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Abstract. The problem we address in this paper is that of finding effective and 
parsimonious patterns of connectivity in sparse associative memories.  This 
problem must be addressed in real neuronal systems, so results in artificial 
systems could throw light on real systems.  We show that there are efficient 
patterns of connectivity and that these patterns are effective in models with 
either spiking or non-spiking neurons.  This suggests that there may be some 
underlying general principles governing good connectivity in such networks. 
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1   Introduction 

In earlier work [1-3] we have shown how the pattern of connectivity in sparsely 
connected, associative memories influences the functionality of the networks.  The 
nodes in our networks are given a position, either in a 1D or 2D space.  It is then 
meaningful to talk about issues such as path length, clustering and other concepts 
familiar from the study of non-random graphs.  We have found that networks with 
only local connectivity do not perform well, as global computation is difficult, 
whereas random connectivity gives good performance, albeit with a much greater 
amount of connection fiber.  We, and others [3-5], have shown that small world 
patterns of connectivity can give good performance, with more economical use of 
resources.  However our most efficient networks have been those with almost 
completely local connections [4].   

In these experiments we have used large networks (up to 50,000 units) of simple 
threshold units with no signal delay between nodes.  The dynamics is therefore akin to 
a standard, sparse Hopfield network, although not identical, as we make no 
requirement for symmetry in connections.   In the work presented here we take steps 
towards much more biologically plausible networks.  Firstly we use artificial integrate 
and fire, spiking neurons and secondly we model signal propagation times according 
to the geometry of the model.  Of course the dynamical behavior of the resulting 
network is much richer than that of the non-spiking network, but we are now able to 
investigate the generality of our previous results.  Our main finding is that the relation 



between performance and connectivity in the spiking neural network is surprisingly 
similar to that of the more abstract model.  This in turn suggests that there may be 
some general principles at work, which could be of relevance to the analysis of real 
neuronal networks.  

2   Models Examined  

Our basic model has a collection of artificial neurons arranged in a ring.  The distance 
between any pair of neurons is taken as the minimum number of steps, on the ring, to 
get between them.  All our networks share two important features.  Firstly the 
networks are regular, so that each neuron has k incoming connections.  Secondly the 
networks are sparse, so that with a network of N units, k << N.   

 With this configuration there are two extremes of connectivity.  In a local network, 
or lattice, each node is connected to those nodes that are closest to it; such networks 
are known as cellular networks in the context of neural computation, where they are 
normally 2D lattices.  Alternatively the network can have random connectivity, where 
the probability of any two nodes being connected is k/N, independently of their 
position.  It has been established that whilst local networks have minimum wiring 
length, they perform poorly as associative memories: pattern correction is a global 
computation and local connectivity does not allow easy passage of information across 
the whole network [4].  Randomly connected networks, have very short characteristic 
path lengths (scaling with log N) and consequently pattern correction is much better, 
and in fact cannot be improved with any other architecture [4].   However, random 
networks use a lot of connecting fibre and this has encouraged the investigation of 
other types of connectivity: it is desirable to find patterns of connectivity that give 
performance comparable to random networks, but with more economical wiring.  It 
has been established that there are indeed such patterns of connectivity; in particular 
several researchers have shown that so-called small world [6] connectivity can give 
good performance.  We have also shown, that in non-spiking networks, fairly tight 
Gaussian distributions of connectivity can give very parsimonious networks [2].  In 
this paper we extend our analysis of how the connectivity affects performance to the 
more complex dynamics exhibited by networks of integrate and fire spiking neurons. 

2.1   Connectivity  

N artificial neurons are arranged in a 1-D space with periodic boundary conditions – 
they can be thought of as occupying a ring, see Figure 1.  Each neuron has k incoming 
connections, and so the network is regular.  The reason for this restriction is given in 
the next section, when discussing the learning rule. The local network has each node 
connected to its k nearest neighbours, excluding itself (none of our networks has 
direct self connectivity).  Small world networks are constructed using the standard 
method introduced by Watts and Strogatz [6].  The local network is made 
progressively more random by rewiring a fraction (p) of the connections to random 
locations.  When p = 1 the local network is transformed into a random network.  



   

 
Fig. 1. Units arranged in a simple one-dimensional ring.  On the left the units have random 
connectivity and on the right they have local connectivity and some distal connections – a small 
world model. 

We also investigate networks with a Gaussian pattern of connectivity.  Here the 
probability that any two nodes are connected falls as a Gaussian function of distance 
between the two nodes, see Figure 2.  The shape of the Gaussian is parameterised by 
its standard deviation, σ.  Such distributions are particularly interesting as 
connectivity between individual neurons in the mammalian cortex is thought to be 
similar [7], see Figure 2.   
 

 
Fig. 2. The probability of a connection between any pair of neurons in layer 3 of the rat visual 
cortex against cell separation. The horizontal axis is marked in µm. Taken from [7] 

2.2   Learning 

Before the effect of connectivity can be empirically evaluated the networks must be 
trained.  The simplest approach would be to use the covariance weights of the 
standard Hopfield network (with or without clipping).  This, however, is not a 



particularly good approach when the networks are sparse and non-symmetric [3].  A 
more effective method, in this case, is to use standard perceptron learning.  In this 
case, for a given level of connectivity, optimal capacity and performance is obtained 
when the connectivity is regular, and hence our restriction to regular networks    

The sets of training patterns used consist of random, bipolar or binary vectors, 
where the probability of any bit being on (+1) is 0.5 .   The learning process is: 
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T is the learning threshold and here we set T = 10. 
 

For the non-spiking network we use the standard bipolar +1/-1 representation.  
However for the spiking network we use 0/1 binary patterns, as these can then be 
easily mapped onto the presence or absence of spikes.   

2.3   Network Dynamics 

2.3.1   Non-Spiking Network 
These networks use the standard asynchronous dynamics of the Hopfield network: 
units output +1 if their net input is positive and -1 if negative.  As the connectivity is 
not symmetrical there is no guarantee that the network will converge to a fixed point, 
but, in practice these networks normally exhibit straightforward dynamics [8].  
However, if the network does not converge within 5000 epochs we take the network 
state at this point as the final state. 



2.3.2   Integrate and Fire Spiking Network 
The model uses a leaky integrate-and-fire spiking neuron which includes synaptic 
integration, conduction delays and external current charges.  The membrane potential 
(in volts), V, of each neuron in the network is set to 0 if no stimulation is presented, 
and is referred to as the membrane resting potential.  The neuron can be stimulated 
and change its potential by either receiving spikes from other connected neurons, or 
by receiving an external current.  If the membrane potential of a neuron reaches a 
fixed firing threshold, 
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, the neuron emits a spike and the potential is reset to 
resting state (0mV) for a certain period (the refractory period).  During this period the 
neuron cannot fire another spike even if it receives very high stimulation.  Here the 
refractory period is set to a reasonable value of 3ms [9]. 

A spike that arrive at a synapse triggers a current, the density of this current (in 
Amperes per Farad), 
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I ij t( )  (where i is the postsynaptic neuron and j is the presynaptic 
neuron), is given by: 
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where tarrive  is the time that a spike arrives at node i from node j

so that tarrive = tspike + delayij

 

 
The value of 
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I ij t( )  will reach a peak 

! 

"  seconds (the synaptic time constant) after a 
spike arrives.  We set 

! 

"  to be 2ms.   
Two delay modes were used in the model.  The fixed delay mode gives each 

connection a fixed 1ms delay.  In the second mode, the delay of spikes (in ms) over a 
connection is defined by: 
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delayij = dij3 where 
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dij  is the distance between the two 
nodes.  This gives a rough mapping from a one dimensional ring structure to a more 
realistic three dimensional system.  For a network with 5000 units, the delay will vary 
between 1ms and about 14ms. 

The rate of change of membrane potential is defined by: 
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Here the first term represents the leak of current density and consequently a decrease 
in voltage in the neuron.  The second term is the total current density entering the cell.  
It is calculated as the weighted sum of synaptic inputs and any external stimulation: 
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The Injection of External Currents 
The network requires an initial stimulation from external currents in order to trigger 
the first spikes.  A simple current injection, which transforms a static binary pattern to 
a set of current densities is used.  Given an input pattern, unit i receives an external 
current if it is on in that pattern, otherwise the unit receives no external current.  Each 
external current has a density of 3A/F and is continually applied to the unit for the 
first 50ms of simulation.  This mechanism guarantees that the first spiking pattern 
triggered in the network is identical to the input pattern.  After the first spikes (about 7 



~ 8ms from the start of a simulation), both internal currents caused by spikes, and the 
external currents, affect the network dynamics.  Spike activity continues after the 
removal of external currents, as the internal currents caused by spike chains become 
the driving force.  The network is then allowed to run for 500ms, before its final state 
is evaluated, as will be described in the next section. 

3.   Performance Measures 

The Effective Capacity (EC) [10] of a network is a measure of the maximum number 
of patterns that can be stored in the network with reasonable pattern correction still 
taking place.  In other words, it is a capacity measure that takes into account the 
dynamic ability of the network to perform pattern correction.  We take a fairly 
arbitrary definition of reasonable as the ability to correct the addition of 60% noise to 
within an overlap of 95% with the original fundamental memory. Varying these two 
percentage figures gives differing values for EC but the values with these settings are 
robust for comparison purposes. For large fully connected networks the EC value is 
about 0.1 of the conventional capacity of the network, but for networks with sparse, 
structured connectivity EC is dependent upon the actual connectivity pattern.  

The Effective Capacity of a particular network is determined as follows: 
 

Initialise the number of patterns, P, to 0 
Repeat 

Increment P 
Create a training set of P random patterns 

 Train the network 
 For each pattern in the training set 
  Degrade the pattern randomly by adding 60% of noise 
        With this noisy pattern as start state, allow the network to converge 
        Calculate the overlap of the final network state with the 

original pattern 
 EndFor 
 Calculate the mean pattern overlap over all final states  
Until the mean pattern overlap is less than 95% 
The Effective Capacity is then P-1.  

 
The Effective Capacity of the network is therefore the highest pattern loading for 
which a 60% corrupted pattern has, after convergence, a mean overlap of 95% or 
greater with its original value. 

Of course this measure is simple to calculate for the network of non-spiking 
neurons, but its implementation in the spiking network is not as straightforward, as we 
need to define exactly what is meant by overlap of the network state, a collection of 
spike events, with a stored pattern.  To this end we follow the method of Anishenko 
[4].  The state of any unit in the network is assumed to be encoded in its firing 
rate,
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the network state and a binary pattern vector is then defined as the cosine of the angle 

between the pattern and the vector of firing rates: 
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4.    Results 

We use two patterns of connectivity, small world and Gaussian in networks of 5000 
units, with each unit having 100 incoming connections.  In the non-spiking network 
this implies a theoretical maximum loading of up to 200 unbiased random patterns, 
although in practice the capacity is around 140 patterns.  For each type of network 
results are means over 10 runs.  Error bars are not shown, as they are so small as to be 
virtually invisible. 

4.1   Small World Networks 

We begin by giving the results of the small world networks, as these include the two 
extremes of local and random connectivity.  Here a local network was progressively 
rewired, in increments of p = 0.1, until a random network with p = 1 was reached. 

In Figure 3 the results for the non-spiking network, the spiking network with fixed 
signal propagation delay and the spiking network with cube root delay are given.  At 
the left side of the graph the Effective Capacity of the networks with local 
connectivity only is shown.  All three networks show an EC value of about 20 
patterns.   At the right side of the graph can be seen the performance of completely 
rewired networks, a random graph.  The performance in this case is much improved, 
ranging from 44 to 56 patterns.  The best performing network is the spiking network 
with fixed delays.  To reiterate the implication of this: a local pattern of connectivity 
does not support good integration of information across the whole network, whereas 
random connectivity provides good global computation in these networks.  As our 
earlier work has already indicated a rewiring rate of about 0.6 gives optimal 
performance in the non-spiking network.  Interestingly the spiking networks continue 
to improve past this point.   It is worth pointing out that none of the well performing 
networks can be properly described as being small world networks, in the Watts and 
Strogatz [6] sense. They identified the small world regime at a rewiring level of only 
about 0.01, when path lengths have dropped, but clustering remains high.  At p = 0.6 
clustering has dropped to a level similar to a random network. 

There are two intriguing features of these results.  Firstly it is apparent that the very 
simple non-spiking network acts as a reasonable predictor of the much more 
complicated integrate and fire spiking network.  Secondly the spiking networks, in 
some circumstances, perform better than their non-spiking cousins.  It is not obvious 
to us why this should be the case. 



Fig. 3.   The Effective Capacity of three types of network: one learning rule, but varying 
dynamics.  Locally connected networks are transformed into random networks by progressive 
rewiring.  The networks are 5000 units with k = 100. 

4.2   Gaussian Networks 

In this pattern of connectivity the probability of any two nodes being connected falls 
with a Gaussian function of their spatial separation.  The specific distribution is 
controlled by σ.  In this experiment σ varies from 0.4k (40) and then in increments of 
0.2k (20) to k (100) and thereafter in multiples of k.  Remembering that with the size 
of the networks being 5000 units, the maximum separation between any two nodes is 
2500, so that a distribution with σ = 200, say, is very tight, relative to the size of the 
complete network. 
 



 
Fig. 4.  The Effective Capacity of networks with connection probability following a Gaussian 
distribution of varying s.  The networks are 5000 units with k = 100. 

The results are shown in Figure 4.  At the left hand side of the graph the initial 
networks have an Effective Capacity of 25-27 patterns.  These networks have very 
tight connectivity distributions, with most connections (~ 95%) made with the 80 
units on either side.  This has given the network a small improvement on the local 
network, with connections made to all 50 units on each side.  All three types of 
network then show rapidly improving performance to about σ = 2k (200) – here the 
performance of the three networks is similar with an EC of about 42 patterns.  Further 
widening of the connectivity does not bring much benefit to the non-spiking network; 
this is not surprising as it is already almost at the performance level of a random 
network.  However both spiking networks continue to improve, passing an EC of 50 
at a σ of 4k. 

5.   Discussion 

In the work presented here we have endeavored to examine the performance of 
associative memory networks of spiking neurons, in relation to the connectivity in the 
network, and to compare this performance to the simpler Hopfield type associative 
memories.  Our first finding is that the non-spiking networks provide a reasonably 
good prediction of the performance of spiking networks with the same connectivity 
and weights.  Moreover this prediction is both qualitative and quantitative.  To the 
best of our knowledge this is the first study to make this direct comparison of these 
neural models.   



In one sense the similarity of the two models could be expected: both types of 
neuron integrate their input and respond when this net input exceeds a firing 
threshold.  However, in another sense it would not be anticipated.  In the non-spiking 
network continuous time is not modeled.  In the spiking model, however, time is an 
integral part of the process, with signal propagation delays, refractory periods, 
integration of inputs over time and encoding of information in spiking frequencies.   

Our second finding is related to the first result.  In spiking neural networks local 
connectivity alone gives relatively poor performance, and increasing distal 
connectivity improves the network.  However, the most parsimonious use of resources 
is found when a fairly tight Gaussian distribution of connections is used.  A good 
network configuration to produce high effective capacity with relatively low wiring 
cost is a network with a distribution having a standard deviation of about 400 (in a 
network of 5000 nodes and 100 connections per node). 

The spiking network with fixed delays performed slightly better than the network 
with delays varying with the length of the connecting fiber.  However the difference 
was not pronounced, suggesting that associative memories are reasonably robust to 
this feature of their functionality. 

Finally we have found that in some circumstances the spiking model actually 
performs better than the non-spiking version.  Further work is needed to analyse why 
this should be the case. 
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