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1 Introduction

The term ‘reuse’ when used in a software environment covers a very large area.
This document contains a survey of some aspects of reuse. The main alms
are to define the different aspects of reuse, the problems associated with reuse
and current attempts at promoting various forms of reuse. The final aim is to
identify possible areas in which to focus my research into software and traditional
engineering.

The main reasons for increasing reuse are to improve the reliability of prod-
ucts and to reduce the cost of production.

Various aspects of reuse are presented in this document. The first section
gives an indication of the range of ways in which the word reuse can be in-
terpreted. This is followed by a section examining the reuse potential of the
various stages of the development cycle. The subsequent sections cover require-
ments for code and design reuse, the problems limiting reuse and some suggested
approaches to reuse. The final section identifies a direction for future research.

2 Meaning of reuse.

There is some debate about what exactly constitutes reuse. In some cases it is
taken to mean the extension of an existing system to add new functionality, that
is the code is reused in successive releases of a product. This type of reuse occurs
in many systems. An alternative meaning is using some part of one system in
a different system. Wirfs-Brock et al. use the following definitions [1].

“Software is reused when it is used as part of software other than that for
which it was initially designed. Software is refined when it is used as the basis
for the definition of other software.”

If the meaning of reuse is restricted to mean reuse without any change, the
scope for reuse will be restricted but reliability should be enhanced. If, on the




other hand, the scope is extended to include refinement in the above definition,
then the increase in reliability is likely to be compromised but reusability will
be extended.

The above definitions are concerned with code reuse. Rubin [2] extends the
potential for reuse to include analyses, designs, implementation, test cases, and
documentation. A similar broad defininition of reuse is used by the editors of
Software Reusability [3]. The definition can be further extended to include the
reuse of personnel and processes [4] , [5].

3 Reuse potential of the different stages of the
development cycle

Meyer [5] and Somimerville [6] identify source code reuse as a possible area for
reuse, pointing out that all software is finally and fully defined by its source
code. However, there are several reasons why source code is unlikely to be the
most beneficial level of reuse. A major reason is that the source code can be
easily modified by the developer of the new system. Any changes mean that all
the verification, validation and documenting of the software must be repeated
even though most of the code is unchanged. This negates much of the potential
benefit. This type of reuse is sometimes known as white-box reuse or cloning.
A result of cloning is that the code becomes very difficult to maintain and
understand. This is because lack control over the software can easily lead to
a loss in structure and an exponential growth in the lines of code. The large
volume of code and lack of structure makes the task of anticipating the effects
of changes very difficult.

A second factor which reduces the potential benefit is that the source code
contains implementation details and restrictions which may not be applicable
to the new system [7].

A more promising area for increasing reuse is at the design stage of system
~ development. As Meyer [5] points out, this requires that the design documenta-
tion of a system accurately reflects the actual system. Otherwise, uncorrected
design errors may be propagated to subsequent systems. There are alrvady
reusable designs for operating systems and compilers [8]. These are two areas
which have well defined functions and common patterns of behaviour which can
be captured in the designs. Another area of well defined functionality is numer-
ical computation [3]. This is also a fairly static and well understood discipline.
A library of this type of reusable components is likely to remain static which
enhances the possibility of reuse. A well understood mature environment may
be necessary for the production of highly reusable designs or components. It
is stated by Lenz [9] that common abstractions and concepts become apparen-
t when an application domain matures. The very high apparent productivity
rates of some software houses is suggested to be due to the reuse of entire designs




and requirements [10].

Lamb [8] states that it is also possible to use the same modular decompo-
sition for new versions of a system, even if the code is completely changed.
Specifications of the modules can also be reused for different implementations
or languages. :

A major factor in favour of reusing desigus is that they are free of implemen-
tation details and the restrictions imposed by the language and hardware used.
Harandi and Young [7] have developed a method using task-oriented abstract
algorithms. These are similar to abstract functions which can then be applied
to any data structure. The use of parametric programming is said to provide
some of the required ideas but to allow only forseen modifications. The designs
must be adaptable in unanticipated ways.

The method uses both a library of abstract algorithms and a collection of
generic abstract data structures. The design and implementation process in-
volves choosing an appropriate abstract algorithm which is then specialised for
the required generic data structure. Each part of the abstract algorithm is re-
peatedly refined to give an implementation. The resulting programs are claimed
to be easier to understand because they have standardised plans and data struc-
tures. The algorithm has a layered structure.

One example of an abstract algorithm is a search routine for finding a specific
item from a data structure.The abstract algorithm definition contains details of
what procedures must be provided by the data structure chosen, a list of possible
implementation decisions, formal descriptions of each property of the operations
and a list of impossible operations.

Domain analysis is identified by Horowitz [3] as a possible area for reuse. -

Domain analysis involves a thorough study of the application domain. This
will lead to the identification of all the major abstractions, such as data types
and processes, required by systems in that domain. Any major constraints on
the interactions between data types and processes will also be identified. The
analysis results could be reused for any system within that domain. Compiler
writing is sald to be an area in which domain analysis has already been used.

The most common forms of reuse at the moment are concerned with per-
sonnel [5] and processes [4] such us design inspections. Personnel reuse involves
using the knowledge and experience gained during the development of one sys-
tem to help in the development of the next system. The reuse of personnel is
most effective if the knowledge gained can be passed on in some way, such as the
development of the methods used for the production of models for-estimating
costs and time scales. Basili [4] also identifies the possible reuse of products,
such as Ada generic packages. Customisation of an existing software package is
another form of reuse, (Horowitz in [3] ). It is likely that the most cost effective
reuse will be made by reusing products from early in the life cycle.




4 Requirements for code and design reuse.

There are several generally accepted requirements for the reuse of software com-
ponents [8], [5], [11], [6]. These are:-

1. some form of information hiding. This means that the user of a piece.of
code does not need to know how the code works in order to use it. The
users of the components can treat them as black boxes. The separation
of specification and implementaion allows many implementations to be
produced for one specification.

2. these components should have a well defined purpose with a well docu-
mented 1nterface.

3. the library of these components must allow the easy identification and
retrieval of required components, that is some form of classification system
must be developed. It is suggested by Rubin [2] that the contents of the
library should be specially developed for inclusion in the library rather
than be produced as a by-product of a specific project. Meyer suggests
that all software should be with reuse in mind.

Other researchers have identified further requirements for the reuse of soft-
ware components [12], [13], [7], [4], [14]. Some suggestions are:-

1. good support must be provided to allow library components to be used
outside the originating division.

2. a framework or ‘megamodule’ to define standards or policies to allow in-
dividual modules to work together.

3. a standard set of abstractions for (re)use in software designs, such as
the algorithms used for searches. This would make programs easier to
understand and reuse.

4. a systematic approach for reusing exisiing experience .

5. tools and processes must be developed to support finding, understanding,
modifying, and composing components.

5 Existing Approaches to reuse.

The majority of reuse at present appears to involve code reuse and method or
process reuse.
There are two main current approaches to code reuse.




1. Code libraries. These are libraries of routines, such as mathematical,
scientific and statistical subroutines, which are generally very small in
nature and cannot apply to complex data structures [5],[8]. Biggerstaff
envisages a set of routines in a run-time library which are designed to be
used in more than one system [3].

2. The adaptation of one system to another with a very similar set of func-
tions [3]. This can also be extended to include the maintenance of pro-
grams which is largely reusing one system to develop another with minor
changes.

It is stated [3] that the reuse of components stored in code libraries has
not been very productive. Their experience was that a system developed using
more than a small proportion of reusable components was unlikely to meet its
specification.

Methods or processes, such as design methods eg. SSADM and JSD and
inspections, are widely reused.

A reusable processor was developed (ref’d in Horowitz [3]) for a single so-
phisticated specification language. The language used by the processor is called
MODEL, from module description language, and requires two types of input.
These are the description of the data and the relationships between variables.
The input is checked for incompleteness, ambiguity and inconsistency. A fully
functional program is produced in the language PL/1. This appears to be a
program generator working from the formalisation of object oriented analysis
results or entity relationships.

Methods for reusing transformation systems have been investigated (ref’d
in Horowitz [3] ). Transformation systems take high level specifications and
convert them into efficient programs. The specification of the systems was said
to be more complex than the final code.

6 Problems of reuse

The main problems limiting reuse of code and design can be divided into two
main areas. These are technical and non-technical [6],[15],[2], [3].

The technical problems concern all aspects of the components. It is difficult
to assess the reusability of a component because it is not known which of the
component attributes are critical in aiding reuse. This difficulty in identifying
critical attributes leads on to problems in defining a formal representation of
components suitable for use in designing a storage and retrieval scheme for a
library. The components could be in a programming language or in a program
design language. The classification scheme must allow for both these forms.
The specification of a retrieved component must be easy to understand.




In systems where speed of execution is critical, code reuse may not be seen
as applicable. This is because the more general a product, the less likely it is to
be the most efficient solution to a specific problem [2]. The analysis and design
may still be reusable.

The reuse potential of any product will decrease as it becomes domain spe-
cific and forms a larger unit. The cost savings gained by the reuse of larger
units will be greater than the reuse of smaller, more general products, such as
lists and windowing systems [3].

Non technical issues include the costs involved. Generalised components
cost more to develop in the first instance. This is because the component must
supply all the functions which may be required in the future and the component
must be designed in a general way. Reuse is a possible long term benefit but
incurs an increase in cost in the short term. A lack of trust in the work of others
is another obstacle to reuse. Productivity of staff is sometimes measured by the
lines of code produced. Reuse will reduce productivity measured in this way
and it is seen as necessary for a company to give some reward for reuse.

The above problems all relate to reuse without any change in the compo-
nent. The concept of inheritance [5] allows one piece of software to be used as
the basis for another piece of software. The original class is not affected by this
change and the code is not edited. Additional fields and functions can be added.
Inappropriate methods can be over-ridden. This is sometimes called black box
reuse and allows changes to be made without encountering the problems as-
sociated with white box reuse.(see section 3). This enables the extension of
the definition of reuse to include refinement,(see section 2). Jaime Nino [11]
shows that inheritance, the ability to define new software modules based on one
or more existing classes, without affecting the original class(es), allows small
incremental changes to be made in the software and results in the formation
of class hierarchies. This incremental development helps in the production of
reusable software by allowing unanticipated changes to be made in classes and
systems. This ability is sald to lead to greater flexibility and reusability than
is possible by the use of abstract data types in object based languages. It is
conceded that inheritance can break the encapsulation of the parent class by
allowing the descendant class direct access to its data structure. It is this access
which compromises the reliability of the system. Nino suggests that this prob-
lem could be overcome by allowing only the functions to be inherited, forcing
the descendant classes to use these functions to access the data structure of the
parent class and therefore retain the reliability.

Problems have been encountered when using class hierarchies [16]. These
problems resulted from the fact that code relating to decisions concerning error
handling and validation of parameters was distributed throughout the hierarchy.
A decision to validate all the required parameters together rather than one
at a time, was shown to mean that apparently useful classes required major
reworking and recoding before they could be used. This involved the breaking
of encapsulation. These problems show that the design choice made concerning




the way in which errors are handled can lead to incompatibility of components.
In some systems, the provision of a default value may be the best way to deal
with an error produced by a missing or invalid parameter. In another system
the user may not wish to use the chosen default value and so is unable to use
the class without modifications.

Biggerstaff [3] suggests that component reuse involves solving four problems.
They are

1. finding components from a library or catalogue
2. understanding components, said to be a fundamental problens.
3. modifying components to fit exact requirements.

4. composing components to make new computational structures.

The reuse of design information is said by Biggerstaff [3] to be hampered
by the lack of a clear implementation independent system for representing the
information. It is further suggested [17], that it is impossible to record all
the information required to allow a newcomer to a system to understand it
completely.

There are several problems with domain analysis (Horowitz in [3]). These
include the method employed for recording the results and how to make use of
them. Neighbors (ref’d in Horowitz [3]) has done a lot of work in this area.

Large scale reuse is hampered by the fact that there is no agreed “best”
technical approach to reuse and no method to analyse a real situation where
the domain is not narrow and well defined [3].

The author has found problems with reusing the Eiffel class libraries due
to poor documentation [18]. Esp [19] has reported similar problems with the
Smalltalk-80 library.

7 Suggested Approaches to reuse

The first and most obvious suggestion is to look in the library or records to see if
a similar class has been developed before, or if you have written one before.[15]

Wirfs-Brock et al. [1] have the following ideas for the production of appli-
cations using object oriented principles. They suggest three ways to produce
software in order to increase reuse.

1. Components such as lists, arrays etc can be produced. Other examples are
buttons and check boxes on interfaces. These components are discovered
when programmers write very similar pieces of code many times. The
ultimate aim 1s to abstract out common functionality during the design of




a piece of software. Components are standalone pieces of software used to
provide a given piece of functionality. They do not usually require services
from the systems into which they are inserted. They are the servers in a
client-server architecture.

. Frameworks or skeletal structures of programs can be developed. These
require to be fleshed out to build complete applications eg. windowing or
simulation. The goal is to make them refinable. The interfaces must be
as clear and precise as possible. They contain both reusable design and
reusable code. They use unmodified components plus framework specific
extensions and use code unique to the framework. They can act as clients
or servers in the system.

. Applications or complete programs. The primary goal is maintainability.
Tdeally applications are built by fleshing out frameworks. Domain spe-
cific details are required and the application should present an interface
consistent with existing components and frameworks. It is suggested that
sections of programs which could be useful in different applications should
be designed as components.

The first two products are the results of abstracting reusability from an

application whilst it is being built.

Rubin [2] identifies four general purpose techniques for developing reusable

components. The first two techniques are said not to lead to the production
of new reusable classes because they produce specialised, complex classes. The
remaining two techniques increase reusability by producing simpler classes.

1. Refinement. New classes are developed by refining existing ones, making

them more specialised. This is referred to as programming by difference
and uses the inheritance mechanism.

. Composition. New classes are created by combining existing ones. This
process can be called delegation. The new component delegates respon-
sibility for supplying the state and behaviour to its component parts by
using the functions supplied by them.

. Abstraction. One class, called a base class, is designed to contain the state
and behaviour common to a group of objects. The required classes can
then be developed, by refinement, from the base class. The base class is
reused in the system and is available for future reuse.

. Factorisation. This is the converse of composition. A complex class is split
into smaller, simpler ones which can then be combined, by composition,
to form the required complex object. The simple classes will then be
available for reuse.




The second two techniques of abstraction and factorisation mirror the first
two of refinement and composition. The general idea is, that if there are no
simple classes available from which to build your system, design the simple
objects yourself and then specialise them. These techniques are based on the
assumption that smaller components are more reusable than complex specialised
ones.

The Eureka Software Factory project [14] is working on the factory style
use of CASE products. They identify the need for two types of producers.
These are the producers of the components and factory producers which use
the components to produce systems. This reflects other views [20] that the
reuse of designs falls into two categories, namely design for reuse and design
with reuse. The Eureka Software Factory project research concentrates on the
design with reuse aspect. A client-server architecture is used. A system consists
of small user interaction components (clients) and larger less specific service
components (servers). A software bus is used to link the components. The
interfaces of the components must conform to a set of protocols defined by the
bus. These protocols could be used to prevent the problems of incompatibility
caused by variations in error handling etc. identified by Berlin.

A reusable software library has been developed [20]. The library contains
data structure components and consists of a database and four subsystems to
provide library management, query facilities, a software component retrieval
and evaluation facilities, and a software computer aided design package. They
suggest that a software components library should be separated into multiple
databases containing project specific components. They also found that the
addition of the software computer aided design tool made it possible to use the
library for both design and implementation.

Parnas, in [3], suggests that a system should be divided into three modules.
Bach module is used to hide one aspect of the system. The modules are:-

1. a hardware hiding module to contain any hardware dependent programs.

2. a behaviour hiding module to contain any parts that would need changing
to cope with changing system requirements.

3. a software decision module to hide all the software decisions about theo-
rems used and efficiency.

Parnas admits that this division into modules is fuzzy. The reason is that
some hardware systems support functions which must be carried out by soft-
ware in other systems. The software is designed to be easily adaptable, not
general because generality is considered to be too inefficient. All the modules
are specified to provide a substitute for the information hidden by telling how to
use the module. The module decomposition forms the basis of the cataloguing
system for the components.




Lamb [8] also advocates the use of information hiding to increase reuse. He
points out that modules which do not (or appear not) to use any other modules
are the easiest to reuse. He also states that parameterised modules are more
readily reusable.

Goguen, in [3], advocates the use of parameterised programming. The gener-
ic packages available in Ada provide part of the requirements for parameterised
programming but are said to lack the semantic information needed. Parame-
terised programming requires the possibility of using modules as well as simple
types as parameters to functions or methods. Parameterised programming is
said to imply bottom up development but several suggestions are made for pro-
ducing top down designs. :

Three forms of abstraction are used by Lenz [9] in the development of build-
ing blocks for use in systems software. These are data abstraction eg. abstract
data types, functional abstraction eg. conversion and sorting functions, and
procedural abstraction eg. message handling and input checking. The code im-
plementing these abstractions is encapsulated. In order to allow more flexibility
and greater reuse, building blocks can be used as parameters to other building
blocks.

Gossain and Anderson [21] suggest an iterative approach to object-oriented
design in order to increase the reusability of components. They concentrate on
reuse within a single domain stating that ‘one cannot expect to design compo-
nents within a domain for reuse outside that domain’. They also state that:
“The designer must also design for reusability i.e.must cater for anticipated
changes.” This suggests that they are using reuse to mean adding functionali-
ty to an existing system or reusing the classes in the development of a similar
system.

Basili and Rombach [4] have developed a comprehensive cataloguing scheme
for products to help analyse the differences between existing products and the
requirements of the new system. The results of the analysis are used as the
basis for deciding if reuse is appropriate. The scheme is intended for use with
all the products of software development such as software modules, processes
and estimation techniques.

Several guidelines for enhancing software reusability in both object-oriented
and traditional systems are given by Smith {22]. Some of the guidelines seem
to try to address the problems of incompatible classes identified by Berlin, and
others are considered requirements for reuse by other authors. The following is
a list of the guidelines.

1. Use encapsulation to hide details. This is considered a requirement by
other authors.

2. Use access methods for inter-module communication. This appears to
mean reduce the public interface of modules to control access to methods.
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Use message passing for inter-object communication. In a fully object-
oriented system this is the only way for communication to take place. The
system developed by Smith was implemented in C++ and used the ability
to mix object-oriented and procedural styles to improve the performance,
hence this guideline. '

. Use built-in support for array indexing. This is again due to the language
.~ used. C++ is an extension of C and has the ability to use pointer manip-

ulation for array indexing but reuse between compilers and hardware may
not be feasible if pointers are used.

. Provide multiple constructors for classes. This allows more flexibility for

the programmer and increases the reusability of the class.

Identify abstract and concrete classes. Smith recommendeds that a deep
hierarchy of classes is developed. Each layer would add only a few extra
features to the previous layer. This would allow another developer to
identify a good starting point when new classes are needed. A potential
problem with the use of a deep hierarchy is the large number of classes to
be examined for potential reusability.

. Refine hierarchies fully before reducing to binary form. This is again a

language dependent guideline. The Eiffel equivalent is closing a class [5].
The reduction to binary form means that the class should not be altered
and additions should only be made by inheritance.

Hide low-level classes within high-level classes. This refers to the nesting
of objects. A high level object is formed as a grouping of smaller lower
level objects. This agrees with the advice given by Rubin.

. Put the flow of control in the objects. These need standard protocols to

increase the reusability by defining standard operations for each class and
permitting polymorphism.

Use virtual methods where appropriate. These methods specify what to
do at high level in a class hierarchy but not how. It is usually better to
have a few high-level virtual functions rather than more low level ones.

Conclusions

Reuse can be considered at all stages of the development cycle. Reuse of prod-
ucts from early in the development cycle give the most benefit.

There are many areas in which further research could be carried out in
order to overcome some of the technical problems identified as limiting reuse in
software development. These include:-
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1. defining a method for 1dentifying abstract components in a given applica-
tion domain (Gossain),

2. development of parameterised programming to enable more flexibility of
components (Goguen),

3. defining a standard design for components which would give maximum
flexibility to users of the component while maintaining the integrity of
the component. The components must also not be either too large to be
comprehensible or too small to be useful,

4. further development of a scheme for classifying components in a software
library,

[

. development of a system for representing design information and ensuring
that it clearly represents all the information known to the designer.[3],
[17]. The information includes the structure of the component parts and
the relationships between them.

Areas 1-3 are concerned with designing for reuse and 4-5 with designing with
reuse.

The last topic was selected for further work. A good system for representing
design information and ensuring its completeness would allow a newcomer to
understand the whole system and it’s components easily. This would make
maintaining or extending a current system easier as well as enabling the reuse
of the components in a new system.
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