FORMAL SPECIFICATION AND OBJECT-ORIENTED DESIGN

Mary BUCHANAN and Carol BRITTON

School of Information Science, Hatfield Polytechnic,
College Lane, Hatfield, Herts, AL10 9AB, UK2

In recent years, object-oriented design and formal
specification languages have become increasingly important
in the development of software systems. In this paper we
use the formal specification languages 0BJ1 and 0BJ3 to
investigate the extent to which they support object-oriented
design in general and inheritance in particular.

Keywords: Formal Specification, Inheritance, 0BJ

1. INTRODUCTION

The paper describes the results of applying object-oriented concepts
to the formal specification of a system.

The purpose of the research out of which this work has arisen is to
discover the potential of using an object-oriented approach
throughout the development of @& system. Underlying the
object-oriented paradigm is the concept of classes of objects
organised into hierarchies which reflect client and inheritance
relationships [1]. We aim to determine the degree to which a formal
specification can support such class structures. The ultimate purpose
is to ascertain whether such class structured specifications would
form a sound foundation for systems which are to be designed and
implemented in an object-oriented manner. In addition, we wish to
consider the viability of producing specifications which are easily
maintainable and potentially reusable. In this paper we investigate
the extent to which the formal language OBJ can be used in an
object-oriented style.




2. THE CASE STUDY: AN APPOINTMENT SYSTEM FOR LECTURERS

The case study on which this exercise is based can be summarised as
consisting of lecturers who have timetabled teaching commitments
and other more randomly organised appointments. A system is
required to manage lecturers’ appointments and to provide
information concerning both appointments and teaching commitments.

3. INITIAL ANALYSIS

We used and freely adapted the early stages of JSD to capture the data
objects in the system in terms of both their attributes and their
actions. Entity structure diagrams [2] were derived for these data
objects. Subsequently, such diagrams were used to illustrate the
overall functionality required of the Appointment System.

At this stage we had derived a diagrammatic specification which was
object-based. However, the specification lacked formality and did not
provide a model of inheritance. We next turned to the formal
specification language OBJ in an attempt to address these problems.

4. THE FORMAL SPECIFICATION: 0BJ1

0BJ1 [3] is a functional language which uses equational algebra to
define abstract data types and the algorithms which manipulate them.
Our intention was to use OBJ1 to define the classes of objects which
are used to capture the common characteristics which objects of the
class share. A class can be viewed as abstract in the sense that the
data it describes is not instantiated and it can be defined by its
operations alone. Since an abstract data type is a set of values of a
type characterised by the operations which can be performed on the
type, an abstract data type can be used to define a class of objects.

The JSD analysis had identified Diary, Lecturer and Timetable as the
data objects required by the system. These were to be the principal
units (called OBJs in 0BJ} in the formal specification. In order to
build these OBJs we needed to consider their attributes as identified
by JSD. In order to maximise their potential reuse we decided to




specify each attribute in a separate OBJ. A typical example is the OBJ
Time which was used in both the Diary and the Timetable and which
could easily be imported into other OBJ specifications.

In OBJ it is necessary to define any OBJs before they are referenced
by others; they must be specified before any objects which use them.
This imposed a hierarchical structure on our formal specification.

At this point we had a specification which combined the advantages
of formality with a clear modular structure. This structure reflected
client relationships in the problem domain, such as Diary’'s use of
AppointmentList and Name, but it failed to model any inheritance
relationships. In the Appointment System we wanted to specify not
only a general Time type, but also a TimeDiary type which inherited
from Time and enriched it to define the constraints which were
specific to the Appointment System. We were able to define the Time
0BJ without difficulty. However, although we were able to enrich
Time in a TimeDiary OBJ, we could not define a type TimeDiary to be
type compatible with the type Time.

Our inability to capture this inheritance adversely affected the 0BJ
specification in two ways. First, we lost the advantages of a
conceptually simple mapping to an object-oriented design. Secondly,
the specification itself suffered from a lack of clarity. Elsewhere in
the specification, the failure to model inheritance resulted in a
complexity of OBJ code which masked the simple relationships
between data objects.

S. REFINING THE SPECIFICATION: 0BJ3

0BJ3 [4] is based on order-sorted algebra which enables a user to
declare that a type (sort in OBJ) is included in another type and so
provides a formal logic for inheritance or 'is-a' hierarchies. In order
to determine how well OBJ3 can model inheritance, we wrote a Time
0BJ to correspond with our OBJ1 version and a TimeDiary OBJ such
that Time was declared as a subtype of TimeDiary. As a consequence
we would expect to be able to use a TimeDiary type wherever we use a
Time type, but not vice versa. We declared TimeDiary values such as
oneHr30Min in order to be able to distinguish these from Time values
represented as, for example, oneHr.




An abbreviated version of test results, run on the 0BJ3 interpreter, is
shown in Table 1.

TABLE 1: OBJ3 TEST RESULTS
1 0BJ» reduce oneHr »Hr twoHr .

reduce in TIMEDIARY : oneHr >Hr twoHr
result Bool: false

2 0BJ> reduce in TIME : oneHr >Hr twoHr .

reduce in TIME : oneHr »Hr twoHr
result Bool: false

3 0BJ» reduce in TIME : isEndDay{sixHr) .

No successful parse for the input:
result Err: errli{isEndDay { sixHr })

4 0BJ>r reduce in
TIMEDIARY : isEndDay{sixHr) .

reduce in TIMEDIARY : isEndDay(sixHr)
result Bool: false

5 0BJ>» reduce isEndDay{oneHr3oMin) .

reduce in TIMEDIARY : isEndDay{oneHr30Min)
result Bool: false

In 0BJ3, expressions denoted by "reduce <Exp> ." are evaluated in the
context of the last module entered into the system. Test 1
demonstrates that the »Hr operation, which was defined in the TIME
module, can be used in the context of the TIMEDIARY module; in other
words, TimeDiary has inherited the operation from Time. By using the
expression “reduce in <Mod» : <EXp>", one can nominate a different




module as the context of the evaluation. Thus Test 2 shows the :Hr
operation working in the context of the TIME module.

The operation isEndDay is specified in TimeDiary such that it takes a
Time and returns a boolean result {(isEndDay : Time -> Bool). Test 3
shows that one cannot use isEndDay in the context of the TIME module
because the operation is not defined in this module. However, test 4
shows the same test run successfully in the TIMEDIARY context. Test
5 illustrates that, provided we are in the TIMEDIARY context, a
TimeDiary type (here oneHr30Min} can be used wherever a Time type
has been specified.

We developed another version of TimeDiary in which we redefined the
+Hr operation so that it behaved differently from the +Hr operation in
Time. Testing showed that each version worked within the context in
which it had been defined.

0BJ3 can successfully emulate the behaviour of inheritance.
We can define new types as variations of old types and we can
inherit all the operations of the old types; the old types themselves
remain unchanged. We can add extra operations to the new type and we
can redefine operations inherited from the old type.

6. CONCLUSIONS
6.1 Formality

The 0BJ specification exhibited the advantages that come from using
a formal notation. There were other advantages which arose from the
fact that the specification was executable, however, a discussion of
these is outside the scope of this paper.

6.2 Units of Modularity

The OBJ modules correspond well to the classes in an object-oriented
system in that OBJ modules can be used both to define the classes of
objects which model the data in the system and to define the classes
needed to provide the overall functionality required of the system.

The hierarchical structure of the module dependency in an 0BJ
specification can be used to make explicit the client relationship




between classes of objects. Inheritance can be specified clearly and
simply in 0BJ3, but not in OBJ1.

6.3 Reusability

The OBJ data modelling modules can be combined together in different
ways to achieve different specifications. We could provide additional
functionality for the existing Appointment System which could be
achieved without alteration to any of the existing classes in the
system. We could also use fundamental classes such as Time and Date
to create completely new systems and we could reuse aggregates of
modules such as the Diary module since an 0BJ module, together with
any modules which it imports, provides a reusable package.

REFERENCES

[1] Meyer, B., Object-Oriented Software Construction
(Prentice Hall, London, 1988).

[2] Jackson, M., System Development
{(Prentice Hall, London, 1983).

[3] Walter, C.D., Gallimore, R.M., Coleman, D. and Stavridou, V.,
UMIST 0BJ1 Manual Version 1.0 '
{Department of Computation, UMIST, Manchester,1986).

[4] Goguen, J. and Winkler, T.
Introducing 0BJ3
(SRI International, SRI-CSL-88-9,1988).




