. Overlap, one of
the measures, was redefined by each of these sets of researchers and this is discussed in Section 3.1.4.
A description of two alternative slice-based cohesion measures, adhesion, proposed by Bieman and Ott,
and statement level cohesion, by Krinke are given in Sections 3.1.5 and 3.1.6 respectively. Meyers and
Binkley’s empirical studies of slice-based cohesion metrics [26, 27, 29, 28] are outlined in Section 3.1.7.
The metrics used in these studies and most used in research since the mid-1990’s are those formulated
by Ott and Thuss; these are discussed in Section 3.1.8 and the formulae presented in Table 6.

3.1.1 Weiser

In 1981 Mark Weiser introduced the concept of program slicing, taking his inspiration from the
way in which programmers debug their code. His idea was to remove any lines of code not affecting the
values computed at the point under consideration, while leaving an executable program.

While considering uses for slicing other than an aid to debugging, Weiser proposed five “slicing-
based program metrics” of complexity, based on the relationships between module size, slice sizes and
the intersection of these slices, suggesting that they “may be particularly meaningful, compared to such
measures as McCabe’s or Halstead’s” [38, p.447]. The measures he described were coverage, overlap,
clustering, parallelism and tightness. Weiser’s descriptions of his proposed slicing-based metrics:

“Coverage compares the length of slices to the length of the entire program. Coverage might be expressed as the
ratio of mean slice length to program length. A low coverage value, indicating a long program with
many short slices, may indicate a program which has several distinct conceptual purposes.

Overlap is a measure of how many statements in a slice are found only in that slice. This could be computed as
the mean of the ratios of non-unique to unique statements in each slice. A high overlap might indicate
very interdependent code.

Clustering reveals the degree to which slices are reflected in the original code layout. It could be expressed as
the mean of the ratio of statements formerly adjacent to total statements in each slice. A low cluster
value indicates slices intertwined like spaghetti, while a high cluster value indicates slices physically
reflected in the code by statement grouping.

Parallelism is the number of slices which have few statements in common. Parallelism could be computed as
the number of slices which have a pair wise overlap less than a certain threshold. A high degree of
parallelism would suggest that assigning a processor to execute each slice in parallel could give a
significant program speed-up.

10

Tightness measures the number of statements which are in every slice, expressed as a ratio over the total program
length. The presence of relatively high tightness might indicate that all the slices in a subroutine really
belonged together because they all shared certain activities.” [38, p.447]

A summary of the formulae for Weiser’s three metrics related to cohesion: coverage, overlap and
tightness is shown in Table 4.

Table 4: Weiser’s [38] coverage, overlap and tightness formulae

Metric Ratio

Coverage Mean of slice size
module size

Overlap Mean of unique statements in slice
non−unique statements in slice

Tightness slice intersection size
module size

3.1.2 Longworth

In his master’s thesis, Longworth [24] investigated Weiser’s proposed complexity metrics and
whether they provided a useful measure of cohesion within a program. The two ideas of cohesion
and complexity are linked: cohesion levels are based on the relationship between processes in a module
and this relationship is an element of the complexity of the system.

He pointed out that parallelism has a different nature to the other metrics, in that it is not related to
either complexity or to modular cohesion. He also discusses the weakness of parallelism as a guide to
the usefulness of parallel processing because the type of statements which can be decomposed are not
reflected by the measure. Clustering is disregarded as a measure of cohesion as ”an aspect of spatial
arrangement only” [24, p.33] rather than a measure of functional relatedness.

Longworth was therefore interested in discovering whether coverage, overlap1 and tightness give an
indication of cohesion. He initially studied a set of thirteen programs, selected from literature about data
flow patterns. These programs were necessarily small (14-86 lines) to allow slicing ‘by hand’. Weiser’s
five slice-based metrics were calculated for each of the programs. These metrics and the cohesion levels
that the programs illustrated were compared, leading Longworth to conclude that coverage provides a
good indicator for either high or low levels of cohesion, while overlap and tightness can be considered to
confirm the level suggested by coverage. To explore these relationships further, Longworth conducted
two more studies. One used different versions of two other programs, varying the level of code depen-
dency in each. In the other, complex programs were decomposed into stages and analysed; these studies
supported his initial findings.

3.1.3 Ott and Thuss

The metrics proposed by Weiser and investigated by Longworth were further interpreted and ex-
tended by Ott and Thuss [31]. Essentially, Weiser sliced on every variable where it occurred in a proce-
dure and Longworth sliced on every variable once, at the end point of the procedure. Ott and Thuss base

1note that in his study, Longworth redefined overlap as the mean of the ratios of non-unique statements to slice length

11

their metrics only on slices taken for each of the output variables, which are variables selected to capture
the behaviours of the module, details of which may be found in Section 2. They introduce an amended
method for slicing, the metric slice, to remove the inconsistencies found by Longworth between the
metrics and cohesion levels. A metric slice is a backward slice computed on a variable from the end
point of the procedure, combined with forward slices computed from definitions of the variable in the
backward slice.

Ott and Thuss added minimum and maximum coverage to their suite of metrics, the reason for
this is not stated in their paper, but may be because coverage was shown by Longworth to be most
related to the cohesion levels that he used. MinCoverage is the ratio of the size of the smallest slice,
and MaxCoverage the largest slice, to the size of the module. They also chose to exclude clustering and
parallelism from their suite of metrics. Their measurement of overlap differs from both Weiser’s and
Longworth’s, in that the ratio used is that of the slice intersection to slice size. Ott and Thuss’s metrics
are given in Table 6 on page 15.

3.1.4 The evolution of overlap

The evolution of the definition of overlap, shown in Table 5, brings differences to the outcome of
the calculation of this metric. Weiser’s proposal may result in a value greater than one: for example,
consider a module with two slices, one of four statements and one of six. If three of these statements are
shared, then overlap will be the mean of 3

1 and 3
3 = 2. Weiser’s overlap is also undefined if there are no

unique statements in the slice. The other metrics fall in the range 0-1, as does overlap when calculated
by the amended methods suggested by Longworth or by Ott and Thuss. The Ott and Thuss variation will
generally result in a smaller value than Longworth’s method, as the number of statements shared by all
slices will usually be smaller than the number of non-unique statements, unless there are fewer than three
output variables. It can be noted that Bieman and Ott’s strong functional adhesion (see Section 3.1.5)
has a similar nature to the Ott and Thuss overlap because both are computed using elements (tokens
or vertices) in all of the slices; likewise weak functional adhesion is similar to Longworth’s overlap, as
each uses elements which are shared by at least two slices.

Table 5: The evolution of overlap: in each case, overlap is the mean of the ratios described

Author Numerator Denominator

Weiser non-unique statements unique statements

Longworth non-unique statements slice length

Ott and Thuss slice intersection slice length

3.1.5 Bieman and Ott

Also of interest is a slice-based method for measuring functional cohesion suggested by Bieman
and Ott [1]. The basis for these calculations is the presence in the slices of data tokens rather than lines
of code or vertices. Data tokens are the definitions of and references to variables and constants. Not only
are the data tokens which are common to all the slices in the module (superglue tokens) considered, but

12

also any tokens which are shared by more than one slice (glue tokens). The strong functional cohesion
metric is defined as the number of superglue tokens as a proportion of the total tokens for the module.
Similarly, the weak functional cohesion measure is the number of glue tokens (including superglue
tokens) as a proportion of the total tokens. The adhesiveness of a glue token can be measured by the
number of slices in which it appears as a proportion of the total number of slices, while non-glue tokens,
that is a token appearing in only one slice, have zero adhesiveness. The adhesiveness of a module is then
the mean adhesiveness for all the data tokens in the module. A worked example is shown in Table 13,
page 22. This method appears not to have been investigated in recent studies, though Harman et al. [11]
draw parallels between this method and their investigation into the use of leaves, nodes or tokens as the
basis for slice-based metrics calculations.

3.1.6 Krinke

Krinke [21] suggests two methods for calculating cohesion measures at statement level. One is a
slice-based metric, in which the cohesion for a statement is the sum of the sizes of the slices in which
the statement appears as a proportion of the sum of the sizes of all slices in the module. The other is a
chop-based measure; a chop consists of the transitive dependences, or the influence of one set of points
on another, between a source and a target point in a program. Chops are taken between each of the input
variables (procedure arguments and global variables) and each output variable for the procedure. The
cohesion for a statement is the number of chops in which the statement appears as a proportion of the
total number of chops for the module, which is the product of the number of input variables and the
number of output variables.

3.1.7 Meyers and Binkley

The introduction of analysis tools such as CodeSurfer [5], which enable automated slicing, has
allowed more wide-ranging research into slice-based cohesion metrics. Meyers and Binkley undertook
the broadest study of slice-based cohesion metrics [28, 29], which researches baseline metric values,
their relationship with each other, with size-based metrics, and with code quality. The metrics they
calculated were those detailed by Ott and Thuss, with the addition of Weiser’s parallelism. However, the
metric slice used by Ott and Thuss is replaced by the two-pass algorithm of Horwitz et al. [17] in these
studies, because metric slices are “likely to be larger than a traditional slice with a corresponding drop
in usefulness” [29, p.9].

Meyers and Binkley analysed 63 programs covering a wide range of sources, applications and
styles, to establish baseline metric values. They performed longitudinal analysis of two programs show-
ing that the metrics correspond to code quality. When comparing the metric values with each other,
they found a very strong correlation between tightness and minCoverage and strong correlation between
minCoverage and overlap; tightness and overlap; maxCoverage and coverage. These correlations sug-
gest that it may not be necessary to calculate all of the metrics to characterise the code.The metrics were
also compared with the number of lines of code in the modules, which “show that slice-based metrics
provide a unique view of a program and are not a proxy for size-based metrics” [28, p.3]

3.1.8 Formulae

The formulae for slice-based cohesion metrics shown in Table 6, page 15, are those proposed by
Ott and Thuss and subsequently used in research by, for example, Meyers and Binkley [29], Harman

13

et al. [11] and Majumdar et al. [25]. While Weiser based his ideas on the number of lines, Ott and
Thuss’ calculations are based on variable referent executable statements (VRES). Since the advent of
slicing tools, such as CodeSurfer, based on program dependency graphs, it has become general practice
to calculate these values in terms of the vertices of the graph, though a study by Harman et al [11]
compared the metrics using these two bases with those based on tokens or distinct variables or on the
leaves or the nodes in the AST (abstract syntax tree). Their analysis of two short (5 line) sample functions
providing an example of support for the idea of using leaves, nodes or tokens. They also suggest that the
conservative nature of slicing algorithms will produce over-large values for the cohesion measures.

Although the cohesion metrics of Ott and Thuss are the most commonly used in research projects,
it is interesting to note their variation and continuing development. For example, the bug classification
study by Pan et al. [33] introduced a different set of slice-based metrics broadly based on the ideas
behind “conventional” metrics. These aim to provide similar information to conventional cohesion and
coupling metrics at a finer-grained level, being based on the vertices in a slice rather than lines of code.
For example, the “conventional” metric CountInput, which is the number of inputs to a function, is
echoed by their “globalInput” measure which counts all inputs to a function, both local and global.

14

Table 6: Slice-based cohesion metrics

Terms

Name Notation Meaning

Module M Unit of code under analysis, for example, a procedure.
Module variables VM All the variables in the module.
Output variables VO The output variables in the module. VO ⊆ VM.
Output variable (i) vi One of the output variables. vi ∈ VO.
Slice on vi S Li A slice on output variable vi.
Slice intersection S Lint Intersection of slices for each of the output variables.

⋂
i S Li.

Formulae

Metric Formula Description Meaning

Coverage(M)
Σ
|Vo|
i=1
|S Li|
|M|

|Vo|
sum o f slice sizes

#(output variables)×module size Mean of the ratios of each slice

size to the size of the module.

MinCoverage(M)
mini|S Li|
|M|

minimum slice size
module size The ratio of the size of the

smallest slice to the module size.

MaxCoverage(M)
maxi|S Li|
|M|

maximum slice size
module size The ratio of the size of the

largest slice to the module size.

Overlap(M)
Σ
|Vo|
i=1
|S Lint |
|S Li|
|Vo|

Σi
intersection size

slice sizei
#(output variables) Mean of the ratios of intersection size

to the size of each slice in the module.

Tightness(M)
|S Lint|
|M|

size o f slice intersection
module size The ratio of the slice intersection

size to that of the module.

15

3.2 Worked examples

This section comprises an example program with worked examples based on the code. The program
on which the calculations are based is discussed in Section 3.2.1. The use of both lines of code and
vertices in calculating Ott and Thuss’s metrics are shown here; line-based calculations in Section 3.2.2
and vertex-based in Section 3.2.5. Weiser’s parallelism is discussed in Section 3.2.3 and Bieman and
Ott’s adhesion calculations given in Section 3.2.4. A discussion follows in Section 3.3.

3.2.1 Example program

The example program, shown in Table 12, page 21, calculates the slice-based metrics defined by
Ott and Thuss for a set of slice sizes, module size, slice intersection size and number of output variables.
There are three procedures, ‘main’, ‘calcMetrics’ and ‘overlap’. The five output variables are ‘tightness’,
‘coverage’, ‘min-coverage’, ‘max-coverage’ and ‘overlap’. Each variable is allocated a single letter key,
shown at the bottom of the table. These letters are used to mark the lines which appear in the backward
slice on the variable at the last point at which it occurs in the program. Line numbers are given as
plain numbers for the procedure ‘calcMetrics’, with the prefix ‘m’ for ‘main’ and the prefix ‘o’ for
‘calcOverlap’. To simplify the line-based calculations, lines containing only a brace have been ignored.

3.2.2 Line-based calculations

This section provides worked calculations of slice-based cohesion metrics for the example program
using lines of code as a measure. Table 7 on page 16, displays the information extracted from the
program which is required for the calculations. For each module, the information shown is: size, the
output variables and their location, the lines in the slice taken on the variable at that location, a count
of these lines, and the intersection of lines in all slices in the module. Table 8 on page 17 details the
calculations.

Table 7: Analysis of line-based intraprocedural slices

Module Slice taken Intersection
on at

name size output variable line lines in the slice total lines total

calcMetrics 20 tightness 16 {16, 11, 5, 1} 4
coverage 17 {17, 12, 10, 7, 6, 5, 4, 1} 8
min-coverage 18 {18, 14, 8, 7, 6, 2, 1} 7
max-coverage 19 {19, 15, 9, 7, 6, 3,1} 7
overlap 20 {20, 13, 5, 1} 4 {1} 1

calcOverlap 6 return value o6 †{o6, o5, o4, o3, o2, o1} 6 {o1-o6} 6

main 6 none 0 0
†on refers to line n in calcOverlap

16

Table 8: Line-based calculation of slice-based cohesion metrics

calcMetrics

Tightness =
size o f slice intersection

module size =
1
20 = 0.05

Coverage =
sum o f slice sizes

#(output variables)×module size =
30

5×20 = 0.30

Min-coverage =
minimum slice size

module size =
4
20 = 0.20

Max-coverage =
maximum slice size

module size =
8
20 = 0.40

Overlap =
Σi

intersection size
slice sizei

#(output variables) =

1
4 + 1

8 + 1
7 + 1

7 + 1
4

5

= 51
56 × 1

5 = 0.18

calcOverlap

Tightness =
size o f slice intersection

module size =
6
6 = 1

Coverage =
sum o f slice sizes

#(output variables)×module size =
6

1×6 = 1

Min-coverage =
minimum slice size

module size =
6
6 = 1

Max-coverage =
maximum slice size

module size =
6
6 = 1

Overlap =
Σi

intersection size
slice sizei

#(output variables) =

6
6
1 = 1

3.2.3 Parallelism, a line-based example

Parallelism is not stated as one metric value, but a series giving the number of slices having no
more than a given number of lines (or statements) in common with other slices; stated as parallelism
(M, τ), where M is the module and τ is the maximum number of lines (or statements) shared with
other slices. Table 9 shows the lines shared by more than one slice in the module calcMetrics in the
sample program. The slices on “tightness” and “overlap” have two lines in common with any other
slice (lines 1 and 5 in each case). The slice based on “coverage” and “minCoverage” have 1 line in
common with all the other slices, 1 line shared with 3 other slices and 2 lines shared with 2 others.
The slice based on “maxCoverage” has 1 line shared with all slices and 2 shared with 2 other slices.
Therefore parallelism (calcMetrics,1) = 0; parallelism (calcMetrics,2) = 2; parallelism (calcMetrics,3)
= 3; parallelism (calcMetrics,4) = 5.

17

Table 9: Lines of code common to more than one slice in the module calcMetrics, for parallelism
calculation

Line number
Slice based on 1 5 6 7 Total
coverage x x x x 4
min-coverage x x x x 4
overlap x x 2
tightness x x 2
max-coverage x x x 3

3.2.4 Bieman and Ott’s adhesion measure

As described in Section 3.1.5, Bieman and Ott’s cohesion measure, adhesion, is based on data
tokens. Data tokens are definitions of, and references to variables and constants. Any token appearing
in only one slice has zero adhesiveness, unless there is only one slice in the module, when it has a value
of one. Other tokens’ adhesiveness is calculated as the ratio of the number of slices in which the token
appears to the total number of slices. Calculation of the adhesion of the sample program modules is
shown in Table 13.

3.2.5 Vertex-based calculations

In this section, slice-based cohesion metrics based on vertices are calculated for the example pro-
gram. The information is obtained by use of a Scheme script with CodeSurfer. More information on the
vertices can be found in Table 17 on page 30. The layout is similar to that in Section 3.2.2 with Table 10
displaying the information required for calculations extracted from the program. For each module: size;
the output variables and their location; the vertices in the slice taken on the variable at that location; a
count of these vertices; and the intersection of vertices in all slices in the module. Table 11, page 19,
details the calculations and offers a comparison with line-based figures.

Table 10: Analysis of vertex-based intraprocedural slices

Module Slice taken Intersection
on at

name size output variable vertex vertices in the slice total vertices total

calcMetrics 55 tightness 51 {51,31,24,15,8,7,6,5,1} 9
coverage 49 {60,59,49,33,25,23,22,21,18,16,14,10,9,6,5,4,3,1} 18
min-coverage 47 {62,60,57,47,35,29,23,22,19,18,12,10,9,6,5,4,3,1} 18
max-coverage 45 {61,60,58,45,37,30,23,22,20,18,13,10,9,6,5,4,3,1} 18
overlap 43 {56,55,54,53,43,39,28,26,17,10,9,8,7,4,3,1} 16 {1} 1

calcOverlap 19 return value 18 {20,19,18,15,14,13,12,11,10,8,7,6,5,4,3,1} 16 {as slice} 16

main 19 none 0 0

18

Table 11: Vertex-based calculation of slice-based cohesion metrics, also showing the result of excluding
“system” verticesa and comparable line-based results.

calcMetrics Vertex based Exc.sysa Line based

Tightness =
size o f slice intersection

module size =
1

55 = 0.018 0.019 .05

Coverage =
sum o f slice sizes

#(output variables)×module size =
79

5×55 = 0.287 0.304 0.3

Min-coverage =
minimum slice size

module size =
9

55 = 0.164 0.173 0.2

Max-coverage =
maximum slice size

module size =
18
55 = 0.327 0.346 0.4

Overlap =

Σi
intersection size

slice sizei
#(output variables) =

1
9 + 1

18 + 1
18 + 1

18 + 1
16

5

= 49
144 × 1

5 = 0.068 0.068 0.18

calcOverlap

Tightness =
size o f slice intersection

module size =
16
19 = 0.842 1 1

Coverage =
sum o f slice sizes

#(output variables)×module size =
16

1×19 = 0.842 1 1

Min-coverage =
minimum slice size

module size =
16
19 = 0.842 1 1

Max-coverage =
maximum slice size

module size =
16
19 = 0.842 1 1

Overlap =

Σi
intersection size

slice sizei
#(output variables) =

16
16
1 = 1 1 1

aWhere “system” vertices, such as body, return and exit, are excluded, or the union of the vertices in the slices for the
module is used, the module lengths for calcMetrics and calcOverlap become 52 and 16 respectively.

19

3.3 Discussion: slice-based cohesion

This section traces the development of slice-based cohesion metrics, detailing not only the metrics
suggested by Weiser and developed by Longworth and Ott and Thuss, but also alternative metrics devised
by both Bieman and Ott, Krinke and Harman.

The worked examples provide illustration of slice-based cohesion metrics calculations for Weiser’s
parallelism, Bieman and Ott’s adhesion and Ott and Thuss’s five metrics. The latter are shown both in
line-based and vertex-based form. Line-based calculations are given for ease of understanding, vertex-
based calculations to show the result of using a slicing tool, which is the only feasible method of slicing
anything but ‘toy’ programs. It is possible to use CodeSurfer to provide the set of lines in which the
vertices in the slices occur, which, while cumbersome with version 1.9p7 of CodeSurfer, is simpler with
the newer version, 2.1p1.

As the module overlap has only one function, the expected value of each of the metrics is 1. Line-
based measures reflect this, but vertex-based measures do not, see Table 11, page 19. This is because
some of the vertices; for example, vertices 9, 16 and 17, the body, return and exit vertex respectively, see
Table 17, page 30; while included in the number of vertices, will not be included in any slice. Exclusion
of these vertices from the calculations will result in the more intuitive value of 1 for the metrics. There
are other vertex types, particularly those generated by CodeSurfer for internal use, such as auxiliary
vertices, which should also be considered for exclusion from metric calculations. An alternative, and
equivalent, method for calculating the metrics is to use the union of the vertices in the slices as the
“module size”. Regardless of the strategy chosen, comparisons between metric values calculated in the
same way will be meaningful.

Baseline levels of slice-based cohesion metrics calculated in vertices are provided by Meyers and
Binkley [29, 26, 27, 28], though it should be noted that these figures were obtained using CodeSurfer
version 1.6 and differ from those produced by a more up-to-date version of the tool. There are many
different ways to configure the build with a slicing tool; for example, library functions may be included
or excluded, pointer analysis may be handled in different ways or single static assignment form may be
invoked. This highlights the need to use the same method, tool, settings and script to produce comparable
data.

20

Table 12: Example code: calculation of slice-based cohesion metrics

Line ref. Code Slice label

#include <stdio.h>

void calcMetrics (int sizes[], int module, int slint, int vo);
double calcOverlap (int sizes[], int slint, int vo);

m1. int main()
{

m2. int sizes[6] = 12,6,8,8,10,6; c,o,n,x
m3. int module = 20; t,c
m4. int slint = 4; t,o
m5. int vo = 6; c,o

m6. calcMetrics (sizes, module, slint, vo); t,c,o,n,x
}

1. void calcMetrics (int sizes[], int module, int slint, int vo) t,c,o,n,x
{

2. double min = 99999.9; n
3. double max = 0.0; x
4. int sumslice = 0; c
5. double tightness, coverage, overlap; t,c,o
6. int i; n,x,c

7. for (int i = 0; i <vo; i++) n,x,c
{

8. if (sizes[i] <min) min = sizes[i]; n
9. if (sizes[i] >max) max = sizes[i]; x
10. sumslice = sumslice + sizes[i]; c

}

11. tightness = (float) slint / module; t
12. coverage = (float) sumslice / (vo × module); c
13. overlap = calcOverlap (sizes, slint, vo); o
14. min = min / module; n
15. max = max / module; x

16. printf (”tightness = %f \ n”, tightness); t
17. printf (”coverage = %f \ n”, coverage); c
18. printf (”min-coverage = %f \ n”, min); n
19. printf (”max-coverage = %f \ n”, max); x
20. printf (”overlap = %f \ n”, overlap); o

}

o1. double calcOverlap (int sizes[], int slint, int vo) o
{

o2. float total = 0.0; o
o3. int j; o
o4. for (j = 0; j <vo; j++) o

{
o5. total = total + (float) slint/sizes[j]; o

}
o6. return total/vo; o

}

Key: Line references: mn is line n in ‘main’, n is line n in ‘calcMetrics’ and on line n in ‘overlap’.

Slice labels mark lines included in the slice on the variable denoted by the following letters:
t tightness
c coverage
o overlap
n min-coverage
x max-coverage

21

Table 13: Bieman and Ott’s adhesion: every occurrence of a variable or constant definition or reference
is a data token. A token appearing in more than one slice has an adhesion value of the number of slices
it is in as a proportion of all the slices in the module; otherwise the value is zero, unless there is only one
slice, when it is one.

n vertex variable no.of slices adhesion n vertex variable no.of slices adhesion
1 3 sizes 4 0.8 33 28 overlap 1 0
2 4 sizes 4 0.8 34 29 min 1 0
3 5 module 4 0.8 35 29 min 1 0
4 6 module 4 0.8 36 29 module 1 0
5 7 slint 2 0.4 37 30 max 1 0
6 8 slint 2 0.4 38 30 max 1 0
7 9 vo 4 0.8 39 30 module 1 0
8 10 vo 4 0.8 40 43 overlap 1 0
9 12 min 1 0 41 45 max 1 0
10 13 max 1 0 42 47 min 1 0
11 14 sunslice 1 0 43 49 coverage 1 0
12 15 tightness 1 0 44 51 tightness 1 0
13 16 coverage 1 0 45 53 vo 1 0
14 17 overlap 1 0 46 54 slint 1 0
15 18 i 1 0 47 55 sizes 1 0
16 19 min 1 0 48 57 sizes 1 0
17 19 99999.9 1 0 49 57 i 1 0
18 20 max 3 0.6 50 57 min 1 0
19 20 0 1 0 51 58 sizes 1 0
20 21 sumslice 1 0 52 58 i 1 0
21 21 0max 1 0 53 58 max 1 0
22 22 i 3 0.6 54 59 sumslice 1 0
23 22 0 3 0.6 55 59 sumslice 1 0
24 23 i 3 0.6 56 59 sizes 1 0
25 23 vo 3 0.6 57 59 i 1 0
26 24 tightness 1 0 58 60 i 1 0
27 24 slint 1 0 59 61 max 1 0
28 24 module 1 0 60 61 sizes 3 0.6
29 25 coverage 1 0 61 61 i 1 0
30 25 sumslice 1 0 62 62 min 1 0
31 25 vo 1 0 63 62 sizes 1 0
32 25 module 1 0 64 62 i 1 0

subtotal 8.6 total 9.2

calcMetrics mean
adhesion 0.143

n vertex variable no.of slices adhesion n vertex variable no.of slices adhesion
1 3 sizes 1 1 12 14 vo 1 1
2 4 sizes 1 1 13 15 total 1 1
3 5 slint 1 1 14 15 vo 1 1
4 6 vo 1 1 15 16 total 1 1
5 7 vo 1 1 16 16 vo 1 1
6 8 total 1 1 17 19 total 1 1
7 10 j 1 1 18 19 total 1 1
8 11 0.0 1 1 19 19 slint 1 1
9 12 j 1 1 20 19 sizes 1 1
10 12 total 1 1 21 19 j 1 1
11 14 j 1 1 22 20 j 1 1

subtotal 11 total 22

calcOverlap mean
adhesion 1

22

4 Slice-based coupling metrics

This section explains slice-based coupling metrics from both a theoretical and a practical perspec-
tive. The formulae shown in the theoretical Section, 4.1.1, are based on those given in Harman et al [14].
The practical sections include the algorithm used in a Scheme implementation for calculating these met-
rics in Section 4.1.2. Worked examples are shown in Section 4.2, using the program code in Table 12,
page 21, with calculations based both on lines of code in Section 4.2.1 and on vertices in Section 4.2.2.
A discussion on slice-based coupling follows in Section 4.3.

4.1 Background

In 1995 Harman et al. designed a slice-based coupling metric as an alternative to Henry and Ka-
fura’s information flow. They suggest that basing the metric on slices “refine the idea of information
flow which has traditionally been associated with coupling measurement” [14, p.1]. While information
flow notes only the presence of flow between one function and another, slice-based measures provide
the number of nodes in a slice which are from another function, giving the notion of the “bandwidth”
of the coupling. The flow from one module to another is calculated in terms of the vertices in the slices
on each of the output variables in the module. Coupling between two modules is calculated from the
normalised values of the flow in each direction.

4.1.1 Definitions

Harman et al. define the flow between two modules f and g in a program p, containing both f and
g, (FF p

(f ,g)), as the relative amount of the body of f which contributes to the computation of the result(s)
of g.

The formula given is:

FF p
(f ,g) =

#
(
(

⋃
v∈p(g)

S S (p, [v], E(g)))|N(f)
)

N(f)

where:
SS(p,[v],E(g)) means the slice on program p with respect to a set of output variables [v] at the last line of the
module g
p(g) denotes the output (principal) variables of module g
N(f) denotes the number of nodes in module f

which, with reference to the example given, may be translated as:

1. Find the output variables for the function g.

2. Take full backward slices on each of these variables.

3. Form a set of vertices from the union of these slices.

4. Find the number of these vertices which are in the function f.

5. Find the total number of vertices in function f, (N(f))

23

6. FF p
(f ,g) is the result of step 4 divided by the result of step 5.

Introducing a new symbol N(f → g) to mean the number of vertices (nodes) in a module, f, which are
in the union of the slices on the output variables of the module g, and using Harman et al’s notation for
the total number of vertices in a function f, N(f), this can be stated as:

FF p
(f ,g) =

N(f → g)
N(f)

The coupling between two functions f and g, is then defined as2

Coupling(f,g) =

FF p
(f ,g) × N(f) + FF p

(g, f) × N(g)

N(f) + N(g)

Rewritten:
N(f→g)×N(f)

N(f) +
N(g→ f)×N(g)

N(g)

N(f) + N(g)

Cancelling:
N(f → g) + N(g→ f)

N(f) + N(g)

Meyers and Binkley [28] generalise this coupling between modules to give the coupling for a mod-
ule as the weighted average of its coupling with each of the other modules in the program, giving the
formula for coupling of a module f as:

Coupling (f) =
Σicoupling(f , gi) × |gi|

Σi|gi|
Or:

Σi
[N(f→gi)+N(gi→ f)]×N(gi)

N(f)+N(gi)

ΣiN(gi)

4.1.2 Implementation algorithm

1. Collect the sizes of each procedure, in (non-system generated) vertices.

2. Total these sizes.

3. For each procedure, calculate the coupling with each other procedure:

(a) Find the output variables for the procedure.
(b) Find the sets of vertices representing slices on these variables.
(c) Make a union of these sets.

2idea from [14], amended after discussion with Mark Harman, Sebastian Danicic (21.3.2007)

24

(d) Calculate the total number of vertices in this union from each procedure.
(e) Store for use in step 4

4. For each procedure, f, calculate coupling(f):

(a) Calculate the sum of lengths of other procedures by subtracting own length from total of all
lengths (step 2).

(b) Calculate the coupling between the function in question and each other function, (gi),
coupling(f , gi) x length gi.

(c) Sum these figures and divide by sum of the lengths of all gis. (step 4a)

25

4.2 Worked Examples

This section shows practical coupling calculations, both for lines of code and for vertices. Whereas
cohesion is calculated from intraprocedural elements of the slices, coupling is concerned with the ex-
traprocedural elements. These are detailed in Tables 14, for line-based calculations, and Table 15, for
vertices. The calculations are for the same code used for the cohesion calculations, that in Table 12,
page 21. Also included for information and to aid understanding of the vertices in a system dependence
graph is a list, in Table 17, showing detail of the vertices obtained by querying CodeSurfer.

4.2.1 Line-based calculations

Table 14 is in 2 parts; the top shows details for each slice in the modules, the lower shows sum-
maries by module. For each module (g), the size of the module and the output variables in the module
are listed on the left of the table. In the detail section, for each of the other modules (f), the lines from the
slice on the output variables which are in that module are shown in the column headed ‘Line numbers’.
The union of these lines is shown in the summary section, with the number of these lines for use in the
coupling calculations. The calculations follow the steps listed in section 4.1.1. This structure is repeated
for vertex-based calculations in Section 4.2.2.

Table 14: Modules, sizes, output variables and extraprocedural lines in the slices on those variables
Module (g) Module Output Module (f) Line numbers Total

size variables lines
calcMetrics 20 tightness main {m1, m3, m4, m6} (4)

coverage main {m1, m2, m3, m6} (4)
(detail) min-coverage main {m1, m2, m6} (3)

max-coverage main {m1, m2, m6} (3)
overlap main {m1, m2, m4, m5, m6} (5)

calcOverlap {o1, o2, o3, o4, o5, o6} (6)
calcMetrics 20 all output variables main {m1, m2, m3, m4, m5, m6} 6
(summary) calcOverlap {o1, o2, o3, o4, o5, o6} 6
calcOverlap 6 return value main {m1, m2, m4, m5, m6} 5

calcMetrics {1,5,13,20} 4
main 6 none calcMetrics none 0

calcOverlap 0

N(main→ calcMetrics) = 6
N(calcOverlap→ calcMetrics) = 6

N(main→ calcOverlap) = 5
N(calcMetrics→ calcOverlap) = 4

N(calcMetrics→ main) = 0
N(calcOverlap→ main) = 0

26

Coupling (main, calcMetrics) = 0 + 6 / 6 + 20 = 3/13 = 0.2308

Coupling (main, calcOverlap) = 0 + 5 / 6 + 6 = 5/12 = 0.4167

Coupling (calcMetrics, calcOverlap) = 6 + 4 / 20 + 6 = 5/13 = 0.3846

Coupling (main) = [(3/13) × 20 + (5/12) × 6] / (20 + 6)
= [60/13 + 30/12] / 26
= 185 / 676
= 0.274

Coupling (calcMetrics) = [(3/13) × 6 + (5/13) × 6] / (6 + 6)
= [18/6 + 30/13] / 12
= 23/52
= 0.442

Coupling (calcOverlap) = [(5/12) × 6 + (5/13) × 20] / (20 + 6)
= [30/12 + 100/13] / 26
= 265/676
= 0.392

27

4.2.2 Vertex-based calculations

This section follows the structure given in Section 4.2.1. Two additional tables are provided to clar-
ify the nature and content of the vertices, Tables 16 and 17. The first of these tables lists the id numbers
for non-system generated vertices for each module, with totals; the second gives more information about
each of these vertices. This information is obtained by querying CodeSurfer.

Table 15: Modules, sizes, output variables and extraprocedural vertices in slices
Module (g) Module Output Module (f) Vertex ids Total

size variables lines
calcMetrics 55 tightness main {1,5,6,9,10,12,19,20} (8)

coverage main {1,4,5,7,8,9,11,12,18,20,21} (11)
(detail) min-coverage main {1,4,5,7,8,9,11,12,18,20,21} (11)

max-coverage main {1,4,5,7,8,9,11,12,18,20,21} (11)
overlap main {1,4,6,7,8,10,11,12,18,19,21} (11)

calcOverlap {1,3,4,5,6,7,8,10,11,12,13,14,15,18,19,20} (16)
calcMetrics 55 all output variables main {1,4,5,6,7,8,9,10,11,12,18,19,20,21} 14
(summary) calcOverlap {1,3,4,5,6,7,8,10,11,12,13,14,15,18,19,20} 16
calcOverlap 19 return value main {1,4,6,7,8,10,11,12,18,19,21} 11

calcMetrics {1,3,4,7,8,9,10,26,53,54,55} 11
main 19 none calcMetrics none 0

calcOverlap 0

N(main→ calcMetrics) = 14
N(calcOverlap→ calcMetrics) = 16

N(main→ calcOverlap) = 11
N(calcMetrics→ calcOverlap) = 11

N(calcMetrics→ main) = 0
N(calcOverlap→ main) = 0

Coupling (main, calcMetrics) = 14 + 0 / 55 + 19 = 14/74 = 0.2895
Coupling (main, calcOverlap) = 11 + 0 / 19 + 19 = 11/38 = 0.1892
Coupling (calcMetrics, calcOverlap) = 11 + 16 / 55 + 19 = 27/74 = 0.3649

Coupling (main) = [(14/74) × 55 + (11/38) × 19] / (55 + 19)
= 0.215

Coupling (calcMetrics) = [(14/74) × 19 + (27/74) × 19] / (19 + 19)
= 0.277

Coupling (calcOverlap) = [(11/38) × 19 + (27/74) × 55] / (55 + 19)
= 0.346

28

Table 16: The CodeSurfer vertex id numbers for the vertices in each procedure
Total

Module Vertex numbers (excluding system generated vertices) vertices

main {1,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21} (19)
calcMetrics {1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,31,

33,35,37,39,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62} (55)
calcOverlap {1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20} (19)

4.3 Discussion: slice-based coupling metrics

Although the cohesion metrics have been well studied and documented, the coupling metrics have
received less attention; in fact, the authors were unaware of an error in the formula printed in the original
paper from the time of publication in 1995 until recently. Meyers and Binkley’s [28] longitudinal study
of slice-based coupling values for two programs, ‘gnugo’ and ‘barcode’ show that while intra-project
comparisons of slice-based coupling metrics can provide information about the design of a program,
inter-project comparisons may be of less use due to the difference in design styles between projects.

5 Summary

This document has three main purposes. First, it provides an analysis of the output, or principal,
variables which are used as the basis for computing slices. Second, it presents an explanation of slice-
based cohesion and coupling metrics and their development. Last, the calculation of slice-based metrics
is explained using step-by-step worked examples based on a small sample program.

Our study shows there to be four elements which are combined in the definition of output vari-
ables. These are the function return value, modified global variables, modified reference parameters and
variables printed or otherwise output by the module.

The development of slice-based cohesion metrics by different researchers is traced and the ideas
for slice-based coupling metrics are introduced. To clarify the calculation of these metrics, worked
examples of each metric is shown, based both on lines of code and on vertices.

This report is a collection of information and explanations aiming to be an introductory guide to
slice-based metrics and their calculation.

29

Table 17: Description of vertices, from CodeSurfer’s analysis of the program. This table shows the
id and kind allocated to the vertices, together with the characters from the source code related to each
vertex.

vertex vertex vertex vertex
id kind characters id kind characters

main calcMetrics

1 entry main() 1 entry calcMetrics()
3 body main() 3 formal-in int sizes[]
4 declaration int sizes[6] 4 declaration int sizes[]
5 declaration int module 5 formal-in int module
6 declaration int slint 6 declaration int module
7 declaration int vo 7 formal-in int slint
8 expression sizes[6] = 12,6,8,8,10,6 8 declaration int slint
9 expression module = 20 9 formal-in int vo
10 expression slint = 4 10 declaration int vo
11 expression vo = 6 11 body calcMetrics()
12 call-site calcMetrics() 12 declaration double min
13 expression j = 0 13 declaration double max
14 expression } 14 declaration int sumslice
15 return } 15 declaration double tightness
16 exit } 16 declaration double coverage
17 formal-out main() 17 declaration double overlap
18 actual-in vo 18 declaration int i
19 actual-in slint 19 expression min = 99999.9
20 actual-in module 20 expression max = 0.0
21 actual-in sizes 21 expression sumslice = 0

22 expression i = 0
23 control-point for (i <vo
24 expression tightness = (float)

slint / module
25 expression coverage = (float)

sumslice / (vo ∗ module)
26 call-site calcOverlap()
28 expression overlap = calcOverlap ()

calcOverlap 29 expression min = min / module
30 expression max = max / module

1 entry calcOverlap() 31 call-site printf ()
3 formal in int sizes[] 33 call-site printf ()
4 declaration int sizes[] 35 call-site printf ()
5 formal in int slint 37 call-site printf ()
6 declaration int slint 39 call-site printf ()
7 formal in int vo 41 return }
8 declaration int vo 42 exit }
9 body calcOverlap() 43 actual-in overlap
10 declaration double total 44 actual-in “overlap = % f \n ”
11 declaration int j 45 actual-in max
12 expression total = 0.0 46 actual-in “max-coverage = % f \n ”
14 control-point for (j <vo 47 actual-in min
15 expression return total / vo 48 actual-in “min-coverage = % f \n ”
16 return return total / vo 49 actual-in coverage
17 exit } 50 actual-in “coverage = % f \n ”
18 formal-out calcOverlap() 51 actual-in tightness
19 expression total = total + 52 actual-in “tightness = % f \n ”

(float) slint / sizes[j] 53 actual-in vo
20 expression j++ 54 actual-in slint

55 actual-in sizes
56 actual-out calcOverlap ()
57 control-point if (sizes[i] <min)
58 control-point if (sizes[i] >max)
59 expression sumslice =

sumslice + sizes[i]
60 expression i++

61 expression max = sizes[i]
62 expression min = sizes[i]

30

References

[1] J. M. Bieman and L. M. Ott. Measuring functional cohesion, 0098-5589. Software Engineering, IEEE
Transactions on, 20(8):644–657, 1994.

[2] D. Binkley and K. Gallagher. Program slicing. Advances in Computers, 43:1–50, 1996.

[3] D. Binkley, M. Harman, and J. Krinke. Empirical study of optimization techniques for massive slicing. ACM
Trans. Program. Lang. Syst., 30(1):3, 2007.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static
analyzer for large safety-critical software. In Proceedings of the ACM SIGPLAN 2003 Conference on Pro-
gramming Language Design and Implementation (PLDI’03), pages 196–207, San Diego, California, USA,
June 7–14 2003. ACM Press.

[5] CodeSurfer R©. Grammatech Inc. http://www.grammatech.com/products/codesurfer.

[6] A. de Lucia. Program slicing: Methods and applications. In First IEEE International Workshop on Source
Code Analysis and Manipulation, pages 142–149, Florence, Italy, Nov. 2001. IEEE Computer Society Press,
Los Alamitos, California, USA.

[7] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refactorings via change metrics. In OOPSLA ’00:
Proceedings of the 15th ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, pages 166–177, New York, NY, USA, 2000. ACM.

[8] D. Evans, J. Guttag, J. Horning, and Y. M. Tan. LCLint: A tool for using specifications to check code.
In Proceedings of the ACM SIGSOFT ’94 Symposium on the Foundations of Software Engineering, pages
87–96, 1994.

[9] K. Gallagher and D. Binkley. Program slicing. In 24th IEEE International Conference on Software Mainte-
nance, Frontiers of Software Maintenance, Beijing, China, October 2008. ICSM, IEEE.

[10] M. Harman. Cleaving together - program cohesion with slices. EXE magazine, 11(8):35–42, 1997.

[11] M. Harman, S. Danicic, Y. Sivagurunathan, B. Sivagurunathan, and B. Jones. Cohesion metrics. In 8th
International Software Quality Week (QW’95), San Francisco, CA, USA, 1995.

[12] M. Harman, N. Gold, R. Hierons, and D. Binkley. Code extraction algorithms which unify slicing and
concept assignment. In WCRE ’02: Proceedings of the Ninth Working Conference on Reverse Engineering
(WCRE’02), page 11, Washington, DC, USA, 2002. IEEE Computer Society.

[13] M. Harman and R. Hierons. An overview of program slicing. Software Focus, 2(3):85–92, 2001.

[14] M. Harman, M. Okulawon, B. Sivagurunathan, and S. Danicic. Slice-based measurement of function cou-
pling. In 8th International Software Quality Week (QW’95), San Francisco CA, 1995. paper 4-T-4.

[15] S. Henry and D. Kafura. Software structure metrics based on information flow. In Software Engineering,
IEEE Transactions on , vol.SE-7, no.5, pages 510–518, 1981.

[16] S. Horwitz and T. Reps. The use of program dependence graphs in software engineering. In ICSE ’92:
Proceedings of the 14th international conference on Software engineering, pages 392–411, New York, NY,
USA, 1992. ACM.

[17] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12:26–60, 1990.

[18] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):92–106, 2004.

[19] D. C. Ince and M. J.Shepperd. An empirical and theoretical analysis of an information flow-based system
design metric. In ESEC, pages 86–99, 1989.

[20] S. Karstu. An examination of the behaviour of slice based cohesion measures. Msc, Michigan Technological
University, 1994.

31

[21] J. Krinke. Statement-level cohesion metrics and their visualization. In SCAM 2007 Seventh IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation, Paris, France, 2007. IEEE Computer
Society Press.

[22] A. Lakhotia. Rule-based approach to computing module cohesion. In Proceedings 15th ICSE, pages 35–44,
Baltimore, Maryland, USA, 1993. IEEE Computer Science Press.

[23] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding copy-paste and related bugs in large-scale
software code. IEEE Trans. Software Eng., 32(3):176–192, 2006.

[24] H. Longworth. Slice based program metrics. Master’s thesis, Computer Science, Michigan Technical Uni-
versity, Michigan, USA, 1984.

[25] A. Majumdar, S. Drape, and C. Thomborson. Metrics-based evaluation of slicing obfuscations. Information
Assurance and Security, 0:472–477, 2007.

[26] T. Meyers and D. Binkley. A large scale empirical study of slice-based metrics. In MASPLAS’04 Mid
Atlantic Student Workshop on Programming Languages and Systems, Seton Hall University, 2004.

[27] T. Meyers and D. Binkley. A longitudinal and comparative study of slice-based metrics. In 10th International
Software Metrics Symposium, Chicago, USA, 2004.

[28] T. Meyers and D. Binkley. An empirical study of slice-based cohesion and coupling metrics. ACM Transac-
tions on Software Methodology (TOSEM), 17(1):1–27, 2007.

[29] T. M. Meyers and D. Binkley. Slice-based cohesion metrics and software intervention. In Reverse Engineer-
ing, 2004. Proceedings. 11th Working Conference on, page 256, 2004.

[30] L. M. Ott and J. Thuss. The relationship between slices and module cohesion. In Software Engineering, 11th
International Conference on, 1989.

[31] L. M. Ott and J. J. Thuss. Slice based metrics for estimating cohesion. In IEEE-CS International Metrics
Symposium, pages 78–81, 1993.

[32] M. Page-Jones. The practical guide to structured systems design: 2nd edition. Yourdon Press, Upper Saddle
River, NJ, USA, 1988.

[33] K. Pan, S. Kim, and J. E. James Whitehead. Bug classification using program slicing metrics. In SCAM ’06:
Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and Manipulation, pages
31–42, Washington, DC, USA, 2006. IEEE Computer Society.

[34] R. W. Selby and V. R. Basili. Analyzing error-prone system structure. IEEE Transactions on Software
Engineering, 17(2):141–152, 1991.

[35] W. Stevens, G. Myers, and L. Constantine. Structured design. IBM Systems Journal, 13(2):115–139, 1974.

[36] F. Tip. A survey of program slicing techniques. Journal of programming languages, 3:121–189, 1995.

[37] M. Weiser. Program Slices: Formal, psychological, and practical investigations of an automatic program
abstraction method. PhD thesis, University of Michigan, AnnArbor, MI, 1979.

[38] M. Weiser. Program slicing. In 5th international conference on Software engineering, pages 439–449, San
Diego, California, USA, 1981. IEEE Press.

[39] E. Yourdon and L. Constantine. Structured Design: Fundamentals of a Discipline of Computer Program
and System Design. Prentice Hall, 1979.

[40] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M. A. Vouk. On the value of static
analysis for fault detection in software. IEEE Transactions on Software Engineering, 32(4):240–253, 2006.

32

