
Experiences Running OGSA-DQP Queries Against a Heterogeneous Distributed
Scientific Database

Helen X Xiang
Computer Science, University of Hertfordshire, UK

h.xiang@herts.ac.uk

Abstract

This paper explores the use of emerging Grid tech-
nologies for the manipulation of a scientific dataset with
complex schema. We focus on the potential of a well-
known Grid middleware—OGSA-DQP—for querying such
datasets. In particular, we investigate running OGSA-DQP
queries against SQL Server and Oracle database to access
data in a complex schema of a real scientific database—the
Sloan Digital Sky Survey (SDSS) database. We used two
common databases which support complex schemas and
very large datasets: SQL Server and Oracle. The paper
briefly provides the background information on the SDSS
database. It then examines the running of a few OGSA-
DQP queries and the query plans. Various join queries run
successfully through OGSA-DQP after we optimized the im-
plementation of some of the OGSA-DQP operations.

1. Introduction

Started in 2000, the Sloan Digital Sky Survey (SDSS)

project has gathered and produced more than 60 terabytes

of data (inducing images and catalogues data). It has built a

detailed digital map of the visible stars and galaxies of the

night sky [7]. The SDSS data produced by is summarised

in a multi-terabyte relational database containing photomet-

ric objects and spectroscopic information— this is available

online via the SkyServer (http://skyserver.sdss.org).

Our recent papers [2, 3, 4, 5] described how we cre-

ated an experimental distributed SDSS DR5 database with

Grid middleware which was based on Open Grid Services

Architecture—Distributed Query Processing (OGSA-DQP)

[1]. Please refer to [6] for details of the OGSA-DQP opera-

tors.

This experiment exposes some limitations of the tech-

nologies. In particular, this paper will focus on running

OGSA-DQP queries against the a heterogeneous distributed

SDSS database. We describe the modifications and im-

provements we made for running the OGSA-DQP queries

against a complex scientific database schema. This is a

follow-up paper of [6].

2 A Distributed SDSS Database

For the propose of understanding the OGSA-DQP

queries in this paper, this section describes how we dis-

tributed a reduced SDSS database called MyBestDR5
among three different hosts machines located in different

university buildings. Oracle is running on two of the hosts,

while Microsoft SQL Server is running on the other.

First, the original SDSS MyBestDR5 database’s

PhotoObjAll schema was split into three parts us-

ing objID. We then deployed the migrated SDSS Ora-

cle schema on the two Oracle databases (on hosts 1 and

2) and extracted the relevant data files from the orignal

MyBestDR5 database in SQL Server, with objID parti-

tioning conditions. We next injected the appropriate data

files to databases on hosts 1 and 2 used the SQL*Loader,.

The third partition (on host 3) was formed by a cut down

version of MyBestDR5 database after the appropriate

records were removed. We now have a heterogeneous dis-

tributed SDSS MyBestDR5 database over hosts 1, 2, and

3.

We then exposed the distributed SDSS MyBestDR5
database using the OGSA-DAI middleware and configure it

with the OGSA-DQP toolkit before running the distributed

queries.

We installed an OGSA-DAI instance on hosts 1, 2 and

3 and deployed OGSA-DAI data service them with the fol-

lowing full URLs:

http://host1:8080/wsrf/services/
ogsadai1/DataServiceBUCK

http://host2:8080/wsrf/services/
ogsadai2/DataServiceIcg

http://host3:8080/wsrf/services/ogsadai3/
DataServiceAce

The SDSS MyBestDR5 database is now distributed

among three hosts—with heterogeneous DBMSs: two Or-

2009 15th International Conference on Parallel and Distributed Systems

1521-9097/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPADS.2009.142

706

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on April 27,2010 at 12:58:59 UTC from IEEE Xplore. Restrictions apply.

acle and one SQL Server—with the distributed SDSS data

resources exposed via the OGSA-DAI middleware.

Finally, we installed the OGSA-DQP 3.2 (Tech Preview)

toolkit on the distributed sites for querying the distributed

SDSS MyBestDR5 database. We also deployed an OGSA-

DQP evaluator service On each host.

The WSDL of the deployed OGSA-DQP evaluators can

be viewed via the following URLs:

http://host1:8081/dqp-evaluator/
services/QueryEvaluationService

http://host2:8081/dqp-evaluator/
services/QueryEvaluationService

http://host3:9080/dqp-evaluator/services/
QueryEvaluationService

An OGSA-DQP coordinator can be installed on a sepa-

rate host or on one of the three distributed SDSS hosts on the

OGSA-DAI Data Services deployed earlier on. The client

application is now ready to interact with the OGSA-DQP

coordinator service to create an OGSA-DQP coordinator in-

stance for executing queries.

The architecture of the distributed SDSS MyBestDR5
database system is illustrated in Figure 1. We are now ready

to run some OGSA-DQP queries against this distributed

database.

3 Running OGSA-DQP Queries

We already examined the OGSA-DQP query plan for a

simple local query, and the different SOAP interactions be-

tween DQP components in [6]. This section discusses run-

ning more complicated queries through OGSA-DQP.

We could now run DQP queries against a table on local

databases and return one or more rows. In [6] we success-

fully ran the query:

SELECT SKYVERSION
FROM PHOTOOBJALL
WHERE OBJID=587726014001315907

(1)

through OGSA-DQP, against an SDSS Oracle database or

SDSS SQL Server database.

Next we wanted to try OGSA-DQP queries that can re-

turn many rows. We tried to run the following query on the

Oracle database on the first host:

SELECT SKYVERSION
FROM PHOTOOBJALL

(2)

If successful, this query should return 68, 118 rows contain-

ing column value “1”. Initially the query failed to complete.

On investigation this proved to be caused by a timeout in

the OGSA-DAI codes, which was resolved by modifying

OGSA-DQP client class.

We discovered we had to increase the memory

on both DQP coordinator and OGSA-DQP evalu-

ator to 256MB and 750MB respectively for run-

ning query 2. But the query still failed with a

uk.org.ogsadai.client.toolkit.activity.-
delivery.StreamDataException exception. The

client returned this message after 11 minutes and 23
seconds. But on the server, the query went on running for

3-4 hours until we killed the Tomcats.

We added some debugging lines in the OGSA-DAI

source code and reran query 2. We proceeeded to inves-

tigate the suspected timeout problem that was preventing

larger queries running. After looking into the code for

OGSA-DAI and Axis we eventually discovered that this

timeout could be disabled by modifying the OGSA-DQP

Client class. The solution is to call the method:

setTimeout(0)

on the DataService object.

This allowed us for the first time to run queries against

the distributed database returning some thousands of rows.

The query 2 through OGSA-DQP now worked against the

Oracle database on the first host, and returned the correct

result—68, 118 rows of “1”s. However, it took a very long

time: 452 minutes and 52 seconds in total. We needed to

optimise this if we were to run much larger queries against

the full SDSS database.

Figure 2 shows the query plan for query 2. The query

plan is very similar to the one in [6]. The only real differ-

ence is in a predicate in the TABLE SCAN node (the WHERE
clause). This predicate is not shown in the figure. The

”SQL” blob in Figure 2 is not really a feature of the query

plan. It just helps explain how the plan is executed, as we

will now discuss.

We had already noticed from the SOAP messages cap-

tured in [6] that the TABLE SCAN operation was loading

all columns of the selected rows of the target table. This

might not be a problem if the target tables are small with

few columns. But it is a big problem for larger databases

with wide tables, and can easily be a performance bot-

tleneck. Most of the tables in SDSS schema are large

with many rows and many columns. In particular the ta-

ble PHOTOOBJALL is a very wide table with 446 columns.

The standard OGSA-DQP TABLE SCAN operation loads

all of the 446 columns of the PHOTOOBJALL table even

if only one is column required. The single column actu-

ally required in our query is projected out in the APPLY
operation. Therefore the sample query returns 68, 118 rows

of “1” (column SKYVERSION). But the standard OGSA-

DQP first loads 68, 118 × 446 = 30, 380, 628 column val-

ues. Hence the poor query performance on large queries.

To make meaningfully large scan-type queries practical,

OGSA-DQP would need to be optimized to avoid read-

707

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on April 27,2010 at 12:58:59 UTC from IEEE Xplore. Restrictions apply.

Host1 Host2 Host3

Figure 1. Distributing the SDSS MyBestDR5 database among three hosts

ing all columns of tables. The ideal approach would be

to change the query compiler to combine the APPLY and

TABLE SCAN into a new kind of node that issued an SQL

query to the data resource for just the columns needed. But

this would involve changes to several modules of OGSA-

DQP. Instead we devised an optimization of project/scan-

type queries that left the query plan unchanged, but worked

by changing the way the evaluator’s TableScanOp class

and ReduceOp class process the query plan.

With the implementation of the above optimization, the

query performance is dramatically improved for the simple

(medium sized) queries. The sample query 2 took only 2
minutes 37 seconds instead of 452 minutes 52 seconds—

173 times faster1. As explained above, we keep the same

query plan, but the evaluator interpets it differently. The

optimized query plan in Figure 3 is actually identical to the

one in Figure 2, but the changed “SQL” blob now shows

that the query sent to the data resource incorporates the pro-

1Time for running a query similar to 2 against SDSS MyBestDR5
without using OGSA-DQP was 7 seconds.

jection in the APPLY operation as well as the TABLE SCAN
operation.

We then tried it on another query for larger number of

results with more complicated data type:

SELECT OBJID
FROM NEIGHBORS

(3)

If everything goes well when this query is run against the

first partition of the database, it should return 355, 214 rows

of OBJID.

Unfortunately, there is a problem with client memory

exhaustion when returning large number of rows. After

examining the log files, we found the OGSA-DQP client

program is buffering all results into one huge string be-

fore printing them. This might be OK if the results set are

small—for example lots of “1” as the previous query return-

ing SKYVERSION column. However, column OBJID has

a bigger data type than column SKYVERSION, and trying

to buffer 355, 214 of data like “587726014001315907” no

doubt leads to the java.lang.OutOfMemoryError
on the DQP client.

708

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on April 27,2010 at 12:58:59 UTC from IEEE Xplore. Restrictions apply.

(root)

1. PRINT

0. EXCHANGE

Buck Coordinator
Buck Evaluator

(root)

2. EXCHANGE

1. APPLY

PROJECT:

PHOTOOBJALL.SKYVERSION

SQL

0. TABLE_SCAN:

PHOTOOBJALL

Figure 2. Query plan for query 2 running on the first host

(root)

1. PRINT

0. EXCHANGE

Buck Coordinator
Buck Evaluator

SQL

(root)

2. EXCHANGE

0. TABLE_SCAN:

PHOTOOBJALL

1. APPLY

PROJECT:

PHOTOOBJALL.SKYVERSION

Figure 3. Optimized query plan for query 2 running against the databse on the first host

The client memory exhaustion was fixed by chang-

ing the DQP Client class to avoid using the method

getResults(), so that the DQP client no longer buffers

all results before printing.

After this modification, we successfully ran a number of

OGSA-DQP queries against the Oracle databases, including

local joins that involve two or three tables. One example is

a sample query that joins two tables and returns 355, 214
rows from the database on the first host (total run time: 21
minutes 46 seconds):

SELECT PHOTOOBJALL.OBJID, PHOTOOBJALL.RA,
PHOTOOBJALL.DEC, NEIGHBORS.NEIGHBOROBJID,
NEIGHBORS.DISTANCE
FROM PHOTOOBJALL, NEIGHBORS
WHERE PHOTOOBJALL.OBJID = NEIGHBORS.OBJID

(4)

Another example is a query that joins three tables and re-

turns 327 rows from the database on the first host (total run

time: 3 minutes 55 seconds):

SELECT PHOTOOBJALL.OBJID
FROM FIRST, PHOTOOBJALL, NEIGHBORS
WHERE PHOTOOBJALL.OBJID = NEIGHBORS.OBJID
AND PHOTOOBJALL.OBJID = FIRST.OBJID

(5)

Times for running similar queries against SDSS

MyBestDR5 without using OGSA-DQP were only

54 seconds and 2 seconds respectively.

709

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on April 27,2010 at 12:58:59 UTC from IEEE Xplore. Restrictions apply.

4. Conclusions

This paper focussed on query execution in a well-

known (experimental) Grid-based middleware—OGSA-

DQP. It examined the OGASA-DQP operator and the run-

ning of some queries through OGSA-DQP. We looked at the

OGSA-DQP query plan for some queries and made some

adjustment when running the quires.

This paper discussed some problems running OGSA-

DQP queries on an Oracle database, in particular queries

returning many rows. The memory of both OGSA-DQP

evaluator and coordinator was increased. We modified the

OGSA-DQP Client class and disabled a client time out.

We also optimized the implementation of the OGSA-

DQP TABLE SCAN and APPLY operations to load only re-

quired columns into memory, instead of all the columns in

the target tables. This optimisation greatly improved the

OGSA-DQP queries against large tables. Finally we fixed a

OGSA-DQP Client memory exhaustion problem by avoid-

ing buffering all results before printing.

After the above improvements, various join queries ran

successfully through OGSA-DQP. In future publications,

we will describe how we have run more complex queries

on a distributed version of full SDSS databases to further

investigate the OGSA-DQP distributed query performance.

References

[1] The OGSA-DQP project.

http://www.ogsadai.org/about/ogsa-dqp.

[2] H. Xiang, M. Baker, and R. Nichol. Experiences mirroring

and distributing the Sloan Digital Sky Survey. In Fifth In-
ternational Conference on Grid and Cooperative Computing
Workshops (GCC 2006), Changsha, China, pages 518–521.

IEEE Computer Society, October 2006.

[3] H. X. Xiang. Experiences acquiring and distributing a large

scientific database. In Second International Conference on
Future Generation Communication and Networking Sym-
posia, volume 2, pages 14–19, Washington, DC, USA, De-

cember 2008. IEEE Computer Society.

[4] H. X. Xiang. A grid-based distributed database solution

for large astronomy datasets. In International Conference
on Computer Science and Software Engineering, volume 3,

pages 66–69, Washington, DC, USA, December 2008. IEEE

Computer Society.

[5] H. X. Xiang. Supporting complex scientific database schemas

in a grid middleware. In International Conference on Ad-
vanced Information Networking and Applications, volume 0,

pages 937–944, Bradford, UK, May 2009. IEEE Computer

Society.

[6] H. X. Xiang. Using grid middleware to query a heterogeneous

distributed version of the sdss database. In The Fifteenth In-
ternational Conference on Parallel and Distributed Systems,

Shenzhen, China, December 2009. IEEE Computer Society.

[7] D. G. York et al. The Sloan Digital Sky Survey: Techni-

cal summary. Astronomical Journal, 120:1579–1587, 2000.

http://www.sdss.org.

710

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on April 27,2010 at 12:58:59 UTC from IEEE Xplore. Restrictions apply.

