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Summary. In this paper we propose a new method for overcoming the problem of adjusting for 
the multiple testing problem in the context of testing random number generators. We suggest it 
is to be used in conjunction with an existing method. More generally, the method can be useful 
in other situations where the multiple testing issue is encountered and the tests involved are not 
independent of each other, and their exact joint distribution is not readily available. The method 
makes use of the Mahalanobis distance and simulation. An example of its implementation is 
given using data from a roulette wheel. 
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1. Introduction 
Games of chance have been played for millennia, and necessitate the use of some means of 
producing outcomes that are supposed to be random in nature. Common physical devices that have 
been used are dice, spinning tops, shuffled playing cards, roulette wheels, selecting balls from a 
container. More recently, electronic means of producing outcomes that are supposed to be random 
have been available. Software-based computer random number generators are widely used, and 
there are also hardware-based machines that detect physical phenomena thought to occur at random 
(such as thermal noise) and convert them into output. 

Where physical devices are used to obtain random outcomes for the game, players may be reassured 
that they are operating correctly by observing their operation. They may also be able to participate 
in the use of the device (e.g. throwing dice) or preparing the device (e.g. shuffling a pack of playing 
cards). For software and hardware means of generating outcomes, however, they are restricted to 
observing the outcomes. In order to give players confidence, these outcomes may be recorded and 
subjected to statistical analysis. Indeed this regime of recording and testing may also be undertaken 
for physical devices. 

Thus, whatever the device being used to generate game outcomes, there is considerable interest in 
whether or not the outcomes produced correspond with what would be expected from a truly 
random process. In section 2 of this paper, we discuss briefly some approaches to testing 
randomness, and present the multiple testing issue which this work addresses. Section 3 presents 
existing solutions to the multiple testing problem, and their applicability/shortcomings are 
discussed. In section 4, we propose extending a way of tackling the multiple testing problem and in 
section 1 the issue of power is discussed. Section 6 gives an example of the extended method in 
action and section 7 gives concluding remarks. 

2. Testing Randomness and the Multiple Testing Problem 
It is not the intention to present in this paper a review of methods for testing randomness. There is 
an extensive literature concerning this matter, and interested readers are directed to Knuth (1998, 
chapter 3) and L’Ecuyer (2004). 
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Whatever methods are chosen to test a random number generator (RNG), any thorough testing will 
involve the application of a number of statistical tests. These will assess the outcomes of the 
generator from several standpoints, looking for different patterns indicating a lack of randomness. 
This is where the multiple testing problem occurs. If a 5% level of significance is used, then the 
probability of making a type I error (rejecting the null hypothesis when it is in fact true) for each 
individual test is 5%. However, when a number of tests are conducted, each with a 5% chance of a 
type I error, then globally, over all the tests, the chance of at least one type I error will be greater 
than 5%. When testing randomness, this is critical because a good RNG needs to pass all the tests to 
which it is subjected. Failing just one test is enough to indicate that it is failing to produce outcomes 
that would be expected from a random process. 

If there are i tests that are independent of each other then it can be shown that the probability of at 
least one type I error occurring is ( )ip11 −− . Thus for two tests, the probability of a type I error is 
9.75%, for three tests, the probability is 14.26%, etc. It requires just 14 tests to be undertaken in 
order for the probability to exceed 50%. 

However, when testing randomness, the assumption of independent tests is unlikely to hold unless 
the analysis being undertaken is very perfunctory and consists of a very small number of tests. Even 
in this situation, the tests are unlikely to be independent. The effect of this is that the type I error 
will not be as large as that calculated above for independent tests. However, the probability of a 
type I error will still be greater than the notional significance level being used individually for each 
test (ignoring the absurd situation where all the tests are completely dependent on each other). The 
size of this probability will depend on the nature of the relationships between the tests, and for 
practical purposes it will be impossible to compute due to the complexity of these relationships. 

Thus we have the multiple testing problem in the context of testing for randomness. Not only is the 
probability of a type I error inflated, but the extent to which it is inflated is unknown. This problem 
is not confined to testing randomness, and in any analysis where more than one statistical test is 
undertaken, the multiple testing issue must be addressed. Methods for doing this are discussed in 
section 3. 

3. Existing Solutions to the Multiple Testing Problem 
On occasions, the design of the study being analysed will mean that the tests being conducted are 
independent of each other. In this situation, there are a variety of ways proposed to overcome the 
multiple testing problem. Popular methods include those attributed to Bonferroni, Scheffé and 
Tukey (see Shaffer, 1995 for a review). 

There is a school of thought that considers it inappropriate to make adjustments to take account of 
the multiple testing problem. Authors such as Perneger (1998) and Rothman (1990) argue that 
making adjustments runs the risk of not rejecting null hypotheses that should be rejected, and 
especially in exploratory studies, it does not matter too much if a type I error is made. However, 
when testing randomness, the existence of just one test where the null hypothesis of randomness is 
rejected is enough to raise serious questions about the validity of the RNG. Often a large number of 
individual tests are carried out, and to test them all at, say, the 5% level of significance may lead to 
a situation where even if all null hypotheses are true, one would expect at least one result to be 
declared significant. In these circumstances, it is essential that adjustments are made to address the 
multiple testing problem. 

Consideration of the multiple testing problem has been going on for several decades, but a more 
recent development is the examination of the false discovery rate (FDR). This is the proportion of 
rejected null hypotheses that should not have been rejected. In many multiple testing situations, it is 
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more appropriate to want to control the FDR than the probability of a type I error, especially when 
it is extremely unlikely that all null hypotheses are likely to be true. The emphasis is placed on 
rejecting null hypotheses that should be rejected and accepting that a certain number of true null 
hypotheses are also going to be rejected, but at the same time having control over the rate of the 
latter. Papers by Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001) and Storey 
(2002) provide details. Recent extensions concerning the positive false discovery rate (pFDR) and 
optimal discovery procedure (ODP) have been suggested by Storey (2003) and Storey (2005) 
respectively. However, when testing for randomness, we are primarily interested in testing a global 
null hypothesis (all null hypotheses being true against the alternative of at least one false null 
hypothesis). We are not concerned with how many true null hypotheses have been rejected but 
whether any null hypotheses are false. Thus we do not pursue these possible approaches to the 
multiple testing problem. 

Where tests are not independent, it is not an unusual practice to apply adjustments that are designed 
for independent tests. An effect of this is to be over-conservative, and adjust the overall probability 
of a type I error to a level below that aimed at by the adjustment method. While this does have the 
effect of imposing some control on the chances of rejecting a RNG when it is actually producing 
numbers consistent with randomness, it also leads to a situation where a poor RNG has less chance 
of being detected as being such. That is, the probability of a type II error is increased. 

To overcome the problem of over-conservative adjustments, the nature of the relationships between 
the tests needs to be taken into account. Where the exact functional nature of the relationships 
between the tests are known, these can be used to amend the adjustments made by the popular 
adjustment methods (see e.g. Worsley, 1982). However, most frequently, the nature of the 
relationships is not known, so this approach cannot be taken. In these circumstances, simulation (as 
follows) can be employed to test the global null hypothesis. 

1. Generate a “large” number of further datasets based on the assumption that all null hypotheses 
are true. 

2. Apply the tests carried out on the “real” data to each of the new datasets, and note the smallest 
p-value that results. An empirical distribution of smallest p-values is thus created. 

3. If the smallest p-value from the “real” data falls in the lower, say, 5% tail of the empirical 
distribution of smallest p-values, then declare that the global null hypothesis is rejected. 

The generation of further datasets in step 1 is undertaken by a trusted RNG. Typically this will be a 
computer-based pseudo-RNG which means that the comparison of the observed smallest p-value 
with the empirical distribution is really comparing the RNG being tested with something that is not 
truly random. However, if the trusted RNG has undergone rigorous testing and is a very good 
approximation to a truly random generator, then the comparison with the pseudo-RNG can stand in 
for the preferred but impractical comparison with a truly random generator. For added confidence, 
the datasets could be generated using a number of trusted RNGs. 

Each of the datasets created in step 1 is of the same size as the dataset from the RNG being tested. 
This ensures that the power of the tests used on the RNG being tested is the same as those applied in 
step 2. The number of datasets that are generated in step 1 is a function of the computing power and 
time available as well as the precision required for the comparison of smallest p-values in step 3, 
but is likely to be in the order of many thousands. 

Another way of thinking of step 3 is to calculate an adjusted p-value for the smallest observed p-
value from the “real” data by defining it to be the proportion of the way through the empirical 
distribution that it lies. If it lies in the lower 5% of the empirical distribution then the adjusted p-
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value will be less than 5% and the global null hypothesis can be rejected at the 5% level of 
significance. This method of operation has been used by a number of authors, including Aris-
Brosou (1993), Becker et al. (2005), Westfall and Young (1993). 

Westfall and Young (1993) promote the use of resampling methods to generate the further datasets 
of step 1, based on the data already collected. This is essential when the exact distribution of the 
data under the null hypotheses is not known. However, for tests of randomness, the distribution of 
the data under the null hypothesis of randomness is well known. Thus, rather than resampling to 
obtain further datasets, new data can be simulated from known distributions. 

However, basing a test for the global null hypothesis on just the smallest observed p-value ignores 
information about the truth or otherwise of the global null hypothesis that can be provided by other 
observed p-values. The above method examines whether or not the smallest p-value is unusual in 
the context of an empirical distribution of smallest p-values. In section 4 we extend this procedure 
by considering whether or not the vector of observed p-values is unusual in the context of an 
empirical multivariate distribution of p-values. 

4. Extending a Solution to the Multiple Testing Problem 
The first two steps of the “smallest p-value” method for tackling the multiple testing problem 
outlined in section 3 yields a set of p-values for each new dataset generated. In the “smallest p-
value” method, only the smallest p-value from each dataset is recorded to form part of the empirical 
distribution of smallest p-values. Here, rather than discarding the rest of the p-values, we retain 
them all, and thus form an empirical multivariate distribution of p-values. This distribution is that 
which the observed set of p-values from the tests would come from, if the global null hypothesis of 
randomness holds. 

In order to assess the global null hypothesis, we wish to compare the observed set of p-values with 
the distribution of p-values that would be expected under the global null hypothesis. We thus need 
some measure of how far the observed set of p-values is from the multivariate centre of the 
distribution under the null hypothesis. Commonly used measures such as Euclidean distance could 
be used, but the Mahalanobis distance (Mahalanobis, 1936) has the advantage of taking into account 
the relationships between variables. It is important that we use a distance measure that does this 
because tests that are related provide overlapping information about randomness. Measures that do 
not take the relationships into account will “double count” the overlapping information, whereas the 
Mahalanobis distance makes appropriate adjustment. 

This adjustment made by the Mahalanobis distance requires the estimation of a covariance matrix 
from the empirical distribution, and works best if the data have a multivariate normal distribution. 
With p-values being uniformly distributed between zero and one under the null hypothesis, this is 
obviously not the case, but they are easily transformed to multivariate normality by applying the 
inverse cumulative distribution function for the standard normal distribution. 

Thus, in the simulations, rather than create an empirical distribution of p-values we in fact create an 
empirical distribution of normal scores created from the p-values. Henceforth we shall refer to these 
as z-scores. For each simulation, the sample covariance matrix associated with these z-scores is 
calculated, and the elements of the matrix averaged over the simulations to produce an overall 
estimate of the covariance matrix. The distance from the observed set of z-scores to the multivariate 
centre of the distribution under the null hypothesis can then be estimated using the (squared) 
Mahalanobis distance. This is defined as 

( ) ( )μ−μ−= −Τ xSxMD 12 . 
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The vector x  is observed z-scores, and μ  is known to be a vector of zeros under the global null 
hypothesis (corresponding to an average p-value of 0.5). 

A departure from the traditional Mahalanobis distance is that S is the correlation matrix estimated 
from the simulated datasets rather than the covariance matrix. This is because the variances of the z-
scores are known to be one under the null hypothesis. Thus, rather than using estimated variances 
and covariances, we can set the diagonal elements of S to one by using the correlation matrix. 

If the RNG being tested is producing data that does have a pattern like the trusted RNG then one 
would expect the MD2 to be small because the vector of observed z-scores would be close to the 
centre of the hypothesised distribution. However, if there was a lack of randomness in the data, one 
would expect the vector of observed z-scores not to be close to the centre of the empirical 
distribution, and a large MD2 to result. 

Of course, this raises the question of how large the MD2 must be before one is concerned about the 
acceptability of the global null hypothesis. One approach to this is suggested by Barnett and Lewis 
(1994), after Wilks (1963), in the context of determining whether or not a multivariate observation 
can be considered an outlier in a dataset. They give a table of critical values for MD2 for various 
sample sizes, number of variables and significance levels. Jennings and Young (1988) give 
extended tables produced by simulation exercises. Penny (1996) also addresses this issue and gives 
critical values. The situation we are faced with here is different to that dealt with by any of these 
authors. We are using the vector of means under the null hypothesis in our calculation of MD2, and 
are also using the correlation matrix rather than the covariance matrix. Thus, the exact distribution 
of the MD2 is not one that has been considered by these authors, and hence their critical values are 
not directly applicable. 

As the exact distribution of the MD2 is unknown, we create an empirical distribution by carrying 
out a second set of simulations. A large number of MD2 are calculated by simulating even more sets 
of data using a trusted RNG and applying the same procedure as was used above to calculate the 
MD2 for the data from the RNG being tested. The number of MD2 values generated for the 
empirical distribution depends on the computing power and time available and the precision needed 
for the p-value obtained at the next step. We obtain this p-value for the global null hypothesis by 
observing the proportion of the way through the empirical distribution of MD2 that the observed 
MD2 from the data being tested lies. If the p-value is greater than the level of significance we have 
chosen to use, we declare that we have insufficient evidence to claim that the RNG is generating 
data that is anything other than what would be expected from a random process. If the p-value is 
smaller than our significance level, we may declare that we have sufficient evidence to claim non-
randomness. In practice, as the claim of non-randomness has such drastic consequences for a RNG, 
we may choose to undertake further investigations, and only claim non-randomness if further 
evidence is found. The steps undertaken can be summarised as below. 

1. Taking the “real” data from the RNG to be tested, apply the set of tests of randomness chosen 
and note the p-values obtained from these tests. 

2. Using a trusted RNG, generate a “large” number of further datasets based on the assumption 
that all null hypotheses are true. 

3. Apply the tests carried out on the “real” data to each of the new datasets created in step 2, and 
use the p-values that result to create a correlation matrix to be used in step 4. 
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4. Using the correlation matrix created in step 3 and z-scored versions of the p-values obtained 
from the analysis of the “real” data in step 1, estimate the Mahalanobis distance of the “real” 
data’s z-scores from the centre of the hypothesised distribution. 

5. Repeating step 2, use a trusted RNG to generate another “large” number of further datasets 
based on the assumption that all null hypotheses are true. 

6. Apply the tests carried out on the “real” data to each of the new datasets created in step 5 and 
estimate the Mahalanobis distance of the z-scores that result from each new dataset from the 
centre of the hypothesised distribution, using the correlation matrix created in step 3. An 
empirical distribution of Mahalanobis distances is thus created. 

7. Observe the proportion of the way through the empirical distribution created in step 6 that the 
observed Mahalanobis distance (created in step 4) from the data being tested lies and draw 
conclusions. 

5. Power 
In this paper we have been discussing two methods for overcoming the multiple testing problem: 
that using the smallest p-value and that using the whole vector of p-values. The relative power of 
these tests depends on the nature of the departure from randomness that exists. 

If the nature of the departure from randomness corresponds directly with that which one of the 
individual tests of randomness is examining, then the smallest p-value method will be more 
powerful than the method that considers the whole vector of p-values. However, this requires the 
departure from randomness to be one that is suspected as being possible. 

If however the departure from randomness does not correspond with one of the tests being carried 
out then the smallest p-value may come from any one of a number of the tests being carried out. 
This method may then not yield a smallest p-value which is small enough to result in the global null 
hypothesis being rejected. However, the departure from randomness that exists in this case is likely 
to have an impact on a number of the tests of randomness being carried out. This will mean that the 
vector of all p-values will be noticeably different from that which one would expected to be 
produced were the data random. In this case, the method illustrated in this paper where the whole 
vector of p-values is examined would be more powerful than the smallest p-value method. 

6. Example: Testing a Roulette Wheel 
When approaching the task of testing a roulette wheel, there are many possible tests that could be 
carried out on a stream of numbers obtained at the wheel. The literature concerning testing roulette 
wheels concentrates on just one of the types of bet allowed in the game: the single number bet. 
Ethier (1982) examines how a gambler playing this one type of bet might detect a wheel as 
favouring certain numbers and then use this information to gain an advantage and win money. 
Keren and Lewis (1994) address the same problem and demonstrate how people in their study 
seriously underestimate the amount of data that must be collected in order to be confident of having 
detected a biased wheel. 

6.1.  Tests used in this paper 
To demonstrate the use of the methods shown in this paper, we will consider just a subset of the 
many different tests that could be carried out on data obtained from a roulette wheel. One of these is 
the individual number test mentioned above. It uses a chi-square test to compare the observed 
number of times that each individual number is selected with what would be expected from a 
discrete uniform distribution. 
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It might be hypothesised that if a bias does exist in the wheel, then a certain section of the wheel is 
favoured over other sections. Whilst a test of individual numbers may be able to detect this sort of 
bias, it will not be taking into account the known information concerning which numbers lie next to 
each other on the wheel. The test of individual numbers will thus be less powerful than tests 
directed to looking at sections of the wheel. 

Figure 1 shows a roulette wheel with a French/European configuration of numbers. The zero is a 
green segment of the wheel. The other numbers alternate between red and black around the wheel, 
with 32 being red, 15 being black and so on. American roulette wheels have an additional green 
segment labelled “00” and a different ordering of the numbers on the wheel. With 37 segments in 
which the ball can finally settle, a bias for one half of the wheel over the other can be tested for by 
observing the number of times that one group of 18 segments is selected and the number of times 
the other 19 segments are selected, and comparing this with what would be expected if the wheel 
were unbiased. However, there are 37 ways in which these groups of 18/19 consecutive segments 
can be defined, so 37 separate tests are required to assess every possible way in which this sort of 
bias may occur. With so many tests, the issue of multiple testing must be addressed, and because the 
tests will obviously not be independent, the methods discussed in this paper are relevant. 

Tests looking at proportions of the wheel other than approximately a half could also be used to test 
for biases. However, for the purposes of this paper focussing on overcoming the multiple testing 
problem in the presence of non-independent tests, we do not pursue this path. 

 

Fig. 1. A French/European Roulette Wheel 

If the test of individual numbers and tests of approximately half the wheel were the only ones that 
were to be used in testing a roulette wheel then it is possible that we might be able to create the joint 
distribution of all the tests and proceed to adjust for correlated multiple testing using this 
knowledge. However, we may also wish to include other tests that could not be readily incorporated 
into a joint distribution. One such test that is relevant to roulette is the length of gaps between 
occurrences of zero (the zero exists on a roulette wheel to give the casino an “edge” and make 
profits in the long run, as there are fewer opportunities for players to win if this number is selected). 
If too many or too few zeros were selected, then the chi-square test comparing observed and 
expected numbers of occurrences of individual numbers would be able to test this. However, a 
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departure from randomness where the zeros occurred the correct expected number of times but in 
clusters would be better investigated using a test looking at length of gaps. 

We might also consider undertaking tests that relate to the possible bets that can be placed by 
players at the roulette table (e.g. red or black numbers or particular groups of numbers). For the 
purposes of this paper, we will proceed with just one possible test of this sort, relating to a bet that 
can be made on whether the number selected is in the range 1 to 12, 13 to 24 or 25 to 36. 

For the purposes of this paper, we thus proceed with 40 tests: the test of individual numbers, the 37 
tests looking for biases in approximately half the wheel, the gap test for zeros and the test of the bet 
on dozens. 

6.2.  Data and initial analysis 
To demonstrate the use of the methods discussed in this paper, we use 3,535 spins obtained from a 
French/European roulette wheel from 1st to 11th August 2008 at the Spielbank Saarbrücken 
(Saarland Spielbanken, 2008). The test of individual numbers, the 37 tests looking for biases in 
approximately half the wheel, the gap test for zeros and the test of the bet on dozens were applied to 
these data and yielded the p-values shown in table 1. 

Table 1. p-values from tests on data 

Test p-value  Test (continued) p-value 
Individual numbers 0.3936  Wheel divided into segments:  
Wheel divided into segments:   5 to 26, 0 to 10 0.2042 

0 to 23, 10 to 26 0.1863  24 to 0, 32 to 5 0.2292 
32 to 10, 5 to 0 0.1978  16 to 32, 15 to 24 0.6441 
15 to 5, 24 to 32 0.4536  33 to 15, 19 to 16 0.6684 
19 to 24, 16 to 15 0.5167  1 to 19, 4 to 33 0.4443 
4 to 16, 33 to 19 0.3951  20 to 4, 21 to 1 0.3508 
21 to 33, 1 to 4 0.3084  14 to 21, 2 to 20 0.2292 
2 to 1, 20 to 21 0.2098  31 to 2, 25 to 14 0.0563 
25 to 20, 14 to 2 0.2223  9 to 25, 17 to 31 0.0410
17 to 14, 31 to 25 0.0392  22 to 17, 34 to 9 0.0190 
34 to 31, 9 to 17 0.0281  18 to 34, 6 to 22 0.1505 
6 to 9, 22 to 34 0.0461  29 to 6, 27 to 18 0.3684 
27 to 22, 18 to 6 0.1863  7 to 27, 13 to 29 0.5508 
13 to 18, 29 to 27 0.4536  28 to 13, 36 to 7 0.6074 
36 to 29, 7 to 13 0.9268  12 to 36, 11 to 28 0.8857 
11 to 7, 28 to 36 0.9268  35 to 11, 30 to 12 0.9268 
30 to 28, 12 to 11 0.5508  3 to 30, 8 to 35 0.5840 
8 to 12, 35 to 30 0.6201  26 to 8, 23 to 3 0.4536 
23 to 35, 3 to 8 0.5735  Gap test for zeros 0.8113 
10 to 3, 26 to 23 0.2292  Test of bet on dozens 0.8621 

 

As can be seen from the table, there are five p-values that are less than the notional 5% level. The 
smallest of these is 0.0190. If the multiple testing problem were ignored, this would lead the 
investigator to conclude that there was strong evidence against the null hypothesis of randomness. 
With some knowledge of the multiple testing issue, a straightforward Bonferroni approach would 
look for p-values less than 0.00125 (5% divided by the number of tests: 40). Using this criterion, 
the conclusion would be that there was insufficient evidence against null hypothesis of randomness. 
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However, it does not take much inspection to realise that we do not have forty independent tests. 
The five p-values that are less than 5% are in fact grouped into two blocks and within these blocks 
the tests have very similar group definitions. 

6.3.  Analysis allowing for non-independent multiple tests 
The method used by Aris-Brosou (1993), Becker et al. (2005), Westfall and Young (1993) and 
outlined in section 3 that assesses the significance of the smallest p-value was applied to the data. 
The smallest p-value of 0.0190 was found to be 20.77% of the way through a simulated empirical 
distribution, based on 50,000 simulations. Comparing this empirical p-value of 0.2077 with a 5% 
level of significance, we thus accept the global null hypothesis of randomness. 

In order to take into account all the p-values obtained from the tests of randomness, we now apply 
the extension of the multiple testing problem that was discussed in section 4. In order to calculate 
the Mahalanobis distance between the vector of z-scores and what would be expected under the 
global null hypothesis of randomness, we need to obtain an estimate of the correlations between the 
tests. With forty tests, we have 780 correlations to estimate (40 × 39 ÷ 2), but we are able to make 
use of the fact that the 37 tests looking for biases in approximately half the wheel are identical apart 
from defining how the wheel is split into two groups. Thus, we know that the correlation between 
the test of individual numbers and the first of the 37 tests looking for biases in approximately half 
the wheel, will be the same as that involving all the rest of the 37 tests. Thus, instead of 37 
correlations to be estimated here, there is just one. In a similar manner, rather than having to 
estimate the 37 correlations between the gap test for zeros and the tests looking for biases in 
approximately half the wheel, we only need estimate two correlations. The first of these two 
correlations is for those cases where the test for approximately half the wheel contains the zero in 
the smaller of its two categories (that is, in the category containing 18 numbers as opposed to the 
larger category containing 19 numbers). The second of the two correlations is for those cases where 
the zero is in the larger category. 

A major saving in the number of correlations to be estimated can also be made by recognising that 
the 37 tests looking for biases in approximately half the wheel can be put in order (as in Table 1, 
and refer to Figure 1). Each of the tests is the same as its predecessor with the wheel moved just one 
“slot”. Thus where the first of the 37 tests listed in Table 1 has its segments as 0 to 23 and 10 to 26, 
the next test has its segments going from 32 (one slot on from 0) to 10 (one slot on from 23) and 5 
(one slot on from 10) to 0 (one slot on from 26). The correlations between these tests will be the 
same as that between any other pair of consecutive tests, and we can think of this as a “one shift” 
correlation. We can also define a “two shift” correlation in a similar manner, and “three shift”, “four 
shift”, etc. correlations up to an “eighteen shift” correlation. By the time we reach a nineteenth shift, 
the wheel has rotated so much that it is equivalent to an shift of eighteen in the opposite direction, 
and so a separate “nineteen shift” correlation is not needed. Similarly a shift of twenty is equivalent 
to a shift of seventeen and so on. 

As a result of recognising the relationships between the 780 correlations, we ultimately find that we 
only need to obtain 61 estimates. To obtain good estimates of these correlations, simulations are 
carried out until all the correlations are changing by less than 0.0001. This necessitated in excess of 
520,000 iterations. 

With the correlation matrix defined by the simulations, the calculation of the Mahalanobis distance 
between the vector of z-scores and what would be expected under the global null hypothesis of 
randomness was carried out, and a figure of 34.946 produced. 

To gauge the size of this figure, further simulations were carried out. Sets of data were produced by 
a trusted RNG and subjected to the same procedure as the data being investigated (namely, 
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obtaining p-values from tests, production of z-scores and calculation of the Mahalanobis distance 
using the covariance matrix estimated above). An empirical distribution of Mahalanobis distances 
was thus obtained. The observed distance of 34.946 was found to be 37.8% of the way through the 
empirical distribution, based on 50,000 simulations. As the observed distance would need to be 
excessively large in comparison with the empirical distribution in order for the global null 
hypothesis to be rejected, this equates to a p-value of 0.622 (1 – 0.378). We thus conclude that there 
is insufficient evidence to reject the global null hypothesis of randomness. 

7. Concluding Remarks 
It is of course not surprising that in section 6 the method of analysis that considers the smallest p-
value leads us to the same conclusion concerning the global null hypothesis as the method which 
considers the whole vector of p-values. However, the fact that the p-values for each method are 
considerably different from each other highlights the fact that the ways in which the methods assess 
the global null hypothesis are markedly different. With this in mind, we argue that it would be best 
practice to use both methods when conducting an investigation. 

Undertaking both methods is not an added complication, as the simulations required to give the 
empirical distribution of Mahalanobis distances (for the method using the whole vector of p-values) 
can also be used to produce the required empirical distribution of smallest p-values. The fact that 
the same simulations are producing both empirical distributions does mean a loss of some 
independence of the methods, but given that the methods cannot be considered independent of each 
other in any circumstances, this does not give great cause for concern. Of greater importance is that 
fact that by using two methods, we encounter the multiple testing issue once again. However, so 
long as a level of significance of less than 5% is used when assessing each method, this can be 
overcome without difficulty. If the two methods were independent, a level of significance of around 
2.5% would be appropriate, so perhaps a good rule of thumb would be to use 2.5% as a cut-off for 
making definite claims about the global null hypothesis. Values between 2.5% and 5% can be taken 
to indicate uncertainty and the need for further investigation. 

However, let us consider how we would react to a situation where the smallest p-value method 
rejects the global null hypothesis while it is accepted by the method considering the whole vector of 
p-values. Obviously we have a situation where for (at least) one test, there is considerable evidence 
against the global null hypothesis. However, we also have an indication that other tests are detecting 
patterns that are truly in line with randomness. In the circumstances of testing a RNG, it is the case 
that the generator need only fail one test of randomness for it to be judged non-random. Thus, if the 
smallest p-value method is leading us to reject the global null hypothesis, we are not interested in 
the fact that the method using the whole vector of p-values is telling us that from the point of view 
of some other tests, the generator is producing numbers that appear random. We would thus make 
our overall conclusions based on the smallest p-value method and reject the global null hypothesis. 

The other situation where a disagreement occurs is when the smallest p-value method accepts the 
global null hypothesis while it is rejected by the method considering the whole vector of p-values. 
As mentioned in section 1 when discussing power, if the nature of the departure from randomness 
does not correspond directly with one of the individual tests of randomness being undertaken, it is 
likely that the smallest p-value method will not yield a p-value small enough to reject the global 
null hypothesis. However at the same time, there will be a number of tests that are affected to some 
degree by the departure from randomness and these will yield p-values that, taken together, give the 
indication of non-randomness. In these circumstances the method that looks at the whole vector of 
p-values can be expected to have a greater chance of rejecting the null hypothesis. Thus where we 
have this sort of disagreement between the two methods, we would state our conclusions based on 
the method looking at the whole vector of p-values. 
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