
Auxiliary Computations

A Framework for a
Step-Wise, Non-Disruptive

Introduction of Static Guarantees
to Untyped Programs

Using Partial Evaluation Techniques

Stephan Andreas Herhut

January 2010

A thesis submitted to the University of
Hertfordshire in partial fulfilment of the

requirements of the degree of

Doctor of Philosophy

The programme of research was carried out in
the School of Computer Science,

Faculty of Science, Technology and Creative Arts,
University of Hertfordshire.

Abstract

Type inference can be considered a form of partial evaluation that only evaluates a pro-
gram with respect to its type annotations. Building on this key observation, this disser-
tation presents a uniform framework for expressing computation, its dynamic properties
and corresponding static type information. By using a unified approach, the static phase
divide between values and types is lifted. Instead, computations and properties can be
freely assigned to the static or dynamic phase of computation. Even more, moving a
property from one world to the other does not require any program modifications.
This thesis builds a bridge between two worlds: That of statically typed languages

and the dynamically typed world. The former is wanted for the offered static guarantees
and detection of a range of defects. With the increasing power of type systems available,
the kinds of errors that can be statically detected is growing, nearing the goal of proving
overall program correctness from the program’s source code alone. However, such power
does come for a price: Type systems are becoming more complex, restrictive and invasive,
to the point where specifying type annotations becomes as complex as specifying the
algorithm itself.
Untyped languages, in contrast, may provide less static safety but they have simpler

semantics and offer a higher flexibility. They allow programmers to express their ideas
without worrying about provable correctness. Not surprisingly, untyped languages have
a strong following when it comes to prototyping and rapid application development.
Using the framework presented in this thesis, the programmer can have both: Pro-

totyping applications using a dynamically typed approach and gradual refinement of
prototypes into programs with static guarantees.
Technically, this flexibility is achieved with the novel concept of auxiliary computations.

Auxiliary computation are additional streams of computation. They model, next to the
data’s computation, the computation of property of data. These streams thereby may
depend on the actual data that is computed, as well as on further auxiliary computations.
This expressiveness brings auxiliary computations into the domain of dependent types.
Partial evaluation of auxiliary computations is used to infer static knowledge from

auxiliary computations. Due to the interdependencies between auxiliary computations,
evaluating only those parts of a program that contribute to a property is non trivial. A
further contribution of this work is the use of demands on computations to narrow the
extent of partial evaluation to a single property. An algorithm for demand inference is
presented and the correctness of the inferred demands is shown.

i

ii

Acknowledgements

Foremost, I would like to thank my principal supervisor and mentor Sven-Bodo Scholz.
He caught my interest in programming language design in the first place and kept it alive
ever after. Without his guidance, encouragement and support, this thesis would not have
been possible. Furthermore, my thanks go to my secondary supervisor Alex Shafarenko
for insightful discussions and the provision of the well-equipped research environment I
was lucky to benefit from.
Many thanks also go to the research team working on SaC. They always made me feel

part of a bigger movement, even as my work progressed away from SaC. In particular, I
would like to thank Clemens Grelck for his interest in my research and the various hours
spent on feedback for my papers on SaC. Robert Bernecky deserves my gratitude for
introducing me to the magic of array programming, prototyping in dynamic languages
and APL.
I am grateful to my examiners, Bruce Christianson, Olivier Danvy and Kevin Ham-

mond for their time, interest and helpful feedback. It was a pleasure to present my work
and defend my thesis before them.
A PhD is more than research and a thesis: It is a journey. I thank my fellow PhD stu-

dents for their support, friendliness and patience during my travel and for distracting me
when necessary and deviating me to new roads. Jun Li introduced me to the Chinese side
of life and opened my eyes in many regards. Frank Penczek endured many long evenings
discussing research life and beyond. And Michael Hicks and Daniel Rolls provided the
counterbalance with their British perspective, even on German philosophers.
During the final stage of my PhD, many people provided me with a place to write.

Amongst others, I would particularly like to thank the people at Starbucks Haymarket
in Edinburgh, the Blum family and Anja Rosenthal for their hospitality.
Finally, I would like to express my deep gratitude to my family: My parents, who

always supported me throughout my studies and never lost their belief in me. My
brother and sister, for their understanding and help in busy times. And to Janine and
Mikko, for making me smile every day.

iii

iv

Contents

1. Introduction 1
1.1. Existing Approaches . 3
1.2. My Approach . 5
1.3. Overview . 7

2. Design Decisions 9
2.1. A Data Representation for Auxiliary Computations 9
2.2. Programming with Auxiliary Computations 15
2.3. Supporting Constraints . 23
2.4. Example: Encoding a Typed Expression Language 25
2.5. Conclusions . 34

3. A Formal Definition of LRec 37
3.1. Syntax of LRec . 37
3.2. Towards a Sugar-Free LRec . 40

3.2.1. Resolving Tags in Records . 40
3.2.2. Resolving Implicit Equality Constraints and Bindings in Patterns . 42
3.2.3. Resolving Implicit Labels for Values 47
3.2.4. Syntax of LRecC . 49

3.3. An Operational Semantics For LRecC . 49
3.4. Conclusions . 62

4. Checking Constraints 63
4.1. An Encoding for Guards . 64

4.1.1. Guards by Conditionals . 65
4.1.2. Weaving Guards into the Dataflow 67
4.1.3. Using Explicit Evidence . 70

4.2. A Lowering Transformation for Guards . 72
4.3. Formal Definition of LRecC with Guards 73
4.4. Conclusions . 74

5. Partial Evaluation 77
5.1. Some Background . 77
5.2. Partial Evaluation of Auxiliary Computations 79
5.3. A Partial Semantics of LRecC . 83

v

Contents

5.4. Conclusions . 104

6. Guiding Partial Evaluation 107
6.1. A Binding-Time Analysis for Non-Nested LRecC 107

6.1.1. Binding-Time Analysis By Example 108
6.1.2. A Formal Definition of Demand Inference 116
6.1.3. Demand Driven Partial Evaluation 133

6.2. Extending the Binding-Time Analysis to Full LRecC 151
6.3. Examples, Revisited . 170
6.4. Conclusions . 174

7. Conclusion and Future Work 177
7.1. Auxiliary Computations . 177
7.2. Demands and Partial Evaluation . 178
7.3. Future Work . 179
7.4. Closing Remark . 182

8. Bibliography 183

A. Source Code for Examples 191
A.1. Amended Evaluator for Haskell . 191

A.1.1. Using an Additional Tag . 191
A.1.2. Using a Stratified Approach . 191

B. Language Extensions 193
B.1. Matrix Examples . 193
B.2. Algebraic Data-Type Examples . 197

C. Transformation Schemes 201
C.1. Remaining Rules for Lt . 201
C.2. Remaining Rules for Le . 203
C.3. Remaining Rules for Li . 205
C.4. Remaining Rules for Lc . 207

vi

List of Figures

3.1. Syntax of LRec in extended Backus Naur form. 38
3.2. Transformation scheme Lt to resolve tags in record definitions. 42
3.3. Transformation scheme Le for resolving implicit equality constraints and

bindings in patterns. 46
3.4. Rewriting function Re for introducing explicit bindings. 47
3.5. Transformation scheme Li to resolve implicit labels for values. 48
3.6. Syntax of LRecC in extended Backus Naur form. 50
3.7. Set of legal values used as by the operational semantics. 51
3.8. An operational semantics for LRecC. 52
3.9. Definition of function rel as used in Figure 3.8 on page 52. 56
3.10. Definition of function fun as used in Figure 3.8 on page 52. 57
3.11. Definition of function val as used in Figure 3.8 on page 52. 58
3.12. Best-match pattern matching function match as used in Figure 3.8 on

page 52. 60

4.1. Transformation scheme Lc to resolve pattern guards. 72
4.2. Transformation scheme Rc for rewriting guards as explicit guard and

witness operations. 73
4.3. Extension of the syntax of LRecC as presented in Figure 3.6 on page 50

by lowered guards. 74
4.4. Extension of the operational semantics of LRecC given in Figure 3.8 on

page 52 by guards. 74

5.1. Set of legal partial values used as range of ↓. 83
5.2. An operational semantics for partial evaluation of LRecC. 86
5.3. Definition of function valp as used in Figure 5.2 on page 86. 88
5.4. Pattern matching function matchp for partial best match as used in Fig-

ure 5.2 on page 86. 90

6.1. Syntax of demand annotations in extended Backus Naur form. 116
6.2. Syntax of LRecD in extended Backus Naur form. 121
6.3. Demand analysis scheme A for translating expressions in LRecC without

nested records into expressions in LRecD with demand annotations. . . . 122
6.4. Definition of function fund as used in Figure 6.8 on page 136. 127
6.5. Definition of function propvar as used in Figure 6.3 on page 122. 128

vii

List of Figures

6.6. Definition of function disperse as used in Figure 6.3 on page 122. 129
6.7. Definition of function apply as used in Figure 6.3 on page 122. 130
6.8. An operational semantics for partial evaluation of LRecD. 136
6.9. Definition of function vald as used in Figure 6.8 on page 136. 138
6.10. Pattern matching function for partial best match with demands matchd

as used in Figure 6.8 on page 136. 140
6.11. Demand language in extended Backus Naur form. 155
6.12. Demand analysis scheme AF for translating expressions in full LRecC

into expressions in LRecD with demand annotations. 156
6.13. Definition of function derivefun as used in Figure 6.12 on page 156. 160
6.14. Definition of function derivevar as used in Figure 6.12 on page 156. 162
6.15. Definition of function apply as used in Figure 6.12 on page 156. 163
6.16. Small step operational semantics for the demand language defined in Fig-

ure 6.11 on page 155. 165
6.17. Demand annotations for the data constructors for the algebraic expression

data type. 172

B.1. Syntax extensions for matrix examples in extended Backus Nauer form. . 194
B.2. Extension of the set of values and partial values for matrix examples in

extended Backus Nauer form. 194
B.3. Semantics extensions for matrix examples. 195
B.4. Extensions to the demand analysis scheme AF as required for the matrix

examples. 196
B.5. Syntax extensions for algebraic data-type examples in extended Backus

Nauer form. 197
B.6. Transformation scheme Lx to resolve tuples. 198
B.7. Extension of the set of values and partial values for algebraic data-type

examples in extended Backus Nauer form. 199
B.8. Semantics extensions for algebraic data-type examples. 200
B.9. Extensions to the demand analysis scheme AF as required for the matrix

examples. 200

C.1. Remaining rules for the transformation scheme Lt in Section 3.2.1. 201
C.2. Remaining rules for the transformation scheme Le in Section 3.2.2. 203
C.3. Remaining rules for the transformation scheme Li presented in Section 3.2.3.205
C.4. Remaining rules for the transformation scheme Lc in Section 4.2. 207

viii

List of Symbols

LRec basic expression language with records

Lt lowering scheme for resolving tags in LRec

Le lowering scheme for resolving implicit equality constraints in
LRec

Re auxiliary rewriting scheme used in Le

Li lowering scheme for resolving implicit labels for values in LRec

LRecC core expression language with records

Lc lowering scheme for rewriting function guards in LRec

FV set of free variables of an expression in LRec

L set of all labels in LRec

V set of all values

R set of all record values

dom domain of record value

range range of record value

elem element of record value

clos transitive closure

≺ strict partial order on labels

F function environment for evaluation

E variable environment for evaluation

⊥ empty function environment

⇓ relation for full evaluation of expressions in LRecC

^ insertion of a new binding into the variable environment
v
= equality on values
→
≺ lifting of ≺ to pattern

P powerset of a set

ix

List of Symbols

| · | cardinality of a set or tuple

Vp set of all partial values

Rp set of all partial record-values

domp domain of a partial record-value

domp anti-domain a of partial record-value

rangep range of a partial record-value

elemp element of partial record-value

↓ relation for partial evaluation of expressions in LRecC

v relation between values and corresponding partial values
→
v relation between variable environments and corresponding

partial variable environments

↑ lifted demand

` demand context

δ meta variable for demands

S set of demand contexts

D set of all demands

Dr set of all record demands

elemd sub-demand of a demand

domd domain of a demand
δ

v demand satisfaction

] union of demands

LRecD core expression language with demand annotations

A demand inference scheme

EA variable environment for demand inference

δc demand context during demand inference

/ join of demand contexts
d
^ insertion of a new binding into the variable environments with

demands

⇑ lifting of demands

nest nesting of demands

empty predicate for non-empty demands

x

List of Symbols

empty predicate for empty demands

extract extraction of a demand from a set of demand annotations

Eδ variable environment with demands
δc→
v demand satisfaction for variable environments
d≡ matching of function environments and function environments

with demands

FA function environment for demand inference

xi

xii

1. Introduction

"Well-typed programs don’t go wrong." [Milner, 1978] This has been the main selling
argument for statically typed languages over the last decades. And indeed, although not
true in general, static type systems are powerful enough to rule out common program
errors at compile time. With the advent of dependent type systems, the set of errors
caught at compile time has even further increased. Even the ultimate goal, i.e., putting
the Curry-Howard isomorphism to work by embedding the correctness proof inside the
actual program, has been reached for a set of problems [Sheard, 2004, 2005].
Nonetheless, dynamically typed languages, i.e., languages that perform compliance

checks at runtime that would be dealt with by the static type system at compile time,
are still widely used and popular. This is commonly attributed to three main advantages
dynamically typed languages have over their statically typed counterparts:

expressiveness Well-typedness is only an approximation of program correctness. All
programs a static type system accepts are correct with respect to the properties
assured by the concrete type system. However, the inverse is not true. Static type
systems reject programs that behave correctly at runtime. A classical example is
the lambda expression λx.(xx), which cannot usually be assigned a type. However,
in dynamically typed languages, expressions as the one above can easily be specified
and executed.

genericity In untyped languages, genericity comes for free. As a simple example, con-
sider the identity function λx.x. In a dynamically typed language, the above can
be implemented and applied to any value. A statically typed language needs to
support techniques like type polymorphism to allow for generic functions as simple
as the identity. As a consequence, in statically typed languages like C [Kernighan
and Ritchie, 1988] or Java [Gosling et al., 2005] the above function cannot be spec-
ified. The same holds for more complex functions, e.g., adding two matrices. In a
dynamically typed language, it suffices to map the plus operation to each element
of the matrix. As long as there is a plus operation available for the given elements,
the program will just evaluate to the expected result. In statically typed languages,
complex type annotations are required to make this work. In Haskell [Peyton-
Jones, 2003], for example, the programmer has to encode the desired genericity
by means of type classes. In Java, the desired behaviour can be achieved using a
hierarchy of classes. However, in all cases, considerably more work is required.

simplicity Dynamically typed languages have simpler semantics. The meaning of a

1

1. Introduction

program is completely described by a single set of evaluation rules. In particular,
dynamically typed languages do not need to cater for limitations of the type sys-
tem. In statically typed languages, the programmer has to additionally understand
and master the particularities of a given type system. The more complex these be-
come, the more difficult understanding the actual meaning of a program gets. This
additional complexity has led to the wide-spread perception that programming in
languages with sophisticated type systems, e.g., functional programming languages
like Haskell or ML [Milner et al., 1997], is difficult and requires particularly
skilled programmers.

Thus, overall, dynamically typed languages are of advantage whenever implementation
time and thus cost is an issue or where programmers are interested in results without
investing time in understanding the underlying type theory behind a given programming
language. Therefore, not surprisingly, dynamically typed languages are used commonly
for prototyping and in numerical applications.
For the former, the correctness of the application is not the major concern. Instead,

the goal of a prototype usually is to prove the viability of a concept. Traditionally, once
the prototype has proven to be successful, the problem at hand is re-implemented as a
production-quality application. In this stage of a project, correctness is more of a concern.
Thus, for the final implementation, statically typed languages provide an advantage.
Their static guarantees help sieve out bugs early in the development cycle and reduce
the maintenance costs during the life time of the application. However, software projects
increasingly adapt what is referred to as an agile development process [Beck et al., 2001;
Larman and Basili, 2003; Martin, 2003]. Instead of discarding the initial prototype and
starting from scratch, in agile development the prototype is refined in multiple stages to
a final product. The main advantage of this process is that the application is available
earlier and that no development effort is lost. On the other hand, agile development
does not allow the programmer to easily change the implementation language during the
development process. Instead, the language chosen for the prototype has to be used for
the final application, as well. This leads to a dilemma: Choosing a dynamically typed
language aids the rapid development in the early stages of the program but impairs the
correctness requirements and maintenance cost in later stages. Using a statically typed
language, on the other hand, slows down initial progress but helps achieve the goals in
later stages. To solve this dilemma, a language that supports both dynamically and
statically typed programming is required.
A similar situation is given in the field of numerical applications. Here, Matlab [Math-

Works, 2009] is a widely used language for implementing initial prototypes. Being dynam-
ically typed, it allows for rapid program development. Furthermore, it allows numerical
scientists to concentrate on what they do best: specify the mathematical algorithm for
their specific problem. In this setting, program correctness is not the driving force behind
the desire to use more statically typed languages. Instead, in this scenario, the reduced
overhead of statically typed languages is what really matters. As dynamically typed lan-
guages employ no static analysis whatsoever, all conformity checks have to be performed
at runtime. In the above example of adding two matrices, the runtime behaviour of a

2

1.1. Existing Approaches

naïve implementation is determined mostly by checking the conformity of each pair of
elements to be added. But even for less naïve implementations, conformity checks at
runtime have a significant impact on program performance. Thus, once the suitability
of an algorithm has been proven, commonly numerical applications are re-implemented
in a more statically typed language like Fortran [Adams et al., 1997] or Hpf [Hig,
1994]. Such a re-implementation, however, comes at a huge cost. The entire application
needs to be translated to a new language, potentially introducing algorithmic flaws due
to transscription errors. Thus, such a translation needs to be performed with extreme
care, and requires expertise not only on the target language but on the problem at hand,
as well. Often, it would suffice to exploit static information for computationally expen-
sive kernels of the application. This task might even be performed not by the numerical
scientist that implemented the actual algorithm but by a specialised programmer who
has experience in performance tuning rather than numerical applications. Applying ag-
ile development techniques in this setting, i.e., to refine the dynamic prototype into a
semi-static implementation over time, would require a language that allows to gradually
refine a dynamically typed implementation with static knowledge.
As these examples show, combining dynamic typing and static typing in a single lan-

guage offers clear advantages.

• in early stages of the development, the programmer can concentrate on implement-
ing the actual algorithm

• once the implementation has stabilised, static type annotations can be added, in-
creasing overall program robustness and program performance

• this task can be performed by a specialist, potentially even with limited knowledge
of the program domain

• as only parts of the program need to be amended, less initial development effort is
wasted

In this thesis, I explore how such a combination of static and dynamic typing can be
achieved whilst retaining much of the benefits of dynamic typing.

1.1. Existing Approaches

Unsurprisingly,given its promising advantages, the idea to combine static and dynamic
typing in a single language is by no means new. Existing languages like Microsoft’s
Visual Basic.NET provide static typing and type inference for certain constructs of the
language. A more complete approach is taken by Cartwright and Siek with their soft typ-
ing [Cartwright and Fagan, 1991] and gradual typing [Siek and Taha, 2006] approaches.
In soft typing, a classical type system is applied to a dynamically typed language. How-
ever, instead of rejecting ill-typed programs, dynamic checks are inserted into the code
to offload type checking to the runtime. In gradual typing, the opposite approach is

3

1. Introduction

taken. Initially, all expressions are assigned with a dynamic type, which is then gradu-
ally refined by programmer specified type annotations and inferred static knowledge. At
the interface between dynamically typed and statically typed codes, appropriate runtime
checks are inserted.
At first glance, such gradual introduction of types solves the problem. However, both

approaches apply standard type systems that are limited to a predefined set of static
information. Coming back to our previous example of adding two matrices, these systems
are able to check whether the element types of the two matrices match. Thus, costly
dynamic checks can be avoided and errors are found at compile time, if sufficient static
knowledge is available. However, more complex properties cannot be modelled. In our
example, these systems would not be able to statically check whether the two matrices
have a matching shape, i.e., whether the number of elements per axis matches. The
conformity of the shapes, however, is an important property required by the semantics
of matrix addition.
To eliminate runtime checks for shape constraints like the one above and catch corre-

sponding errors at compile time, more powerful type systems are needed. For example,
Zenger’s indexed types [Zenger, 1997, 1998] and extensions thereof [Trojahner and Grelck,
2009] can be used to model these properties. Indexed types allow the programmer to
use values like integers within the type language. In our example, the type of the ma-
trix would include, additionally to the type of the matrix’s elements, the extent along
each axis. As these properties are value dependent, not all problems can be modelled in
Zenger’s type system. In particular those cases, where the shape of a matrix depends
on a value, which is statically not known, e.g., a value read at runtime or the result
of a complex computation, the well-typedness of a program cannot be statically shown
and thus the program is rejected. This strictness, applied to dynamic languages, would
rather dramatically impact the expressiveness of these languages, which is one of their
key benefits.
To overcome these limitations, techniques like hybrid type checking [Flanagan, 2006]

have been developed. In hybrid type checking, a dependent type system like Zenger’s
indexed types is used. However, instead of rejecting programs where insufficient static
knowledge is available to prove their correctness statically, in hybrid typing the missing
static knowledge is assumed and appropriate runtime checks are inserted. Thus, where
possible the program is proven to be correct and only where needed runtime checks
remain.
For many interesting properties, a fixed type system like Zenger’s indexed types, even

if extended by ideas from hybrid typing, is still not good enough. As an example, once
more consider element-wise adding two matrices. Knowing that one of the arguments
has certain structural properties can dramatically improve runtime performance. For
instance, if one of the arguments to the addition is the unit matrix, adding the two
matrices requires only adding 1 to all elements along the diagonal of the non-unit argu-
ment. In the context of highly optimising APL [International Standards Organization,
1993] interpreters, exploiting knowledge similar to the unit matrix property from the
example above has been shown to yield dramatic runtime improvements for real-world
applications [Bernecky, 1998]. To be able to express diverse structural properties like

4

1.2. My Approach

the one above, programmers need to be able to adapt the type system to their needs.
Fully dependent languages like Cayenne [Augustsson, 1998] or decidable subsets like
Epigram [McBride, 2004; McBride and McKinna, 2004] allow for this. However, in the
context of untyped languages, even if combined with approaches like hybrid typing, these
languages hardly fulfil the simplicity property of dynamically typed languages.

1.2. My Approach

All the approaches named above that combine static and dynamic typing have in common
that they, in some form, extend a dynamic programming language with a type system
or a statically typed language with dynamic components. Whichever way, the resulting
language ultimately entails a type system. In this thesis, I explore a different approach.
The key insight that has triggered the research presented in this thesis is that, on an

abstract level, type inference can be considered a form of partial evaluation that evaluates
the program with respect to its type annotations. From that perspective, a statically typed
programming language consists of two languages in one: An implementation language to
write the actual computation in and a further type language to express type annotations
and constraints with. The former is evaluated at runtime, whereas the latter is computed
statically at compile time. Furthermore, both languages usually have their own syntax
and semantics.
Using two separate languages has the advantage that each can be designed to best

serve its purpose. For example, a huge body of research covers how to design a type
language such that all valid expressions in that language can be evaluated, i.e., such
that all valid expressions terminate. On the downside, however, the programmer has
to learn both languages. Furthermore, even though both languages can be designed
specifically for their use, the expressiveness of the combined end result is determined by
the expressiveness of both parts.
Dependently typed programming languages begin to unify those two languages. As

in their setting types may contain values, quite naturally parts of the implementation
language are required in the type language, as well. When followed through, this trend
will ultimately lead to a single programming language used for both, the implementation
and the corresponding type annotations. Experimental approaches like Epigram already
come rather close to this setting.
Even though the languages for implementation and type annotations are increasingly

unified, types and values are still kept separate. In particular, in all languages that
feature a type system of some sort, the distinction between type annotations, which are
statically computed, and the actual implementation of an algorithm that is computed at
runtime is predetermined.
Yet, is such a separation strictly required or can the implementation and type language

be fully unified, to the point where types are just ordinary expressions? And if such an
approach is feasible, what features does a corresponding language need to have such that
it can be used in an agile setting, i.e., how can a language support a seamless transition
from dynamic to more statically checked implementations?

5

1. Introduction

In this thesis I provide an answer to these two questions. I present a language that
allows the programmer to encode properties of data alongside the actual computation.
These properties are similar to types but differ in two significant aspects: Firstly, the
properties are expressed in the dynamic programming language itself. Thus, the same
syntax and semantics apply to them. Secondly, the annotations are not computed a priori
statically. Instead, they are part of the dynamic program. Furthermore, to support an
agile development style, I incorporate a pattern matching based programming style that,
in the spirit of subtyping as known from object oriented languages, allows one to ignore
additional properties where they are not needed.

Using a single language for the program and its properties simplifies the programmer’s
view. However, it imposes a challenge when trying to prove properties statically: As
properties are expressed in the same language as computations on the actual data, both
become indistinguishable. Thus, it is not clear which parts to evaluate to prove a certain
property. It is not even clear anymore which properties a program encodes.

To solve the latter problem, I introduce the concept of auxiliary computations. An
auxiliary computation is a named additional stream of computation alongside the main
stream of computation, i.e., alongside the computation that computes the actual result
data. A single computation thereby may be accompanied by multiple auxiliary computa-
tions. As these additional streams of computation are named, they can be distinguished
from each other and from the computation of the main value. Thus, to compute a prop-
erty of an expression, it suffices to compute the corresponding auxiliary computation.

This step, however, is not as trivial as it may at first glance seem. Auxiliary computa-
tions need not be separate from each other. Like in dependent types, where types may
depend on values, different auxiliary computations may depend on each other or even
on a value from the main stream of computation. Allowing for such dependencies vastly
improves the expressiveness of auxiliary computations, much like dependent types are
more expressive than regular types. This expressiveness, however, comes at a price. It
is, in this setting, still not clear which parts of a program need to be computed to show
a certain property. Even more, it is not clear whether it is at all possible to guide partial
evaluation such that only desired properties are computed.

The main contribution of this thesis, supplemental to the concept of auxil-
iary computations and the design of a corresponding programming model, is
therefore to show that partial evaluation can be instrumented such that only
desired properties of a program are evaluated.

I do not propose an entire new language in this thesis. Instead, I have developed my
approach as an extension to existing dynamically typed languages, in the hope that this
will foster its adaptation in a wide range of languages. My approach can be applied to
any pure language, as long as an existing framework for evaluation exists.

6

1.3. Overview

1.3. Overview

The remainder of this thesis is structured as follows. The next chapter gives an ex-
tended discussion of the above examples and motivates the design of an extension to a
dynamically typed language to support auxiliary computations and constraint checking
by means of contracts. The findings are then presented more formally in Chapter 3,
culminating in the syntax and semantics of LRec. An extension of LRec by contracts
to encode arbitrary constraints on function arguments is described separately in Chap-
ter 4. Based on this definition of LRec, Chapters 5 and 6 discuss the exploitation of
static information by partial evaluation. Finally, Chapter 7 provides some conclusions
and ideas for future research directions.

7

8

2. Design Decisions

In this chapter, I revisit my initial example presented in the introduction to show the
challenges and the resulting design decisions I have made. I thereby focus mainly on
the programmer’s perspective. First, the following section investigates how to support
auxiliary computations in general. Using the general design described there, I explore in
Section 2.2 how to efficiently program with auxiliary computations and how to elegantly
exploit the additional knowledge they encode. Next, Section 2.3 explores how to model
constraints like the earlier mentioned requirement of shape equality in matrix addition.
Finally, Section 2.4 demonstrates my design in action. With the example of an evaluator
for a small expression language, I demonstrate how a fully dynamic implementation can
gradually be refined into an evaluator with static guarantees. I close this chapter with
some design conclusions in Section 2.5.

2.1. A Data Representation for Auxiliary Computations

The key idea behind auxiliary computations is to make the computations of properties of
data explicit in the program text. As a running example, I will use the aforementioned
addition of two matrices. This choice is motivated by two general observations. Firstly,
matrices in general, although being a relatively simple data structure, are widely used
in numerical applications, one of the key target areas of my approach. Secondly, despite
their simple structure, matrices provide a rich set of structural properties. One particu-
larly important property is the shape of a matrix, i.e., its extent along the two axes. As
an example, consider the following matrix: 1 2 3 4

2 4 6 8
3 6 9 12


As can be seen, the above matrix has 3 rows and 4 columns. Its shape, using a row-major
encoding, is thus 3× 4, or encoded as a vector [3, 4]. I will use the latter encoding in
all the examples provided in this thesis.
By using an explicit encoding of the shape, the actual data of the matrix, i.e., its

elements, can be encoded as a vector, as well. Using again row-major encoding, the
above matrix can be encoded as the following vector by concatenating each row vector:

[1, 2, 3, 4, 2, 4, 6, 8, 3, 6, 9, 12]

9

2. Design Decisions

I will refer to this vector encoding as the ravel or unrolling of the matrix. Note that the
shape vector [3, 4] provides a sufficient description of the structure of the matrix to
reconstruct the initial matrix from its ravel.
This encoding can easily be extended to general n-dimensional arrays. All that is

required is to allow shape vectors of arbitrary length. For example, a 3 dimensional
array of the form:

4 5 6

1 2 3

2 4 6

8 10 12

can be encoded using a shape vector [2, 3, 2] and a ravel of

[1, 2, 2, 4, 3, 6, 4, 8, 5, 10, 6, 12]

In this context, row-major encoding refers to the concatenation of the elements of an array
starting form the outermost axis. As with matrices, this encoding suffices to reconstruct
the initial n-dimensional array from the ravel and shape vector. However, general arrays
are distinguished by a further property, their rank or dimensionality. In principle, the
current encoding suffices to represent these two structural properties of arrays: The rank
can be computed as the length of the shape vector. However, it can nonetheless be of
advantage to explicitly encode the rank of an array. An explicit encoding saves computing
the length of the shape vector at runtime. More importantly, however, the shape of an
array might not be statically known, whereas the rank in most cases is. In these cases,
computing the rank of an array via its shape vector complicates the inference of static
knowledge. I therefore, throughout this thesis, will use an encoding that makes both
shape and rank explicit.
The encoding of n-dimensional arrays using a ravel and shape vector is neither unique

to my approach nor is it the only possible encoding. Many array languages, e.g.,
APL [Bernecky and Berry, 1993; International Standards Organization, 1993], J [Hui
and Iverson, 2004] and SaC [Scholz, 2003] to name few, use an encoding based on a
ravel of data elements and a shape vector to describe the structure of the data. The
main difference between languages like APL on the one hand and SaC on the other is
what structures are supported. Whereas SaC only allows for homogeneous arrays, i.e.,
arrays where all elements are of the same type, languages like APL and J go one step
further by enabling the use of arrays as elements of an array. Such array elements are
then treated as scalar elements, thus providing a means to express arbitrarily nested and
even inhomogeneous arrays.
Support for inhomogeneous nested arrays can be added to the encoding above by

allowing arbitrary expressions as array elements. This would complicate the discussion in

10

2.1. A Data Representation for Auxiliary Computations

the following and distract from the underlying principles of my approach. I will therefore
use homogeneous arrays only. However, my approach does support nested structures, as
I will show in Section 2.4.
Even though I use homogeneous, non-nested vectors to encode the ravel of an array, this

does not fully rule out nested arrays. Blelloch has shown in his pioneering work on nested
data-parallel programming languages in general and Nesl in particular [Blelloch, 1994;
Blelloch et al., 1994; Sipelstein and Blelloch, 1991] that nested arrays can be flattened
into flat arrays and a nesting descriptor. Thus, using Blelloch’s technique, much of the
expressiveness of the APL nesting approach can be regained in the homogeneous setting
I use in this thesis. To add support of Blelloch style nested arrays to my encoding as
discussed above, it suffices to use a nested vector to encode the shape and a vector to
describe the rank.
As an example, consider a representation for complex numbers. A single complex

number can be seen as an array, i.e., a two-element vector, containing the real and
imaginary components. Consequently, a vector of complex numbers then is an array of
arrays, i.e., a vector of two-element vectors. A four-element vector of complex numbers
then has the form ((

1
5

)
,

(
2
6

)
,

(
3
7

)
,

(
4
8

))
where the upper component of each element of the vector denotes the real part of the
complex number and the lower component denotes the imaginary part. The array above,
even though being nested, is perfectly homogeneous. In particular, each element of the
outer vector has the same structure. In this setting, it suffices to describe the shape
of the outer vector and the shape of the elements. Similarly, it suffices to encode the
dimensionality once for all elements. A possible encoding thus would be using the ravel
[1,5,2,6,3,7,4,8] and a shape vector [[4],[2]]. The first component of the shape
vector encodes the shape of the outer structure, i.e., the vector, whereas the second
component gives the structure of the nested elements. Similarly, the rank of the above
array can be represented as [1,1].
This encoding suffices for homogeneously nested arrays. However, in the more general

case of inhomogeneous nestings, the shape vector becomes slightly more complex. As an
example, consider the following vector of integer vectors with differing lengths: (1 2 3 4 5)

(6 7 8)
(9 0 1 2)


As before, the outer structure is a one-dimensional array whose elements are arrays again.
However, now the structure of these inner arrays is no longer homogeneous. Nonetheless,
the data elements can still be flattened into a row-major ravel of the form:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2]

11

2. Design Decisions

To encode the nesting structure of the above array, it does not suffice to memoize the
overall shape of the inner elements. Instead, the shape of each single element needs to
be memoized. I use Blelloch’s concept of segments here [Blelloch et al., 1994]. However,
in contrast with Blelloch who only allows vectors as segments, I support n-dimensional
segments.
To construct the shape vector, I begin with the outermost array; it has three elements,

each being a vector. Thus, the outer shape of the above array is [3]. Consequently,
the ravel needs to be segmented into 3 parts, one for each of the vectors contained
in the outer array. The first part consists of the first five elements; its shape vector
therefore is [5]. Similarly, the shape vector for the other two components can be de-
rived as [3] and [4], respectively. As the elements of each vector are scalar values,
the ravel needs not to be further segmented. The overall shape vector for this nesting
level is then computed by catenating the individual shape vectors, yielding the vector
[[5],[3],[4]]. Lastly, I prepend the segmentation of the outer level, yielding a shape
vector of [[3],[5],[3],[4]].
The above shape vector suffices to fully describe the structure of the array. In par-

ticular, the rank at each level is given by the length of the corresponding component
of the shape vector. Furthermore, this encoding shares the property with all previous
encodings that two arrays have the same structure if their shape vectors are identical.
Blelloch refers to the identity of the structure of two arrays as two arrays being member
of the same paralation [BlellochBlelloch and Sabot, 1990; Sabot, 1989].
Both encodings for nested arrays can easily be expressed in my approach. It suffices

to add nested vectors as data type and corresponding operations thereon. However, such
additions would only complicate the presentation without offering additional insight. I
will therefore refrain from such an extension here.
Finally, another possible encoding for n-dimensional arrays that shall not go unmen-

tioned is the use of nested vectors. In the realm of array programming languages, early
versions of Sisal [Cann, 1989] are the most prominent representatives using such an
encoding. The underlying idea is to represent each dimension of an array as a vector of
subarrays. Such an encoding gives utmost flexibility, as it allows for both nested and
inhomogeneous arrays. However, in Sisal most of this flexibility is lost due to the limi-
tations of its static type system. Nonetheless, early versions of Sisal suffered from the
runtime overheads that an encoding using nested vectors entails. Therefore, for version
2.0 of Sisal true n-dimensional arrays were proposed [Cann et al., 1991]. However, to
my knowledge, this proposal was never implemented.
It would be possible to use an encoding based on nested vectors in my thesis, as well.

Similar to the encoding of nested arrays used by APL, all that is required is to allow for
nested vectors. However, as the Sisal-style encoding is not widely used, I have opted
for the encoding using a ravel and shape vector, instead.
Using that encoding for matrices, I can now start to describe adding two matrices. As

a first starting point, consider the following pseudo code:
1 A_val = [1, 2, 3, 4]

A_shape = [2, 2]
3 A_rank = 2

12

2.1. A Data Representation for Auxiliary Computations

B_val = [1, 0, 0, 1]
5 B_shape = [2, 2]

B_rank = 2
7

S_val = (vect_add A_val B_val)
9 S_shape = A_shape

S_rank = A_rank

The first six lines define two matrices A and B. In both cases, first the actual value in
form of the ravel, denoted by the suffix _val, is defined, followed by definitions of the
shape and rank, identified by the suffixes _shape and _rank, respectively. These six lines
define A and B as values (

1 2
3 4

)
and

(
1 0
0 1

)
.

In a next step, lines 8ff. define the computation of the element-wise addition of the two
matrices. As this section is not concerned with the actual computation of the addition but
merely with the modelling of properties of data, I have used a pseudo function vect_add
in Line 8 to describe the actual element-wise plus operation on vectors. Next, in Line 9
the shape of the result is computed as the shape of matrix A. Using the shape of A and
not the shape of B is an arbitrary choice. As element-wise addition of matrices is only
defined for matrices of the same shape, both A_shape and B_shape should have the same
value. For the above example, this property is clearly given. I postpone the discussion of
how to generally enforce these kinds of constraints to Section 2.3. Lastly, the rank of the
result is computed as the rank of one of the argument matrices in Line 10. For symmetry
alone, I have chosen to use the rank of A. The same arguments as for the shape apply.
The above encoding suffices to make the computation of shape and rank explicit in

the code. At first glance, this seems to come at the price of increased computational
complexity, as I have added two auxiliary computations to the actual task of adding the
two matrices. However, these computations need to be performed in classical languages
like Matlab, APL and SaC, as well. The only difference is that these are usually hidden
inside the semantics and implementations of these languages. It is therefore worth noting
that, even with the two auxiliary computations shown above, the overall computational
complexity has not changed compared to traditional approaches.
Computing the shape and rank of the result by arbitrarily choosing either the shape

and rank of matrix A or those of matrix B yields the correct result. However, from a design
perspective this solution is not satisfactory. Even though the programmer might be aware
of this property at the time he implements the above matrix addition, this property is not
documented in the code itself. When looking at the code again later on, this property has
to be inferred from the context. To make the code more self-documenting, it is desirable
to directly express this property in the program text. I will do so by introducing a
special any operator, similar to the amb operator proposed by McCarthy [McCarthy,
1961, 1962]. Informally, the any operator is evaluated by non-deterministically choosing
any of its arguments. Using this additional operator, the above code can be rewritten as
follows:
A_val = [1, 2, 3, 4]

13

2. Design Decisions

2 A_shape = [2, 2]
A_rank = 2

4 B_val = [1, 0, 0, 1]
B_shape = [2, 2]

6 B_rank = 2

8 S_val = (vect_add A_val B_val)
S_shape = any(A_shape B_shape)

10 S_rank = any(A_rank B_rank)

In the amended example above, the shape of the result is now defined in Line 9 as either
the shape of matrix A or the shape of matrix B. Analogously, the rank of the result is
defined. This encoding elegantly documents the fact that either value would be correct
directly in the program text. Furthermore, it allows me to exploit this knowledge for
inferring properties statically, as described later in this thesis. In the above example, it
now suffices if the shape or rank property is known for one of the two argument matrices
to deduce the shape or rank of the result.
Even though the computational complexity has not increased compared to traditional

approaches, the code still got more complex and more difficult to read. This is, apart
from the inevitable growth of the specification, mainly due to the loose coupling of the
three streams of computation. Even though the ravel, shape and rank computation for
each matrix are conceptually highly coupled, they appear as separate computations in
the code. They are only grouped by a rather informal naming scheme using suffixes.
This is unsatisfactory for two reasons. Firstly, it makes it more difficult for the pro-
grammer to identify related computations in the code and extract the actual stream of
computation of the algorithm. Secondly, this shortcoming applies to formal reasoning
and the implementation of partial evaluation, as well. An interpreter or compiler would
have to identify related computations by analysing the data flow. It therefore is desirable
to group the main computation and its auxiliary computations more formally, both in
syntax and semantics. This gives rise to the idea of using records, i.e., tuples of label
value pairs, to represent data and their properties, as shown below.

A = { val=[1, 2, 3, 4], shape=[2, 2], rank =2}
2 B = { val=[1, 0, 0, 1], shape=[2, 2], rank =2}

4 S = { val=(vect_add A.val B.val),
shape=any(A.shape B.shape),

6 rank=any(A.rank B.rank)}

In the above example, and throughout this thesis, I use { and } to represent records
syntactically. To extract components from a record, I use the selection operation ..
Given a label as right-hand operand and a record expression as left-hand operand, the
infix . operation extracts the component of the record that corresponds to the given label.
Using records has two advantages. Firstly, records increase the brevity of specification
and provide a tighter coupling of values and properties. Secondly, by using labels to index
different streams of computation, I retain the self-documenting property of my very first
approach. However, in its current form, the new syntax does not differentiate between the

14

2.2. Programming with Auxiliary Computations

main stream of computation of the actual data and the additional auxiliary computations
of properties. From a formal perspective, this uniform treatment is even desirable and
a key idea of my approach. Namely, to use the same techniques to compute the values
and properties of data. To enhance readability, I nonetheless propose to differentiate
the main computation from auxiliary computations. Instead of encoding the value of
a record using a val component, I implicitly specify this component by prefixing each
record with an expression.

A = [1, 2, 3, 4]{ shape =[2, 2], rank =2}
2 B = [1, 0, 0, 1]{ shape =[2, 2], rank =2}

4 S = (vect_add !A !B){ shape=any(A.shape B.shape),
rank =any(A.rank B.rank)}

As can be seen above, this syntactical change highlights the actual computation of the
value. To select this now implicit component of the record, I introduce a special selection
operation !. This can be seen in action in Line 4 of the above example. The value of
the addition of the two matrices is computed by applying the function vect_add to the
values of the two argument matrices, syntactically referred to by !A and !B.

2.2. Programming with Auxiliary Computations

Although the encoding and language informally introduced so far suffice to express my
example of adding two matrices, it would be cumbersome to require the programmer to
explicitly state all auxiliary computations whenever he wants to add two matrices. To
alleviate this, I will first introduce one of the most powerful abstractions found in almost
all programming languages: Functions. For the following examples and throughout this
thesis, I will adapt a syntax that closely resembles that of Standard ML. A full discus-
sion of the syntax of Standard ML would be beyond the scope of this chapter. I will
therefore informally introduce parts of it alongside their introduction to my examples. A
formal definition of the completed syntax will be given in Chapter 3. For a full discussion
of the syntax of Standard ML, I refer the reader to [Milner et al., 1997].
To start off, consider the following version of the example from the previous section,

using a function definition for the addition of two matrices:

1 let
fun add A B = (vect_add !A !B){ shape=any(A.shape B.shape),

3 rank =any(A.rank B.rank)}
val A = [1, 2, 3, 4]{ shape=[2, 2], rank =2}

5 val B = [1, 0, 0, 1]{ shape=[2, 2], rank =2}
in

7 (add A B)
end

To bind functions or values to identifiers, I use the let . . . in . . . end construct known
from Standard ML. The let construct binds all expressions on the right-hand sides
in the let-block to the corresponding identifiers on the left-hand side. To differentiate

15

2. Design Decisions

between values and functions, each binding is prepended by either the keyword val or
the keyword fun, respectively. These bindings are only visible within the let expression,
i.e., within the definitions between the let and in keywords and the expression between
the in and end keywords. I will refer to the latter expression in the following as the body
of the let construct.
Note that the order of the definitions of functions using the fun keyword does not

impose an order on the scope of these functions within the let construct. All function
definitions are visible throughout the entire let construct. I have chosen these semantics
to allow for mutually recursive function definitions. In this respect, my approach differs
from Standard ML where function bindings are by default only visible after their
definition. For mutually recursive function definitions, Standard ML provides a special
and keyword. In contrast with functions, values bound using the val construct are only
visible in the definitions further down in the program text and in the body of the let
construct. However, in contrast to Standard ML, they are not visible in the bodies of
function definitions, i.e., all functions must be closed.
Lines 2 and 3 three give an example of a function definition. Generally, the keyword fun

is directly followed by the function identifier and potentially multiple further identifiers,
which represent the arguments of the function. In the above example, the function add
expects two arguments A and B. These identifiers can be used in the right-hand side of
the function definition to access the actual arguments the function is applied to. In the
above example, this is used to compute the element-wise addition of two matrices, as
introduced in the previous section.
Lines 4 and 5 give an example for the definition of values. Here, the keyword val

is directly followed by only a single identifier. In the above example, the two matrices
shown earlier are bound to the identifiers A and B. As with functions, this binding is only
visible within the body of the let construct.
Using these definitions, the actual addition of the two matrices can now be written as

the expression add A B as shown in Line 7 above. Thus, having defined the addition as a
function once, the specification of the actual addition of the two matrices becomes as tense
and readable as in languages without auxiliary computations. However, the programmer
can still look up which properties the result carries and how they are defined by looking
at the function definition in the program text.
Looking up the properties that are required from the arguments of a function is more

difficult, as these are not encoded in the signature of the function, i.e., the left-hand side
of its definition. Instead, the programmer has to scan the entire right-hand side of a
function definition and look at all accesses to the arguments to find this information. For
the above example this might look straight forward. However, for more complex function
definitions this can be a tedious task. Similarly, when initially writing the function
definition or amending it later on, the programmer has no syntactic representation to
look up the properties of the function’s arguments.
To enhance readability in this respect, I extend the syntax for function definitions, as

shown below.

let

16

2.2. Programming with Auxiliary Computations

2 fun add A{ shape , rank} B{ shape , rank}
= (vect_add !A !B){ shape=any(A.shape B.shape),

4 rank =any(A.rank B.rank)}
val A = [1, 2, 3, 4]{ shape=[2, 2], rank =2}

6 val B = [1, 0, 0, 1]{ shape=[2, 2], rank =2}
in

8 (add A B)
end

Line 2 gives an example of this extended syntax for function definitions. As can be seen,
each argument now additionally carries a list of all labels used to select properties from
arguments in the right-hand side of the function definition. This directly exposes the
required structure of the arguments to the programmer. Furthermore, when modifying
the function definition, this can be used as a dictionary to the valid labels for each
argument.
Having introduced a syntactical handle for the properties used in the right-hand side

of function definitions allows me to add some more syntactical sugar to the language.
By definition, all labels listed on the left-hand side of a function definition are used for
selections on the right-hand side. To spare the need for these explicit selections, I add
a notation to directly bind the value corresponding to a given label to an identifier.
Syntactically, this is achieved by adding an = sign followed by an identifier directly after
the label of an argument. An example is given below:

1 let
fun add A{ shape=sA , rank=rA} B{ shape=sB, rank=rB}

3 = (vect_add !A !B){ shape=any(sA sB), rank=any(rA rB)}
val A = [1, 2, 3, 4]{ shape=[2, 2], rank =2}

5 val B = [1, 0, 0, 1]{ shape=[2, 2], rank =2}
in

7 (add A B)
end

In the above version, I use the newly added sugar to bind the shape and rank of argument
A to sA and rA, respectively. Analogously, sB and rB are defined for the shape and rank
of the second argument. This, as expected, completely removes the need for explicit
selections from the right-hand side of the function definition, as can be seen in Line 3
above.
Having defined the overall syntax for auxiliary computations and function definitions

using these, I now move on to extend the example by further properties of data. In the
introduction, I gave the example of modelling the special property of unit matrices that all
values except those along the diagonal of the matrix are zeros. As mentioned earlier, this
additional knowledge can be used to reduce the computational complexity of the addition
of two matrices, as only the elements along the diagonal need to be added. For instance,
linear algebra packages like BLAS (Basic Linear Algebra Subprograms) [Blackford et al.,
2002; Dongarra et al., 1988, 1990; Lawson et al., 1979] define multiple versions of their
algebraic subroutines for different kinds of input data, including banded matrices. To
add similar support to the above example, I first add the additional property that a value

17

2. Design Decisions

is a unit matrix to the data. As can be seen above, matrix B is a unit matrix. This is
captured below by the additional unit label in the definition of B. A property unit=n
encodes the additional information that the given matrix is the unit matrix of the matrix
ring over Rn×n.

let
2 fun add A{ shape=sA , rank=rA} B{ shape=sB, rank=rB}

= (vect_add !A !B){ shape=any(sA sB), rank=any(rA rB)}
4 val A = [1, 2, 3, 4]{ shape=[2, 2], rank =2}

val B = [1, 0, 0, 1]{ shape=[2, 2], rank=2, unit =2}
6 in

(add A B)
8 end

Line 5 shows the extended definition of B. Note that, even though B now carries an
additional property, the function add can still be applied in Line 7 . To support an agile
development style, i.e., refinement of properties over time, this flexibilty is important. It
allows the programmer to add additional properties and thus encode further knowledge
about data without the need to adapt the entire code. However, to actually make use of
the unit property, the definition of add needs to be adapted.

let
2 fun add A{ shape=sA , rank=rA} B{ shape=sB, rank=rB}

= (vect_add !A !B){ shape=any(sA sB), rank=any(rA rB)}
4 fun add_unit A{ shape=sA, rank=rA} B{ shape=sB, rank=rB , unit}

= (diag_add any(sA sB) !A !B){ shape=any(sA sB),
6 rank=any(rA rB)}

val A = [1, 2, 3, 4]{ shape=[2, 2], rank =2}
8 val B = [1, 0, 0, 1]{ shape=[2, 2], rank=2, unit =2}

in
10 (add_unit A B)

end

Lines 4ff. define a further function add_unit that expects as second argument a matrix
that carries the additional unit attribute. To compute the actual result ravel, I use a
special function diag_add, which expects as first argument the shape of the arguments,
followed by the two ravels of the matrices to add. By convention, the second argument
needs to be a diagonal matrix. The shape is needed to identify the elements within the
ravel that correspond to the diagonal of the matrix.
Using this additional function, adding the two matrices can then be expressed by the

expression add_unit A B in the body of the let construct. Although this allows me to
exploit the unit property to reduce the computational complexity, the above solution is
not optimal. In particular, the additional property is not exploited automatically in the
code. Instead, all occurrences of function applications of the function add to a unit matrix
need to be replaced by an application of the new function add_unit. In this respect,
the above encoding is identical to the C and Fortran implementations of BLAS. Yet,
contrary to BLAS, my encoding at least ensures that the argument actually carries the
unit property.

18

2.2. Programming with Auxiliary Computations

Nonetheless, for larger applications, choosing the appropriate function by hand would
involve major refactoring, thereby substantially increasing the implementation cost to
exploit additional properties like the unit property above. However, given the explicit
encoding of the unit property, this manual refactoring is not necessary. To automate the
selection of the appropriate version of a function definition, I introduce a further concept
widely found in modern functional languages: Pattern matching. The code below gives
an example:

1 let
fun add A{ shape=sA , rank=rA} B{ shape=sB, rank=rB}

3 = (vect_add !A !B){ shape=any(sA sB), rank=any(rA rB)}
A{ shape=sA, rank=rA} B{ shape=sB, rank=rB , unit}

5 = (diag_add any(sA sB) !A !B){ shape=any(sA sB),
rank=any(rA rB)}

7 val A = [1, 2, 3, 4]{ shape=[2, 2], rank =2}
val B = [1, 0, 0, 1]{ shape=[2, 2], rank=2, unit =2}

9 in
(add A B)

11 end

Syntactical, multiple instances of a single function are expressed by providing multiple
argument lists and right-hand sides for that function. In the above example, the function
add has two definitions, given in lines 2ff. and 4ff., respectively. To pick the appropriate
instance for a function application, I reuse the, so far only documentational, list of
properties required for any argument as a pattern. In the above example, the first instance
in lines 2ff. lists the properties shape and rank as required for the second argument. In
contrast, the second instance in lines 4ff. additionally requires a further label unit to be
present. Thus, whenever add is applied to a second argument that features this label,
the second instance is used. Otherwise, the first instance is chosen. As can be seen in
Line 10, I now use the function add again to compute the element-wise addition of the
two matrices. However, as the second argument has a label unit, the second instance
will be chosen.
By using pattern matching and making properties explicit, exploiting the additional

knowledge now no longer requires refactoring of the body of the let construct. Instead,
only the function definition for add needs to be modified. For larger applications, this
reduces the implementation cost of enriching the encoded properties even more.
I postpone the formal definition of the pattern matching process to Chapter 3. How-

ever, it is worth noting here that the above pattern matching deviates from traditional
pattern matching approaches by using a best match strategy. Traditionally, patterns are
matched in the order of their definition and the first instance with a matching pattern is
chosen. The main argument against best match usually is the difficulty in defining which
pattern matches best. As I will show in Chapter 3, in my setting the best match can be
given a well-defined meaning. In the above example, the second instance matches better,
as the pattern matches more labels of the argument.
So far, I have only encoded a special case for adding two matrices where the second

argument is a unit matrix. Below, I provide a further instance for the case that the first

19

2. Design Decisions

argument is a unit matrix.
1 let

fun add A{ shape=sA , rank=rA} B{ shape=sB, rank=rB}
3 = (vect_add !A !B){ shape=any(sA sB), rank=any(rA rB)}

A{ shape=sA, rank=rA} B{ shape=sB, rank=rB , unit}
5 = (diag_add any(sA sB) !A !B){ shape=any(sA sB),

rank=any(rA rB)}
7 A{ shape=sA, rank=rA , unit} B{ shape=sB , rank=rB}

= (add B A)
9 val A = [1, 2, 3, 4]{ shape=[2, 2], rank =2}

val B = [1, 0, 0, 1]{ shape=[2, 2], rank=2, unit =2}
11 in

(add A B)
13 end

The additional instance in lines 7ff. uses a pattern for the first argument that matches
the additional unit label of unit matrices. To define the addition in this case, I exploit
the associativity of addition in the ring of matrices and simply define it as a recursive call
of the function add with its arguments swapped. This suffices to exploit the additional
knowledge in case the first argument is a unit matrix. For the fourth case, i.e., adding
two unit matrices, an instance is yet missing. Nonetheless, the element-wise addition can
be computed using one of the existing instance. However, without the fourth instance,
the best match is not obvious in the case where both argument are unit matrices. Both
instances for unit matrices match equally well. The instance in lines 5ff. matches five
labels, i.e., the shape and rank labels of both arguments and the unit label of the
second argument. The same number of labels is matched by the instance in lines 7ff.,
with the unit label being matched for the first argument instead. To disambiguate
pattern matching in this situation, I use an independent matching on the arguments
from left to right. Thus, in the above example, the third instance matches best if both
arguments are unit matrices.
To further demonstrate the expressive power of my approach, I introduce another

property of matrices below. The additional label ldiag encodes that a matrix is a lower
diagonal matrix, i.e., that all elements above-right of the diagonal of the matrix equate
zero. As with unit matrices, this property can be exploited to reduce the computational
complexity by only adding the lower-left elements of the matrices.

1 let
fun add A{ shape=sA , rank=rA} B{ shape=sB, rank=rB}

3 = (vect_add !A !B){ shape=any(sA sB), rank=any(rA rB)}
A{ shape=sA, rank=rA} B{ shape=sB, rank=rB , unit}

5 = (diag_add any(sA sB) !A !B){ shape=any(sA sB),
rank=any(rA rB)}

7 val A = [1, 2, 3, 4]{ shape=[2, 2], rank =2}
val B = [1, 0, 0, 1]{ shape=[2, 2], rank=2, unit =2}

9 val C = [9, 0, 8, 7]{ shape=[2, 2], rank=2, ldiag=true}
in

11 (add A (add B C))
end

20

2.2. Programming with Auxiliary Computations

I have removed all but one instance for the addition of unit matrices in order to keep
the example short. In their place, I have added the definition of a further matrix C with
value (

9 0
8 7

)
.

As can be seen, the above matrix indeed is a lower diagonal matrix. In the program
text, this is encoded using the additional label ldiag. Furthermore, the body of the let
expression now computes the element-wise addition of all three matrices. Note that, even
though matrix C carries a further attribute, the definition of the function add needs not
to be changed.
For lower diagonality, no actual value is associated with the property. Instead, the

existence of the label alone suffices to encode that the corresponding matrix has the given
property. This motivates the introduction of tags, i.e., labels without an associated value.
Syntactically, these are expressed by omitting the = sign and the following expression.
Again, I defer a formal discussion to Chapter 3.
Even though the label ldiag does not hold a value, it can still be used to define special

instances for matrices with this property using pattern matching. The code below makes
use of this.
let

2 fun add A{ shape=sA , rank=rA} B{ shape=sB, rank=rB}
= (vect_add !A !B){ shape=any(sA sB), rank=any(rA rB)}

4 A{ shape=sA, rank=rA} B{ shape=sB, rank=rB , unit}
= (diag_add any(sA sB) !A !B){ shape=any(sA sB),

6 rank=any(rA rB)}
A{ shape=sA, rank=rA} B{ shape=sB, rank=rB , ldiag}

8 = (ldiag_add(any(sA sB) !A !B){ shape=any(sA sB),
rank=any(rA rB)}

10 val A = [1, 2, 3, 4]{ shape=[2, 2], rank =2}
val B = [1, 0, 0, 1]{ shape=[2, 2], rank=2, unit =2}

12 val C = [9, 0, 8, 7]{ shape=[2, 2], rank=2, ldiag}
in

14 (add A (add B C))
end

I have added a further instance of the function add for lower diagonal matrices in lines 8
following. As can be seen, it uses an additional label ldiag in the pattern for the
second argument to match matrices with the lower diagonal property. Again, the actual
computation of the result ravel is not subject of this section. I have therefore, analogously
to the diag_add function used for unit matrices, used a special function ldiag_add to
compute the result ravel. Furthermore, I have used a tag, i.e., a value-less label, in the
definition of the matrix C in Line 12. By encoding the additional property and adding the
additional instance, the computation in the body of the let construct now exploits the
lower diagonal property of the matrix C to use a less computationally complex instance
to compute the element-wise addition.
Closer inspection of the matrix B reveals that it is a lower diagonal matrix, as well.

By definition, in fact all unit matrices are. Even more, the result of adding two lower

21

2. Design Decisions

diagonal matrices yields again a lower diagonal matrix. Thus, in the above example,
adding matrices B and C should yield a matrix carrying the ldiag label. To achieve this,
both properties, i.e., that B is a lower diagonal matrix and that addition on matrices is
complete with respect to the lower diagonal structural property, need to be made explicit.
The updated code is shown below.

1 let
fun add A{ shape=sA , rank=rA} B{ shape=sB, rank=rB}

3 = (vect_add !A !B){ shape=any(sA sB), rank=any(rA rB)}
A{ shape=sA, rank=rA} B{ shape=sB, rank=rB , unit}

5 = (diag_add any(sA sB) !A !B){ shape=any(sA sB),
rank=any(rA rB)}

7 A{ shape=sA, rank=rA} B{ shape=sB, rank=rB , ldiag}
= (ldiag_add any(sA sB) !A !B){ shape=any(sA sB),

9 rank=any(rA rB)}
A{ shape=sA, rank=rA , ldiag} B{ shape=sB , rank=rB, ldiag}

11 = (ldiag_add any(sA sB) !A !B){ shape=any(sA sB),
rank=any(rA rB),

13 ldiag}
val A = [1, 2, 3, 4]{ shape=[2, 2], rank =2}

15 val B = [1, 0, 0, 1]{ shape=[2, 2], rank=2, unit=2, ldiag}
val C = [9, 0, 8, 7]{ shape=[2, 2], rank=2, ldiag}

17 in
(add A (add B C))

19 end

I have amended the definition of the matrix B in Line 15 by the additional ldiag label.
Furthermore, lines 10ff. define the required additional instance of the function add. It
differs from the previously defined instances in that it requires both arguments to carry
the ldiag label. Furthermore, the fact that the result is a lower diagonal matrix again
is expressed by using the ldiag property in the definition of the result of the instance,
as well. As both matrices B and C carry the ldiag property, the expression add B C
in Line 18 uses the newly defined instance to compute the result. Furthermore, the
consecutive addition of matrix A to the result is computed using the instance defined in
Line 7, thereby making use of the propagated ldiag property.
Before I close this section, I discuss one last example to motivate a final extension

to the pattern matching mechanism introduced so far. For this, consider the expression
add A B in the context of the body of the above let construct. As the matrix B carries
both, the ldiag and unit label, the best match is again not well defined. Both, the
instance defined in lines 4ff. and the instance defined in lines 7ff. match. The former, as
the second argument to the application of add carries the unit label and the latter as the
argument carries the ldiag property, as well. A possible solution to disambiguate the
dispatch would be to define a further instance for matrices that carry both properties.
However, this would unnecessarily bloat the number of instances that are required to
specify addition in the above scenario. Instead, I introduce a means to express precedence
on labels for pattern matching. The details are shown in the example below.

1 let

22

2.3. Supporting Constraints

rel ldiag <: unit
3 fun add A{ shape=sA , rank=rA} B{ shape=sB, rank=rB}

= (vect_add !A !B){ shape=any(sA sB), rank=any(rA rB)}
5 A{ shape=sA, rank=rA} B{ shape=sB, rank=rB , unit}

= (diag_add any(sA sB) !A !B){ shape=any(sA sB),
7 rank=any(rA rB)}

A{ shape=sA, rank=rA} B{ shape=sB, rank=rB , ldiag}
9 = (ldiag_add any(sA sB) !A !B){ shape=any(sA sB),

rank=any(rA rB)}
11 val A = [1, 2, 3, 4]{ shape=[2, 2], rank =2}

val B = [1, 0, 0, 1]{ shape=[2, 2], rank=2, unit=2, ldiag}
13 in

(add A B)
15 end

For brevity, I have removed the definitions of all instances and values not required for this
particular example. To declare a precedence relation between two labels, I have intro-
duced the new keyword rel as shown in Line 2. In general, the precedence of a label over
another label is declared using a precedence expression of the form label <: label, where
the second label is declared to take precedence over the first. In the above example, the
label unit takes precedence over the label ldiag. Thus, the instance defined in lines 5ff.
now is chosen whenever a matrix carries both labels. Consequently, the expression add
A B in the body of the above let expression is evaluated using the instance requiring the
unit label for the second argument. Generally, the scoping of precedence declarations is
the same as for function definitions. They are visible throughout the entire let construct
and not only below their definition in the program text.
This completes the discussion of functions and pattern matching with auxiliary com-

putations. However, so far I have in all examples taken certain constraints for granted,
e.g., that the two matrices that are added have the same shape. In the next section, I
will discuss how constraints of this kind can be expressed in a dynamically typed setting
with auxiliary computations.

2.3. Supporting Constraints

The definition of the function add in the examples above silently assumes that both
arguments have the same shape and rank. However, in general, this needs not be the
case. So far, this will yield a runtime error only if the ravels of the two matrices have
different length. In this case, the application of the add functions on the ravel vectors
will fail. For matrices with different shapes but identical ravel length, e.g., two matrix
with shapes [2, 3] and [3, 2], the function add can still be applied without yielding
an error. Nonetheless, the result would not represent an element-wise sum of these two
matrices. Thus, the current encoding does not suffice to catch violations of the shape
equality constraint. Furthermore, from a programmers perspective, even if an error is
signalled at runtime, it is not obvious where it stems from. Instead, the programmer has
to deduce why the addition of the two ravels went wrong.

23

2. Design Decisions

This deficiency is not unique to my approach. Indeed, all dynamically typed languages
show this behaviour. Even for statically typed languages, if the type system cannot
encode a certain constraint, such constraint might be caught neither at compile time nor
at runtime. To ensure that constraint violations are caught, I propose to encode them
explicitly in the code by means of contracts. A contract, in its general form, is a Boolean
expression that encodes a certain constraint. For the example of matrix addition, this
would be the equality of the rank and shape properties of both argument matrices. If
the contract evaluates to false, the computation of the associated expression fails with
an error. This ensures that all constraint violations, as long as they are encoded by
a contract, are caught at least at runtime. Furthermore, as they are encoded in the
language itself, contracts in my approach might even be resolved statically using partial
evaluation.
The idea to model constraints by means of contracts is by no means new. It has been

first proposed by Meyer [1990, 1992] in the context of Eiffel and has consecutively
been applied to further languages. In the object oriented domain, contracts have been
adopted by modern languages like Java [Karaorman et al., 1999; Kramer, 1998] and
Python [Ploesch, 1997]. For the statically typed functional language Haskell with its
powerful type system, Xu [2006] has proposed ESC/Haskell and a general framework
for static contract checking in Haskell [Xu et al., 2009; Xu, 2008]. ESC/Haskell
extends Haskell with contracts to model constraints that cannot be expressed by the
type system.
I introduce contracts to my language by means of pattern guards. A pattern guard is

a Boolean expression annotated at a pattern. If the pattern matches, first the annotated
guards are checked before the corresponding expression is evaluated. However, pattern
guards in my approach do not influence the pattern matching process as such. If a guard
fails, the matching process is not continued. Instead, the overall program evaluation fails
with an error.
The use of pattern guards to express contracts in the program text is motivated by

the observation that constraints usually arise in the context of function applications.
Thus, annotating the contract at the function definition seems natural. Furthermore,
this enhances readability and program documentation. The function signature explicitly
states which constraints need to hold for an application of a function to be valid. Below
is an example for the use of contracts in the definition of the addition of two matrices.
For brevity, I have again removed all function instances not required for this particular
example.

1 let
fun add A{ shape=sA , rank=rA} B{ shape=sB, rank=rB}

3 | (sA = sB) (rA = rB)
= (vect_add A! B!){ shape=any(sA sB), rank=any(rA rB)}

5 val A = [1, 2, 3, 4]{ shape=[2, 2], rank =2}
val B = [1, 0, 0, 1]{ shape=[2, 2], rank =2}

7 in
(add A B)

9 end

24

2.4. Example: Encoding a Typed Expression Language

As can be seen above, a contract is expressed syntactically by a | symbol after the pattern
definition of an instance, followed one or more Boolean expressions. In the example above,
the first expression in Line 3 ensures that both argument matrices have the same shape.
Note that the scope of bindings of values of labels to identifiers introduced in the pattern
extends to the contract, as well. As a further contract, the second expression in Line 3
requires that both matrices have furthermore the same rank. For matrices, this of course
is always the case. However, in the context of general arrays, it might not be.
Equality constraints like the two shown above are relatively common in function defi-

nitions. To enhance readability and ease program specification, I introduce some further
syntactic sugar below.

1 let
fun add A{ shape=s, rank=r} B{ shape=s, rank=r}

3 = (vect_add A! B!){ shape=s, rank=r}
val A = [1, 2, 3, 4]{ shape=[2, 2], rank =2}

5 val B = [1, 0, 0, 1]{ shape=[2, 2], rank =2}
in

7 (add A B)
end

The above code is semantically equivalent to the previous version. To express the equal-
ity constraint on the shape and rank labels of the two argument matrices, I have bound
the corresponding labels of each argument to the same identifier, i.e., the value of the
shape label of matrices A and B is bound to the identifier s within the pattern in Line 2.
Analogously, I have defined the identifier r. These identifiers are then used in the defi-
nition of the instance instead of the previous application of any to the formerly separate
identifiers for the two arguments. The above can be de-sugared to the original encoding
by adding two equality constraints and replacing the occurrences of the identifiers within
the instance definition with the original any expressions. A formal description of this
source-to-source transformation is given in the next chapter.
Using the contracts and pattern guards as introduced above, the code now explicitly

captures the constraints of the function add. Thus, if applied to ill-formed arguments, the
application of add now instantly fails. Furthermore, the programmer can directly deduce
the constraints a function imposes on its arguments from the function’s signature.
This completes the discussion of constraints in this section. Before giving a formal

definition of the syntax and semantics of contracts and pattern guards in the next chapter,
I first discuss a further example to show the applicability of my approach beyond arrays
in the next section.

2.4. Example: Encoding a Typed Expression Language

In this section, I provide a further, more complete instance of the use of auxiliary com-
putations. By example of an evaluator for a small expression language, I show how
properties of data can gradually be introduced to gain varying degrees of static guaran-
tees.

25

2. Design Decisions

As a prerequisite, I first introduce a further data structure beyond arrays that is com-
monly found in functional programming languages: Algebraic data types. An algebraic
data type is a structured data type defined as a sum of tagged products. As an example,
I will use the definition of a small language on integers by means of an algebraic data
type Expr. Below is an example of the definition of the algebraic data type Expr in the
functional programming language Haskell. A discussion of Haskell in general is not
required for the examples below and would be beyond the scope of this section. I refer
the interested reader to the book by Peyton-Jones [2003] for details.

data Expr = ENum Int
2 | EBool Boolean

| ECond Expr Expr Expr
4 | EIsZero Expr

| EDiv Expr Expr

The algebraic data type Expr defined above consists of four choices. The first, defined in
Line 1, is made up of the tag ENum and an integer value. In the small example language
encoded here, it represents integer numerals. Next, Line 2 defines Boolean numerals
using the tag EBool. Line 3 gives an example of a nested choice. It encodes conditionals
as the tag ECond followed by three further expressions, the predicate, then expression
end else expression. To allow for slightly more complex expressions, my small sample
language furthermore features a predicate function IsZero. This function is encoded
in the algebraic data type by the tag EIsZero followed by the expression to check, as
defined in Line 4 above. Finally, Line 5 defines an encoding for the division operation
on integers by means of the tag EDiv, followed by the two argument expressions to the
division.
Apart from the actual data type, the above definition implicitly defines a set of match-

ing data constructors, as well. Each data constructor carries the same name as the tag of
the corresponding choice and expects as arguments the values to be stored in the encoded
fields. As an example, consider the encoding of the expression IsZero(5/2) shown below.

1 EIsZero (EDiv (ENum 5) (ENum 2))

Read inside out, the above expression first constructs two values of type Expr using the
tag ENum for integers. Next, the resulting values are wrapped by the EDiv data constructor
in the corresponding choice of the Expr data type for integer division. Lastly, this is then
wrapped by the EIsZero in the choice corresponding to the encoding of the IsZero
predicate function. Overall, the above thus defines a three times nested value of the
Expr algebraic data type.
Before I can encode the above data structure in my approach, first the additional

properties that are encoded apart from the value need to be identified. For example,
the result of the data constructor ENum above carries, apart from the integer numeral,
two further properties. Firstly, the, in Haskell static, property that the result is of
type Expr. Secondly, the result is tagged, in this case dynamically, by the tag ENum
to encode that the result is the first choice of the Expr data type. Similarly, all other
data constructors encode these two properties. Thus, to encode the above data in my
approach, the corresponding data constructors need to encode these two properties, as

26

2.4. Example: Encoding a Typed Expression Language

well. However, as my language is untyped, there is no need for a data type declaration.
Instead, I directly encode the data constructors, as shown below.

1 let
fun ENum I{} = (!I){ Expr , ENum}

3 fun EBool B{} = (!B){ Expr , EBool}
fun ECond P{ Expr} T{ Expr} E{ Expr} = (P, T, E){ Expr , ECond}

5 fun EIsZero E{ Expr} = (E){ Expr , EIsZero}
fun EDiv A{ Expr} B{ Expr} = (A, B){ Expr , EDiv}

7 in
EIsZero (EDiv (ENum 5) (ENum 2))

9 end

In the example above, I use a different language to encode the actual computations. In
contrast with my previous examples, which mainly make use of vectors as data type
within the actual computations embedded in the records, I in these examples use tuples,
denoted by the (and) symbols above. This is a general observation. Depending on
the targeted clientèle, the embedded language differs. However, the general principles
presented so far still apply. Even more, the actual embedded language is orthogonal to
my approach. I will give a more formal discussion of this statement in the next Chapter.
Line 2 above defines the data constructor for the ENum choice of the algebraic data type.

It expects as an argument an integer value I. Note that, for brevity of the example, I have
not encoded the fact that I indeed represents an integer. However, such an encoding could
be enforced by, e.g., an Int tag in the pattern and by furthermore adding a constructor
for integer values. The data constructor yields as its result a tuple containing the integer
value of the argument, denoted by the !I expression above, with the two additional tags
Expr and ENum to encode the two properties that the result is an expression and that it
represents the ENum choice of the encoded algebraic data type. Similarly, all other data
constructors are encoded. For data constructors that yield a nesting of expressions, e.g.,
the ECond data constructor, the tuple contains the records encoding the corresponding
expressions.
As Line 8 shows, by using these data constructors, the sample expression IsZero(5/2)

can be encoded with the exact same program text as in the Haskell example. Thus,
once the data constructors with their auxiliary computations have been defined, the
remaining program text requires no further annotations.
Having encoded expressions by means of an algebraic data type, I can now define an

evaluator on these expressions. I first give an example in Haskell below.

1 eval (ENum v) = ENum v
eval (EBool v) = EBool v

3 eval (ECond p t e) = case (eval p) of
| EBool v -> if v (eval t) (eval e)

5 eval (EIsZero e) = case (eval e) of
| (ENum v) -> EBool (v = 0)

7 eval (EDiv a b) = case ((eval a), (eval b)) of
| ((ENum va), (ENum vb)) -> ENum (va/vb)

9

eval (EIsZero (EDiv (ENum 5) (ENum 2)))

27

2. Design Decisions

The above code defines a function eval by pattern matching on the argument expression.
Note that, in contrast with my approach, pattern matching in Haskell uses a first
match, top to bottom, left to right matching algorithm. Line 1 defines an instance of the
function eval on the ENum choice of the algebraic data type. As ENum already represents
a value, i.e., a fully evaluated expression, it yields its argument as its result. Similarly,
the function eval is defined for the EBool case. In lines 3ff., the definition for conditional
expressions is given. To evaluate a conditional, I first evaluate the predicate expression.
If it evaluates to an expression of kind EBool, as checked by the nested pattern matching
using the case expression in Line 3, I then compute the result by evaluating either
the then or else expression, depending on the Boolean value of the evaluated predicate
expression. Similarly, the evaluation of EIsZero expressions is defined in lines 5 following.
Here, if the argument expression evaluates to an integer number, the result is defined
as an EBool expression whose value is computed by comparing the integer numeral to
0. Finally, lines 7ff. define the evaluation of EDiv expressions. To evaluate an EDiv
expression, both argument expressions need to evaluate to an integer numeral encoded
as an ENum expression. If this is the case, the result is computed as an ENum expression
whose value equates to the integer division of the values of the evaluated argument
expressions.
Using the above definition of an evaluator function eval, I can now evaluate the sample

expression provided earlier. The corresponding function call is given in Line 10 above. To
evaluate the expression, first the instance given in lines 5ff. for the EIsZero choice is used.
This instance recursively applies the eval function to the EDiv expression contained in
the argument. In the above example, this expression is then evaluated using the instance
given in lines 7ff. above, which again recursively evaluates the nested expressions. As
these both are ENum expressions, both are evaluated using the instance in Line 1 and yield
expressions of kind ENum. These match the nested pattern matching in Line 7 and thus
the application of the instance in lines 7ff. yields an ENum expression with value 2. Finally,
as the pattern in Line 5 matches, the overall result is the expression EBool false.
A similar definition for an evaluator can be given using my approach. The program

text is given below.

let
2 fun eval E{ Expr , ENum} = E

E{ Expr , EBool} = E
4 E{ Expr , ECond} = (cond (eval !E#0) !E#1 !E#2)

E{ Expr , EIsZero} = (isZero (eval E#0))
6 E{ Expr , EDiv} = (div (eval !E#0) (eval !E#1))

fun cond P{ Expr , EBool} T{ Expr} E{ Expr}
8 = if (!P) (eval T) (eval E)

fun isZero E{ Expr , ENum}
10 = (EBool (!E = 0))

fun div A{ Expr , ENum} B{ Expr , ENum}
12 = (ENum (!A / !B))

in
14 (eval (EIsZero (EDiv (ENum 5) (ENum 2))))

end

28

2.4. Example: Encoding a Typed Expression Language

The above definition, apart from syntactical differences, largely corresponds to the defini-
tion in Haskell provided earlier. One main difference is the use of additional functions
to facilitate the pattern matching on the results of intermediate evaluations. This stems
from the lack of a case statement and support for pattern matching within function bod-
ies. However, this is only a syntactical inconvenience and does not impose any restrictions
on the expressiveness of my approach.
A further difference is the explicit extraction of the components of the argument tuples

by means of a selection compared to the pattern match in the Haskell version. Syntac-
tically, the selection is represented by the infix operator #. It denotes the selection of the
element at the position given by the right-hand operand from the tuple given as left-hand
operand. The elements of the tuple thereby are indexed from left to right starting with
0.
Again, the application of the function eval in Line 2 is even syntactically identical

to the corresponding expression in the Haskell code. Thus, even though the above
example makes heavy use of auxiliary computations, once defined they do not interfere
with the remainder of the program.
In both implementations above, the implementation of eval is not complete in that it

cannot evaluate all expressions that can be constructed using the data constructors. As
an example, consider the expression EIsZero (EBool true). Although the expression
is a valid application of the data constructors, the encoded expression is ill-formed.
The predicate function IsZero cannot be applied to Boolean values. Using the above
approaches, this will only be caught once the expression is actually evaluated. However,
to catch errors early, it would be desirable to rule out the construction of the above
expression in the first place. In my approach, this can be done by adding a further
property to expressions: Their kind. The idea is to encode what kind of value the
expression will evaluate to. Or, to use the vocabulary of the typed world, we assign each
expression a type. The code below shows an updated version of the data constructors.

1 let
fun ENum I{} = (!I){ Expr , ENum , Kind=Int}

3 fun EBool B{} = (!B){ Expr , EBool , Kind=Bool}
fun ECond P{ Expr , Kind=kp} T{ Expr , Kind=kb} E{ Expr , Kind=kb}

5 | (kp = Bool)
= (P, T, E){ Expr , ECond , Kind=kb}

7 fun EIsZero E{ Expr , Kind=k}
| (k = Int)

9 = (E){ Expr , EIsZero , Kind=Bool}
fun EDiv A{ Expr , Kind=ak} B{ Expr , Kind=bk}

11 | (ak = Int) (bk = Int)
= (A, B){ Expr , EDiv , Kind=Int}

13 in
(EIsZero (EBool true))

15 end

As can be seen in Line 2 above, the definition of the ENum data constructor now yields a
result with the additional label Kind, which has value Int. This encodes that the resulting
expression is of integer kind and will evaluate to an integer expression. Similarly, I have

29

2. Design Decisions

amended the definition of the EBool data constructor using the value Bool for the Kind
component of its result to identify the result as an expression of Boolean kind. The two
special values Int and Bool can be seen as enumeration values for all possible expression
kinds. I use names instead of mere numbers here to enhance readability. However, any
distinguishing pair of values would suffice.
For the ECond data constructor, the kind of the result expression is computed from

the two argument expressions. As can be seen in lines 4ff., I use an implicit equality
constraint to ensure that both, the then and else expression, are of the same kind kb.
This kind is then used as the kind of the result. Furthermore, I use an explicit pattern
guard to enforce the constraint that the first argument to the data constructor, i.e., the
predicate expression, needs to be of Boolean kind.
Following this pattern, I have defined an instance of the EIsZero data constructor in

Line 9 above that requires the argument expression to be of integer kind and yields an
expression of Boolean kind. For the EDiv constructor in Line 10, I require both arguments
to be of integer kind. In this case, the result is then of kind integer, as well.
Using these modified data constructors, the construction of the expression in Line 14

above fails, even before the expression is actually evaluated. The application of the data
constructor EBool to the argument true yields an expression of kind Bool. Thus, in the
consecutive application of the EIsZero constructor, the pattern guard evaluates to false
and thus the program fails.
It is worth noting here that, even though I have changed the encoding of the algebraic

data type above, the function eval can still be applied. As pattern matching in my
approach simply ignores superfluous labels, the instances of eval still match regardless
of the additional kindness tag Kind.
My approach of enforcing well-formed expressions by adding a further property to the

data constructors cannot be directly translated to Haskell. It is possible to define an
algebraic data type that carries an additional tag to model the kind of an expression, as
shown below.

1 data Kind = KInt | KBool
data Expr = ENum Kind Int

3 | EBool Kind Boolean
| ECond Kind Expr Expr Expr

5 | EIsZero Kind Expr
| EDiv Kind Expr Expr

In the above code, I have defined a further algebraic data type Kind to encode the kind of
an expression. All choices then carry the kind as a further element. However, as the data
constructors are defined implicitly, they cannot directly be used to enforce restrictions on
the kind argument of the above expressions. By default, they accept any kind argument
for all expressions. This can easily be overcome by specifying user-defined constructors
similar to those used in my approach. Due to the nature of pattern matching in Has-
kell, it is however not possible to directly extract the kind component of an arbitrary
expression. Instead an extractor function like the one below is required:

kind (ENum k _) = k

30

2.4. Example: Encoding a Typed Expression Language

2 kind (EBool k _) = k
kind (ECond k _ _ _) = k

4 kind (EIsZero k _) = k
kind (EDiv k _ _) = k

In the above code, I provide an instance of the function kind for each choice in the alge-
braic data type Expr. Each instance matches the Kind component of the corresponding
choice and returns it as its result. Using the function above, the data constructor for the
ECond expression can be encoded as follows:

1 eCond p t e | (((kind e) == KBool) && ((kind e) == (kind t)))
= ECond (kind t) p t e

I use a guard in Line 1 above to ensure that the arguments to the constructor have
the correct kind, i.e., that the predicate has kind KBool and that the then and else
expressions are of the same kind. If this is the case, the resulting ECond expression has
the kind of the then expression.
The above encoding is fully dynamic. As the pattern match will only be evaluated

during runtime, such will be the guard that checks for the correct kinds of the arguments.
To push this into the type system and thus evaluate kinds at compile time, a further
possible encoding in Haskell is to use a stratified approach. By stratification, I refer
to the technique of splitting an algebraic data type into a nesting of multiple algebraic
data types. Below is an encoding of my example language using a stratified approach in
Haskell.

data IKind = ENum Int
2 | EDiv IKind IKind

| EICond BKind IKind IKind
4 data BKind = EBool Boolean

| EBCond BKind BKind BKind
6 | EIsZero IKind

data Expr = IExpr IKind
8 | BExpr BKind

I have split up the algebraic data type Expr into two kinds: Integer expressions modelled
by the IKind algebraic data type and Boolean expressions represented by the BKind
algebraic data type. To glue these back together as a single data type, I use a further
algebraic data type Expr.
Using the above encoding, the implicit data constructors now enforce the correct kind

for their argument expressions statically. However, as the kind property is encoded jointly
with the tag of each choice, I had to introduce two tags for the conditional expression.
The tag EICond encodes conditionals of kind integer, whereas the tag EBCond encodes
expressions of Boolean kind. Thus, when constructing expressions, the programmer has
to be aware of what kind the arguments are and choose the appropriate data constructor.
However, as Haskell is statically typed, one can use the type system as a guide in picking
the right constructors. Nonetheless, the above approach does not scale for richer sets of
attributes as each further attribute results in potential further duplication of tags.
As I will show in Chapter 6, the same static safety as provided by the stratified algebraic

31

2. Design Decisions

data type can be achieved with the encoding using auxiliary computation as presented
earlier.
Using any of the two encodings of the kind attribute in Haskell presented above

furthermore requires a major refactoring of the implementation of the evaluator. For the
first approach using the additional Kind value, the patterns have to be adapted. This is
due to the strict pattern matching in Haskell. When using the stratified approach, the
eval function needs to be stratified, as well, to reflect the different structure of the data
type. I omit the adapted implementations here and instead refer the interested reader
to Appendix A.1. Contrarily, all versions of the algebraic data type encoded using my
approach can still be evaluated using the initially designed evaluator.
As a final example for an encoding in Haskell, I below give an example using gener-

alised algebraic data types [Peyton-Jones et al., 2006], a recent addition to the language
also referred to as first class phantom types [Cheney and Hinze, 2003]. Generalised al-
gebraic data types, or GADTs for short, allow the programmer to enrich algebraic data
types with additional type information. Thus, as the kind of an expression introduced
above is statically inferable, GADTs can be used to model and enforce this additional
property of data. Below, I provide an example of the definition of the Expr data structure
as a generalised algebraic data type.
data Expr :: * -> * where

2 ENum :: Int -> Expr Int
EBool :: Boolean -> Expr Boolean

4 ECond :: Expr Boolean -> Expr a -> Expr a -> Expr a
EIsZero :: Expr Int -> Expr Bool

6 EDiv :: Expr Int -> Expr Int -> Expr Int

In contrast to the definition of the simple algebraic data type, the definition of the GADT
above additionally provides a kind signature for the data type. A kind in this setting
refers to the type of types and functions on types. In the setting of GADTs, the data
type Expr is a function from types to types, syntactically represented by * -> * in Line 1
above. It takes a type as argument and yields a new type, the Expr data type, as its
result. Lines 2ff. above then define the data constructors. To accommodate the additional
type information, the syntax for GADTs uses function signatures to define the different
data constructors of a GADT. For example, the type constructor ENum in Line 2 takes
an integer value as argument and yields a result of type Expr Int. Thus, it explicitly
encodes the kind of the expression in its type. This information can then be used in the
definition of further data constructors. For example, the data constructor for EIsZero
expects an argument of type Expr Int and yields a value of type Expr Bool. By means
of this type signature, I enforce that EIsZero is only applied to expressions of integer
kind. Furthermore, GADTs in Haskell facilitate the use of all-quantified types in the
signature of data constructors. An example is given in Line 4. The data constructor
ECond requires the first argument to be an expression of Boolean kind. Furthermore, the
then and else expression can be of any kind a, as long as both have the same kind. The
result is then of the same kind as the then and else expression, i.e., it has the kind a.
Using the above definition of expressions, the type system of Haskell is able to stat-

ically reject ill-formed expressions like the example provided earlier, i.e., the expression

32

2.4. Example: Encoding a Typed Expression Language

EIsZero (EBool true). As the data constructor EBool yields an expression of type
Expr Bool, the type of its result is not compatible with the signature of the data con-
structor EIsZero and thus the term is rejected.
However, GADTs can only be used if the information encoded can be statically inferred,

i.e., it needs to be expressible in the type system of Haskell. To achieve this, I have
silently limited the expressiveness of the example language in all previous encodings with
expression kinds. As an example, consider the following expression:

EIsZero (ECond (EBool true) (ENum 0) (EBool false))

The above expression will be rejected by all encodings with expression kinds as the then
and else arguments to the ECond data constructor have different kinds. The first expres-
sion is of integer kind whereas the second has kind Boolean. Thus, without inspecting
the value of the predicate, it is not possible to assign a kind to the overall conditional.
However, the evaluators specified earlier both evaluate the above expression to the value
EBool true. Thus clearly the above expression is well-formed with respect to evaluation.
In a truly dynamically typed spirit, it should thus not be rejected.
In my approach, the kind of the conditional expression might not be decidable statically

either, depending on the available static knowledge. However, my approach is expressive
enough to encode a soft approach to rejecting expressions. The idea is, in the way of soft
typing, to reject clearly ill-formed expressions at construction time and thus ultimately
statically, and to defer the decision for undecidable cases to evaluation time. To facilitate
this rejection of clearly ill-formed expressions, I introduce a further expression kind Any
to tag expressions whose kind is not known. The amended data constructors are given
below.

1 let
fun ENum I{} = (!I){ Expr , ENum , Kind=Int}

3 fun EBool B{} = (!B){ Expr , EBool , Kind=Bool}
fun ECond P{ Expr , Kind=kp} T{Expr , Kind=kt} E{Expr , Kind=ke}

5 | (kp != Int)
= (P, T, E){ Expr , ECond , Kind=if (kt = ke) any(kt ke) Any}

7 fun EIsZero E{ Expr , Kind=k}
| (k != Bool)

9 = (E){ Expr , EIsZero , Kind=Bool}
fun EDiv A{ Expr , Kind=ka} B{ Expr , Kind=kb}

11 | (ka != Bool) (kb != Bool)
= (A, B){ Expr , EDiv , Kind=Int}

13 in
(EIsZero (ECond (EBool true) (ENum 0) (EBool false)))

15 end

The two data constructors ENum and EBool have not changed, as their kind is always
statically decidable. For the data constructor ECond, I have changed the pattern guards
and the construction of the result to take the new kind Any into account. As can be seen
in Line 4, I have removed the implicit constraint that the then and else expression must
be of the same kind. Furthermore, the explicit constraint in form of the patter guard
in Line 5 now only fails for predicate expressions of kind Int, thus allowing predicate

33

2. Design Decisions

expressions of kind Any. Next, I have modified the computation of the kind of the
conditional expression itself. Only if both branches of the conditional are of the same
kind, the conditional itself is assigned that kind. Otherwise, the kind Any is used for the
result. Furthermore, I have updated the data constructors EIsZero and EDiv so that
they accept expressions of kind Any, as well. However, for clearly ill-formed arguments,
i.e., arguments of kind Bool and Int in the case of the constructor EIsZero and the
constructor EDiv, respectively, the guards will fail. Thus, such applications would be
rejected at construction time.
The above data constructors still reject my initial example, i.e., they reject the expres-

sion EIsZero (EBool true), as expressions of kind Bool are rejected by the constructor
EIsZero. However, the expression given in Line 14 above is accepted. As the then and
else arguments to the ECond data constructor have different kinds, the data constructor
yields a result of kind Any. This in turn is a valid argument to the data constructor
EIsZero.
Note here that even introducing a third kind does not require the evaluator to be

changed. The expressions constructed using the soft typing style encoding can still be
evaluated using the initial implementation of the evaluator. For the example in Line 14
above, it yields EBool true as expected. Furthermore, it is not possible to use the above
encoding with the additional Any kind in the context of GADTs in Haskell, as the
constructor ECond, depending on the relationship between its argument types, uses a
different type derivation.
This completes the discussion of my approach in the context of algebraic data types.

I will return to the examples provided here in Chapter 5 to demonstrate the inference of
static properties by partial evaluation.

2.5. Conclusions

In this chapter, I have introduced the concept of auxiliary computations to model addi-
tional properties of data beyond their value. To support auxiliary computations, I have
motivated the use and introduced a syntax for records. Furthermore, to allow for efficient
programming with auxiliary computations as records, I have introduced and motivated
a best match pattern matching construct. It supports partial matches on the labels of
the record representation of arguments. To increase its expressiveness, I have introduced
support for a user-defined order on labels.
As my examples show, using a language with these features allows one to extend

existing programs with additional encodings for additional properties in an agile fashion,
i.e., using a local and iterative approach. In my first example, I iteratively extended the
definition of a function by additional structural properties on its arguments. The second
example shows how a step-wise refinement of the data encoding can yield additional
structural knowledge. In both examples, I have shown that the introduced amendments
were only local and did not require a refactoring of the entire program text.
Furthermore, I have motivated and introduced contracts as a means to model arbitrary

constraints on function arguments. To support contracts, I have added pattern guards

34

2.5. Conclusions

to the features proposed by my approach.
Finally, to enhance readability and further ease programming in my approach, I have

introduced some syntactic sugar, namely

• support for implicit labels for values,

• a notation to bind the values of labels in pattern to identifiers that can be used in
the definition of a function,

• a shortcut notation for equality constraints on properties of function arguments,

• tags, i.e., valueless labels, in records.

Next, I will give a formal definition of the syntax and semantics of the above language
features.

35

36

3. A Formal Definition of LRec

In this chapter, I will formalise the design presented in the previous chapter by means
of LRec, a first order pure functional programming language with pattern matching
and records. I start off in the next section by formally specifying the syntax of LRec.
Next, Section 3.2 presents as set of source-to-source transformations to stepwise de-sugar
LRec programs. I close that section with the definition of LRecC, a de-sugared core of
LRec. Finally, Section 3.3 presents an operational semantics for LRecC, before I end
this chapter with some conclusions in Section 3.4.

3.1. Syntax of LRec

In the following, I present the syntax of LRec. As my thesis is concerned with presenting
a minimal framework to support auxiliary computations for dynamically typed languages
in general, LRec consists of only the bare essentials required for my approach. To define
a complete syntax with respect to the examples presented in the previous chapter, I
provide additional definitions for the applied features that are used in those examples in
Appendix B.
Figure 3.1 on the following page shows the syntax of LRec in extended Backus Naur

form. The production rule expression defines the set of syntactically valid expressions.
The syntax of the first among these, the record, is defined as a potentially empty comma
separated list of label=expression pairs surrounded by curly brackets. As labels are not
first class objects in LRec, labels cannot be bound to identifiers. Thus, only labels are
allowed in label position. A further valid expression is the selection operation. Its syntax
is given by the production rule selection as an expression followed by the .-symbol and a
label. As with records, the label used for selection is not an expression as labels are not
first class objects. The syntax of the special selection operation on implicit value labels
is defined by the blink production rule as a !-symbol followed by an expression.
Next in the set of valid expressions is the any operation. Its syntax is defined by rule

any as the keyword any followed by a non-empty list of expressions in parentheses. I
use a different syntax for the any construct compared to the syntax of general function
applications to highlight syntactically that any is a built-in construct.
The next two valid expressions are identifier and boolean values. The former is needed

to reference expressions bound by the val construct. I have not given an explicit defini-
tion of the syntax of an identifier. Any definition used by the embedded target language
suffices, as long as it excludes the keywords of LRec. Boolean values are defined by the
production rule boolean in the usual way. These are the only values included in LRec.

37

3. A Formal Definition of LRec

program ⇒ expression

expression ⇒ record | selection | blink | any
| identifier | boolean | conditional
| equal | let | application

record ⇒ expression { [element [, element]*] }

element ⇒ label [= expression]

selection ⇒ expression . label

blink ⇒ ! expression

any ⇒ any ([expression]+)

boolean ⇒ true | false

conditional ⇒ if expression expression expression

equal ⇒ (expression = expression)

let ⇒ let [definition]* in expression end

definition ⇒ relation
| value
| function

relation ⇒ rel label <: label

value ⇒ val identifier = expression

function ⇒ fun [instance]+

instance ⇒ [pattern]+[guards] = expression

pattern ⇒ identifier { [part [, part]*] }

part ⇒ label [= identifier]

guards ⇒ | [expression]+

application ⇒ (identifier [expression]+)

Figure 3.1.. Syntax of LRec in extended Backus Naur form.

38

3.1. Syntax of LRec

I have chosen to include Boolean values to be able to give a semantic meaning to the
conditional construct in later sections.
The production rule conditional defines the syntax for conditional expressions in LRec.

A conditional is represented syntactically by the keyword if followed by three expres-
sions: the predicate expression, the expression for the then case that is evaluated if the
predicate is true and the expression for the else case that is evaluated for a false predicate.

LRec furthermore includes an equality function on non-record values. Strictly speak-
ing, such an equality function belongs to the applied extensions of LRec, as it is defined
on all non-record values. I nonetheless include it here as it is required for the lowering of
implicit equality constraints as presented in Section 3.2.3. As the only non-record values
in LRec are Boolean values, the function equal can only be used to compare those. For
an applied extension of LRec, it needs to be extended accordingly. The corresponding
production rule equal defines the syntax of the equality function as an expression, the
=-symbol and a further expression, surrounded by parentheses.
Next is the let construct defined in the production rule let. It consists of the keyword

let followed by a potentially empty set of definitions. These are followed by the body of
the let construct surrounded by the keywords in and end. LRec supports three kinds
of definitions. Firstly, the production rule relation defines the syntax for specifying a
relation on labels: The keyword rel is followed by a label, the keyword <: and a second
label. Similarly to records and selections, labels in a relation definition are not first class.
The second kind of definition is the binding of expressions to identifiers as defined by

the value production rule. Such a binding is specified syntactically by the keyword val
followed by an identifier, the =-symbol and an expression.
Lastly, LRec supports function definitions within the let construct. Their syntax is

defined by the production rule function as the keyword fun followed by a non empty
set of instance definitions. The syntax of instances in turn is defined by the production
rule instance. An instance is specified by an instance signature consisting of one or more
argument pattern and an optional guard definition for contracts. Finally, the signature
is followed by the =-symbol and an expression for the body of the instance. Below, I will
discuss the different parts of the signature part of an instance from left to right.
The first component of the signature part of an instance definition are the argument

patterns. The syntax of an argument pattern is given by the production rule pattern.
An argument pattern consists of an identifier for the argument name, followed by a list
of pattern components surrounded by curly brackets. Each pattern component in turn is
either a label, or a label and an identifier separated by the =-symbol. The latter syntax
is used to introduce an implicit binding of record values in the function body and to
specify implicit equality constraints.
Finally, the last component of the signature part of an instance is the guard definition.

Its syntax is defined by the guard production rule. A guard definition starts with the
|-symbol. This symbol is followed by a non-empty list of guard expressions.
Still missing is the syntax for function applications in LRec. It is defined by the

production rule application. A function application is represented syntactically by the
(-symbol followed by an identifier, a non-empty set of expressions and a final)-symbol.
I only allow identifiers in function position as LRec is a first order language and fur-

39

3. A Formal Definition of LRec

thermore does not support nameless functions, i.e., functions that are defined inline in
the code.
Function definition and function application both syntactically require at least one

argument. This restriction rules out argument-less functions. However, as LRec is pure,
an argument-less function always represents a constant value and thus can be represented
by the val construct, as well. Enforcing this syntactically makes this fact more obvious
to the programmer. However, in the end, it is merely a matter of taste.
This completes the discussion of the syntax of LRec. In the next section, I will

demonstrate how LRec can be de-sugared and reduced to a core language LRecC.

3.2. Towards a Sugar-Free LRec

One goal of my thesis is to provide a language extension with as clear as possible seman-
tics. In particular, I want to enable the programmer to fully understand the semantics
without much prior knowledge. To achieve this and to keep the semantics definition of
LRec as concise as possible, I first reduce LRec to a simpler core language LRecC with
all syntactic sugar removed. To define the semantics of the syntactic sugar in LRec, I
use a set of source-to-source transformations from LRec to LRec, which will ultimately
lead to a program in LRec’s sugar free core LRecC.
I perform this transformation in three steps. First, Section 3.2.1 describes how to

resolve tags in records by rewriting them to labels with the special unit constant as
value. The next section translates implicit equality constraints and bindings in patterns
to explicit equality constraints and selection operations. Lastly, I describe in Section 3.2.3
how to resolve the implicit label for values by rewriting record definitions, argument
patterns and the ! operation as explicit definitions for a value label and operations
thereon.
Finally, I close the overall discussion on syntax by a definition of the reduced syntax

of LRecC in Section 3.2.4.

3.2.1. Resolving Tags in Records

In Section 2.2, I have introduced special valueless auxiliary computations, referred to as
tags, to model properties of data that do not carry a value but merely encode a property
by their existence in a record. These tags can then be exploited in the pattern of instance
definitions to define specialised instances for certain tags. The motivating example used
in Section 2.2 was the ldiag property of matrices. As a reminder, a tag is defined by
the following syntax:

1 let
val A = true{ TAG}

3 in
!A

5 end

In Line 2 above, a record with the value true and the additional valueless label TAG is
bound to the identifier A. The selection in Line 4 then selects the value of this record.

40

3.2. Towards a Sugar-Free LRec

To make record expressions more uniform in the following discussion of LRec, it is
desirable to rewrite the above expression such that all labels have a corresponding value.
This can be achieved by replacing the definition of a tag by a label with an arbitrary
value bound to it. As pattern matching in LRec does not take values into account,
this does not influence the instance selection process. However, a too naïve choice of
the value of such a replacement can nonetheless have an influence on the meaning of an
expression. As an example, consider the following expression using a tag:

1 let
val A = true{ TAG}

3 in
if A.TAG true false

5 end

Line 2 above binds a record with tag TAG to the identifier A. The value of this tag is
then used in Line 4 as the predicate for a conditional. As tags do not carry a value, a
natural semantics would be that the conditional cannot be evaluated, as A.TAG does not
represent a Boolean value.
By replacing tags with ordinary labels carrying an arbitrary value this expected se-

mantics might change. For example, consider using the value true as the chosen value
for tags. A rewriting would then yield the code below:

1 let
val A = true{ TAG=true}

3 in
if A.TAG true false

5 end

Now, as the label TAG carries the value true (cf. Line 2), the expression in Line 4 can
indeed be evaluated, yielding true as its result.
To prevent unexpected changes in program meaning as the one shown above, I intro-

duce a special expression to LRec, which I will use as value for tags: the unit expression,
syntactically denoted by the ~-symbol. It represents a non-value and cannot be further
evaluated. Using this special value for tags ensures that introducing ~ into program texts
does not change their meaning. If the value of a tag was used in the original program
text, each use of the value will still fail.
For my above example, a rewriting using the ~ value would yield the following code:

1 let
val A = true{ TAG =~}

3 in
if A.TAG true false

5 end

Even though the tag has been replaced by a label TAG with value ~ (cf. Line 2), the
conditional in Line 4 now cannot be evaluated. Thus, rewriting tags with labels carrying
the value ~ does not change the expected program meaning.
Figure 3.2 on the next page presents a formal definition of this rewriting by means of

a transformation scheme Lt. Throughout this thesis, I describe source-to-source trans-
formations by functions on the syntax of LRec. In this case, I define a function Lt

41

3. A Formal Definition of LRec

(Record) Lt
q
eval{c1, ..., cn}

y

 Lt
q
eval

y
{Lt

q
c1

y
, . . ., Lt

q
cn

y
}

(ElementVal) Lt
q
label=expression

y

 label=Lt
q
expression

y

(ElementTag) Lt
q
label

y

 label=~

Figure 3.2.. Transformation scheme Lt to resolve tags in record definitions.

that accepts a LRec program with tags yields a semantically equivalent LRec program
where these have been resolved. The first rewriting rule, the rule Record, defines the
rewriting of records by applying the transformation Lt recursively to the value expression
and each element of the record.
For record elements, Figure 3.2 defines two rewriting rules: The rule ElementVal for

components with values and the rule ElementTag for tags, i.e., valueless components.
The former rewrites a record element of the form label=expression by recursively apply-
ing the transformation Lt to the expression part of the element. The latter performs the
actual rewriting. A record component of the form label is rewritten as a component with
the special ~ expression as value.
I have omitted the rules for driving the transformation Lt through the remaining

expressions of LRec. For reference, the corresponding rules can be found in Figure C.1
on page 201 in Appendix C.

3.2.2. Resolving Implicit Equality Constraints and Bindings in Patterns

For convenience, LRec allows to bind elements of the argument records of a function
to identifiers within the function body. This is expressed syntactically by augmenting a
label in a pattern to the right by an =-symbol and an identifier. In Section 2.3 I have
further motivated and introduced implicit equality constraints in function signatures.
These can be expressed by binding the same identifier to different record elements within
one instance signature. In this section, I present a source-to-source transformation that
resolves this syntactic sugar.
A naïve way to resolve implicit bindings would be to substitute all occurrences of

the corresponding identifier in expression position by an explicit selection operation.

42

3.2. Towards a Sugar-Free LRec

However, such a substitution would not preserve the meaning in general. Consider the
following example:

1 let
fun foo A{ label=s}

3 = let
val A = true{ label=true}

5 in
s

7 end
in

9 (foo true{ label=false})
end

In the above code, the signature of the single instance of function foo binds the value of
the label element of the argument A to the identifier s. In the body of the function, the
identifier A is then bound to a different record, i.e., the expression true{ label=true}
(cf. Line 4). Lastly, the result of foo is defined as the value of s in Line 6. Thus, the
expression in Line 9 evaluates to false. Using the naïve approach and substituting all
occurrences of s by its definition, i.e., the expression A.label, would yield the following
code.

let
2 fun foo A{ label}

= let
4 val A = true{ label=true}

in
6 A.label

end
8 in

(foo true{ label=false})
10 end

Above, I have removed the implicit binding of s in the definition of foo in Line 2.
Furthermore, I have replaced all occurrences of s, i.e., the single occurrence in Line 6,
by the expression A.label. This, however, has changed the meaning of the expression
in line 8. Now, when evaluating the application of foo to true{ label=false}, the
selection in Line 6 references the value of A as defined in Line 4 instead of the value of
the function argument. Thus, the application of foo yields the result true.
To prevent scoping related problems like the one shown above, I use a different strategy

to resolve implicit bindings. Instead of substituting the identifier by its bound value, I
surround the function body by a set of explicit bindings using the let construct. For
example, transforming the original code given above yields the following result:

let
2 fun foo A{ label}

= let
4 val s=A.label

in
6 let

43

3. A Formal Definition of LRec

val A = true{ label=true}
8 in

s
10 end

end
12 in

(foo true{ label=false})
14 end

I have resolved the implicit binding of s by wrapping the let construct of the function
body into a further let construct. This outer let construct explicitly binds the label
component of A to the identifier s (cf. Line 4). Thus, the expression s in Line 9 now
evaluates to the correct value, despite the new binding for A in Line 7.
It is worth noting here that in the above example it would suffice to introduce the

explicit binding of s to the existing let construct, as long as the additional bindings are
inserted at the top of the definition chain. However, as a function is not required to have
a top-level let construct, this solution would not scale to the general case.
The above transformation suffices to resolve implicit bindings if each identifier is only

bound once within each instance signature. However, implicit equality constraints allow
the programmer to bind the same identifier more than once. In this case, the identifier
corresponds to any one of the values that are bound to it. To express this, I make use
of the any operation. Instead of defining the identifier by a single selection, I bind it to
an application of any to the selections of all record elements that were previously bound
implicitly. As an example, consider an extended version of the example above.

let
2 fun foo A{ labelX=s} B{labelY=s}

= let
4 val A = true{ label=true}

in
6 s

end
8 in

(foo true{ labelX=false}) false{ labelY=false}
10 end

The function foo as defined in Line2 above now expects two arguments. By means of
an implicit binding, the value of the labelX component of the first argument and the
labelY component of the second argument are bound to the identifier s. To resolve the
implicit binding above, it suffices to introduce an explicit binding of the expression any(
A.labelX B.labelY), as shown below.

let
2 fun foo A{ labelX} B{labelY}

= let
4 s = any(A.labelX B.labelY)

in
6 let

val A = true{ label=true}

44

3.2. Towards a Sugar-Free LRec

8 in
s

10 end
end

12 in
(foo true{ labelX=false}) false{ labelY=false}

14 end

The explicit binding is shown in Line 4 above. In case that A.labelX and B.labelY have
the same value, this transformation correctly resolves the implicit binding. What is still
missing is a contract to ensure the above constraint. In general, such a contract has to
ensure that all components that are bound to an identifier have the same value. To do so,
it suffices to require that for each disjoint pair of components, both have the same value.
As in the above example only two components are bound to s, this can be enforced by
a single contract (A.labelX = B.labelY). The resulting code is given below.

let
2 fun foo A{ labelX} B{labelY} | (A.labelX = B.labelY)

= let
4 s = any(A.labelX B.labelY)

in
6 let

val A = true{ label=true}
8 in

s
10 end

end
12 in

(foo true{ labelX=false}) false{ labelY=false}
14 end

Line 2 shows the added contract in form of a guard. The above code is semantically
equivalent to the expected semantics of both implicit bindings and implicit equality
constraints.
Figure 3.3 on the following page gives a formal definition of the above transformation

for the general case. It defines a function Le that accepts a LRec program with implicit
bindings and implicit equality constraints and yields a semantically equivalent LRec
program where these have been resolved. I assume that all components of a pattern
are bound to an identifier to simplify the specification of Le. This does not affect the
applicability of the transformation in the general case, as unbound components can easily
be transformed into components bound to a fresh, unused identifier.
Rule Instance in Figure 3.3 on the next page specifies how an instance definition of a

function is transformed. To handle implicit equality constraints, I define an equivalence
class [i]P over a set of bindings P with respect to the used identifier i. The set P thereby
represents all (argument,label,identifier) triples collected from the instance definition. An
(argument,label,identifier) triple is in P if the instance contains an implicit binding of
the component of an argument referenced by the label to the identifier. The equivalence
class [i]P is then defined by the equality relation on the third element of the triple, i.e.,

45

3. A Formal Definition of LRec

(Instance) Le

s
a1{ l11=i

1
1, . . ., l1n1

=i1n1
} · · · am{ l1m=i

m
1 , . . ., lmnm=i

m
nm}

| guards = expression

{

a1{ l11, . . ., l1n1

} · · · am{ lm1 , . . ., lmnm}
| newguards Re

q
S, Le

q
guards

y y

= Re
q
S, Le

q
expression

y y

where S is defined as
S =

⋃
i∈I
{(i, {(a, l) | (a, l, i) ∈ [i]P })}

and newguards is defined as the expressions contained in the set

G =
⋃
i∈I
{(aj.lj = ak.lk) | (aj , lj , i), (ak, lk, i) ∈ [i]P ∧ (aj 6= ak ∨ lj 6= lk)}

with the sets P and I defined as

P =
m⋃
j=1

{(aj , ljk, i
j
k) | k ∈ {1, . . . , nj}},

I =
m⋃
j=1

nj⋃
k=1

{ijk}

and the equivalence class [i]P defined as

[i]P = {(a, l, i′) ∈ P | i = i′}.

Figure 3.3.. Transformation scheme Le for resolving implicit equality constraints and
bindings in patterns.

the identifier. Using this equivalence class, I compute the set G of additional guards
required to express the equality constraints. It contains, for each identifier i used in an
implicit binding, guards to assert the equality of each disjoint pair of record components
from [i]P .
Furthermore, to resolve the implicit bindings, I compute the set S of pairs associating

a set of record components with the identifier they are bound to. This set of bindings is
then used to rewrite the existing guards and the body expression of the instance definition
by means of the rewriting function Re. As Figure 3.4 on the facing page shows, given
a set of bindings S and an expression expression to rewrite, Re yields the expression
wrapped in a new let construct that contains explicit bindings for all identifiers in S. To
express these bindings, I use an application of the any operator to selection operations
that correspond to the (argument,label) pairs associated with an identifier. The resulting
expression is then bound to the identifier using the val construct.

46

3.2. Towards a Sugar-Free LRec

Re
q
S, expression

y
= let definitions in expression end

where definitions is defined as the definitions contained in the set

D =
⋃

(i,{(a1,l1),...,(an,ln)})∈S

{val i=any(a1.l1, . . ., an.ln)}

Figure 3.4.. Rewriting function Re for introducing explicit bindings.

Note that in rule Instance in Figure 3.3 on the preceding page, before rewriting the
expressions, first the transformation scheme Le is recursively applied to the guards and
body expression. This ensures that implicit equality constraints and implicit bindings in
function definitions within these expressions are resolved, as well. I have omitted here the
rules that are needed only to drive the transformation Le through arbitrary expressions.
These can be found in Figure C.2 on page 204 in Appendix C.

3.2.3. Resolving Implicit Labels for Values

As a final lowering step from LRec to LRecC, I in the following describe the rewriting
of the implicit labels for the value component of a record into an explicit value label. In
Chapter 2, I have introduced the implicit value label to syntactically highlight the actual
computation in contrast to further auxiliary computations encoded in a record. For the
formal discussion of LRec, this distinction is not needed and would only obfuscate the
general principles of evaluation.
To start off, I first give an example of the syntax of implicit labels for values as a

reminder:

let
2 val A = true{ X=false}

in
4 !A

end

In the above code, the value A is defined in Line 2 as a record with value true and the
auxiliary computation X with value false. In Line 4, the value component of the record
bound to A is then selected using the selection for implicit values !. To rewrite the above
code with explicit value labels, it suffices to bind the value of the record in Line 2 to a
so far unused label and to replace the implicit selection in Line 4 by an explicit selection
of that label. The resulting code is given below.

1 let
val A = { val=true , X=false}

3 in
A.val

5 end

47

3. A Formal Definition of LRec

(Record) Li
q
eval{l1=e1, . . ., ln=en}

y

 {val=Li
q
eval

y
, l1=Li

q
e1

y
, . . ., ln=Li

q
en

y
}

(Blink) Li
q

!expression
y

 Li
q
expression

y
.val

(Pattern) Li
q
a{l1, . . ., ln}

y

 Li
q
a{val, l1, . . ., ln}

y

Figure 3.5.. Transformation scheme Li to resolve implicit labels for values.

As Line 2 shows, I have used the label val to bind the value component of the record.
I will use the label val to refer to the value component of a record in the remainder of
this thesis. This, of course, assumes that the label val is not used anywhere else in the
program text. That restriction, however, can be easily achieved by restricting the set of
labels in LRec accordingly. Line 4 above shows the rewriting of the implicit selection
into an explicit selection using the val label.
A formal definition of this last rewriting is given by the transformation scheme Li in

Figure 3.5. As before, I only show the most important rules here. The remaining rules
are given in Appendix C in Figure C.3 on page 205.
The rule Record rewrites a record definition with an implicit value component to a

record using the label val by binding the value expression in front of the original record
definition to the label val in the resulting record. Furthermore, the transformation Li

is recursively applied to all expressions for the components of the record, including the
expression for the value.
The rewriting of selections of the value component using the ! operator is defined by

rule Blink. The original selection is replaced by an explicit selection of the val label. To
resolve implicit value labels in the expression the selection is applied to, Li is recursively
applied to that expression, as well.
Lastly, in rule Pattern, I add the label Val to each pattern. Although this is not

strictly required, as the pattern would match without explicitly listing the label val,
as well, I add the label to highlight that each argument is required to have a value
component. As the existence of a value component for each record value is syntactically
enforced, this rewriting has no impact on the set of matching expressions.
This completes the discussion of the transformations required to de-sugar LRec. In

the next section, I give a formal definition of the syntax of the de-sugared core of LRec.

48

3.3. An Operational Semantics For LRecC

3.2.4. Syntax of LRecC

By applying the transformation schemes Lt, Le and Li in the given order, a program text
in LRec can be fully de-sugared to a corresponding program text in the core language
LRecC. All formal discussions in the remainder of this thesis will use LRecC as their
basis. For reference, I close the discussion of the syntax of LRec with a formal definition
of the syntax of its core LRecC.
Figure 3.6 on the next page gives the syntax of LRecC in extended Backus Naur form.

In comparison to the syntax of full LRec as shown in Figure 3.1 on page 38, LRecC does
no longer contain the blink operator !, nor support for implicit values in the production
rule record for records. These language features are resolved by the Li transformations.
To reflect the transformation of tags to ordinary labels with values by the Lt trans-

formation, I have adapted the production rule element for record elements accordingly.
Furthermore, the syntax for implicit bindings and thus implicit equality constraints

has been removed from the production rule pattern for argument patterns of function
instances. As the transformation Le fully resolves these, it is no longer required. As the
only addition, I have added the special expression ~ used by the Lt transformation. The
corresponding production rule unit is now referenced in the rule for valid expressions
expression.
Given this syntax of core LRec, I will now define its formal semantics by providing

an operational semantics for LRecC in the next section.

3.3. An Operational Semantics For LRecC

In this section, I provide an operational semantics for LRec. I only provide the semantic
rules for the core LRecC. The semantics for the syntactic sugar is given by the semantics
of its transformation into LRecC provided by the transformation schemes presented in
the previous sections. Furthermore, this section does not consider guards in LRecC. I
will discuss these and their semantics separately in Chapter 4.
The semantics are provided by a relation ⇓ between expressions of LRecC and values.
⇓ is not a function, as one expression can potentially be evaluated to different results,
depending on which argument is chosen when evaluating the any operator. Before dis-
cussing the relation’s defining rules in detail, I first give a formal definition of the set of
values. Figure 3.7 on page 51 shows the production rules for all valid values in extended
Backus Naur form.
A value, as defined by the production rule value, is either a Boolean value or a record

value. Boolean values, as defined in rule boolean, are the two constants true and false.
Record values are defined by the production rule record. A record is represented as a set
of (label,value) pairs. Note that, in contrast with record expressions in LRecC, record
values can potentially be empty sets. I will use this to represent the non-value ~.
In the following, the set V refers to all values that can be produced using the production

rule value in Figure 3.7 on page 51. Furthermore, I will use R to denote the set of values
that can be produced using the production rule record, i.e., all record values. Lastly, L
refers to the set of all valid labels. As in previous definitions of the syntax of LRec, I

49

3. A Formal Definition of LRec

program ⇒ expression

expression ⇒ record | selection | unit | any
| identifier | boolean | conditional
| equal | let | application

record ⇒ { [element [, element]*] }

element ⇒ label = expression

selection ⇒ expression . label

unit ⇒ ~

any ⇒ any ([expression]+)

boolean ⇒ true | false

conditional ⇒ if expression expression expression

equal ⇒ (expression = expression)

let ⇒ let [definition]* in expression end

definition ⇒ relation
| value
| function

relation ⇒ rel label <: label

value ⇒ val identifier = expression

function ⇒ fun [instance]+

instance ⇒ [pattern]+[guards] = expression

pattern ⇒ identifier { [label [, label]*] }

guards ⇒ | [expression]+

application ⇒ (identifier [expression]+)

Figure 3.6.. Syntax of LRecC in extended Backus Naur form.

50

3.3. An Operational Semantics For LRecC

do not give a definition of this set of labels. Instead, any set of discriminating identifiers
can be used.
As a further prerequisite, I define some functions on record values below. Firstly, I

define the domain of a record as the set of its labels:

Definition 3.3.1 (Domain of a Record). The domain of a record value dom : R → L
is defined as

dom(R) := {l | ∃v ∈ V : (l, v) ∈ R}.

This definition is motivated by the notion of records as partial functions from the set of
labels to the set of values. Analogously, the range of a record is defined as the set of its
values:

Definition 3.3.2 (Range of a Record). The range of a record value range : R → V is
defined as

range(R) := {v | ∃l ∈ L : (l, v) ∈ R}.

Lastly, I define the element of a record at a given label as the value corresponding to
that label:

Definition 3.3.3 (Element of a Record). The element of a record value elem : R×L →
V is defined as

elem(R, l) :=

{
v if (l, v) ∈ R,
undefined otherwise.

Figure 3.8 on the next page provides a big-step operational semantics for LRecC.
To describe the semantics, I use a natural deduction system with inference rules in the
style of Gentzen [1934]. I use the common notation for derivation formulae known from
standard textbooks like [Pierce, 2002]. The statement (F ,≺,E) : e ⇓ v is to be read as:
Given an evaluation environment (F ,≺,E), the term e can be evaluated to the value
v. The evaluation environment thereby is a triple consisting of the function environment
F , the current partial order on labels ≺, which is used in pattern matching, and an
environment of variable bindings E . I assume throughout this thesis that all orders are
strict, i.e., that they are anti-symmetric and thus not reflexive.

value ⇒ boolean | record

boolean ⇒ true | false

record ⇒ { [element [, element]*] }

element ⇒ (label , value)

Figure 3.7.. Set of legal values used as by the operational semantics.

51

3. A Formal Definition of LRec

True :
(F ,≺,E) : true ⇓ true

False :
(F ,≺,E) : false ⇓ false

Unit :
(F ,≺,E) : ~ ⇓ ∅

Var :
(i, v) ∈ E

(F ,≺,E) : i ⇓ v

EqualTrue :
(F ,≺,E) : e1 ⇓ v1 (F ,≺,E) : e2 ⇓ v2 v1, v2 6∈ R v1

v
= v2

(F ,≺,E) : (e1 = e2) ⇓ true

EqualFalse :
(F ,≺,E) : e1 ⇓ v1 (F ,≺,E) : e2 ⇓ v2 v1, v2 6∈ R v1 6

v
= v2

(F ,≺,E) : (e1 = e2) ⇓ false

Record :

∀i, j ∈ {1, . . . , n} : i 6= j ⇒ li 6= lj
∀i ∈ {1, . . . , n} : (F ,≺,E) : ei ⇓ vi

(F ,≺,E) : {l1=e1, . . ., ln=en} ⇓ {(l1, v1), . . . , (ln, vn)}

Selection :
(F ,≺,E) : e ⇓ v v ∈ R l ∈ range(v)

(F ,≺,E) : e.l ⇓ elem(v, l)

Any :
∃i ∈ {1, . . . , n} : (F ,≺,E) : ei ⇓ v
(F ,≺,E) : any(e1, . . ., en) ⇓ v

CondThen :
(F ,≺,E) : ep ⇓ true (F ,≺,E) : et ⇓ v

(F ,≺,E) : if ep et ee ⇓ v

CondElse :
(F ,≺,E) : ep ⇓ false (F ,≺,E) : ee ⇓ v

(F ,≺,E) : if ep et ee ⇓ v

Let :
(F ′,≺′,E ′) : e ⇓ v

(F ,≺,E) : let d1 · · · dn in e end ⇓ v

where
≺′ = rel(≺, {d1, . . . , dn})
F ′ = fun(F ,≺′, {d1, . . . , dn})
E ′ = val(F ′,≺′,E , (d1, . . . , dn))

Figure 3.8.. An operational semantics for LRecC.

52

3.3. An Operational Semantics For LRecC

Ap :

∀i ∈ {1, . . . , n} : (F ,≺,E) : ei ⇓ vi ∈ R
{(F ′,≺′,E ′, eb)} = match(F , f, (v1, . . . , vn))

(F ′,≺′,E ′) : eb ⇓ v
(F ,≺,E) : (f e1 . . . en) ⇓ v

Figure 3.8.. An operational semantics for LRecC (contd.).

To support scoping of function definitions, the function environment F is a triple
(F ′,≺′, F) where F ′ is the function environment of the outer scope, ≺′ is the partial
order on labels as valid at the current scoping level and F is a set of functions defined
at the current scoping level. Initially, I use ⊥ as the empty function environment. I will
discuss the structure of the function set F in detail when defining the semantics of the
let construct.
The second component of the evaluation environment is a partial order on labels ≺⊂

L ×L . Initially, ≺ is the empty set. It is extended by the evaluation of the rel construct
of LRecC.
Finally, E ⊂ I × V encodes the current bindings of values to identifiers. Above, I

denotes the set of all legal identifiers. As with labels, I do not formally define this set
here. Instead, any set of discriminating identifiers can be used. Evaluation starts out
with an empty variable environment. New bindings are introduced by evaluations of the
val construct. To insert new variable bindings into the environment, I use the operation
^ as defined below.

Definition 3.3.4 (Variable Insertion). Given a set E ⊂ I ×V , the set E ^ (i, v) where
i ∈ I and v ∈ V is defined as

E ^ (i, v) := {(i′, v′) | (i′, v′) ∈ E ∧ i 6= i′} ∪ {(i, v)}

By using ^ as defined above instead of simple set union, I model the shadowing of
previous bindings to an identifier by a new binding.
The first inference rule in Figure 3.8 on the facing page, the rule True, defines the

evaluation of the expression true to the value true. Analogously, the rule False specifies
the evaluation of the expression false to the value false. A note on typesetting: I use
teletype when referring to an expression and an italic typeface when referring to values.
Next, the evaluation of the special ~ expression is defined in rule Unit. The ~ ex-

pression is evaluated to the empty record ∅, i.e., the record that carries no value. It is
important to note here that ~ is the only expression that evaluates to the empty record.
All other record values at least carry the special val label and an according value. This is
enforced by the syntax of LRec with its implicit label for values and the corresponding
transformation defined in Section 3.2.3.
The rule Var defines the evaluation of bound identifiers. An identifier can be evaluated

to a value if a corresponding tuple is present in the current variable environment E .
The semantics of the built-in equality function = is defined by the two rules Equal-

True and EqualFalse. The former defines the case where both expressions evaluate

53

3. A Formal Definition of LRec

to equal values, whereas the latter handles the opposing case where both expression eval-
uate to non-equal values. In both rules, I require that the values being compared are
non-record values. For the comparison, the relation v

= is used. For Boolean values, it is
defined as follows.

Definition 3.3.5 (Equivalence of Values). The equivalence relation v
= ⊂ V ×V on values

is defined as
v
= := {(true, true), (false, false)}

Obviously, v
= as defined above is indeed an equivalence relation. Furthermore, it covers

all non-record values in V . It is worth noting here that actual implementations of LRec
that feature a richer set of non-record values must extend the equality relation on values
accordingly. Otherwise, equality constraints on those additional kinds of values cannot
be expressed via pattern guards. I provide such amended versions of v

= for the two
extensions of LRecC used in this thesis, i.e., for the extensions used in the matrix and
algebraic data type examples, in Appendix B. In the following, I will use v1

v
= v2 as a

shorthand for (v1, v2) ∈
v
=.

Rule Record specifies the semantics of record expressions in LRec. They evaluate to
a corresponding record value, if each expression bound to a label within the record can
be evaluated to a value. Furthermore, I require that each label occurs only once within
the record expression.
Corresponding to the rule Record for record expressions, the rule Selection defines

the semantics for the selection expression in LRec. Firstly, rule Selection requires that
the first argument of an selection expression evaluates to a record value. Furthermore,
the second argument of the selection expression needs to be in the domain of the record
value. If both conditions hold, the selection evaluates to the element of the record value
that corresponds to the label. The functions dom and elem are defined in Definitions 3.3.1
on page 51 and 3.3.3, respectively.
The definition of selection in rule Selection allows for non-deterministic results if two

values are bound to the same label in a record value. However, the rule Record ensures
that a corresponding record expression cannot be evaluated and thus, a non-deterministic
selection can never occur.
Next in Figure 3.8 on page 52 is the rule Any that defines the semantics of the any

expression in LRec. If any of the argument expressions of an application of any can
be evaluated to a value, the entire any expression evaluates to this value. It is worth
noting here that I neither require all argument expressions to evaluate to the same value
nor that all argument expressions can be evaluated at all. I have chosen to only require
the evaluation of one expression to allow for an efficient implementation. The fact that
all arguments need to evaluate to the same value has to be encoded by the programmer
using a contract, if at all desired.
The any operator is similar to McCarthy’s amb operator [McCarthy, 1961, 1962] in that

the result of both operators is defined as the value of any of the arguments. However,
the two operations differ in an important aspect: Whereas the amb operator requires that
all argument expressions are checked until at least one is found that does not diverge
and indeed yields a value as result, the any operator has no such requirement. If the

54

3.3. An Operational Semantics For LRecC

argument expression to an any operation that has been chosen for evaluation diverges,
so does the any operation itself. Clinger has coined the terms call by need and call by
lazy [Clinger, 1982] for the different semantics of amb and any, respectively.
In principle, using these semantics for the any operations introduces non-determinism

to LRec. In particular, the any operator invalidates referential transparency, also com-
monly referred to as the Church Rosser property after Churchs and Rosser’s proof of
confluence [Church and Rosser, 1936] of reduction to normal form in the lambda cal-
culus [Barendregt, 1981; Hindley and Seldin, 1986]. To regain referential transparency,
which is needed for some proofs in later chapters of this thesis, one can for instance
employ a technique introduced by Burton [Burton, 1988]. In his paper, Burton describes
how to rewrite a non-deterministic program into a deterministic program using an infi-
nite tree of decisions. The key idea is to parametrise each non-deterministic operation
within the program by a decision, which is drawn deterministically from the infinite tree
of decisions. This additional parameter is then used to decide the non-deterministic be-
haviour of the operation. Thus, multiple copies of the same non-deterministic expression,
as they use the same element from the decision tree, will perform the same choice and
thus ultimately yield the same result.
Burton’s technique allows to regain referential transparency in the most general case,

including the amb operator. However, in the context of LRec with its any operation, a
simpler solution exists. In contrast with the amb operator, the any operation may choose
any of its arguments, regardless of whether the argument diverges or not. Thus, for a
deterministic implementation of LRec, it would suffice to always evaluate for instance
the first argument of the any operation. This choice satisfies the semantics defined here
without introducing non-determinism.
For the remainder of this thesis, I will not choose a particular technique to ensure

determinism of evaluation. Instead, I will simply assume that evaluation is deterministic
when required. In these cases, either of the above techniques can be applied. However,
where not explicitly stated otherwise, I assume a non-deterministic any operation.
The next two rules, CondThen and CondElse define the semantics of conditionals

in LRec. Both require that the predicate can be evaluated to a Boolean value. In rule
CondThen, this value has to be true, whereas in the rule CondElse a value of false is
required. In case of the former rule, the result of evaluating the conditional expression
is then defined as the result of evaluating the then expression, if possible. Similarly, for
CondElse the result of evaluating the conditional is defined as the result of evaluating
the else expression, if such result exists.
The penultimate rule in Figure 3.8 on page 52 defines the semantics of the let construct

in LRec. In short, a let construct evaluates to the value of its body expression under an
extended environment, if such a value exists, i.e., if the evaluation of the body expression
does not get stuck.
I use a three step process to construct the new environment (F ′,≺′,E ′) from the

definitions d1 . . . dn contained in the let construct. First, I construct a new order on
labels ≺′ from the previous order ≺ and the definitions d1 . . . dn using the function rel.
Figure 3.9 on the following page shows the definition of rel.
The function rel computes a new order from a given order ≺ and a set of definitions

55

3. A Formal Definition of LRec

rel(≺, {d1, . . . , dn}) :=≺n
where

≺0 :=≺
≺i+1 := rel’(≺i, di+1)

with

rel′(≺, d) :=


clos(≺ ∪{(l1, l2)}) if d ≡ rel l1 <: l2 and (l2, l1) 6∈≺,
≺ if d ≡ val i = e,
≺ if d ≡ fun i1 . . . in,
undefined otherwise.

Figure 3.9.. Definition of function rel as used in Figure 3.8 on page 52.

{d1, . . . , dn} by step-wise inclusion of all order definitions using the rel construct to
the partial order ≺. The step-wise inclusion is modelled by the inductive definition of
the result. For each definition di, a new partial order is computed using the helper
function rel′ and the previously computed partial order. For function definitions and
value bindings using the fun and val constructs, respectively, the partial order remains
unchanged. For a new order definition of the form rel l1 <: l2, the partial order is
amended by a corresponding tuple. However, to ensure that the result is a partial order
again, I firstly require asymmetry, i.e., I require that for a definition rel l1 <: l2 the
symmetric case (l2, l1) is not yet contained in the order. Furthermore, I compute the
transitive closure of the previous partial order extended by the additional tuple to ensure
transitivity of the result. In Figure 3.9 this is denoted by the application of the function
clos to the extended order. Thus, at any stage of evaluation, ≺ is a partial order on
labels. For invalid order definitions, i.e., those that would invalidate the above property,
the function rel′ is undefined.
Using the adapted partial order ≺′, in the second step I compute a new function

environment F ′ by means of the function fun shown in Figure 3.10 on the facing page.
Similarly to the function rel, the function fun extracts function definitions from a set
of definitions D by applying a helper function fun ′ to each definition. Contrary to the
definition of rel, I use a simple set union to combine the extracted sets of functions to the
overall set of function definitions of the entire let construct. As function definitions are
independent of each other, no special restrictions need to be enforced when inserting them
into the function environment. The result of the function fun is a triple, consisting of the
previous function environment, the current partial order on labels and the set of functions
defined in the current let construct. This nesting is used in function applications to
model the scoping of function definitions. The current partial order on labels is included
in the triple to ensure that the correct order is used in pattern matching for applications
of the functions in a different context. As definitions of the partial order on labels using

56

3.3. An Operational Semantics For LRecC

fun(F ,≺, D) := (F ,≺,
⋃
d∈D

fun′(d))

where

fun′(d) :=

{
{f} × inst({i1, . . . , in}) if d ≡ fun f i1 · · · in,
∅ otherwise.

with
inst(I) :=

⋃
i∈I

inst′(i)

where
inst′(α1{ l11, . . ., l1n1

} · · · αm{ lm1 , . . ., lmnm} = e)
:= {(((α1, {l11, . . . , l1n1

}), . . . , (αm, {lm1 , . . . , lmnm})), e)}

Figure 3.10.. Definition of function fun as used in Figure 3.8 on page 52.

the rel construct are visible throughout a let construct, I use the already extended
order ≺′ here. I do not need to add the current variable binding environment E into this
closure as LRec requires all functions to be closed expressions. I enforce this property
in the rule Ap for function applications, which I will discuss further below.
The function fun′ computes the set of functions for a single definition. For definitions

of the order on labels and the definition of values using the rel and val constructs,
respectively, the resulting set of function definitions is empty. For function definitions
using the fun construct, I construct a set of tuples where each tuple consists of the
function name and one of the instances defined in the given function definition.
Instance definitions are extracted using the helper function inst. It computes a set

of instances as the union of the sets computed by the function inst ′ applied to each
instance of the set of instances I. The function inst′ in turn computes a representation
for a single instance definition as a tuple consisting of the instance’s signature and the
defining expression of that instance. The signature is encoded as a tuple containing tuples
describing each argument. These, finally, contain the identifier used for the argument ai
and the set of labels {li1, . . . , lini} describing the pattern corresponding to that argument.
I use a tuple to represent the arguments as the order in this case matters. For the

labels of argument pattern, however, the order is not relevant and thus a set is used.
It is worth noting here that the function inst does not enforce that all instances have
the same number of arguments, nor that the pattern of the instance definitions allow
for a uniquely defined best match. The former is a design choice. By allowing different
numbers of arguments in instance definitions, I allow for reusing the same identifier
for functions of different arity. The latter is checked by the matching process used for
function applications, which I will discuss in detail further below.
As a final remark on function definitions, note that the function fun does not enforce

that each function identifier is only used once in a single let construct. Again, this is
a design choice. Multiple definitions using the same function name will be treated as

57

3. A Formal Definition of LRec

val(F ,≺,E , (d1, . . . , dn)) := En

where
E0 := E

Ei+1 :=



Ei ^ (l, v)
if di+1 ≡ val l=e

and (F ,≺,Ei) : e ⇓ v,
Ei if di+1 ≡ fun f i1 · · · im,
Ei if di+1 ≡ rel l1 <: l2,
undefined otherwise.

Figure 3.11.. Definition of function val as used in Figure 3.8 on page 52.

a single function definition in the context of function application as discussed further
below.
The last step in constructing a new environment for evaluating the let construct is

the processing of bindings using the val construct. This is expressed in rule Let of
Figure 3.8 on page 52 using the function val. Figure 3.11 provides a definition of this
function.
Value bindings using the val construct in LRec use a different scoping rule than func-

tion definitions and definitions of the order on labels using the fun and rel constructs,
respectively. Each binding is only visible in further bindings below its definition in a
let construct and in the body of the let construct. However, as functions need to be
closed, value bindings have no impact on their definitions. To model the scoping of value
bindings, the function val is defined by induction on the set of definitions. Starting
out with the original variable environment E , for each definition di a new variable en-
vironment Ei is computed. If the definition corresponds to a rel or fun construct, the
environment remains unchanged. For a val construct, the environment is amended if
the bound expression can be evaluated to a value using the current variable environment
and the updated function environment and partial order on labels as computed in the
previous two steps. I use the special insertion operation ^ defined in Definition 3.3.4
here to model the shadowing semantics of bindings: If another value has been bound to
the same identifier previously, the corresponding tuple will be removed from the variable
environment.
This completes the definition of the new environment (F ′,≺′,E ′) used to evaluate the

body expression of a let construct in rule Let in Figure 3.8 on page 52. It is important
to note that the two functions rel and val are only partial functions on the syntax of
LRecC. The function rel is undefined for rel constructs that would invalidate the partial
order property of ≺. For bindings of expressions that cannot be evaluated, the function
val is undefined. In either case, the inference rule Let cannot be applied. Thus, a let
construct that contains invalid rel or val constructs cannot be evaluated.
The last missing rule from Figure 3.8 on page 52 is the rule Ap for function appli-

cations. A function application can be evaluated if each argument evaluates to a cor-

58

3.3. An Operational Semantics For LRecC

responding record value and furthermore the pattern matching function match yields a
single instance. In this case, the function application evaluates to the value of the defining
expression eb of the matching instance, evaluated using a new environment (F ′,≺′,E ′),
if such a value exists. The new environment consists of the function environment F ′ and
the partial order on labels ≺′ as they were valid in the defining context of the function.
Furthermore, the new environment contains an updated variable environment E ′ that
binds all actual arguments to the formal parameters of the function. This new environ-
ment is computed, alongside the matching instance, by the matching function match as
defined in Figure 3.12 on the next page.
Before I discuss the formal definition of the matching process in function applications,

I first define the lifting of ≺ from labels to entire pattern.

Definition 3.3.6 (Complete Partial Order on Pattern). Given a partial order ≺⊂ L×L

on labels, the corresponding partial order
→
≺⊂P(L)×P(L) on sets of labels is defined

as
→
≺:= {(P, P ′) | P, P ′ ∈P(L) ∧ |P | = |P ′| ∧ ∀l ∈ P \ P ′∃l′ ∈ P ′ \ P : l ≺ l′}.

Thus, for two patterns P and P ′, P
→
≺ P ′ if all labels l in P that are not present in P ′

are shadowed by at least one label in P ′ that is not in P . Furthermore, the order is only
defined for pattern of equal length. Pattern of different length are unrelated. I use the
function P above to denote the powerset of a set, i.e., the set of all subsets of a set.
Using the order

→
≺ on pattern, I now formally define the instance matching process

match as used in rule Ap in Figure 3.8 on page 52. The details are given in Figure 3.12
on the next page. The function match expects three arguments: a function environment
F , the function name f , and the argument tuple of the application a. It yields a set of
matching instances, each encoded as a tuple consisting of a new function environment,
a new order on labels, a new variable environment and, lastly, the defining expression of
the corresponding function instance.
The matching process itself consists of five stages. The first stage, the function lookup,

takes a function environment F , a function name f and an argument tuple a. As its
result, the function lookup yields a new function environment, a new order on labels, a
set of matching instances and the function arguments. The set of matching instances
I is computed by extracting all instances of function definitions that use f as function
name from the top-most set of functions in the environment F . If this set of instances is
empty, the look-up process continues with the previous function environment. Finally, if
the function lookup reaches the empty function environment ⊥, an empty set of instances
alongside an empty function environment and an empty order on labels is returned.
The function lookup models the shadowing of previous function definitions by a new

definition using the same identifier. As soon as at least one instance has been found in
a function environment, the remaining nested function environments are not searched.
Thus, redefining a function in a nested scope shadows all previous definitions, regardless
of their arity and argument pattern.
Furthermore, note that the function lookup combines all instances from all function

definitions at a certain scoping level that use the same function name. Thus, a single

59

3. A Formal Definition of LRec

match := bind ◦ order ◦ pattern ◦ arity ◦ lookup

where lookup is defined as

lookup(⊥, f, a) := (⊥, ∅, a)

lookup((F ′,≺, F), f, a)) :=

{
((F ′,≺, F), I, a) if I := {i | (f, i) ∈ F} 6= ∅,
lookup(F ′, f, a) otherwise.

and the function arity is defined as

arity(F ,≺, I, a) := (F ,≺, {(s, e) ∈ I | |s| = |a|}, a).

The function pattern is defined as

pattern(F ,≺, I, (a1, . . . , an)) := (F ,≺, In, (a1, . . . , an))

where
I0 := I

Ii+1 := filter(Ii, ai, i)

with
filter(I, a, i) := max|pi|{(((α1, p1), . . . , (αn, pn)), e) ∈ I | pi ⊆ dom(a)}.

Furthermore, the function order is defined as

order(F ,≺, I, (a1, . . . , an)) := (F ,≺, In, (a1, . . . , an))

where
I0 := I

Ii+1 := filter′(≺, Ii, i+ 1)

with

filter′(≺, I, i)
:= {(((α1, p1), . . . , (αn, pn)), e) ∈ I | ∀(((α′1, p′1), . . . , (α′n, p′n)), e′) ∈ I : pi 6

→
≺ p′i}.

Finally, bind is defined as

bind(F ,≺, I, a) := {(F ,≺, bind′(P, a), e) | (P, e) ∈ I}

where

bind′(((α1, p1), . . . , (αn, pn)), (a1, . . . , an)) := {(α1, a1), . . . , (αn, an)}.

Figure 3.12.. Best-match pattern matching function match as used in Figure 3.8 on
page 52.

60

3.3. An Operational Semantics For LRecC

definition with multiple instances and multiple definitions using the same function name
with some instances each yield the same set of instances.
As the second stage, the function arity filters out all instances whose number of argu-

ment patterns does not match the number of arguments. The function expects a function
environment F , an order on labels ≺, a list of instances I and, lastly, an argument tu-
ple as arguments. It yields the function environment F , the order ≺, a filtered list of
instances and the argument tuple. In the definition of the function arity, I use | · | to
denote the cardinality of a tuple, i.e., |(x1, . . . , xn)| := n.
Next, the third matching stage, the function pattern, filters the set of instances to

those that match the arguments’ patterns. Given a function environment F , an order
on labels ≺, a list of instances I and an argument tuple, the function returns the function
environment F , the order on labels ≺, a filtered set of instances In and the argument
tuple.
The function pattern implements a left-to-right best match pattern matching on the

arguments. I use an inductive definition of the result set of instances. Initially, the
set of resulting instances I0 is the set of instances supplied to the function pattern as
argument. Starting from this set, I stepwise refine the set of instances by filtering out
instances whose pattern do not match a given argument.
To implement left-to-right pattern matching, the refinement starts with the first argu-

ment, leaving only those instances in the result set whose first argument pattern matches
the first argument. This is expressed by the helper function filter. Given a set of instances
I, an argument tuple a and the argument position i to filter on, it removes all instances
from the set of instances whose i-th pattern does not match the corresponding argument.
This is expressed by the condition pi ⊆ dom(a). Thus, all patterns that contain labels
which are not present in corresponding argument are rejected.
The best match strategy is encoded using the max function in the definition of filter.

The function max|pi| maximises the number of labels contained in the patterns at argu-
ment position i such that the resulting set is non-empty. Thus, the function filter yields
only those instances that match the most labels of a given argument.
In the fourth step, the set of matching instances is further reduced by filtering out

all those instances that are shadowed by another instance with respect to the order on
patterns

→
≺. Analogously to the definition of the function pattern, I construct the result of

the function order inductively to model filtering from left to right. For each pattern p of
an instance, the instance is filtered out if at least one instance exists whose corresponding
pattern p′ precedes it in

→
≺, i.e., a pattern p′ for which p′

→
≺ p holds..

The function order yields the final set of instances, alongside the function environment,
the order on labels and the argument tuple. As the final step in the matching process,
the function bind constructs the new variable environments for each instance and glues
the components together to a set of instance tuples as required in rule Ap in Figure 3.8
on page 52. The actual environment construction is performed by the function bind ′.
Given the patterns of an instance, encoded as a tuple of (identifier,pattern) tuples, and
the argument tuple, it produces a set of (identifier,value) pairs encoding the binding of
each argument value to the corresponding identifier of the formal parameter of the given

61

3. A Formal Definition of LRec

instance.
It is worth noting here that the function match yields a set of matching instances.

If the best match is not uniquely defined, the resulting set contains multiple instances.
Therefore, in rule Ap of Figure 3.8 on page 52, I require that the result of the function
match is a set with only a single element, i.e., I require that the best match is uniquely
defined. Another design choice would be to choose any of the resulting instances. For the
example of matrix addition, as presented in Chapter 2, this would be advantageous. As
all instances compute the same value, choosing any instance would suffice. However, in
case of non-homomorphic function instances, this would lead to non-deterministic results.
This concludes the discussion of the semantics of LRecC in this section. The semantics

of the applied extensions of LRec used in the examples in Chapter 2 is provided for
reference in Appendix B. I will extend the semantics by guard expressions in the next
chapter. First, I close this chapter with some conclusions.

3.4. Conclusions

In this chapter, I have defined the syntax of LRec by means of a formal description in
extended Backus Naur form. Next, I have described the lowering of expressions in LRec
to a core language LRecC. In Section 3.2, I have presented a set of source-to-source
transformation that define equivalent expressions in LRecC for the syntactic sugar of
LRec. In particular, these transformations resolve

• tags in records (Section 3.2.1),

• implicit equality constraints and implicit labels in patterns (Section 3.2.2),

• implicit labels for values (Section 3.2.3).

Using this de-sugared core of LRec, I have provided a formal semantics for LRecC
without guards in Section 3.3.
In the next Chapter, I discuss an encoding of pattern guards and the corresponding

extension to the syntax and semantics of LRecC.

62

4. Checking Constraints

In the previous chapter, I have presented a range of lowering steps to reduce the syntac-
tic sugar of LRec to a language core LRecC. The corresponding transformations are
all aware of guard expressions annotated at the signatures of function instances. The
description of the semantics, however, has left these out as of yet. In this chapter, I will
close this gap.
A straight forward solution would be to simply define the semantics of guard expres-

sions and explicitly support guards in applied languages with auxiliary computations.
However, one of my goals in this thesis is to allow for an easy implementation of my
approach as an extension to existing languages. Requiring explicit support for guard
expressions may interfere with this goal.
To gain an insight into the challenges that arise when extending a language by guards,

I have investigated an extension of SaC [Scholz, 2003], a first order functional language
geared at numerical computations, by guard expressions [Herhut et al., 2008]. The ap-
proach presented in this chapter is based on that work.
Apart from allowing for an easy implementation in compilers for existing languages,

the extension of SaC by guard expressions has identified three further goals:

Feedback on the verification process Expressing constraints on arguments as explicit
guard expressions allows me to use existing optimisations, e.g., partial evaluation
and code specialisation techniques, to discharge guard expressions statically. As
an example, consider the matrix addition function add presented in Chapter 2.
If the shape component of its arguments is statically known, we can statically
decide the guard that checks for equality of these components. Such optimisations
can have a dramatic impact on runtime performance [Bernecky, 1998]. Therefore,
it is desirable for a programmer to specify his programs in such a way that the
optimisation techniques available to him can decide as many guard expressions
statically as possible. However, to make this decision, it is important that the guard
expressions remain easily identifiable in intermediate versions of his code during
program optimisation. This allows for an informed choice of where a program needs
to be amended by further statical knowledge to aid the optimisation techniques in
discharging guard expressions.

Once all means of optimisation have been exhausted, still unsafe regions of the
program, i.e., parts of the code that yet contain guard expressions, may remain. To
assess the safety of a program with respect to the constraints expressed by guards,
the programmer needs to be able to clearly identify where guard expressions remain.

63

4. Checking Constraints

Efficient runtime checking Not all guard expressions can be decided statically. One
goal of my approach is to allow the programmer to express constraints that are
not decidable in general. Thus, inevitably, some guard expressions will remain. To
still make the use of guard expressions feasible, especially in the realm of numerical
applications, their impact on the runtime behaviour needs to be kept as small as
possible.

Firstly, this requires an efficient implementation of runtime checks. However, a
discussion of implementation techniques for efficient runtime checks is beyond the
scope of this thesis. Yet, this point needs to be kept in mind when implementing
my approach in a compiler or interpreter.

Secondly, even if a guard can not be eliminated, the number of checks that are
performed at runtime should be kept as small as possible. This requires an effi-
cient means to propagate knowledge gained by a guard to similar guards later in
the control flow. For example, again consider the matrix addition presented in
Chapter 2. If we add the same matrix twice to some other matrix, a naïve ap-
proach would check at each invocation that the shapes of the arguments match,
i.e., the corresponding guard would be evaluated twice. However, if we statically
know that a check has been performed earlier in the control flow, we can remove
the corresponding guard at later stages.

Guard unaware optimisations The encoding used for guards needs to ensure that ex-
isting optimisations do not accidentally remove guards or propagate guarded ex-
pressions in the control flow before the evaluation of the actual guard expression.
Given the number of optimisations that modern compilers apply – in the case of
the SaC compiler this are currently more than 501 - checking the validity of each
optimisation in the presence of guards and potentially adapting some of them to
the new scenario is a major engineering task.

In the next section, I will evaluate different encodings for guard expressions with
respect to the above criteria and present the solution I have chosen. I then discuss a low-
ering scheme that rewrites guard expressions to the chosen representation in Section 4.2.
Finally, I describe the extensions to the syntax and semantics of LRecC required by
the lowered representation of guards before I close this chapter in Section 4.4 with some
conclusions.

4.1. An Encoding for Guards

Throughout this section, I will use the definition of matrix addition in LRecC as running
example. To simplify the presentation, I provide a shorter version of the matrix addition
defined in Chapter 2 that only uses the shape attribute below and has only a single

1The source tree of the SaC research compiler sac2c contains implementations of more than 50 opti-
misations as of revision 16529.

64

4.1. An Encoding for Guards

instance. However, the arguments given in the remainder of this section apply to the full
version, as well.

1 fun add A{ shape} B{ shape}
| (A.shape = B.shape)

3 = (vect_add A! B!){ shape=any(A.shape B.shape)}

In Line 1 above I define a single instance of the function add that expects two arguments
which both carry the shape attribute. The value of the result is then computed by
element-wise adding the data vectors of the two arguments. Furthermore, the shape
component of the result is computed as any of the shape components of the arguments.
This definition, of course, is only valid and it only yields a deterministic result if the
shape components of both arguments equate. This is ensured by the guard expression
in Line 2.

4.1.1. Guards by Conditionals

A naïve encoding of the above guard with only the language constructs contained in
LRecC would be to express guards as conditionals in the code. A simple rewriting could
have the following form:

1 fun add A{ shape} B{ shape}
= if (A.shape = B.shape)

3 (vect_add A! B!){ shape=any(A.shape B.shape)}
fail

Above, I have replaced the guard by a conditional in the body of the function. The body
expression of the original definition is only evaluated if the guard evaluates to true, i.e.,
if the expression (sA == sB) evaluates to true. Otherwise, the expression in Line 4 is
evaluated. I use the special function fail to encode that evaluation has to be halted due
to a failed guard.
The above rewriting nicely captures the expected semantics of a guard expression.

It is ensured that the guarded function body is only evaluated if the guards are true.
Furthermore, the encoding fulfils the third design criterion, i.e., using the above encoding
for guards, existing optimisations need not to be checked nor modified. Even without
guards, propagating code outside of a conditional is invalid. Moreover, as I only use the
conditional construct, which should already exist in any language, existing optimisations
might already discharge the guard statically if such an optimisation exists for conditionals
in general. However, with respect to the other design criteria, the above encoding is far
from optimal.
Reusing the existing conditional construct reduces the implementation effort. On the

other hand, however, it disguises guard expressions. Differentiating between regular
conditionals that stem from the original program text and those that result from guards
is rather difficult. As a solution one could annotate the conditional as special. This, then
again, would increase the implementation effort: Existing code transformations would
need to be amended such that they preserve the information that a conditional was
inserted due to a guard expression.

65

4. Checking Constraints

More importantly, the above encoding makes it hard to reach the second goal, i.e., to
produce efficient runtime checking code. As an example for this, consider the following
application of matrix addition:

let
2 fun add A{ shape} B{ shape}

= if (A.shape = B.shape)
4 (vect_add A! B!){ shape=any(A.shape B.shape)}

fail
6 val C = (add A B)

val D = (add A C)
8 in

D
10 end.

In the example above, A and B refer to some matrix values, i.e., record values with a data
vector as value and a shape vector as shape component. I first add A to B in Line 6 and
then the result to A again in Line 7. Applying a standard function inlining optimisation
might lead to the following, semantically equivalent code:

let
2 val C = if (A.shape = B.shape)

(vect_add A! B!){ shape=any(A.shape B.shape)}
4 fail

val D = if (A.shape = C.shape)
6 (vect_add A! C!){ shape=any(A.shape C.shape)}

fail
8 in

D
10 end.

I have replaced the function applications by the corresponding body expression of the
function add. The resulting code now contains two conditionals. The first in Line 2
asserts that the shape components of A and B are equal. Similarly, in Line 5 the same
property is asserted for the shape components of A and C. However, one of the conditionals
above is superfluous and thus imposes an unnecessary runtime overhead.
To see why, consider the evaluation of the above expression. Once the value of C

has been computed, A and B must have identical shape components, as otherwise the
computation would have failed. Thus, C has the same shape component, as well. It
follows that the conditional in Line 5 will always evaluate to true.
Situations like the one above are common. It has been shown for SaC that prop-

agating symbolic knowledge gained from conditionals and built-in operations like the
shape equalities above can have a major impact on runtime behaviour [Bernecky, 2007;
Trojahner et al., 2007]. However, the above encoding makes such an analysis difficult.
When looking just at the conditionals, the shape equality property checked in Line 2
above is only valid within the then branch of the conditional. Thus, for the conditional
in Line 5 no static knowledge about the value A is known. Even more, the information
that C carries either the shape element of A or B is lost, as well. This information cannot

66

4.1. An Encoding for Guards

be propagated out of the conditional, as it is not statically known which branch will be
chosen at runtime. For the else branch in Line 4 of the above example, no information
about the resulting value is known.
Only if the termination behaviour of the function fail is taken into account, it is valid

to propagate the static knowledge about the equality of the shape components. However,
this is neither conceptually trivial nor easy to implement.

4.1.2. Weaving Guards into the Dataflow

As the previous section has shown, an encoding for guards needs to allow for easy prop-
agation of the validity of the encoded property. One means to achieve this is to weave
the guards into the dataflow, i.e., to encode the guards such that the guard expression
conceptually returns a new copy of the data it asserts a property on, which is then stati-
cally known to have the asserted property. As an example for such an encoding, consider
the following rewritten version of the matrix addition example.

fun add A{ shape} B{ shape}
2 = let

val A = guard(A (A.shape = B.shape))
4 val B = guard(B (A.shape = B.shape))

in
6 (vect_add A! B!){ shape=any(A.shape B.shape)}

end.

In lines 3 and 4 above, I use a special guard operation to enforce the guard expression
annotated at the instance signature. The function guard is the identity on the first
argument, if and only if the second argument evaluates to true. Otherwise, the guard
operation cannot be evaluated and thus the program halts.
Semantically, this corresponds to the previous solution using conditionals. However,

instead of wrapping the body expression of the function into such a conditional, I assert
the property encoded by the guard expression for each of the values the guard expression
enforces a property for. As the equality of the shape component encoded by the guard
expression in my example is enforced for the shape component of the parameters A and
B, I use two guard operations. The first in Line 3 checks the property for the first
parameter whereas the second guard operation does so for the second parameter. In
general, for each guard expression, one guard operation per free variable contained in
the guard expression is needed. The idea here is that a guard expression always asserts
a property for data that is defined outside of the guard expression itself.
Implementing the above solution still comes at a relatively low cost: Only the new

guard operation needs to be added. The experiences made with an implementation for
SaC support this. As the guard operation closely resembles a functional conditional or
the φ function used in static single assignment form [Cytron et al., 1988], an implemen-
tation in languages that support either is straight forward.
Furthermore, the above solution fulfils the first requirement outlined in the introduc-

tion to this section, as well. As I use a special operation to encode guards, the guards in
the resulting code can easily be identified. All guard operations correspond to a guard

67

4. Checking Constraints

expression in the original program text. Even more, the data a property is asserted on is
clearly visible as the result of the guard operation. Thus, to enhance the static correct-
ness of a program, the programmer can now focus on remaining guard operations and
means to enhance the static knowledge about the data needed to resolve these operations
statically.
With respect to the second requirement, the above solution might seem to be even

worse. For each data a guard asserts a property on, the guard expression is checked
once. However, this can easily be rectified by applying a standard optimisation like
common-sub-expression elimination: The guard expression used in each guard operation
could be lifted in front of the guard operations and thus only be computed once. This
optimisation could even be incorporated into the rewriting scheme. However, to simplify
the presentation here, I will use one copy of the guard expression in each guard operation.
Another benefit of the above approach in the context of efficient runtime checks is

the simplified propagation of knowledge gained from guard expressions. As an example,
consider an inlined version of the application of add presented in the previous section.
Using the encoding for guards presented above, the resulting code would look as follows.

1 val A = guard(A (A.shape = B.shape))
val B = guard(B (A.shape = B.shape))

3 val C = (vect_add A! B!){ shape=any(A.shape B.shape)}
val A = guard(A (A.shape = C.shape))

5 val C = guard(C (A.shape = C.shape))
val D = (vect_add A! B!){ shape=any(A.shape C.shape)}

The first two lines in the above example assert the shape equality for the values A and
B. Thus, it is statically known that the new values A and B as returned by the guard
operations in lines 1 and 2 have identical shape components. From this, it directly follows
that C has the same shape component, as well. Using this knowledge, the two guard
operations in lines 4 and 5 can be statically evaluated to their respective first argument.
Therefore, in the above example, only one guard expression needs to be checked at
runtime.
Overall, the above solution allows for a more efficient implementation of the checks at

runtime. However, with respect to the third criterion, i.e., the support for guard unaware
optimisations, the above solution is worse than the solution using conditionals. As an
example, once more consider the implementation of matrix addition.

fun add A{ shape} B{ shape}
2 = let

val A = guard(A (A.shape = B.shape))
4 val B = guard(B (A.shape = B.shape))

in
6 (vect_add A! B!){ shape=any(A.shape B.shape)}

end.

In the above version of add, the data dependencies between the computation of the result
and the results of the guard operations enforce that the guard expression is checked before
the data, e.g., the arguments A and B, are first used. Thus, existing optimisations should
never propagate code that uses data for which a property is asserted by a guard in front

68

4.1. An Encoding for Guards

of the evaluation of the actual guard. However, still in some cases the guard expression
might not be checked.
The problem arises if a function only uses some but not all arguments that are used

in guard expressions. As an example, consider the function choose as defined below:

1 fun choose N{} A{ shape} B{ shape} C{ shape}
| (A.shape = B.shape) (B.shape = C.shape)

3 = if (!N = 1) A
if (!N = 2) B

5 C

The function expects 4 arguments: A number N and three arrays A, B and C. Depending
on the value of N, in lines 3ff. one of the arguments is chosen as result. Furthermore,
the guards in Line 2 assert that all matrix arguments have the same shape component.
However, I only use two guard expressions. One that asserts that A and B have equal
shape components and a second one that checks this property for the arguments B and C.
The third property that A and C have identical shape components, as well, then implicitly
follows if the two guards are true.
Using the current approach, the above example would be lowered to the following

representation:

1 fun choose N{} A{ shape} B{ shape} C{ shape}
= let

3 val A = guard(A (A.shape = B.shape))
val B = guard(B (A.shape = B.shape))

5 val B = guard(B (B.shape = C.shape))
val C = guard(C (B.shape = C.shape))

7 in
if (!N = 1) A

9 if (!N = 2) B
C

11 end.

Above, the guards annotated at the function signature have been replaced by a sequence
of guard operations in lines 3 and following. Note that, in order to introduce the new
bindings, I have furthermore wrapped the function body into a let construct. The result
of that let construct in lines 3ff. is then defined using the body of the original instance.
However, due to the scoping rules of the let construct, the values A, B and C now refer to
the results of the guard operations. Similarly, the second guard operation for the value
B in Line 5 uses the result of the previous guard on B as its argument. Thus, all guard
operations are properly tied into the dataflow and therefore are all evaluated before the
result is computed.
Now consider the situation where N is statically known to have the value 1. A compiler

might inline the function choose or create a specialised version for just this specific value
of N. In both cases, this enables the propagation of the statically known value of N to the
conditional in Line 8. This, in turn, would allow an optimisation to statically decide the
conditional and choose the then branch as the result of the function. Then, the residual
program text for that instance would look as follows:

69

4. Checking Constraints

1 fun choose N{} A{ shape} B{ shape} C{ shape}
= let

3 val A = guard(A (A.shape = B.shape))
val B = guard(B (A.shape = B.shape))

5 val B = guard(B (B.shape = C.shape))
val C = guard(C (B.shape = C.shape))

7 in
A

9 end.

As can be seen, the result of the let expression is now defined as the value A. This
optimisation is sound with respect to the result of the function choose where N has the
value 1. However, the body of the let construct now no longer contains any references
to the values B and C. Thus, in a non-strict setting, these values might no longer be
computed. Unfortunately, this implies that only the first guard operation in Line 3
would be checked and all other guard operations would be ignored.
As this example shows, the current encoding might invalidate optimisations in the

setting with guards that used to be valid before. Using the above encoding thus would
require all optimisations to be checked and adapted to the new setting. A clear violation
of the third requirement.

4.1.3. Using Explicit Evidence

The underlying problem in the previous example is that the guard operation ensures
that a guard expression is checked before the corresponding data is used. However, the
guard operation does not enforce that the annotated guard expression is checked if the
data is never used. To preserve the soundness of optimisations, I furthermore need to
ensure that all guard expressions have been checked before the result of the function is
used.
The idea is to provide explicit evidence that the result of the application of a guarded

function is correct with respect to the guards. The notion of evidence in program op-
timisations is borrowed from [Menon et al., 2006]. Menon et al. use explicit evidence
to ensure that assertions inserted by a compiler to verify properties of a low-level byte
code are retained across optimisations. However, their encoding does not allow for user
defined guards nor are they concerned with the propagation of static knowledge.
As an example for guards with explicit evidence, consider the following rewritten ver-

sion of the function choose:

1 fun choose N{} A{ shape} B{ shape} C{ shape}
= let

3 val A = guard(A (A.shape = B.shape))
val B = guard(B (A.shape = B.shape))

5 val B = guard(B (B.shape = C.shape))
val C = guard(C (B.shape = C.shape))

7 in
witness(if (!N = 1) A

9 if (!N = 2) B

70

4.1. An Encoding for Guards

C
11 (A.shape = B.shape)

(B.shape = C.shape))
13 end.

In the code above, I use a further new operation witness in Line 8 to assert that the
guards annotated at the function instance hold for the result of the function, as well.
Semantically, the witness operation is similar to the guard operation: It is the identity
on its first arguments, if the guard expressions evaluate to true. Otherwise, the witness
operation cannot be evaluated. However, in contrast to the guard operation, the witness
operation allows for multiple guard expressions as arguments. It is important to note here
that the guard expressions need not to be evaluated again. Similar to the use of multiple
guard operations, the guard expressions can be lifted out of the witness operation and
standard optimisations like common-sub-expression elimination can be used to ensure
that each guard expression is only evaluated once. Even the rewriting could already
ensure this. To simplify the presentation, I have chosen not to do so here.

Specialising the above instance for a statically known argument N with value 1 now
yields the following residual expression:

1 fun choose N{} A{ shape} B{ shape} C{ shape}
= let

3 val A = guard(A (A.shape = B.shape))
val B = guard(B (A.shape = B.shape))

5 val B = guard(B (B.shape = C.shape))
val C = guard(C (B.shape = C.shape))

7 in
witness(A{code:choose -43}*)

9 (A.shape = B.shape)
(B.shape = C.shape))

11 end.

Again, the conditional has been reduced to the then case. However, as the conditional
is wrapped into a witness operation, now even in a non-strict setting, all guards are
evaluated. Furthermore, note that the guard expressions are still checked before the
corresponding data is used for the first time. In the above example, the guard for A in
Line 3 is checked before the result is passed to the witness operation. The guard on B
and C, on the other hand, is checked by the witness operation just before the result is
returned. This check is still early enough, as neither B nor C is ever used. In particular,
properties of B and C cannot influence the value of the result.

This solution inherits all advantages of the previous dataflow encoding. Thus, it fulfils
the first and second design criterion. Furthermore, by using explicit evidence, existing
optimisations need not to be checked nor modified.

Using the above encoding for function guards, I can now formally define the corre-
sponding lowering transformation for LRec.

71

4. Checking Constraints

4.2. A Lowering Transformation for Guards

In this section, I provide a formal definition of a lowering scheme Lc for lowering expres-
sions in LRec with pattern guards to corresponding expressions in LRecC that use the
encoding for guards as motivated in the previous section.
As can be seen in rule Instance in Figure 4.1, an instance definition with guards is

rewritten to an instance definition without guards by applying the rewriting function Rc

to the set of lowered guard expressions and the lowered body expression of the function
instance. Both need to be transformed, as well, as they may contain further function
definitions with guards.
For all other expressions, the lowering scheme Lc is driven recursively into all sub-

expressions. For reference, I provide the corresponding rules in Figure C.4 on page 207
in the appendix.
The actual rewriting of a function body is performed by the rewriting function Rc as

defined in Figure 4.2 on the facing page. Given a set of guard expressions {g1, . . . , gn}
and the body expression of an instance definition e, it returns a new let construct that,
for each guard expression gi, introduces new bindings definitionsi for all free variables
contained in the guard expression gi. The bindings for a guard gi contain, for each free
variable α of gi, a new val construct that binds the result of an application of the guard
operation with the free variable and guard expression as arguments to the free variable.
Note that the order of these bindings has no impact on the semantics of the resulting
expression as the guard operation does not alter the value. It is only important that each
guard expression is properly woven into the dataflow. This is ensured by the scoping rules
of the let construct.
Apart from introducing these new bindings, the rewriting scheme furthermore inserts

explicit evidence in the form of a witness operation: The result of the created let
construct is defined as the witness operation applied to the body of the instance and all
guard expressions.
The helper function FV used in Figure 4.2 on the next page extracts the set of free

variables from an expression in LRecC using the usual way [Pierce, 2002]: An identifier
is free with respect to an expression, if no corresponding val construct exists within that
expression.
By applying the lowering scheme Lc as defined above, pattern guards in LRec can

be rewritten to guards using guard and witness operations. In the next section, I will
formally define their syntax and semantics.

(Instance) Lc
q
a1 p1 · · · an pn | g1 · · · gm = e

y

 a1 p1 · · · an pn = Rc
q
{Lc

q
g1

y
, . . . ,Lc

q
gm

y
}, Lc

q
e

y y

Figure 4.1.. Transformation scheme Lc to resolve pattern guards.

72

4.3. Formal Definition of LRecC with Guards

Rc
q
{g1, . . . , gn}, e

y
:=

let
definitions1

...
definitionsn

in
witness(e g1 · · · gn)

end.

where the definitioni, i ∈ {1, . . . , n} are defined as

definitionsi := {val α = guard(α gi) | α ∈ FV (gi)}.

Figure 4.2.. Transformation scheme Rc for rewriting guards as explicit guard and
witness operations.

4.3. Formal Definition of LRecC with Guards

To formally describe the extensions to LRecC required by the lowering scheme Lc, i.e.,
to define the guard and witness operations, I in this section provide a definition of their
syntax and semantics. These definitions are to be read as extensions to the syntax and
semantics of LRecC without guards as described in Sections 3.2.4 and 3.3, respectively.
First, I give a definition of the extended syntax of LRecC with lowered guards that

captures the additional two operations guard and witness and the modified syntax for
instances in Figure 4.3 on the following page. As can be seen, the production rule
expression now contains two more choices.
The first, the guard operation, is defined by the corresponding production rule guard. A

guard operation syntactically consists of the keyword guard followed by two expressions
in parentheses. The syntax of the second addition, i.e., the witness operation, is defined
by the production rule witness. A witness operation is expressed syntactically by the
keyword witness, followed by two or more expressions surrounded by parentheses.
Furthermore, I have redefined the production rule instance in Figure 4.3 on the next

page. As all guard expressions are rewritten to an explicit encoding using guard and
witness operations, a function instance may no longer contain pattern guards.
Lastly, before I close the discussion of LRecC, I fill the semantic gap left in the previous

chapter by formally defining the semantics of the guard and witness operations. The
corresponding rules are given in Figure 4.4 on the following page.
The first rule, i.e., rule Guard, defines the semantics of the guard operation. A

guard operation is evaluated to the value of the first argument, if that argument can
be evaluated and if the second argument can be evaluated to the Boolean value true.
Similarly, the rule Witness defines the semantics for the witness operation. Here,
however, only if all arguments apart from the first can be evaluated to the Boolean value
true, the entire expression can be evaluated to the value of the first argument, if such
value exists.

73

4. Checking Constraints

expression ⇒ . . . | guard | witness

guard ⇒ guard (expression expression)

witness ⇒ witness (expression [expression]+)

instance ⇒ [pattern]+ = expression

Figure 4.3.. Extension of the syntax of LRecC as presented in Figure 3.6 on page 50
by lowered guards.

Guard :
(F ,≺,E) : eg ⇓ true (F ,≺,E) : e ⇓ v

(F ,≺,E) : guard(e eg) ⇓ v

Witness :
∀i ∈ {1, . . . , n} : (F ,≺,E) : ei ⇓ true (F ,≺,E) : e ⇓ v

(F ,≺,E) : witness(e e1 · · · en) ⇓ v
Figure 4.4.. Extension of the operational semantics of LRecC given in Figure 3.8 on

page 52 by guards.

With these extensions, the operational semantics for LRecC is complete. As with
all other lowering steps, the semantics of the pattern guards in LRec are defined by
the semantics of their corresponding lowered counterparts using guard and witness
operations in LRecC.

4.4. Conclusions

In this chapter, I have motivated the implementation of guards in LRec by an explicit
dataflow encoding as part of the function body. As an experiment made in the context
of the language SaC shows, such an encoding can be added to an existing language with
relatively little effort.
Furthermore, the chosen encoding offers three advantages:

• Guard expressions can easily be discriminated from regular program code. In par-
ticular, those checks that cannot be optimised out are clearly visible and thus allow
the programmer to further enrich a program by static knowledge to increase the
static correctness of that program, if desired.

• The chosen encoding eases program analysis. This allows for efficient runtime code
to be generated by eliminating duplicate guards using standard optimisations and
symbolic analyses.

74

4.4. Conclusions

• Optimisations need not to be made aware of guards. The encoding is designed such
that it does not invalidate assumptions made by existing optimisations.

I use a special guard operation to tie the check of guard expressions into the dataflow.
This ensures that each guard expression has been checked before the corresponding data
is used the first time. Furthermore, by using explicit evidence in form of the witness
operation, I ensure that each guard expression is checked, regardless of whether the
corresponding data is required to compute the result.
This completes the description of LRecC. In the next chapter, I will discuss the partial

evaluation of expressions in LRecC.

75

76

5. Partial Evaluation

In this chapter I discuss the inference of static knowledge by partial evaluation of pro-
grams in LRec. First, I provide some background on the basic concepts of partial
evaluation. In the next Section, I then revisit the examples presented in Chapter 2 and
demonstrate how to infer static properties by evaluating programs to partial results.
In particular, I motivate the use of a two-step process that first infers the information
required to compute a partial result and then performs the actual partial evaluation.
Section 5.3 formalises the second step by providing a semantics for partial evaluation
of expressions in LRecC. An in-depth discussion of the first step is given in the next
chapter.

5.1. Some Background

Partial evaluation of a program or an expression usually refers to a source-to-source
transformation that rewrites the program or expression to a specialised form. As an
example, consider the following expression in LRec:

1 let
val A = 1

3 val B = 2
in

5 (A = B)
end

The above expression can be rewritten in many ways without changing its value. For
instance, I can propagate the values of A or B into the expression (A = B) in Line 5,
yielding the following new overall expression:

let
2 val A = 1

val B = 2
4 in

(1 = 2)
6 end

In the example above, I have performed one reduction step as defined in the evaluation
rules in Chapter 3. Thus, to evaluate the above expression, less computation is required.
In this sense, partial evaluation is an optimisation technique. I can, of course, reduce
the above example further by rewriting the body of the let construct to false and

77

5. Partial Evaluation

ultimately replacing the entire let construct with the expression false. Such a result
of partial evaluation is commonly referred to as the residue of an expression.
In the above example, partial evaluation is a simple top-down, single-pass process.

This style of partial evaluation is referred to as on-line, as the decision what to evaluate
is made whilst the program is rewritten. However, effectively deciding what parts to
rewrite is not always possible. As an example consider the following expression:

let
2 fun snd X{} Y{} = Y

val A = 1
4 val C = 2

in
6 ((snd B A) = C)

end

To rewrite the body expression in Line 6, I would have to inline the definition of snd in
Line 2 into the body expression or specialise the function snd for the special case where
the second argument is known to be 1. However, it is not at all clear, whether either
of these rewritings would allow me to further evaluate the comparison operation. In an
on-line approach, I would have to speculatively perform the rewriting or I might miss
the opportunity to partially evaluate the expression in Line 6.
Off-line partial evaluators circumvent this problem by staging partial evaluation in

two phases. The first phase, referred to as binding-time analysis, abstractly evaluates the
expression with respect to static knowledge: Given information on which free variables
of an expression are statically known to be constant, the binding-time analysis computes
which parts of the expression can be statically evaluated. In a second phase, the program
is then rewritten using this information as a guide.
In the above example, the binding-time analysis would find that A and C are statically

known and that, given that the second argument is known, the result of the function
snd can be statically computed, as well. Thus, it is indeed beneficial to specialise snd or
inline its definition into the expression in Line 6.
Even though an off-line approach allows a well-founded decision in the above example,

using a two-step process with a binding-time analysis to drive partial evaluation does
not always yield better results. A binding-time analysis can only infer a worst-case
approximation of the static information that will be available during partial evaluation.
As an example, consider the following expression:

1 if (1 = 1) 1 A

In the above example, the predicate and the then clause of the conditional are statically
known, whereas the else clause is not. Without actually evaluating the predicate to true,
an analysis cannot decide whether the result of the conditional will be statically known.
Thus, a binding-time analysis would have to assume the worst case and treat the entire
expression as statically unknown. An on-line approach, on the other hand, after rewriting
the predicate, can directly derive that only the then clause is required.
The above discussion of partial evaluation only introduces key concepts. In its brevity,

it can only give a very broad overview. For an in depth discussion, I refer the interested

78

5.2. Partial Evaluation of Auxiliary Computations

reader to the book by Jones et al. [1993].
Moreover, I use partial evaluation in a different context in this thesis. Instead of

rewriting a program to a specialised residue, I use partial evaluation to compute partial
results of a program. Thus, in the context of this thesis, partial evaluation is a rewriting
from expressions to values as opposed to the usual source-to-source rewriting. However,
this is merely a different way to present partial evaluation: The concepts remain the same
and the approach developed here can be used in a setting that specialises programs, as
well.

5.2. Partial Evaluation of Auxiliary Computations

The idea of auxiliary computations is to model additional properties of data in the pro-
gramming language itself. This allows the programmer to exploit a rich set of properties
in his algorithms. In Section 2, I have shown for the example of matrix addition, how
to use additional properties to improve the runtime complexity of a program. For spe-
cial kinds of matrices, e.g., for the presented unit and lower diagonal matrices, adding
specialised instances decreases the number of elements that need to be computed. The
semantics presented in the previous chapter support this programming style. An inter-
preter or compiler that adheres to these semantics will use the implementation of matrix
addition that has the best (available) runtime complexity.
The information encoded in auxiliary computations can be exploited further. For

instance, in the evaluator example in Section 2.4, I have used auxiliary computations to
model the kind of an expression. Using the semantics presented in the previous section,
invalid expressions will already be rejected at construction time of the expression during
the evaluation of the program.
So far, all these computations are performed at runtime. As a next step, I in this

chapter discuss how to compute some or all auxiliary computations statically, i.e., at
compile time or in case of an interpreter at least before computing the actual value.
Computing the auxiliary computations without computing the actual value result of

a program has two main benefits. Firstly, it allows the programmer to check whether
an auxiliary computation can actually be computed, i.e., whether the program is correct
with respect to that property. Checking auxiliary computations in isolation is usually
faster than evaluating the entire program. For instance, in the setting of array languages,
computing only the rank and shape properties of arrays is in most cases less complex
than performing the actual computation of the result.
Secondly, evaluating auxiliary computations separately allows the programmer to de-

rive general properties of an algorithm, independently from the actual values it is applied
to. Looking at array languages again, in many cases it suffices to know the shape and
rank of the program inputs to compute the shape and rank of the results. For the ex-
ample of matrix addition this is trivially the case. In general, only if the shape and rank
depend on the value of the inputs, such a partial evaluation on only auxiliary computa-
tions will fail. In these cases, by evaluating the auxiliary computations and only those
actual values that are required, it is still possible to derive the shape and rank for a given

79

5. Partial Evaluation

set of inputs.
These benefits apply to the example using algebraic data types, as well. By evaluating

the expression kind property separately, malformed expressions, i.e., those expressions
that cannot be evaluated to a value, can be detected even before constructing the actual
data or evaluating the program.
As an example, I return to the simple matrix addition presented first in Chapter 2:

1 let
fun add A{ shape=sA , rank=rA} B{ shape=sB, rank=rB}

3 = (vect_add !A !B){ shape=any(sA sB), rank=any(rA rB)}
val A = [1, 2, 3, 4]{ shape=[2, 2], rank =2}

5 val B = [1, 0, 0, 1]{ shape=[2, 2], rank =2}
in

7 (add A B)
end

If, for example, in the application of the function add in Line 7 above we are only
interested in the shape of the result, i.e., the shape auxiliary computation, it suffices to
compute only that element of the result record. In the above example, this is straight
forward. As the function add has only one instance, it suffices to evaluate the shape
component of the record in the defining expression of that instance. This component
is defined in Line 3 above as the expression any(A.shape B.shape). Thus, to compute
the shape of the result, we need to compute the shape component of either the record
corresponding to argument A or the one corresponding to argument B. As both are defined
as [2, 2] in lines 4 and 5, respectively, the shape of the result can be computed by
evaluating the expression [2, 2]. The same approach can be applied to compute the
rank of the result.
Partial evaluation becomes more complex in the presence of multiple instances. As

an example, reconsider the definition of add with support for lower diagonal matrices as
presented first in Section 2.2. There, addition on these kinds of matrices is defined as
follows:

let
2 fun add A{ shape=sA , rank=rA} B{ shape=sB, rank=rB}

= (vect_add !A !B){ shape=any(sA sB), rank=any(rA rB)}
4 A{ shape=sA, rank=rA , ldiag}

B{ shape=sB, rank=rB , ldiag}
6 = (ldiag_add(any(sA sB) !A !B){ shape=any(sA sB),

rank=any(rA rB),
8 ldiag}

val A = [1, 0, 0, 1]{ shape=[2, 2], rank=2, ldiag}
10 val B = [9, 0, 8, 7]{ shape=[2, 2], rank=2, ldiag}

in
12 (add A B)

end

In Line 4 above, I have defined a second instance for adding two matrices that each carry
the additional ldiag tag. Corresponding matrices carrying this tag are defined in lines 9

80

5.2. Partial Evaluation of Auxiliary Computations

and 10. Each is a 2 × 2 lower diagonal matrix. Finally, in Line 12 above, the function
add is applied to both matrices.
One interesting question to ask in the example above is whether the result is a lower

diagonal matrix, i.e., whether the result carries the ldiag property. By looking at the
code, it is immediately clear that it does. As both arguments to the application of
add carry the ldiag property, the instance in Line 10 matches. Thus, the result of the
addition computed in Line 6 contains a ldiag label.
Actually computing this partial result is more complex though. The partial values

for A and B need to contain sufficient information to decide the pattern match in the
application of add. To decide the pattern match in the above example, we need to know
that both arguments carry the ldiag property. In this case, only the second instance can
match. Thus, we can compute the ldiag component of the result of the application of
the function add. Otherwise, the first instance will match and the result does not carry
the ldiag property.
It is worth noting here that the ldiag property only suffices to decide that only one

instance can match. The ldiag property alone does not suffice to decide whether the
instance actually will match when the program is fully evaluated. To decide this, we
would additionally need to know that the arguments both carry the shape and rank
properties. Deriving this information would require to evaluate all arguments at least up
to their domain.
However, even if the domain of each argument is known, it is still not guaranteed that

the full result will carry the ldiag property. The evaluation might get stuck due to any
of the other auxiliary computations or during the evaluation of the value component of
the result. Thus, in general, partial evaluation will only yield results that are conditional
on the full evaluation to succeed. In this setting, identifying the only instance that can
match suffices. If the full evaluation succeeds, the only matching instance indeed does
match. Thus, the partial result will be correct.
As a further example, which makes use of pattern guards, reconsider the data con-

structors for the data type Expr presented in Section 2.4. I repeat their definition below:

1 let
fun ENum I{} = (!I){ Expr , ENum , Kind=Int}

3 fun EBool B{} = (!B){ Expr , EBool , Kind=Bool}
fun ECond P{ Expr , Kind=kp} T{Expr , Kind=kt} E{Expr , Kind=ke}

5 | (kp != Int)
= (P, T, E){ Expr , ECond , Kind=if (kt = ke) any(kt ke) Any}

7 fun EIsZero E{ Expr , Kind=k}
| (k != Bool)

9 = (E){ Expr , EIsZero , Kind=Bool}
fun EDiv A{ Expr , Kind=ka} B{ Expr , Kind=kb}

11 | (ka != Bool) (kb != Bool)
= (A, B){ Expr , EDiv , Kind=Int}

13 in
(EIsZero (ECond (EBool true) (ENum 0) (EBool false)))

15 end

81

5. Partial Evaluation

For the algebraic data type defined above, an interesting property is whether the expres-
sion in Line 14 has kind Int, Bool or Any. To derive this information, I can partially
evaluate the expression with respect to this auxiliary computation. For this example, the
pattern match is uniquely defined, as all functions only have a single instance. Thus, I
concentrate on deriving which sub-expressions need to be evaluated in order to compute
the kind of the overall expression.
I start out with the application of ECond. The kind of the result depends on the kind

of the then and else clause of the conditional, i.e., it depends on the two arguments T
and E. Thus, I need to partially evaluate the second and third parameter up to their Kind
property. As the first argument is not involved in the computation of the Kind property
of the result, I do not need to evaluate it at all.
For the second argument, I need to partially evaluate the expression (ENum 0). In this

case, the result always carries the value Int for the property Kind. Thus, I do not need
to evaluate its argument to compute the required partial result.
Finally, the third argument is computed by a further application of EBool, this time

to the argument false. As for the second argument, I do not need to evaluate this
argument to compute the required partial result.
Thus, to compute the Kind property of the overall expression, I need not to compute

the actual value component of the arguments to the ECond data constructor. Nor do I
need to compute the arguments to the applications of EBool and ENum.
Using this information, I can now compute the value of the Kind component of the

result of ECond. The kind of the result is computed using the expression if (kt = ke)
any(kt ke) Any. As the kinds of the then and else branches differ, this expression
evaluates to Any. Thus, the overall expression has kind Any, as well.
Another property one could be interested in is the well-formedness of an expression.

In particular, an expression where the Kind properties do not match should be rejected.
As an example, consider the following ill-formed expression

1 (EIsZero (EBool true))

with the data constructors EIsZero and EBool as defined above. To partially evaluate
the application of EIsZero with respect to the Kind property, we first need to know
which properties of the arguments of EIsZero need to be computed. As the definition
of EIsZero in lines 7ff. shows, the Kind property always has the value Bool. Thus, to
compute the Kind property of the above expression, no information is needed about the
argument. Nonetheless, the above expression would fail under full evaluation: The Kind
property of the argument has the value Bool. Therefore, the guard in Line 8 would fail
during evaluation. To catch this during partial evaluation, as well, the guard expression
needs to be evaluated. However, the guard expression requires that the Kind property
of the argument has any value but Bool. Hence, to decide whether the function will
evaluate and thus yield the Kind property Bool, we need to evaluate the Kind property
of the argument. For the result of the function EBool, this property always has the value
Bool. Accordingly, the argument to EBool needs not to be evaluated at all.
Using this information, we can now compute the required partial values. However, as

the Kind property of the argument to EIsZero is Bool, this evaluation will fail, as the

82

5.3. A Partial Semantics of LRecC

pattern guard evaluates to false. Therefore, the expression will be rejected.
In the examples above, inferring static knowledge for a given program in LRec is a

two-step process. First, I have inferred for each sub-expression which properties of the
corresponding value are required to compute a desired property of the overall result.
This includes the values of components that are required, e.g., the value of the shape
component in the first example. Furthermore, I have derived for which properties their
existence in a value is required to decide the pattern match in function applications.
Given this information, as a second step, I have then partially evaluated the program
accordingly.
In the remainder of this chapter and the next chapter, I will formalise this approach.

First, the next section presents a formal semantics for partially evaluating expressions
in LRecC to partial values. Next, after some conclusions for this chapter, Chapter 6
presents an analysis that infers for each sub-expression the set of properties that need to
be evaluated to compute a desired partial result.

5.3. A Partial Semantics of LRecC

In this section, I provide an operational semantics for partial evaluation of expressions
in LRecC. The semantics for partial evaluation of the syntactic sugar of LRec that is
missing in LRecC is defined as the semantics of the corresponding de-sugared expressions
as defined in Section 3.2.
Similarly to the semantics of LRecC, I define the partial semantics using a relation
↓ between expressions in LRecC and partial values. The relation ↓ is not a function
as an expression can potentially be evaluated to more than one partial result. To begin
with, I first provide a formal definition of the set of partial values. The corresponding
production rules in extended Backus Naur form are given in Figure 5.1.
As the examples in the previous section have shown, a partial value needs to encode two

kinds of information. Firstly, the values for a subset of the range of the corresponding full
record value. As I use sets of (label,value) pairs to encode record values, this information
could already be encoded using the set of record values R as defined for full values in
Figure 3.7 on page 51. All that is required is to leave out some of the (label,value) pairs.

value ⇒ boolean | record | ? | !

boolean ⇒ true | false

record ⇒ { [element [, element]*] }

element ⇒ (label , value)

Figure 5.1.. Set of legal partial values used as range of ↓.

83

5. Partial Evaluation

However, secondly, partial values need to encode the presence or absence of labels
within a full result. To cater for this information, I have introduced two special values
in the production rule value in Figure 5.1 on the previous page. The value ? encodes
that the corresponding full value has some value or, if used in a record element, that the
corresponding label is in the domain of that record. Dually, the value ! encodes that a
value does not exist. If used in a record element, ! encodes that the corresponding label
is not in the domain of the full value.
In the following, I will refer to the set of partial values that can be produced using the

production rule value in Figure 5.1 on the preceding page as Vp. The set Rp contains all
partial record values, i.e., those values that can be produced using the rule record. As
in Section 3.3, L is the set of all labels. This set is identical for both full and partial
values.
As a prerequisite to the discussion of the semantics of partial evaluation below, I first

introduce some functions on partial values. Similar to the domain of a record value dom
I define the domain of a partial record value domp as follows.

Definition 5.3.1 (Domain of a Partial Record). The function domp : Rp → L is defined
as

domp(R) := {l | ∃v ∈ Vp \ {!} : (l, v) ∈ R}.

Thus, the domain of a partial record value is the set of all labels contained in the partial
record that are not marked as absent with respect to the corresponding full record value
by the special ! value.
Next, I define the anti-domain of a partial record value domp. For full record values,

to decide whether a label is not in their domain, it suffices to check whether the label is
not contained in the set computed by the corresponding domain function dom. However,
for the partial domain domp, if a label is not contained in the corresponding set this
only means that it is not necessarily contained in the corresponding full value. To decide
whether a label is guaranteed not to be in the full value, we have to inspect the labels
within the partial record value that are explicitly excluded using the ! value.

Definition 5.3.2 (Anti-Domain of a Partial Record). The function domp : Vp → L is
defined as

domp(R) := {l | (l, !) ∈ R}.

Furthermore, I define the range of a partial record rangep as all partial values contained
in a given record.

Definition 5.3.3 (Range of a Partial Record). The function rangep : Vp → Vp is defined
as

rangep(R) := {v | ∃l ∈ L : (l, v) ∈ R}.

It is worth noting here that the range includes the special values ? and !, as well.
As a last function on partial record values, I define the counterpart to the elem function

on full record values for partial record values.

84

5.3. A Partial Semantics of LRecC

Definition 5.3.4 (Element of a Partial Record). The function elemp : Rp ×L → Vp is
defined as

elemp(R, l) :=

{
v if (l, v) ∈ R ∧ v 6= !,
undefined otherwise.

Thus, elemp(R, l) yields the value bound to the label l in R if such a value exists and
it is not the special ! value. Note, however, that the special value ? is considered an
element of a record. The intuition is that ? encodes the existence of a value and thus
selecting such value should be possible whereas ! encodes that the label is not contained
in R and therefore the selection should fail.
Figure 5.2 on the next page shows a big-step operational semantics for partial evalua-

tion of LRecC. I use the same notation as for the semantics for full evaluation presented
in Section 3.3. The statement (F ,≺,E) : e ↓ v is to be read as: Given an environment
(F ,≺,E), the term e can be evaluated to the partial value v. The evaluation envi-
ronment has the same structure as in the definition of full evaluation. F denotes the
function environment, ≺ is the partial order defined by the rel construct of LRec and
E is the environment for variable bindings.
The rules that are concerned with evaluating non-record values and expressions there-

on, i.e., the rules True, False, EqualTrue and EqualFalse, remain unchanged
compared to the corresponding rules for full evaluation. This is a general property of
all applied extensions of LRec. The partial evaluation presented here is only partial
with respect to record values. Expressions that compute on non-record values and yield
non-record values are fully evaluated under both full and partial evaluation.
For the special ~ expression, I have modified the corresponding rule Unit to reflect

the change in meaning of an empty record value. In full evaluation, the empty record
value ∅ represents a record value that has no labels. In the case of a partial record
value, ∅ represents the record value where no information about its domain is known. To
encode that a partial record value does not contain any labels, we would have to make
this explicit by associating each valid label with the special value !. However, this would
require a potentially infinite set to represent the value of the ~ expression. Fortunately,
we do not need to know that the value of the unit expression is an empty record.
The motivation to represent unit as the empty record was to ensure that selections

on its value would fail and that for all pattern of a program in LRec the corresponding
match would fail, as well. The former is already ensured by using the empty set as
partial value, as only those elements from a partial record can be selected whose labels
are within the domain of that record. For the latter, it suffices to ensure that enough
knowledge is encoded in the partial value for unit to make a particular match fail. I
postpone a discussion of which labels these are to Chapter 6. For the definition of the
semantics of partial evaluation, I allow as result for the ~ expression all partial record
values R whose domain is empty, expressed by R ⊆ L × {!} in rule Unit.
The next rule in Figure 5.2 on the following page, rule Var, remains unchanged com-

pared to the semantics of full evaluation. An identifier can be evaluated to a value if
a corresponding (identifier,value) pair is contained in the variable environment E . This
look-up operation can of course yield a partial result if the expression in the correspond-

85

5. Partial Evaluation

True :
(F ,≺,E) : true ↓ true

False :
(F ,≺,E) : false ↓ false

Unit :
R ⊆ L × {!}

(F ,≺,E) : ~ ↓ R

Var :
(i, v) ∈ E

(F ,≺,E) : i ↓ v

EqualTrue :
(F ,≺,E) : e1 ↓ v1 (F ,≺,E) : e2 ↓ v2 v1, v2 6∈ Rp v1

v
= v2

(F ,≺,E) : (e1 = e2) ↓ true

EqualFalse :
(F ,≺,E) : e1 ↓ v1 (F ,≺,E) : e2 ↓ v2 v1, v2 6∈ Rp v1 6

v
= v2

(F ,≺,E) : (e1 = e2) ↓ false

Record :

∀i, j ∈ {1, . . . , n} : i 6= j ⇒ li 6= lj
∀i ∈ {i0, . . . , im} ⊆ {1, . . . , n} : (F ,≺,E) : ei ↓ vi

R ⊆ (L \ {l1, . . . , ln})× {!}
(F ,≺,E) : {l1=e1, . . ., ln=en}
↓ {(li0 , vi0), . . . , (lim , vim)} ∪R

Selection :
(F ,≺,E) : e ↓ v v ∈ Rp l ∈ rangep(v)

(F ,≺,E) : e.l ↓ elemp(v, l)

Any :
∃i ∈ {1, . . . , n} : (F ,≺,E) : ei ↓ v
(F ,≺,E) : any(e1, . . ., en) ↓ v

CondThen :
(F ,≺,E) : ep ↓ true (F ,≺,E) : et ↓ v

(F ,≺,E) : if ep et ee ↓ v

CondElse :
(F ,≺,E) : ep ↓ false (F ,≺,E) : ee ↓ v

(F ,≺,E) : if ep et ee ↓ v

Guard :
(F ,≺,E) : eg ↓ true (F ,≺,E) : e ↓ v

(F ,≺,E) : guard(e eg) ↓ v

Witness :

∀i ∈ {1, . . . , n} : (F ,≺,E) : ei ↓ true
(F ,≺,E) : e ↓ v

(F ,≺,E) : witness(e e1 · · · en) ↓ v
Figure 5.2.. An operational semantics for partial evaluation of LRecC.

86

5.3. A Partial Semantics of LRecC

Let :
(F ′,≺′,E ′) : e ↓ v

(F ,≺,E) : let d1 · · · dn in e end ↓ v

where
≺′ = rel(≺, {d1, . . . , dn})
F ′ = fun(F ,≺′, {d1, . . . , dn})
E ′ = valp(F ′,≺′,E , (d1, . . . , dn))

Ap :

∀i ∈ {1, . . . , n} : (F ,≺,E) : ei ↓ vi ∈ R
{(F ′,≺′,E ′, eb)} = matchp(F , f, (v1, . . . , vn))

(F ′,≺′,E ′) : eb ↓ v
(F ,≺,E) : (f e1 . . . en) ↓ v

Partial :
(F ,≺,E) : e ↓ ?

Figure 5.2.. An operational semantics for partial evaluation of LRecC (contd.).

ing binding operation, i.e., a use of the val construct or a function application, has been
evaluated only partially.
Partial evaluation of record values is expressed by rule Record. I allow a record to

be evaluated with respect to certain labels only. If for a subset of the labels that occur in
the record expression the corresponding expressions can be evaluated to partial values,
the entire record can be evaluated to a partial record value whose range only includes
this subset of the labels contained in the record expression. Furthermore, as in the rule
for the ~ expression, I allow any anti-domain R to be attributed to the partial record
value as long as it does not contain any labels that are part of the record expression itself.
Again, the choice of the anti-domain only impacts pattern matching on this record but
has no impact on the actual value as such.
The next rule in Figure 5.2 on the preceding page defines the semantics for selection.

It is the direct translation of the rule Selection for full evaluation to the domain of
partial values. A selection expression can be evaluated to a partial value if the expression
argument can be evaluated to a partial record value whose domain contains the label to
be selected. Thus, a selection can yield any partial value apart from !.
The next three rules, i.e., Any, CondThen and CondElse remain unchanged, as

well. Partial evaluation for these constructs has the same semantics as in the full eval-
uation case. In particular, the conditional still requires the value of the predicate to be
known. This is a design choice. Instead, I could have chosen to introduce a third rule of
the form

CondAny :
(F ,≺,E) : et ↓ v (F ,≺,E) : ee ↓ v

(F ,≺,E) : if ep et ee ↓ v

Using the above rule, a conditional can be evaluated to a partial value if both branches
evaluate to the same partial value. This rule corresponds more closely to the usual type
derivation rule for conditionals [Pierce, 2002]. In type systems, the type of a conditional

87

5. Partial Evaluation

valp(F ,≺,E , (d1, . . . , dn)) := En

where
E0 := E

Ei+1 :=



Ei ^ (l, v)
if di+1 ≡ val l=e

and (F ,≺,Ei) : e ↓ v,
Ei if di+1 ≡ fun f i1 · · · im,
Ei if di+1 ≡ rel l1 <: l2,
undefined otherwise.

Figure 5.3.. Definition of function valp as used in Figure 5.2 on page 86.

is the type of both branches, if such a common type exists, i.e., both have the same
type or, in the setting of subtyping, a least upper bound can be found. However, using
this rule alone would impact the expressiveness of my approach. It would require that,
in order to compute the value of a property of a conditional expression, both branches
evaluate to partial record values that carry the same value for the corresponding label.
Using all three rules, on the other hand, would make an implementation of the above
semantics more difficult. It is not clear which rule to use when. For example, if both
branches evaluate to different partial values, rule CondAny cannot be used. To decide
this, however, first both branches need to be evaluated. Such an evaluation might not
terminate. For instance, in case of a termination conditional of a recursive function, one
branch is an unbound recursion.
The next two rules define the semantics for the operations that encode guards, i.e.,

the semantics for the guard and witness operations. Like the rules for conditionals,
the rules for guards remain unchanged: In order to evaluate either guard operation, the
corresponding guard expressions need to evaluate to true. The idea here is that even a
partial value can only be correct if the corresponding guard expressions hold.
Next in Figure 3.8 on page 52 is the rule Let for the let construct of LRecC. It

remains largely unchanged, as well. The only difference is the use of the function valp to
process value bindings. Its definition is given in Figure 5.3. Overall, the function valp has
the same structure as its counterpart for full evaluation val (cf. Figure 3.11 on page 58):
The new variable environment is computed by processing all definitions top down. To
cater for partial evaluation, instead of evaluating expressions fully using ⇓, I use ↓ to
only partially evaluate the expression before binding the result to an identifier by adding
the corresponding partial value to the new variable environment. Thus, the resulting
environment contains the same bindings as the corresponding environment under full
evaluation. The only difference is that the bound values are partial values.
The penultimate rule in Figure 5.2 on page 86 defines the semantics of function appli-

cations. It only differs in the use of a different pattern matching function matchp.
I have chosen to allow only those partial matches that yield a single instance. As with

conditionals, this is a design choice. A further possibility would be to allow multiple

88

5.3. A Partial Semantics of LRecC

matching instances if all can be evaluated to the same partial value. A corresponding
rule would have the form

Ap :

∀i ∈ {1, . . . , n} : (F ,≺,E) : ei ↓ vi ∈ R
∀(F ′,≺′,E ′, eb) ∈ matchp(F , f, (v1, . . . , vn)) :

(F ′,≺′,E ′) : eb ↓ v
(F ,≺,E) : (f e1 . . . en) ↓ v

However, the arguments given for conditionals apply here, as well. By using an instance
that might not be used during full evaluation, the termination behaviour under partial
evaluation compared to full evaluation might change. In particular, partial evaluation
might diverge where full evaluation does not.
Before I discuss this pattern matching process in detail, I first complete the discussion

of the semantic rules with the last remaining rule. The rule Partial caters for partial
evaluation of general expressions. Any expression can be evaluated to the special value
?, which denotes that a corresponding value might exist. This rule, in combination with
the rule Record for record expressions, allows for evaluating a record expression such
that it is known that a certain label is in the domain without needing to evaluate the
corresponding value.
To complete the discussion of the partial semantics of LRecC, the last part missing is

the partial pattern matching function matchp. Its definition is given in Figure 5.4 on the
next page. As in the semantics for full evaluation, the pattern matching process consists
of five stages. The first two stages, i.e., lookup and arity, are identical to the full pattern
matching process as defined in Figure 3.12 on page 60. The former extracts the function
instances corresponding to a given function name and the latter selects those instances
whose arity matches the number of arguments. As partial evaluation does not impact
function names nor the number of arguments for a function application, these two need
not to be adapted to the different meaning of partial values.
The next two stages, i.e., patternp and orderp, filter out non-matching instances and

those matching instances that are shadowed with respect to the partial order on labels
≺, respectively. As both depend on the domain of their arguments, I have adapted them
to the setting of partial values.
In the definition of the full pattern matching match, the function pattern removes all

instances that contain labels that are not included in the domain of the argument values.
In the setting of partial values, this would rule out instances that could still match if
the arguments would be evaluated further. As an example, consider the following code
fragment:

1 let
fun foo A{} = · · ·

3 A{ X} = · · ·
in

5 (foo { X=true})
end

In the above code, I define two instances for the function foo. The instance in Line 2
matches any argument pattern, whereas the second instance in Line 3 requires at least a
label X to be present. I then apply the function foo to an argument carrying the label X

89

5. Partial Evaluation

matchp := bind ◦ orderp ◦ patternp ◦ arity ◦ lookup

with lookup, arity and bind as defined in Figure 3.12 on page 60. The function patternp

is defined as

patternp(F ,≺, I, (a1, . . . , an)) := (F ,≺, In, (a1, . . . , an))

where
I0 := I

Ii+1 := filterp2(filter
p
1(Ii, (a1, . . . , an), i), i)

with
filterp1(I, a, i) := {(((α1, p1), . . . , (αn, pn)), e) ∈ I | pi ∩ domp(a) = ∅}

and

filterp2(≺, I, (a1, . . . , an), i) :=(((α1, p1), . . . , (αn, pn)), e) ∈ I

∣∣∣∣∣∣∣∣
∀(((α′1, p′1), . . . , (α′n, p′n)), e′) ∈ I :

(∃j ∈ {1, . . . , i} :
pj \ domp(aj) 6= p′j \ domp(aj)) ∨
|pi ∩ domp(ai)| ≥ |p′i ∩ domp(ai)|

 .

The function orderp is defined as

orderp(F ,≺, I, (a1, . . . , an)) := (F ,≺, In, (a1, . . . , an))

where
I0 := I

Ii+1 := filter′p(≺, Ii, (a1, . . . , an), i)

with

filter′p(≺, I, (a1, . . . , an), i) :=

(((α1, p1), . . . , (αn, pn)), e) ∈ I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀(((α′1, p′1), . . . , (α′n, p′n)), e′) ∈ I :
(∃j ∈ {1, . . . , n} :
pj \ domp(aj) 6= p′j \ domp(aj)) ∨

(∃j ∈ {1, . . . , i− 1} :
∃(((α′′1, p′′1), . . . , (α′′n, p

′′
n)), e′′) ∈ I :

p′j
→
≺ p′′j ∧ pj 6

→
≺ p′′j) ∨

(∃j ∈ {1, . . . , i− 1} :
∃(((α′′1, p′′1), . . . , (α′′n, p

′′
n)), e′′) ∈ I :

p′′j
→
≺ pj) ∨

pi 6
→
≺ p′i



.

Figure 5.4.. Pattern matching function matchp for partial best match as used in
Figure 5.2 on page 86.

90

5.3. A Partial Semantics of LRecC

in Line 5. I have left out the actual definition of the two instances, as it is not required
for the example.
If fully evaluated, the second instance will be chosen as the argument matches the

pattern of that instance best. Now consider a partial evaluation of the argument to a
partial record value {}. The domain of that value is empty. Thus, if I would rule out all
instances that contain labels that are not in the domain of the partial argument value,
the first instance would be chosen. Ultimately, this might lead to a different result than
under full evaluation. Even worse, if I decide to evaluate the argument further to the
partial value {(X,?)}, the second instance would be chosen instead. Consequently, using
domain based matching as in the full pattern matching process, the result of partial
evaluation would depend on the grade of partiality of the function arguments. This is
clearly not desirable.
To rule out only those instances that are guaranteed not to match, I instead remove all

instances that contain labels that are included in the anti-domain domp of the argument.
As a reminder, the anti-domain of a partial value only contains those labels that are not
included in the corresponding full value. This filtering step is performed by the helper
function filterp1 in Figure 5.4 on the preceding page. In the above example, this would
filter out neither instance. In general, the result of the filtering process contains at least
those instances that the corresponding full matching process would yield.
Apart from filtering non-matching instances, the function pattern in the definition of

full pattern matching only includes those matching instances with a maximal number
of required labels. In the setting of partial values, this criterion does not suffice. By
definition of the partial semantics of LRec, the anti-domain of a partial record value is
not required to contain all labels that are not part of the corresponding value under full
evaluation. Therefore, removing only those instances that do not match with respect to
the anti-domain of a partial argument might leave instances that would not match the
corresponding argument under full evaluation. If such an instance contains more labels
than all other instances, it would be selected as the best match. Thus, the best match
under partial evaluation might not include all instances that are selected as best match
under full evaluation. This, ultimately, would again potentially yield different results
under partial evaluation than under full evaluation.
A naïve approach to map the best match property to partial values would be to use

the number of actually matched labels instead of the number of contained labels, i.e., to
maximise for a pattern p and argument a the value |p∩domp(a)|. However, this criterion
does not suffice either. As an example consider the following code fragment:
let

2 fun foo A{ X} = · · ·
A{ Y, Z} = · · ·

4 in
(foo {X=true , Y=true , Z=true})

6 end

Again, I have defined two instances for a function foo. The first in Line 2 matches
arguments that contain at least the label X. For the second instance in Line 3, at least
the labels Y and Z are required for a match.

91

5. Partial Evaluation

Under full evaluation, in the expression in Line 5 the second instance would match, as
it matches the most labels of the argument. If I, however, evaluate the record expression
in Line 5 only partially to the partial record value {(X,?)}, using the above criterion for
best match would choose the first instance.
The underlying problem is that for all labels that are neither in the domain, nor in

the anti-domain of a partial record value, their influence on the matching process is not
decidable. In the above example, the labels Y and Z are of this kind. Thus, it would be
invalid to compare the two patterns, as it is not known how well the two labels in the
second pattern match.
However, not everything is lost. As a further example, consider a third instance with

an argument pattern {X, Y, Z}. Given the same partial value as above, i.e., {(X,?)},
we still cannot decide whether the first or the new third instance matches better, as we
do not know how well the two additional labels of the third pattern match. However,
regardless of how well labels Y and Z match, the third instance always matches better
as the second instance, if either of them matches at all. Thus, in this setting, it would
be safe to remove the instance corresponding to the second pattern from the set of best
matching instances.
In general, for instances with only one argument, it is safe to remove an instance if at

least one other instance exists that contains the same set of labels with unknown state
and that has more matching labels, i.e., it has more labels that are in the domain of the
partial record value. The set of labels with unknown state thereby is the set of all those
labels that are neither in the domain nor in the anti-domain of the partial record value
of the argument.
For multiple arguments, the situation becomes yet a little more complex. To show the

problem, I give another example below.
let

2 fun foo A{ Y} B{ X, Y} = · · ·
A{} B{ X} = · · ·

4 in
(foo {} { X=true , Y=true})

6 end

Above, I define two instance for a function foo that both require two arguments. The
first instance in Line 2 requires a label A for the first argument and labels X and Y for
the second argument in order to match. For the second instance in Line 3, no labels are
required for the first argument, whereas for the second argument the label X is required.
Under full evaluation, in the expression in Line 5 the second instance will be chosen as
only the second instance matches the first argument.
Now consider a partial evaluation of the two argument expression in Line 3 to the

partial record values {} and {(Y,?)}. Using the matching process as described above,
the filtering on the first argument will remove neither instance, as both still can match.
However, the filtering on the second argument would remove the second instance, as, if
either instance matches, the other instance will match as well and the first instance always
matches better. Again, this would yield two different results under partial evaluation than
under full evaluation.

92

5.3. A Partial Semantics of LRecC

The problem here is that I so far do not take into account that an instance that is
guaranteed to match better might be removed under full evaluation in a previous filtering
step. To make the filtering process work correctly in these circumstances, as well, I must
only compare those instances where all pattern up to the one currently being filtered
contain the same undetermined labels, i.e., labels that are neither in the domain nor in
the anti-domain of their corresponding argument.
This leads to the definition of the second stage of pattern filtering filterp2 in Figure 5.4

on page 90. The restriction to only compare those instances that share a common set
of undetermined labels is expressed by the condition ∃j ∈ {1, . . . , i} : pj \ domp(aj) 6=
p′j \ domp(aj). If for any pattern previously compared or the pattern under comparison
two instances have differing sets of undetermined labels, they are considered to match
equally well. Otherwise, an instance is filtered if it contains less matching labels, i.e., if
|pi ∩ domp(ai)| ≥ |p′i ∩ domp(ai)| does not hold.
The next stage of the matching process is the removal of instances that are shadowed

by another instance with respect to the partial order on labels ≺. For full pattern
matching as defined in Figure 3.12 on page 60, this filtering step is performed regardless
of the actual arguments. To decide whether an instance is shadowed by another instance,
it suffices to compare the corresponding patterns using the partial order on patterns

→
≺.

However, in the setting of partial evaluation, the decision needs to take the partial nature
of the arguments into account. As an example, consider the following program fragment:
let

2 rel X <: Y
fun foo A{ X, Z} = · · ·

4 A{ Y, Z} = · · ·
in

6 (foo { X=true , Z=true})
end

In Line 2 above, I declare that the label Y shadows the label X in pattern matching. Next,
I define two instances for a function foo in lines 3 and 4. The first instance matches the
labels X and Z, whereas the second instance matches the labels Y and Z. As the actual
definition of the two instances is not of interest here, I have left it out in the code above.
Finally, in Line 6 I apply the function foo to a record expression containing labels X and
Z.
In the above example, only the first instance matches under full evaluation. Thus, the

filtering of instances based on the order on labels ≺ does not impact the result set of
instances. Now, if we assume a partial evaluation in the above setting that evaluates
the argument of foo to the partial value {(Z,?)}, the set of matching instances after the
third step of the matching process still contains both instances. In this case, using the
order based filtering of the matching process under full evaluation would yield only the
second instance, as the label Y shadows the label X. Thus, the set of matching instances
under partial evaluation would not contain all instances that are contained in the set of
matching instances under full evaluation.
The underlying cause in the above example is that I have removed an instance because

of another instance that would not match under full evaluation. In this respect, order

93

5. Partial Evaluation

filtering suffers from the same problem as the best match filtering step. Therefore,
to prevent cases like the one above, I use the same technique as in the third step of
the matching process. I only compare those pattern whose unknown components are
identical. Thus, if an instance leads to the exclusion of further instances, this exclusion is
valid even if the instance is not part of the set of matching instances under full evaluation,
as in both cases neither are the instances excluded by it.
In the context of functions with multiple arguments, the same restrictions as in the

matching step pattern apply. Comparing two patterns is only valid, if for each pair of
corresponding pattern the same labels have an unknown state. Note here, that for the
order stage this is required for all pattern of the compared instances, as the order filtering
happens after the pattern filtering stage and I thus have to ensure that I only compare
instances where either both will be in the final result of the pattern filtering, or neither
is contained in the result.
This restriction ensures that instances are not accidentally filtered out. However, it

introduces a new problem. Now, at each step of the filtering process, instances that would
be filtered in the full order filtering might remain in the set of matching instances. Thus,
during consecutive filtering steps, these additional instances might trigger the filtering
of instances that would otherwise have remained in the set of matching instances. As an
example, consider the following code fragment:

1 let
rel X <: Y

3 rel V <: W
fun foo A{ V} B{ Y, W} = · · ·

5 A{ X} B{ X, W} = · · ·
A{ W} B{ X, V} = · · ·

7 in
(foo { X=true , V=true , W=true}

9 { X=true , Y=true , W=true , V=true})
end

In the above example, I first declare in Line 2 that the label Y shadows the label X with
respect to pattern matching. Furthermore, as declared in Line 3, the label W shadows the
label V. Next, in lines 4 to 6 above, I define three instances of a function foo. The first
matches the label V for the first argument and the labels Y and W in the second argument.
For the second instance, the label X is required in the first argument and the labels X and
W are required in the second argument. Lastly, for the third instance the first argument
needs to carry the W label, whereas the second argument needs to carry the labels X and
V. Finally, I apply the function foo to two arguments that carry the labels X, V and W,
and the labels X, Y, W and V, respectively.
Under full evaluation, above the second instance would be chosen. All three instances

match equally many labels for both arguments. However, as the label W shadows the
label V, the first step of the order filtering process would filter out the first instance. In
the second step of the order filtering process, the third instance is filtered out, again as
the label W shadows the label V.
Now consider a partial evaluation of the arguments to the partial values {(V,?),(X,?)}

94

5.3. A Partial Semantics of LRecC

and {(X,?),(Y,?)}. In the pattern filtering step, all instances will remain as all instances
partially match the arguments. In the first step of the order filtering process, no instance
is filtered either. Even though the third instance shadows the first, the first is not filtered
out as it cannot be decided whether the third instance would be in the set of instances
under full evaluation. In the second step, however, the second instance would be filtered
out, as it is shadowed by the first instance and both have the same set of labels with
unknown state. Thus, under partial evaluation, the second instance, which would be
chosen under full evaluation, is not in the set of matching instances.
To handle cases like the one above correctly, I add a second restriction on the order

filtering process. I only compare two instances with respect to
→
≺, if both are shadowed

by the same instances in previous matching steps. This ensures that if such an undecided
shadowing yields to the exclusion of the filtering instance, the filtered instance is excluded,
as well. In the filtering process for the fourth stage in Figure 5.4 on page 90 this is
expressed by the additional condition ∀j ∈ {1, . . . , i−1} : ∀(((α′′1, p′′1), . . . , (α′′n, p

′′
n)), e′′) ∈

I : p′j
→
≺ p′′j ⇒ pj

→
≺ p′′j .

The above condition suffices to prevent filtering out the wrong instances for the example
above. However, there are still cases where the above condition does not suffice. The
problem arises, if an instance that would prevent the filtering by the above condition is
itself filtered out. In this case, I lose the information than an instance might possibly be
filtered out in previous steps. To prevent this, I add a last condition on order filtering:
I only filter those instances that do not shadow any instances with respect to previously
filtered pattern. In the definition of filter′p, this is expressed by the condition ∀j ∈
{1, . . . , i− 1} : ∀(((α′′1, p′′1), . . . , (α′′n, p

′′
n)), e′′) ∈ I : p′′j 6

→
≺ pj).

The last step in the pattern matching process, the function bind, is again identical to
the pattern matching process under full evaluation as defined in Figure 3.12 on page 60.
Given a set of instances, it computes the corresponding environments required for the
evaluation of the function bodies. These environments as such have not changed. How-
ever, during partial evaluation they of course can contain partial values if the arguments
of a function have only been evaluated partially.
This closes the description of the partial semantics of LRecC. Next, I will show the

important property that partial evaluation as defined above indeed yields a partial result
compared to full evaluation. To be able to formally show this, I first need to define what
a partial result actually is.

Definition 5.3.5 (Partial Value). The relation v⊂ V × Vp is defined as

v :=
⋃
i∈N
vi

where

v0 := {(true, true), (false, false)} ∪ V × {?}

vi+1 :=

(r, r′)

∣∣∣∣∣∣
dom(r) ⊇ domp(r

′) ∧
dom(r) ∩ domp(r

′) = ∅ ∧
∀l ∈ domp(r

′) : elem(r, l) vi elemp(r
′, l)

∪ vi .

95

5. Partial Evaluation

Above, I define the relation v that relates each full record value with all corresponding
partial record values. As in previous definitions, I use an inductive definition over the
nesting depth of partial record values. Initially, v0 defines the relation for Boolean values
and for the special value ?. Each Boolean value is a partial value of itself. Furthermore,
? is a partial value of each value in V .
In the inductive step of the above definition, I then define for a value r ∈ V and a

partial value r′ ∈ Vp that r v r′ if

• the partial domain of the partial value r′ is a subset of the domain of r,

• the anti-domain of the partial value r′ and the domain of r are disjoint and

• for all labels l in the partial domain of r′ the corresponding element value needs to
be a partial value with respect to the element value for the label l in r.

A note on notation: It might seem counter intuitive to use r v r′ to denote that r′ is a
partial value of r, as r v r′ insinuates that r is in someway smaller than, or even a subset
of r′. However, one might argue that indeed r′ is smaller than r as r′ is only partial and
thus has a smaller domain than r. The motivation to use the notation v in the way I do
in this thesis stems from the use of the same symbol to describe subtype relationships
in type theory. One can see the partial record value r′ as a descriptor (or even type) for
many different actual record values and in particular the single record value r. Thus,
the set of full record values described by r′ has more members than the singleton set of
record values described by the full record value r. In that sense, r is a subset of r′.
I extend the notion of partial value to variable environments as follows:

Definition 5.3.6 (Partial Variable Environment). The relation on variable environments
→
v⊂P(I × V)×P(I × Vp) is defined as

→
v :={

(E ,E ′) ∈P(I × V)×P(I × Vp)

∣∣∣∣ ∀(l, v) ∈ E ∃(l, v′) ∈ E ′ : v v v′∧
∀(l, v′) ∈ E ′∃(l, v) ∈ E : v v v′

}
Thus, a variable environment ≺’ is partial with respect to an environment ≺ if both
contain the same labels and if each partial value bound to a label in ≺’ is partial with
respect to the corresponding value bound to the same label in ≺.
Using the definitions of v and

→
v above, I now show an important property of the

pattern matching process of full and partial evaluation. If used in the same context, the
partial match on a set of partial arguments yields at least the instances a full match on
the corresponding full arguments yields. To show this property, I will first show in two
lemmata that the corresponding property is true for the third and fourth step of the
matching process. To differentiate between the results of the full and partial matching
process, I will use the superscripts f and p, respectively.

Lemma 5.3.1 (Partial Match: Step 3). Given a function environment F , a partial
order on labels ≺, a set of function instances I, and arguments af = (af1 , . . . , a

f
n) ∈ V n

96

5.3. A Partial Semantics of LRecC

and ap = (ap1, . . . , a
p
n) ∈ V n

p . Let (F f ,≺f , If , a′f) := pattern(F ,≺, I, a) and (F p,≺p
, Ip, a′p) := patternp(F ,≺, I, ap). Then the following statement holds:

(∀i ∈ {1, . . . , n} : afi v a
p
i)⇒ F f = F p∧ ≺f=≺p ∧If ⊆ Ip ∧ af = a′f ∧ ap = a′p

Proof. Assume that for all i ∈ {1, . . . , n} the statement afi v api holds. I will show that
then the statement F f = F p∧ ≺f=≺p ∧If ⊆ Ip ∧ af = a′f ∧ ap = a′p holds, as well.
The equalities in the above statement follow directly from the definition of pattern and

patternp in Figures 3.12 and 5.4, respectively. It remains to be shown that If ⊆ Ip holds.
The sets of matching instances If and Ip are defined inductively over the arguments

af and ap, respectively. I will show that in each step of the induction the resulting set of
the filtering process in pattern is a subset of the result of the filtering process in patternp.
For the initial step this is obviously the case.
For the inductive step, assume Ifi as the resulting set of instances of the previous

filtering step in the function pattern as defined in Figure 3.12 on page 60 and Ipi as the
resulting set of instances of the previous filtering step in the function patternp as defined
in Figure 5.4 on page 90. Furthermore, assume that Ifi ⊆ Ipi holds. I will show the
inductive step in two parts.
First, I show that filterp1 only filters instances that filter filters, as well. Let Ifi+1 :=

filter(Ifi , a
f
i+1, i+ 1) and Ip,1i+1 := filterp1(I

p
i , a

p
i+1, i+ 1). I will show by contradiction that

Ifi+1 ⊆ I
p,1
i+1 holds.

Assume that there exists an instance f := (((α1, p1), . . . , (αn, pn)), e) with f ∈ Ifi+1 but
f 6∈ Ip,1i+1. Then, by the definition of filter, we know that pi+1 ⊆ dom(afi+1). Furthermore,
we know that f ∈ Ip,1i , as Ifi+1 ⊆ Ifi by the definition of filter and thus Ifi+1 ⊆ Ipi by
the inductive assumption. As f 6∈ Ip,1i+1, the instance f is filtered out in the i + 1-th
step and thus we know that pi+1 ∩ domp(a

p
i+1) 6= ∅ by the definition of filterp1. Thus,

domp(a
p
i+1) ∩ dom(afi+1) 6= ∅. This contradicts that a

f
i+1 v a

p
i+1.

Second, I show that filterp2 only filters instances that filter filters, as well. Let Ip,2i+1 :=

filterp2(I
p,1
i+1, a

p
i+1, i+ 1). I will show by contradiction that Ifi+1 ⊆ I

p,2
i+1 holds.

Assume that there exists an instance f := (((α1, p1), . . . , (αn, pn)), e) with f ∈ Ifi+1

but f 6∈ Ip,2i+1. As I have shown above, f ∈ Ip,1i+1 holds. Thus, by definition of filterp2, there
exists at least one instance f ′ := (((g′1, p

′
1), . . . , (g

′
n, p
′
n)), e′) with f ′ ∈ Ip,1i+1 such that for

all j ∈ {1, . . . , i + 1} the statement pj \ domp(a
p
j) = p′j \ domp(a

p
j) holds, and such that

|pi+1 ∩ domp(a
p
i+1)| < |p′i+1 ∩ domp(a

p
i+1)| holds, as well.

First I will show that f ′ ∈ Ifi+1. As f ∈ I
f
i+1, we know that for all j ∈ {1, . . . , i+1} the

statement pj ⊆ dom(afj) holds by the definition of filter. It follows that pj \ domp(a
p
j) ⊆

dom(afj) holds, as well. Thus, p′j \ domp(a
p
j) ⊆ dom(afj). From afj v apj , we know that

domp(a
p
j) ⊆ dom(afj). It follows that p′j ⊆ dom(afj). Thus f ′ matches the first i + 1

arguments with respect to filter.
We know that for all j ∈ {1, . . . , i + 1} the statement pj \ domp(a

p
j) = p′j \ domp(a

p
j)

holds. As f ′ ∈ Ip,1i+1 and f ∈ I
p,1
1+1, for all j ∈ {1, . . . , i+1} the statement |p′j∩domp(a

p
j)| =

97

5. Partial Evaluation

|pj ∩ domp(a
p
j)| must hold, as well, as otherwise either instance would have been filtered

out previously. As we furthermore know that p′j \ domp(a
p
j) = pj \ domp(a

p
j), it follows

that |p′j | = |pj |. Thus, for the first i + 1 arguments, both instances match equally well.
It follows that f ′ ∈ Ifi+1.
Next I will show that f ∈ Ifi+1 cannot hold. As f ∈ Ifi+1, it follows that pi+1 ⊆

dom(afi+1) by the definition of filter. Thus, pi+1\domp(a
p
i+1) ⊆ dom(afi+1). Consequently,

p′i+1 \ domp(a
p
i+1) ⊆ dom(afi+1). From afi v api , it follows that domp(a

p
i) ⊆ dom(ai).

Thus, overall, it follows that p′i+1 ⊆ dom(afi+1).
Furthermore, we have that |pi+1 ∩ domp(a

p
i+1)| < |p′i+1 ∩ domp(a

p
i+1)| holds. Thus,

as pi+1 \ domp(a
p
i+1) = p′i+1 \ domp(a

p
i+1) holds, we can follow that |pi| < |p′i|. This

contradicts that f ∈ Ii+1 as both f and f ′ match but f ′ contains more labels.
Overall, it follows that If ⊆ Ip.

Lemma 5.3.2 (Partial Match: Step 4). Given a function environment F , a partial or-
der on labels ≺, a set of function instances I and arguments af = (af1 , . . . , a

f
n) ∈ V n

and ap = (ap1, . . . , a
p
n) ∈ V n

p . Let (F ,≺, If , af) := pattern(F ,≺, I, af) and (F ,≺
, Ip, ap) := patternp(F ,≺, I, ap). Furthermore, let (F f ,≺f , I ′f , a′f) := order(F ,≺
, If , af) and (F p,≺p, I ′p, a′p) := orderp(F ,≺, Ip, ap). Then the following statement
holds:

(∀i ∈ {1, . . . , n} : afi v a
p
i)⇒ F f = F p∧ ≺f=≺p ∧I ′f ⊆ I ′p ∧ af = a′f ∧ ap = a′p

Proof. Assume that for all i ∈ {1, . . . , n} the statement afi v api holds. I will show that
then the statement F f = F p∧ ≺f=≺p ∧I ′f ⊆ I ′p ∧ af = a′f ∧ ap = a′p holds, as well.
The equalities in the above statement follow directly from the definition of order and

orderp in Figures 3.12 and 5.4, respectively. It remains to be shown that I ′f ⊆ I ′p holds.
As for the functions pattern and patternp, the set of resulting instances in the functions

order and orderp is defined inductively over the arguments. Therefore, I will use a similar
proof strategy as in Lemma 5.3.1 on page 96. I will show that in each step of the inductive
construction of the result, the result of the filtering process in the function filter′ for the
full matching process is a subset of the result of the function filter′p in the partial matching
process.
For the initial step, this follows from the fact that If and Ip are the results of the

functions pattern and patternp, respectively, and the result of Lemma 5.3.1 on page 96.
For the inductive step, let I ′fi and I ′pi be the result of the previous filtering step of

order and orderp, respectively. Furthermore, assume that I ′fi ⊆ I ′pi holds. I will show
I ′fi+1 ⊆ I

′p
i+1 by contradiction.

Assume there exists an instance f := (((α1, p1), . . . , (αn, pn)), e) which is in I ′fi+1 but
not in I ′pi+1. We know that f ∈ I ′pi holds, as I ′fi ⊆ I ′pi by the inductive assump-
tion and I ′fi+1 ⊆ I ′fi by the definition of filter′p in Figure 3.12 on page 60. Thus, as
f is filtered out in the current filtering step, there needs to exists an instance f ′ :=
(((g′1, p

′
1), . . . , (g

′
n, p
′
n)), e′) ∈ I ′pi such that for all j ∈ {1, . . . , n} the statement pj \

domp(a
p
j) = p′j \ domp(a

p
j) holds and such that pi+1

→
≺ p′i+1 holds, as well.

98

5.3. A Partial Semantics of LRecC

First, I will show that f ′ ∈ If . From f ′ ∈ I ′pi+1 directly follows by the definition of
filter′p that f ′ ∈ Ip. As both instances are contained in Ip, it follows from the definition
of patternp that for each j ∈ {i, . . . , n} the statement |pj ∩ domp(a

p
j)| = |p′j ∩ domp(a

p
j)|

holds. As we know that pj \ domp(a
p
j) = p′j \ domp(a

p
j) holds, it follows that |pj | = |p′j |.

From f ∈ If , it follows that for all j ∈ {1, . . . , n} we know that pj ⊆ dom(afj).
Consequently, pj \ domp(a

p
j) ⊆ dom(afj). From pj \ domp(a

p
j) = p′j \ domp(a

p
j) it then

follows that p′j \ domp(a
p
j) ⊆ dom(afj). As afj v apj , it follows that p

′
j ⊆ dom(afj). Thus,

from the definition of pattern it then follows that f ′ ∈ If .
Next, I will show that f ′ ∈ I ′fi . f ′ ∈ I ′f0 is obviously true by the definition of or-

der. Assume f ′ is filtered out in any step k ∈ {1, . . . , i}. Then an instance f ′′ :=

(((a′′1, p
′′
1), . . . , (a′′n, p

′′
n)), e′′) ∈ I ′fk−1 such that p′k

→
≺ p′′k holds needs to exist by definition

of the function filter′ in Figure 3.12 on page 60. Furthermore, as neither of the three
instance has been filtered out in the pattern step, we know that |pk| = |p′k| = |p′′k|.

As I ′fk−1 ⊆ I
′p
k−1 by the inductive assumption, it follows that f ′′ ∈ I ′pk−1. From p′k

→
≺ p′′k

and f ′ ∈ I ′pi , we can further follow that f ′′ ∈ I ′pi , as f ′′ cannot be filtered by any instance
as long as f ′ is not filtered. Furthermore, we can follow from f ∈ I ′fi+1 that pk 6

→
≺ p′′k, as

otherwise f would have been filtered by f ′′. This contradicts that f ′ filters f , as pk 6
→
≺ p′′k

but p′k
→
≺ p′′k. Thus f ′ ∈ I

′f
k .

Overall, f ′ therefore cannot be filtered at any stage k ∈ {1, . . . , i}. It follows that
f ′ ∈ I ′fi .
Finally, as we have pi+1

→
≺ p′i+1, f

′ ∈ I ′fi+1 contradicts f ∈ I ′fi+1. Thus, the statement
I ′fi+1 ⊆ I

′p
i+1 must hold.

Using the above two lemmata, I can now show the desired result for the matching
process under full and partial evaluation.

Theorem 5.3.1 (Partial Match). Given a function environment F , an identifier f ∈
I and arguments af = (af1 , . . . , a

f
n) ∈ V n and ap = (ap1, . . . , a

p
n) ∈ V n

p . Let If =

match(F , f, af) and Ip = matchp(F , f, ap). Then the following statement holds:

(∀i∈{1,...,n} : afi v a
p
i)⇒ (∀(F ,≺,E f , e) ∈ I∃(F ,≺,E p, e) ∈ I ′ : E

→
v E ′)

Proof. To show the above, I first show that the first four steps in the partial matching
process (cf. Figure 5.4 on page 90) at least select those instances that the corresponding
steps of the full matching process (cf. Figure 3.12 on page 60) select and that they
produce identical function environments F and orders on labels ≺.
For the first step, the function lookup, this is obviously the case. Both matching

processes use an identical first step. Furthermore, this step does not take the function
arguments into account. It only operates on the function environment F and the function
identifier f , which are assumed to be identical.
In the second step, again both matching processes use the same filtering function arity.

The function arity reduces the set of instances based on the number of arguments. As

99

5. Partial Evaluation

for both, the partial and full match, the number of arguments is assumed to be n, the
function arity filters the same instances.
For the third step, I have shown above property in Lemma 5.3.1 on page 96. Similarly,

I have shown in Lemma 5.3.2 on page 98 the above property for the fourth step.
So after step four in the pattern matching process, we have (F f ,≺f , If , af) as result

of the pattern matching process on full pattern and (F p,≺p, Ip, ap) as the corresponding
result of the partial matching process. Furthermore, we know that F f = F p, ≺f=≺p
and If ⊆ Ip. From the antecedent, we further know that for all i ∈ {1, . . . , n} the
statement afi v api holds. Thus, we can conclude the consequent from the definition of
bind in Figure 3.12 on page 60.

Having shown that the partial pattern match under partial evaluation always yields
at least the instances the full pattern match yields in a corresponding full evaluation
context, I can now show the final result for this section: Under the assumption that the
choice, which argument of the any operator is evaluated, is deterministic and identical
for full and partial evaluation, for any expression in LRecC, if the expression can be
evaluated under both full and partial evaluation, the result of partial evaluation is a
partial value of the result of full evaluation.
The restriction that the any operator behaves deterministically and identically under

full and partial evaluation is required, as otherwise even two evaluations of the same
expression using either ⇓ or ↓ could yield different results.
As a prerequisite, I first prove the following lemma for the function valp:

Lemma 5.3.3 (Partial Bindings). Given a function environment F , a partial order on
labels ≺, two variable environments E f and E p with E f

→
v E p and definitions d1, . . . , dn of

a let construct. Furthermore, assume that for every expression e in LRecC with a given
nesting depth i ∈ N the statement (F ,≺,E) : e ⇓ v∧(F ,≺,E ′) : e ↓ v′∧E

→
v E ′ ⇒ v v

v′ holds. Let E f ′ := val(F ,≺,E f , (d1, . . . , dn)) and E p′ := valp(F ,≺,E p, (d1, . . . , dn))
with val as defined in Figure 3.11 on page 58 and valp as defined in Figure 5.3 on page 88.
Then the statement E f ′ →v E p′ holds.

Proof. Both functions val and valp compute the new environment inductively starting out
with the old environment and then step-wise amending the environment by the bindings
produced by each definition. To prove the above statement, I will show by induction that
during each processing step, the resulting environment in valp is a partial environment
of the corresponding environment in val.
For the initial step, this is trivially the case as E f

→
v E p holds.

Let E f ′
j be the result of j-th processing step in the function val and E p′

j be the

corresponding result of the j-th processing step in the function valp. Assume E f ′
j

→
v E p′

j

holds.
The definition dj+1 can be one of three different kinds: A function definition using the

fun keyword, an order definition using the rel keyword or a value binding using the val
keyword. I will show for each case that E f ′

j+1

→
v E p′j + 1j holds.

100

5.3. A Partial Semantics of LRecC

Case 1: fun definition Assume dj+1 is a definition of the from fun l i1 · · · ik where the
i1, . . ., ik are instance definitions. Then from the definition of val and valp it
follows that E f ′

j+1 = E f ′
j and E p′

j+1 = E p′
j , respectively. Thus, from the inductive

assumption, it follows that E f ′
j+1

→
v E p′j + 1j holds.

Case 2: rel definition E f ′
j+1

→
v E p′j + 1j follows analogously to case 1.

Case 3: val definition Assume dj+1 is a definition of the form val l=e. From the state-
ments (F ,≺,E f ′

j) : e ⇓ v and (F ,≺,E p′
j) : e ↓ v′, we know that v v v′. Thus,

E f ′
j ^ (l, v)

→
v E p′

j ^ (l, v′) holds. Therefore, E f ′
j+1

→
v E p′j + 1j, holds as well.

Overall, it follows that in the i+ 1-th step the statement E f ′
j+1

→
v E p′

j+1 holds.

Using this lemma, I can now show the final result for this section.

Theorem 5.3.2 (Correctness of Partial Evaluation). Given that the choice of which
argument expression to evaluate for the any operator is deterministic and identical for
full and partial evaluation, for every expression e in LRecC, the statement

(F ,≺,E) : e ⇓ v ∧ (F ,≺,E ′) : e ↓ v′ ∧ E
→
v E ′ ⇒ v v v′

where F is a function environment, ≺ is an order on labels and E and E ′ are a variable
and partial variable environment, holds.

Proof. I will show the above by induction of the nesting depth of expressions.
To begin the inductive proof, assume e has a nesting depth of 0, i.e., e is a non-nested

expression. Then, by the definition of LRecC in Figure 3.6 on page 50, e is either a
Boolean expression, the special ~ expression, an empty record expression or an identifier.
Assume that (F ,≺,E) : e ⇓ v, (F ,≺,E ′) : e ↓ v′ and E

→
v E ′ hold. I will show that

for each e then v v v′ holds.
For any expression in LRecC, under partial evaluation the inference rule Partial can

always be used. However, as in this case v′ = ?, the statement v v v′ holds for all legal
values v ∈ V . Therefore, I will not handle this case explicitly for each expression below.

Case 1: true Under full evaluation, the expression true can only be evaluated by rule
True in Figure 3.8 on page 52. Thus, v = true. For the partial evaluation case,
apart from the rule Partial, only the rule True in Figure 5.2 on page 86 can be
used, yielding v′ = true. Thus v v v′ holds.

Case 2: false The result follows analogously to case 1 using the rule False.

Case 3: ~ For the unit expression, under full evaluation only the rule Unit can be used.
It follows that v = {}. Under partial evaluation, apart from the rule Partial only
the rule Unit matches. From that rule it follows that v′ = R where R ⊆ L × {!}.
Thus, dom(v) ∩ domp(v

′) = ∅ and domp(v
′) = dom(v) = ∅ hold. It follows that

v v v′.

101

5. Partial Evaluation

Case 4: Empty Record Under full evaluation, the expression {} can only be evaluated
using the rule Record. Thus, v = {}. Under partial evaluation, the rules Record
and Partial can be used. From the rule Record we can follow that v′ = R where
R ⊆ L × {!}. Analogously to case 3, it follows that v v v′.

Case 5: Identifier In the case of full evaluation, only the rule Var applies. As e can
be evaluated to a value v, (e, v) ∈ E must hold. Under partial evaluation, the
rules Var and Partial match. I only consider the former rule here. As e can be
evaluated to v′, we know that (e, v′) ∈ E ′. From E

→
v E ′ it then follows that v v v′

holds. Therefore, v v v′ holds in this case, as well.

Overall, it follows that for all expressions with nesting depth 0, v v v′ holds.
For the inductive step, assume that for all expressions e with a given nesting depth of

i ∈ N the statement (F ,≺,E) : e ⇓ v ∧ (F ,≺,E ′) : e ↓ v′ ∧ E
→
v E ′ ⇒ v v v′ holds. I

will show that it then holds for expressions with nesting depth i + 1, as well. Given an
expression e with nesting depth i+1. By the definition of LRecC in Figure 3.6 on page 50,
e can be a record expression, a selection operation, the any operation, a conditional, a
guard operation, a witness operation, the equality operation on non-record values, a
let expression or a function application.
Assume that (F ,≺,E) : e ⇓ v, (F ,≺,E ′) : e ↓ v′ and E

→
v E ′ hold. I will show for

each kind of expression listed above that then v v v′ holds, as well. As we know that
e can be evaluated under both evaluation schemes, it is safe to assume in the following
that all premises of semantics rules used in derivations for e are satisfied. Furthermore, I
will ignore the rule Partial here, as its result always satisfies the partial value property.

Case 1: Record Expression Assume e is a record expression of the form {l1 = e1, . . .,
ln = en}. As e can be evaluated, we know that each ej for j ∈ {1, . . . , n} can
be evaluated to a value vj , as well. Thus, v = {(l1,v1),. . .,(ln,vn)}. In case of
partial evaluation, we know that a subset of the ej are evaluated to v′j . From the
inductive assumption, we furthermore know that vj v v′j for all j ∈ {1, . . . , n} if
such a v′j exists. Furthermore, from the construction of v′ as the result of rule
Record in the partial evaluation case, it follows that domp(v

′) ⊆ dom(v) and
domp(v

′) ∩ dom(v) = ∅. Consequently, v v v′ holds.

Case 2: Selection Operation Assume e is a selection operation of the form eb.l. As e
can be evaluated to values v and v′ under full and partial evaluation, respectively,
the expression eb must evaluate to values vb and v′b under full and partial evaluation.
From the inductive assumption we know that vb v v′b holds. It follows that then
elem(vb, l) v elemp(v

′
b, l) holds, as well. Consequently, v v v′ holds.

Case 3: any Operation Assume e has the form any(e1, ..., en). From the statement
(F ,≺,E) : e ⇓ v we know that for at least one ej with j ∈ {1, . . . , n} the statement
(F ,≺,E) : ej ⇓ vj holds. Similarly, (F ,≺,E ′) : e ↓ v′ implies that a e′j with
j′ ∈ {1, . . . , n} can be evaluated to v′j under partial evaluation. From the condition
that the any operator is deterministic and that it chooses the same argument for

102

5.3. A Partial Semantics of LRecC

evaluation under full and partial evaluation, it furthermore follows that j = j′.
With the inductive assumption, we can derive that vj v v′j . Therefore, v v v′

holds.

Case 4: Conditional Assume e is a conditional expression of the form if ep et ee. From
(F ,≺,E) : e ⇓ v it follows that either (F ,≺,E) : ep ⇓ true or (F ,≺,E) : ep ⇓ false.
I will assume the first case. For the second case, the result follows analogously.

From (F ,≺,E ′) : e ↓ v′ we can derive (F ,≺,E ′) : ep ↓ v′p with v′p ∈ {true, false}.
With the inductive assumption, it follows that true v v′p and thus v′p = true.
Thus, only the rule CondThen applies. We have that (F ,≺,E) : et ⇓ vt and
(F ,≺,E) : et ↓ v′t, as e can be evaluated under full and partial evaluation. Fur-
thermore, from the inductive assumption we know that vt v v′t. Thus v v v′.

Case 5: guard operation Assume e has the form guard(ev eg). From (F ,≺,E) : e ⇓ v
it follows that (F ,≺,E) : ev ⇓ v. Similarly, we can follow from (F ,≺,E) : e ↓ v′
that (F ,≺,E) : ev ↓ v′. From the inductive assumption we then know that v v v′
holds.

Case 6: witness operation Then e has the form witness(ev e1 · · · en). We know
from (F ,≺,E) : e ⇓ v. Similarly, from (F ,≺,E) : e ↓ v′ we can derive that
(F ,≺,E) : ev ↓ v′. With the inductive assumption it then follows that v v v′

holds.

Case 7: Equality operation Assume e has the form (e1 = e2). Thus, either the rule
EqualTrue or the rule EqualFalse applies. To show that v v v′ holds, it suffices
to show that e1 and e2 evaluate to the same value under full and partial evaluation.
From (F ,≺,E) : e ⇓ v it follows that (F ,≺,E) : e1 ⇓ v1 and (F ,≺,E) : e2 ⇓ v2 with
v1, v2 6∈ R. Furthermore, from (F ,≺,E ′) : e ↓ v′ it follows that (F ,≺,E ′) : e1 ↓ v′1
and (F ,≺,E ′) : e2 ↓ v′2 with v′1, v′2 6∈ Rp. From the inductive assumption, we know
that v1 v v′1 and v2 v v′2 hold. Thus, by the definition of v, it follows that v1 = v′1
and v2 = v′2.

Case 8: let Expression For a let expression, it suffices to show that the computed new
function environment and order on labels are identical under full and partial eval-
uation, and that the new variable environment computed under partial evaluation
is a partial environment of the new environment computed under full evaluation.

The former two equalities follow directly from the definition of the two helper
functions fun and rel in Figures 3.10 and 3.9, respectively. Both functions only
collect information independently of the variable environment and do not evaluate
any expressions.

The latter follows with Lemma 5.3.3 on page 100.

Case 9: Function Application Assume the expression e is a function application of the
form (f e1 . . . en). We know that (F ,≺,E) : e ⇓ v and (F ,≺,E ′) : e ↓ v′. It
follows that for all j ∈ {1, . . . , n} (F ,≺,E) : ej ⇓ vj and (F ,≺,E ′) : ej ↓ v′j . From

103

5. Partial Evaluation

the inductive assumption, we furthermore know that vj v v′j holds. Furthermore,
as the application can be evaluated, the functions match and matchp both yield
a single instance. With Theorem 5.3.1 on page 99 it follows that even more both
select the same instance and that the new environment under partial evaluation
is a partial environment of the environment under full evaluation. Thus, we can
follow from the inductive assumption that v v v′.

From the above proposition, we can directly follow the desired property:

Corollary 5.3.1 (Correctness of Partial Evaluation). Given that the choice of the ar-
gument expression to evaluate for the any operator is deterministic and identical for full
and partial evaluation, for every expression e in LRecC, the statement

(⊥, ∅, ∅) : e ⇓ v ∧ (⊥, ∅, ∅) : e ↓ v′ ⇒ v v v′

holds.

Proof. The above follows directly form Theorem 5.3.2 on page 101 and ∅
→
v ∅ by definition

of
→
v in Definition 5.3.6 on page 96.

It is worth noting here that the inverse statement that if partial evaluation succeeds,
full evaluation succeeds as well and the result of partial evaluation is a partial value of
the result of full evaluation does not hold. The partial rules Record and Partial in
Figure 5.2 on page 86 have an impact on termination behaviour in comparison to full
evaluation. Even if the full evaluation diverges, partial evaluation might still terminate
if the diverging expression is never evaluated. This is a general effect of non-strict eval-
uation and not a result of the design of the partial evaluator presented here. The other
direction, i.e., that full evaluation terminates and partial evaluation diverges, can not
occur. By design, my partial evaluation rules never evaluate an expression that the full
evaluator would not evaluate. However, as noted before, depending on the choice of the
anti-domain R in rules Unit and Record in Figure 5.2 on page 86, partial evaluation
might fail where full evaluation succeeds.

5.4. Conclusions

In this chapter, I have motivated the use of partial evaluation to compute certain auxiliary
computations statically. I have shown for my running examples from Chapter 2, how such
an approach can provide additional static safety. The computation of static information
thereby consists of two steps. A first step that infers which expressions are to be evaluated
and to what extend they need to be evaluated and a second step that actually evaluates
a program to a corresponding partial result. I have focused on the second aspect in
this chapter, leading to an operational semantics for partial evaluation as presented in
Section 5.3. As I have shown, these semantics are correct in that partial evaluation yields

104

5.4. Conclusions

results that are partial values of the result of full evaluation. However, the semantics allow
a program to be evaluated to a range of partial results. Even more, partial evaluation
of an expression might get stuck if insufficient information was computed for one of its
sub-expressions.
In the next Chapter, I will investigate the first step and constrain the partial evalu-

ation further such that it yields a well defined result and does not get stuck where the
corresponding full evaluation would succeed.

105

106

6. Guiding Partial Evaluation

In the previous chapter, I have presented an operational semantics for partially evaluating
expressions in LRecC with respect to a given set of auxiliary computations only. The
result of partial evaluation using those semantics is not uniquely defined. The main rules
that introduce partial results, i.e., the rules Record, Unit and Partial in Figure 5.2
on page 86 allow for two degrees of freedom.
Firstly, it is not defined which labels of a record value need to be evaluated to produce

the results in rule Record. Even more, the rule Partial permits to stop evaluation for
any expression and yield the undetermined partial result ?. These two rules cater for the
production of partial values.
Secondly, in the rules Record and Unit, the anti-domain of a partial result is not

fully fixed. Any combination of labels that is not part of the domain of the corresponding
full result is allowed. Even though the choice of which labels to include in the anti-
domain does not impact the partial value as such, it has an impact on pattern matching
in function applications. If insufficient information about the anti-domain of function
arguments is present, partial evaluation might stall.
In this chapter, I present a form of binding-time analysis that, given any expression in

LRecC, determines the partial domain and anti-domain for all sub-expressions of such
expression that need to be known in order to compute a desired set of properties for the
given expression. This analysis differs from classical binding-time analyses in that it does
not infer the binding-time of expressions, i.e., whether an expression can be statically
computed. Instead, the analysis computes a binding-time for an expression, i.e., when
and to what extent an expression should be computed.
I develop this analysis in two steps. First, I present a version of the analysis that is

restricted to non-nested record expressions in LRecC, e.g., expressions like the examples
on matrices presented in Chapter 2. Building on the general principles developed for the
non-nested case, I then extend the analysis to full LRecC with nested record expressions.

6.1. A Binding-Time Analysis for Non-Nested LRecC

To motivate the design, I first give a couple of examples and discuss how the requirements
for the domain and anti-domain of sub-expressions can be computed.

107

6. Guiding Partial Evaluation

6.1.1. Binding-Time Analysis By Example

I start out with the simple example of matrix addition previously discussed in Chapter 2
and Section 5.2.

let
2 fun add A{ shape=sA , rank=rA} B{ shape=sB, rank=rB}

= (vect_add !A !B){ shape=any(sA sB), rank=any(rA rB)}
4 A{ shape=sA, rank=rA , ldiag}

B{ shape=sB, rank=rB , ldiag}
6 = (ldiag_add(any(sA sB) !A !B){ shape=any(sA sB),

rank=any(rA rB),
8 ldiag}

val A = [1, 0, 0, 1]{ shape=[2, 2], rank=2, ldiag}
10 val B = [9, 0, 8, 7]{ shape=[2, 2], rank=2, ldiag}

in
12 (add A B)

end

Assume I want to know the shape component of the above expression. The partial
semantics presented in Section 5.3 allows me to evaluate the above let expression to that
respect only. However, in the above example, to compute the shape component of the
entire expression, the shape component of the body expression of the let construct needs
to be known. In other words, computing the shape component of the entire expression
generates a demand for the shape component of the body of the let expression.
This process of deriving demands for certain components of a value continues for all

sub-expressions in the above example. To compute the shape component of the body
expression of the let construct, we have to compute the shape component of the result
of the function application. In order to do so, we need first to derive which components
of the two arguments to the function add are required.
To compute the demand on the arguments of a function application, we have to derive

two kinds of information. Firstly, we need to infer which components of the arguments
are required to compute the desired component of the result of the function. As we do
not a priori know which instance of the function add will apply during evaluation of the
program, we have to derive this demand separately for all instances. To ensure that
enough information is available during partial evaluation regardless of which instance is
chosen, the demand for the function arguments is the union of the separate demands for
all instances of the function.
Secondly, we have to ensure that enough information is available to decide which in-

stance to use during partial evaluation. As I have shown in the previous section, the
partial match always yields at least the instances the full matching process would yield.
However, if insufficient information is available, it may yield more instances and conse-
quently partial evaluation may stall. To ensure that the pattern match under partial
evaluation is decidable if it is decidable under full evaluation, we have to compute suffi-
cient domain and anti-domain information for the arguments during partial evaluation.
Comparing the matching process of full and partial evaluation as defined in Figures 3.12

and 5.4, respectively, the main differences can be found in the pattern and order stages.

108

6.1. A Binding-Time Analysis for Non-Nested LRecC

In case of the partial pattern match, both stages only compare two instances if they
share a common set of labels with statically unknown state, i.e., those labels that are
neither in the domain nor anti-domain of the corresponding argument. I have put this
restriction into place to ensure that the partial match does not filter out instances that
the full match does not filter. However, as a side effect, the partial match, due to the
above restriction, does not filter out instances the full match would filter.
To ensure that both matching processes filter exactly the same instances, it suffices to

ensure that the above restriction never inhibits filtering out an instance, i.e., it suffices
to ensure that for every two instances the set of labels with statically unknown state is
identical. Or, put in another way, it suffices to ensure that for every two instances all
labels in their patterns that are not common for both instances have a statically known
state. I will prove this property in Section 6.1.3.
To derive the first kind of demand in the above example, i.e., to derive the demand that

stems from the demand on the result of the function application, we have to infer what
information is required of the arguments to compute the shape component of the result.
For the first instance defined in Line 2 above, we need to compute the shape component
of the record expression in Line 3. It is defined by means of an any operation. Thus, to
compute the shape component of the result, we need to compute the result of the any
operation. As the any operation may yield any of its arguments as its result, we need
to know the value of its arguments. The first argument is the shape component of the
parameter A of the function add. This gives us the first demand on one of the function
arguments. Analogously, the second argument to the any operation produces a demand
for the shape component of the parameter B. This completes the derivation of demands
for the first instance. Overall, we get a demand for the value of the shape component
for both arguments.
For the second instance in Line 4, the demand for its arguments can be derived simi-

larly. Again, we get that we need to know the value of the shape components for both
arguments to compute the shape component of the result.
To ensure that the pattern match succeeds under partial evaluation, we secondly need

to derive for which labels their presence needs to be known in an application of the
function add. As can be seen in the pattern for the first parameter of the two instances
defined in lines 2 and 4, both instances use the shape and rank labels. The only discrim-
inating label, i.e., the only label that is not used by both instances, is the label ldiag.
Thus, to decide the pattern match, we furthermore need to know whether the argument
carries the label ldiag.
As can be seen in this example, the derived information does indeed not guarantee that

any instance would match under full evaluation as the first argument to the function add
might still lack any of the other labels shape and rank. However, if the example can
be fully evaluated, the derived demands will ensure that the correct instance is chosen.
Therefore, it is guaranteed that the result of partial evaluation is a partial value of the
result of full evaluation, if such a result exists.
For the second parameter, we have the exact same set of patterns. Consequently, we

need to know the same information to decide the pattern match. Overall, we get the
following demands for the two function arguments:

109

6. Guiding Partial Evaluation

• We need to know the value of the shape component and

• we need to know whether the ldiag label is present.

Next, we can propagate this demand to the actual function arguments A and B as defined
in lines 9 and 10 above. To compute the shape component of the value A, we need
to compute the corresponding element of the record expression. Furthermore, we need
to compute whether the label ldiag is present. Similarly, we have to compute these
components for the value B.
This completes the derivation of demands in the above example. Below is an annotated

version of the source code including demands.

1 let
fun add A{ shape=sA , rank=rA}{(shape,↑{}),(ldiag,∅)}

3 B{ shape=sB, rank=rB}{(shape,↑{}),(ldiag,∅)}

= (vect_add !A !B){ shape=any(sA↑{} sB↑{})↑{},
5 rank=any(rA rB)}{(shape,↑{})}

A{ shape=sA, rank=rA , ldiag}{(shape,↑{}),(ldiag,∅)}

7 B{ shape=sB, rank=rB , ldiag}{(shape,↑{}),(ldiag,∅)}

= (ldiag_add(any(sA sB) !A !B){ shape=any(sA↑{} sB↑{})↑{},
9 rank=any(rA rB),

ldiag}{(shape,↑{})}

11 val A = [1, 0, 0, 1]{ shape=[2, 2]↑{},
rank=2, ldiag∅}{(shape,↑{}),(ldiag,∅)}

13 val B = [9, 0, 8, 7]{ shape=[2, 2]↑{},
rank=2, ldiag∅}{(shape,↑{}),(ldiag,∅)}

15 in
(add A{(shape,↑{}),(ldiag,∅)} B{(shape,↑{}),(ldiag,∅)}){(shape,↑{})}

17 end{(shape,↑{})}

As a representation for demands, I use sets of (label,demand) pairs annotated to expres-
sions. In such a pair, the second element is a set encoding the demand for that component
of a record value. I use the empty set ∅ to encode that a value corresponding to a label
needs not to be evaluated.
To annotate that a value needs to be fully evaluated, I use the demand ↑ {}. The

demand ↑ denotes that all labels contained in the domain of the full value are part of the
domain of the demand in that value, as well. Thus, ↑ defines the domain of a demand
as maximal with respect to any given value. The additional set of demands given after ↑
allows to further extend this set by labels that may not be contained in the domain of the
full value. This set is important to force labels to be in the range of a partial value even if
they are not in the domain. For example, in the above definition of add, knowledge about
the label ldiag is required to decide the pattern match. Assume we get a demand on the
first argument that requires it to be fully evaluated. If we only encode that requirement
as the corresponding demand, the evaluation of a value that does not contain a ldiag
component would not contain the ldiag label in the domain, nor in the anti-domain,
as the corresponding demand has been lost. Consequently, the pattern match for the

110

6.1. A Binding-Time Analysis for Non-Nested LRecC

function add would fail and partial evaluation would get stuck. If we, however, use a
demand of ↑ {(ldiag, {})}, this additional demand information is preserved and the label
will be part of the anti-domain of the partial value. Consequently, the pattern match
can succeed.
In Line 17 above, the demand for the entire let expression is given as {(shape, ↑ {})},

i.e., we want to know the full value of the shape component of the result of evaluating the
let expression. This, using the inference described above, leads ultimately to a demand
of ↑ {} for the shape components of the values A and B in lines 11 and 13. Furthermore, in
order to decide the pattern match, we need to compute the presence, but not the value, of
the ldiag label for both values. This is encoded by the demand ∅ for the corresponding
expressions in the definition of the two values in lines 12 and 14.
The function add in the above example is uniform with respect to demand derivation.

To compute the shape component of the result, the shape component of the arguments
is required. The same is true for the other auxiliary computations in the above example.
However, my approach is not limited to uniform functions. As a demonstration, consider
the function shape that computes the shape vector of an array and the corresponding
demand derivations.

1 let
fun shape A{ shape , rank}{(rank,↑{})}

3 = (A.shape){ shape=[A{(rank,↑{})}.rank]↑{},
rank =1}{(shape,↑{})}

5 val A = [1, 0, 0, 1]{ shape=[2, 2], rank=2↑{}}{(rank,↑{})}

in
7 (shape A{(rank,↑{})}){(shape,↑{})}

end{(shape,↑{})}

In the above code, I define a function shape in Line 2 that, given an array as argument,
yields a new array which encodes the shape vector of the argument. In general, the shape
vector of an array is a vector of the length of the array’s shape. Thus, the result is an
array with a rank of 1 and a one element shape component containing the rank of the
argument as its only value. In the definition of the function shape, this is expressed by
the expression [A.rank].
In Line 7 above, I apply the function shape to the value A as defined in Line 5.

As the array A has the shape [2, 2] and the rank 2, the result of evaluating the
overall let expression using the semantics presented in Chapter 3 is the value {(val,[2,2]),
(shape,[2]), (rank,1)}.
Now assume we want to compute only the shape component of the let expression. I

have already annotated the corresponding demands in the above example. To compute
the shape component of the let expression, we have to compute the shape component
of the result of the application of shape to the value A in the body of the let expression.
As the function shape has only one instance, we do not get any demands due to the

pattern matching, as all labels are included in all pattern. However, we have to propagate
the demand {(shape, ↑ {})} to the defining expression of the function shape in Line 3. As
we need to know the full value of the shape component, the corresponding element of the

111

6. Guiding Partial Evaluation

record expression in Line 3 gets a demand of ↑ {}. This demand then propagates though
the selection expression A.rank to the parameter A. As we select the rank component of
A, the parameter A itself has a demand of {(rank, ↑ {})}. This is then propagated to the
definition of the argument A in the function application. As can be seen in Line 5, the
corresponding record expression carries the demand {(rank, ↑ {})}, as well. Thus, the
expression of the rank component of the record expression in Line 5 has a demand of
↑ {}.
As this example demonstrates, the inference of demands works for non-uniform func-

tions, as well. In the above example, to compute the shape component of the result of
an application of the function shape, we need to compute the rank component of the
argument.
So far, my examples only contained a single application of each function. In the pres-

ence of multiple applications of the same function in different contexts, the derivation of
demands becomes more complex. For a single function, different demands on the results
may arise and thus different demands on the arguments may be inferred, depending on
the context of the function application. As an example, consider applying the function
shape twice.

let
2 fun shape A{ shape , rank}

= (A.shape){ shape=[A.rank],
4 rank =1}

val A = [1, 0, 0, 1]{ shape=[2, 2], rank =2}
6 in

(shape (shape A))
8 end

In Line 7 above, I first compute the shape vector for the array A. As in the previous exam-
ple, evaluating the inner application of the function shape yields the value {(val,[2,2]),
(shape,[2]), (rank,1)}. Next, I apply the function shape to this result, which yields the
final result {(val,[2]), (shape,[1]), (rank,1)} for the entire let expression.
Now assume we only want to compute the shape component of the let expression.

As the previous example has shown, the function shape is non-uniform. To compute the
shape component of its result, the rank component of its argument is required. Thus, if
we apply the function shape to the result of an application of the same function, we need
to compute the rank component of the result of the inner application of shape. This,
however, leads to a different set of demands for the sub-expressions of the definition of
the function shape.
To encode different sets of demands depending on the calling context, I introduce a

demand context to my annotations. Below are the derivations for the example above.

let
2 fun shape A{ shape , rank}{(shape,↑{})}`{(rank,↑{})},{(rank,↑{})}`∅

= (A.shape){ shape=[A{(shape,↑{})}`{(rank,↑{})}.rank]{(shape,↑{})}`↑{},
4 rank=1{(rank,↑{})}`↑{}}{(shape,↑{})}`{(shape,↑{})},{(rank,↑{})}`{(rank,↑{})}

val A = [1, 0, 0, 1]{ shape=[2, 2], rank =2}
6 in

112

6.1. A Binding-Time Analysis for Non-Nested LRecC

(shape (shape A∅){}`{(rank,↑{})}){}`{(shape,↑{})}

8 end{}`{(shape,↑{})}

A demand annotation of the form eC`D is to be read as: Given a demand C on the result
of the current function, the expression e needs to be evaluated up to the demand D. For
top-level expressions, I use the empty context demand {}. Thus, if we are interested in the
shape component of the above let expression, we get a demand of {} ` {(shape, ↑ {})}
as annotated in Line 8. This demand is then propagated as before. The only difference
is that whenever I enter a function definition, I update the derivation context to the
current demand on the result of the application of the function that is analysed.
Above, I first infer the demand for the outer application of the function shape. This

leads to the demand annotation {(shape, ↑ {})} ` {(shape, ↑ {})} in Line 4. Analogously
to the previous example, this demand is then propagated to the parameter A, leading to a
demand annotation of {(shape, ↑ {})} ` {(rank, ↑ {})} in Line 2. Thus, we get a demand
of {} ` {(rank, ↑ {})} on the result of the inner application of the function shape.
This demand triggers a second round of demand analysis for the function shape. Dur-

ing this round of analysis, I use the demand context {(rank, ↑ {})} ` {(rank, ↑ {})}. As
can be seen in Line 4, the rank component of the result of the function shape is de-
fined as the constant 1. Consequently, to compute the rank component of the result of
an application of shape, no information about its argument is required. This is anno-
tated accordingly in Line 2 by the demand {(rank, ↑ {})} ` ∅. This empty demand then
propagates to the argument A of the function application in Line 7.
As these demand annotations show, in order to compute the shape component of the

above let expression, the expression in Line 5 needs not to be evaluated. This is a
generic result. In general, the shape of the shape of an array is independent of the array
itself.
For non-recursive functions like the two examples shown so far, this demand analysis

suffices and always terminates. As the set of labels used in any LRecC expression is
finite, so is the set of demands that can arise. Thus, for each function, only a finite
set of different demands needs to be inferred. However, for recursive functions, the
simple demand analysis as motivated so far does not suffice. As an example, consider the
following expression that defines a function addn that adds a matrix n-times to itself.

let
2 fun add A{ shape=sA , rank=rA} B{ shape=sB, rank=rB}

= (vect_add !A !B){ shape=any(sA sB), rank=any(rA rB)}
4 fun addn A{shape , rank} n{}

= if (n = 0)
6 A

(addn (add A A) (n - 1))
8 val A = [1, 0, 0, 1]{ shape=[2, 2], rank =2}

in
10 (addn A 3)

end

In Line 2 above, I define a function add for adding two matrices in the usual way. I
have removed the additional instance for lower diagonal matrices to keep the example

113

6. Guiding Partial Evaluation

shorter. Next, in Line 4, I define a function addn that expects a matrix as first argument
and an integer value as second argument. If n is zero, the function addn returns its first
argument. Otherwise, in Line 7, the function addn is applied recursively to the result of
adding the matrix to itself and the value of n decremented by one. Finally, the function
addn is applied in Line 10 to a matrix A as defined in Line 8 and the integer value 3.
Using the semantics for full evaluation presented in Section 3.3, the above program

evaluates to the value {(val,[4,0,0,4]),(shape,[2,2]),(rank,2)}. Now, assume we are only
interested in the shape component of the result. To partially evaluate the above ex-
ample to this respect only, we first have to derive the corresponding demands on all
sub-expressions. Below, I give an accordingly annotated version of the above example.

1 let
fun add A{ shape=sA , rank=rA}{}`{}

3 B{ shape=sB, rank=rB}{}`{}

= (vect_add !A !B){ shape=any(sA sB), rank=any(rA rB)}{}`{}

5 fun addn A{shape , rank}{(shape,↑{})}`{(shape,↑{})}

n{}}{(shape,↑{})}`↑{}

7 = if (n = 0){(shape,↑{})}`↑{}

A{(shape,↑{})}`{(shape,↑{})}

9 (addn (add A A){(shape,↑{})}`{}

(n - 1){(shape,↑{})}`{}

11){(shape,↑{})}`{(shape,↑{})}

val A = [1, 0, 0, 1]{ shape=[2, 2], rank =2}
13 in

(addn A 3){}`{(shape,↑{})}

15 end{}`{(shape,↑{})}

To start off, I have annotated the corresponding demand {} ` {(shape, ↑ {})} for the
entire let expression. This demand is then propagated as before. Thus, for the body
expression of the single instance of the function addn in Line 11 we get the demand
{(shape, ↑ {})} ` {(shape, ↑ {})}. For the conditional expression, this demand is then
propagated to the then and else branches. Furthermore, as the demand on the conditional
is non-empty, we have to ensure that the value of the predicate expression is available
during partial evaluation. This yields a demand of {(shape, ↑ {})} ` ↑ {} for the sub-
expression (n = 0).
For the then branch, the demand directly propagates to the first argument of the

function addn. The derivation for the else branch, however, is more complex. The
else branch is defined as a recursive application of the function addn with a demand of
{(shape, ↑ {})} ` {(shape, ↑ {})}. However, we are currently inferring just this demand.
Thus, propagating this demand to the function definition would yield a non-terminating
loop. Instead, as no other information is available, I propagate the empty demand
{(shape, ↑ {})} ` {} to both arguments and continue the analysis with this information.
After propagating the demands through the non-recursive function add, this yields an

overall demand of {(shape, ↑ {})} ` {(shape, ↑ {})} for the first argument of the function
addn and a demand of {(shape, ↑ {})} ` ↑ {} for the second argument. Thus, the assumed

114

6.1. A Binding-Time Analysis for Non-Nested LRecC

demand of {(shape, ↑ {})} ` {} for the recursive application was actually to weak. Using
this information, we can now start a second round of demand inference for the function
addn. The corresponding demands are given below.

1 let
fun add A{ shape=sA , rank=rA}{(shape,↑{})}`{(shape,↑{})}

3 B{ shape=sB, rank=rB}{(shape,↑{})}`{(shape,↑{})}

= (vect_add !A !B){ shape=any(sA sB),
5 rank=any(rA rB)}{(shape,↑{})}`{(shape,↑{})}

fun addn A{shape , rank}{(shape,↑{})}`{(shape,↑{})}

7 n{}}{(shape,↑{})}`↑{}

= if (n = 0){(shape,↑{})}`↑{}

9 A{(shape,↑{})}`{(shape,↑{})}

(addn (add A A){(shape,↑{})}`{(shape,↑{})}

11 (n - 1){(shape,↑{})}`↑{}

){(shape,↑{})}`{(shape,↑{})}

13 val A = [1, 0, 0, 1]{ shape=[2, 2], rank =2}{}`{(shape,↑{})}

in
15 (addn A 3{}`↑{}){}`{(shape,↑{})}

end{}`{(shape,↑{})}

As can be seen in Line 10 above, I have now used the new demands for the function
arguments of the function addn in the recursive application. This leads to a new demand
to the function add, as well. After propagating the demand through the function add, we
get a demand of {(shape, ↑ {})} ` {(shape, ↑ {})} for the first argument of addn. Thus,
after the second round of analysis, the overall demands of both arguments have not
changed. Consequently, we have reached a fix-point.
Such a fix-point for the demand analysis for recursive functions always exists. Firstly,

demand analysis is monotonically increasing with respect to the derived demands by
nature of the demand analysis. I always propagate the entire demand or parts of it into
sub-expressions. Thus, if a stronger demand is propagated, the corresponding demand
for the sub-expressions cannot be weaker. The only exception to this is the demand for
the predicate of conditionals. In this case, I use the demand ↑ {} if the demand on the
overall conditional is non-empty. However, even in this case the propagated demand for
a stronger demand cannot be weaker.
Secondly, the demand that can arise for function arguments is bounded. The maximum

demand that can arise is a demand on all labels that occur in the corresponding LRecC
expression. As this set of labels is finite for any LRecC expression, such a maximum
exists.
Using the final demand inferred for the arguments of the function addn, we can now

compute the demands for the arguments in Line 15 above. This yields a final demand of
{} ` ↑ {} for the sub-expression 3 and a demand of {} ` {(shape, ↑ {})} for the matrix
A. Thus, to compute the shape component of the let expression, we need to compute
the shape component of the matrix A and the value of the expression 3.

115

6. Guiding Partial Evaluation

context ⇒ demand ` demand

demand ⇒ record
| ↑ { record }

record ⇒ { [(label , demand)
[, (label , demand)]*] }

Figure 6.1.. Syntax of demand annotations in extended Backus Naur form.

The result of demand analysis demonstrates a main difference between my approach
and classical type systems. In contrast with type systems, my approach does not approx-
imate the type of a conditional expression by using the common type or a least upper
bound in the setting of subtyping but computes which branch is actually chosen at run-
time. For the above example, this would not be necessary as both branches yield the
same shape component. However, in general this needs not to be the case. In these cases,
classical type systems would fail whereas my approach still yields the desired information.
This completes the examples for demand analysis. The demand analysis with fix-

point iteration for recursive functions as motivated so far suffices to derive demands for
all LRecC expressions without nested records. Next, I will give a formal definition of
demand analysis.

6.1.2. A Formal Definition of Demand Inference

I start off by formally specifying the syntax for demand annotations in Figure 6.1. The
production rule context defines the syntax for demand contexts as annotated to sub-
expressions. A demand context consists of a demand, followed by a `-symbol and a
further demand. The syntax for demands in turn is defined by the production rule
demand. A demand can either be a record demand or the demand for full evaluation
↑ {record} where record denotes a record demand. Lastly, a record demand is defined
by the production rule record as a set of (label,demand) pairs. I will refer to the set of
demands that can be produced using the production rule demand in Figure 6.1 as D in
the following. Furthermore, I will use Dr to refer to the set of record demands that can
be produced by using the production rule record.
To simplify further definitions, I first introduce the notion of a sub-demand as follows.

Definition 6.1.1 (Subdemand). The sub-demand elemd : D ×L → D is defined as

elemd(δ, l) :=


{δ′} if δ ∈ Dr and (l, δ′) ∈ δ,
elemd(δ

′, l) if δ ≡↑ {δ′},
{} otherwise.

116

6.1. A Binding-Time Analysis for Non-Nested LRecC

Thus, the sub-demand of a record demand is the demand of the corresponding element.
For the full-evaluation demand ↑ {δ}, the sub-demand is the corresponding sub-demand
of the contained demand δ.
Similarly to record values, I define the notion of the domain of a demand.

Definition 6.1.2 (Domain of a Demand). The domain of a demand domd : D → L is
defined as

domd(δ) :=

{
{l1, . . . , ln} if δ ≡ {(l1, δ1), . . . , (ln, δn)},
domd(δ

′) if d ≡↑ {δ′}.

Using this language for demand annotations, I can now define the notion of demand
satisfaction, i.e., I can define which partial values satisfy a given demand with respect
to the corresponding full value.

Definition 6.1.3 (Demand Satisfaction). Given a value v ∈ V and a partial value
v′ ∈ Vp with v v v′. For any demand δ ∈ D , we say that v′ satisfies the demand δ with

respect to v, or v
δ

v v′ for short, if one of the following statements holds:

1. v′ = ? and δ = {}

2. v 6∈ R and v′ 6= ?

3. v ∈ R and v′ ∈ Rp and d ∈ Dr and dom(v) ∩ domd(δ) \ domp(v
′) = ∅ and

domd(δ) ⊆ domp(v
′) ∪ domp(v

′) and ∀l ∈ domp(v
′) : elem(v, l)

elemd(δ, l)

v elemp(v
′, l)

4. v ∈ R and v′ ∈ Rp and δ =↑ {δ′} for some δ′ ∈ D and dom(v) = domp(v
′) and

domd(δ) \ dom(v) ⊆ domp(v
′) and ∀l ∈ dom(v) : elem(v, l)

elemd(δ, l)

v elemp(v
′, l).

In the above definition, the first statement covers demand satisfaction for the special
value ?. It only satisfies the empty demand.
The second statement defines demand satisfaction for non-record values. A non-record

partial value that is not the special ? -value satisfies all demands.
Next, the third statement defines demand satisfaction for record values. A partial

record value satisfies a record demand if the domain of the partial value contains all labels
that are part of both the record demand and the domain of the full value. Furthermore,
the anti-domain of the partial record value needs to contain all labels that are part of
the demand but not in the domain of the full value. Lastly, the elements of the partial
value need to satisfy the corresponding sub-demands of the record demand.
Finally, the last statement defines demand satisfaction for the demand for full evalu-

ation ↑. Such a demand is satisfied if the partial value contains all labels that the full
value contains and if each element of the partial value satisfies the corresponding element
of the demand with respect to the same element of the full value. Additionally, I require
that the anti-domain of the partial value covers all labels required by the demand that
are not part of the domain of the partial value. Note that, by definition of sub-demands,
this does not automatically require all elements of the partial value to be fully evaluated,

117

6. Guiding Partial Evaluation

as well. If a full evaluation of components of a record value is desired, this needs to be
explicitly encoded in the record component of the full-evaluation demand.
A further important operation on demands that will be required for the demand anal-

ysis is the union of two demands.

Definition 6.1.4 (Union of Demands). The union on demands] : D×D → D is defined
as follows:

δ1] δ2 :=



↑ {δ′1] δ′2} if δ1 =↑ {δ′1} and δ2 =↑ {δ′2},
↑ {δ′1] δ2} if δ1 =↑ {δ′1} and δ2 ∈ Dr,
↑ {δ1] δ′2} if δ1 ∈ Dr and δ2 =↑ {δ′2},{

(l, elemd(δ1, l)] elemd(δ2, l))

| l ∈ domd(δ1) ∪ domd(δ2)

}
if δ1, δ2 ∈ Dr.

Next, I will give some important properties of the union of demand. Firstly, the union
of demands is commutative.

Theorem 6.1.1 (Commutativity of Union of Demands). For two demands δ1, δ2 ∈ D
the following statement holds

δ1] δ2 = δ2] δ1

Proof. The above property follows directly from the symmetry of the cases in the defini-
tion of the union of demands in Definition 6.1.4.

The next two theorems explore the relationship between the union on demands, and the
domain and satisfaction of demands, respectively. First, I will show the following relation
between the domain of a demand and the domain of the union of demands.

Theorem 6.1.2 (Distributivity of Domain over Union of Demands). Given the two
demands δ1, δ2 ∈ D . Then the following statement holds:

domd(δ1) ∪ domd(δ2) = domd(δ1] δ2)

Proof. I will show that the above statement holds by case analysis for the demands δ1
and δ2. We have to consider four cases.

δ1 ∈ Dr and δ2 ∈ Dr. Then domd(δ1) ∪ domd(δ2) = domd(δ1] δ2) follows directly from
the definition of the union of demands.

δ1 6∈ Dr and δ2 6∈ Dr. Then δ1 =↑ {δ′1} and δ2 =↑ {δ′2} for some δ′1, δ′2 ∈ Dr. Further-
more, by definition of the union of demands, we know that δ1] δ2 =↑ {δ′1] δ′2}.
Consequently, from the definition of the domain of a demand, it follows that
domd(δ1] δ2) = domd(δ

′
1] δ′2). This is another instance of case one above.

δ1 6∈ Dr and δ2 ∈ Dr. Then δ1 =↑ {δ′1} for some δ′1 ∈ Dr. It follows that δ1] δ2 =↑
{δ′1] δ2}. Thus, domd(δ1] δ2) = domd(δ

′
1] δ2). This is another instance of case

one above.

118

6.1. A Binding-Time Analysis for Non-Nested LRecC

δ1 ∈ Dr and δ2 6∈ Dr. This case follows from the commutativity of the union on demands
and the case above.

Overall, it follows that domd(δ1) ∪ domd(δ2) = domd(δ1] δ2) holds.

A further important property of the union of demands is that it always yields a demand
that is not weaker than any of its argument demands.

Theorem 6.1.3 (Monotonicity of Union of Demands). Given two demands δ1, δ2 ∈ D .
Then for all v ∈ V and v′ ∈ Vp with v v v′ the following statement holds:

v
δ1] δ2
v v′ ⇒ v

δ1

v v′ ∧ v
δ2

v v′

Proof. Given v ∈ V and v′ ∈ Vp. Assume that v
δ1] δ2
v v′ holds. With Theorem 6.1.1 on

the preceding page, it suffices to show that then v
δ1

v v′ holds, as well. I will show this
by induction on the nesting depth of the demand δ1] δ2.
To start off, assume δ1] δ2 is a non-nested demand. Then δ1] δ2 = {}. Consequently,

by definition of the union of demands, δ1 = {} and δ2 = {}. Thus, given that v
δ1] δ2
v v′,

the statement v
δ1

v v′ holds.
For the inductive step, assume that the above statement holds for all demands with

a nesting depth smaller than n for some n ∈ N. Let δ1, δ2 ∈ D such that δ1] δ2 has a
nesting depth of n+ 1.

For v 6∈ R and v′ 6∈ Rp, v
δ1

v v′ follows trivially from the definition of demand satisfac-
tion. For all v 6∈ R all v′ ∈ Vp with v v v′ satisfy any demand. In case that v′ 6∈ Rp, no
non-empty demand can be satisfied.
Now assume v ∈ R and v′ ∈ Rp. We have to consider two cases. Firstly, assume

δ1] δ2 ∈ Dr. Then by definition of the union of demands, δ1 ∈ Dr and δ2 ∈ Dr, as

well. Furthermore, from v
δ1] δ2
v v′, we know that dom(v)∩ domd(δ1] δ2) \ domp(v

′) = ∅

and domd(δ1] δ2) ⊆ domp(v
′) ∪ domp(v

′) and ∀l ∈ domp(v
′) : elem(v, l)

elemd(δ1] δ2, l)
v

elemp(v
′, l) hold. From Theorem 6.1.2 on the facing page, we know that domd(δ1) ⊆

domd(δ1] δ2). Thus, it follows that dom(v) ∩ domd(δ1) \ domp(v
′) = ∅ and domd(δ1) ⊆

domp(v
′) ∪ domp(v

′). Next, from the definition of sub-demands (cf. Definition 6.1.1 on
page 116), we know that for all l ∈ L the demand elemd(δ1, l) has a nesting depth
smaller than n + 1. Consequently, we can follow with the inductive assumption from

∀l ∈ domp(v
′) : elem(v, l)

elemd(δ1] δ2, l)
v elemp(v

′, l) that ∀l ∈ domp(v
′) : elem(v, l)

elemd(δ1, l)

v

elemp(v
′, l) holds. Thus, overall v

δ1

v v′ holds.
Secondly, we have to consider the case that δ1] δ2 =↑ {δ′} with δ′ ∈ D . Then, by

the definition of the union of demands, either δ1 =↑ {δ′1} for some δ′1 ∈ D , or δ1 ∈ Dr.

We know from v
δ1] δ2
v v′ that dom(v) = domp(v

′) holds and that for all l ∈ dom(v) the

statement elem(v, l)
elemd(δ1] δ2, l)

v elemp(v
′, l) holds and that domd(δ)\dom(v) ⊆ domp(v

′)
holds. Again, we know from the definition of sub-demands that for all l ∈ L the demand

119

6. Guiding Partial Evaluation

elemd(δ1] δ2, l) has a nesting depth smaller than n+1. Consequently, it follows with the

inductive assumption that for all l ∈ dom(v) the statement elem(v, l)
elemd(δ1, l)

v elemp(v
′, l)

holds. For the case that δ1 =↑ {δ′1}, it remains to be shown that domd(δ1) \ dom(v) ⊆
domp(v

′) holds. This follows directly with Theorem 6.1.2 on page 118.
Consider the other case that δ1 ∈ Dr. Here, it remains to be shown that dom(v) ∩

domd(δ1) \ domp(v
′) = ∅ and domd(δ1) ⊆ domp(v

′) ∪ domp(v
′) hold. The former follows

from dom(v) = domp(v
′). The latter follows with Theorem 6.1.2 on page 118 from

domd(δ) \ dom(v) ⊆ domp(v
′).

With the syntax for demand annotations and the notion of demand satisfaction in
place, I can now formally define the demand analysis for LRecC without nested record
expressions. I define the analysis as a code rewriting scheme from LRecC to LRecD,
an extension of LRecC with demand annotations. First, I give the syntax of LRecD in
Figure 6.2 on the facing page.
As can be seen, the production rules for all expressions in LRecD, i.e., all tokens in

the rule expression, carry an additional token contexts compared to the rules for LRecC
presented in Figure 3.6 on page 50. The token contexts is defined in the corresponding
production rule as a potentially empty set of demand contexts as defined by the produc-
tion rule context in Figure 6.1 on page 116. Furthermore, I have extended the pattern
for function arguments by a set of demand contexts, as well.
Using this extended syntax, I can now define demand inference. The corresponding

rewriting scheme A is given in Figure 6.3 on page 122. For convenience of specification, I
will in the following treat context annotations as sets where a missing context annotation
corresponds to an empty set.
Given an expression in LRecD with empty sets of contexts, the rewriting scheme A

yields a corresponding expression in LRecD with annotated demands. It is worth noting
here that every expression in LRecC is syntactically identical to a semantically equivalent
expression in LRecD with empty demand annotations. The rewriting is parametrised,
apart from the expression to rewrite, by a function environment F , a variable environ-
ment EA and the current context and demand for the overall expression δc ` δ.
The function environment F is similar in structure to the function environment F

used in the definition of the semantics and partial semantics for LRecC in Sections 3.3
and 5.3. It, as well, is nested to support the scoping of function definitions by nested let
constructs. It consists of a tuple of the outer, potentially nested, function environment
and a set of local instance definitions. I will discuss the structure of the set of local
instances in more detail when describing the demand derivation for function definitions
and function applications.
The variable environment EA is a set of (identifier,contexts) pairs, where the identi-

fier corresponds to a variable used in the current expression and the contexts give the
demands that arise for this variable in different demand contexts.
Overall, the demand analysis presented in Figure 6.3 on page 122 propagates demands

starting from the top-level into each sub-expression. Contrary to the rules for evaluation,
the rules for demand analysis progress bottom-up, i.e., demands are propagated from the

120

6.1. A Binding-Time Analysis for Non-Nested LRecC

program ⇒ expression

expression ⇒ record | selection | unit | any
| identifier contexts | boolean | conditional
| guard | witness | equal | let | application

record ⇒ { [element [, element]*] } contexts

element ⇒ label = expression

selection ⇒ expression . label contexts

unit ⇒ ~ contexts

any ⇒ any ([expression]+) contexts

boolean ⇒ true contexts | false contexts

conditional ⇒ if expression expression expression contexts

guard ⇒ guard (expression expression) contexts

witness ⇒ witness (expression [expression]+) contexts

equal ⇒ (expression = expression) contexts

let ⇒ let [definition]* in expression end contexts

definition ⇒ relation | value | function

relation ⇒ rel label <: label

value ⇒ val identifier = expression

function ⇒ fun [instance]+

instance ⇒ [pattern]+ = expression

pattern ⇒ identifier { [label [, label]*] } contexts

application ⇒ (identifier [expression]+) contexts

contexts ⇒ [context [, context]*]

Figure 6.2.. Syntax of LRecD in extended Backus Naur form.

121

6. Guiding Partial Evaluation

(True) A
q
F ,EA, δc ` δ, true S

y

 (F ,EA, true S / δc ` δ)

(False) A
q
F ,EA, δc ` δ, false S

y

 (F ,EA, false S / δc ` δ)

(Unit) A
q
F ,EA, δc ` δ, ~S

y

 (F ,EA, ~ S / δc ` δ)

(Var) A
q
F ,EA, δc ` δ, α S

y

 (F ,EA
D
^ (α, δc ` δ), α S / δc ` δ)

(Equal) A
q
F ,EA, δc ` δ, (e1 S1 = e2 Sn) S

y

 (F ′′,EA
′′, (e′1 S ′

1 = e′2 S ′
2) S / δc ` δ)

where
F ′,EA

′, e′1 S ′
1 := A

q
F ,EA, δc ` ⇑ (δ), e1 S1

y

F ′′,EA
′′, e′2 S ′

2 := A
q
F ′,EA

′, δc ` ⇑ (δ), e2 S2

y

(Record) A
q
F ,EA, δc ` δ, {l1=e1 S1, . . ., ln=en Sn} S

y

 (Fn,EA
n, {l1=e′1 S ′

1, . . ., ln=e′n S ′
n} S / δc ` δ)

where
F 0 := F
EA

0 := EA
F i+1,EA

i+1, e′i+1 S + i+ 1′ := A
q
F i,EA

i, δc ` elemd(δ, li+1), ei+1 Si+1

y

Figure 6.3.. Demand analysis scheme A for translating expressions in LRecC without
nested records into expressions in LRecD with demand annotations.

122

6.1. A Binding-Time Analysis for Non-Nested LRecC

(Selection) A
q
F ,EA, δc ` δ, eb Sb.l S

y

 (F ′,EA
′, e′b S ′

b.l S / δc ` δ)

where
F ′,EA

′, e′b S ′
b := A

q
F ,EA, δc ` nest(l, δ), eb Sb

y

(Any) A
q
F ,EA, δc ` δ, any(e1 S1 · · · en Sn) S

y

 (Fn,EA
n, any(e′1 S ′

1 · · · e′n S ′
n) S / δc ` δ)

where
F 0 := F
EA

0 := EA
F i+1,EA

i+1, e′i+1 Si+1 := A
q
F i,EA

i, δc ` δ, ei+1 Si+1

y

(Cond) A
q
F ,EA, δc ` δ, if ep Sp et St ee Se S

y

 (F 3,EA
3, if e′p S ′

p e′t S ′
t e′e S ′

e S / δc ` δ)

where
F ′,EA

′, e′p S ′
p := A

q
F ,EA, δc ` ⇑ (δ), ep Sp

y

F ′′,EA
′′, e′t S ′

t := A
q
F ’,EA’, δc ` δ, et St

y

F 3,EA
3, e′e S ′

e := A
q
F ”,EA”, δc ` δ, ee Se

y

(Guard) A
q
F ,EA, δc ` δ, guard(e1 S1 e2 S2) S

y

 (F ′′,EA
′′, guard(e′1 S ′

1 e′2 S ′
2) S / δc ` δ)

where
F ′,EA

′, e′1 S ′
1 := A

q
F ,EA, δc ` δ, e1 S1

y

F ′′,EA
′′, e′2 S ′

2 := A
q
F ’,EA’, δc ` ⇑ (δ), e2 S2

y

(Witness) A
q
F ,EA, δc ` δ, witness(ev Sv e1 S1 · · · en Sn) S

y

 (Fn,EA
n, witness(e′v S ′

v e′1 S ′
1 · · · e′n S ′

n) S / δc ` δ)

where
F ′,EA

′, e′v S ′
v := A

q
F ,EA, δc ` δ, ev Sv

y

F i+1,EA
i+1, e′i+1 S ′

i+1 := A
q
F i,EA

i, δc ` ⇑ (δ), ei+1 Si+1

y

Figure 6.3.. Demand analysis scheme A for translating expressions in LRecC
without nested records into expressions in LRecD with demand
annotations (contd.).

123

6. Guiding Partial Evaluation

(Let) A
q
F ,EA, δc ` δ, let d1 · · · dn in eb Sb end S

y

 (F 4,EA
′′, let d′1 · · · d′n in e′ S ′

b end S / δc ` δ)

where
F ′, D = fund(F , ∅, (d1, . . . , dn))
F ′′,EA

′, e′ S ′
b = A

q
F ′,EA, δc ` δ, e Sb

y

F 3,EA
′′, D′ = propvar(F ′′,EA′, δc, D)

F 4, {d′1, . . . , d′n} = disperse(F 3, D′)

(Ap) A
q
F ,EA, δc ` δ, (f e1 S1 · · · en Sn) S

y

 (Fn,EA
n, (f e′1 S ′

1 · · · e′n S ′
n) S / δc ` δ)

where
EA

0 := EA
F 0, (δ1, . . . , δn) := apply(F , f, n, δ)

F i+1,EA
i+1, e′i+1 S ′

i+1 := A
q
F i,EA

i, δc ` δi+1, ei+1 Si+1

y

Figure 6.3.. Demand analysis scheme A for translating expressions in LRecC
without nested records into expressions in LRecD with demand
annotations (contd.).

result of a function to its arguments and from the body expression of a let construct to
the bindings of the let construct in inverse evaluation order.
The first rule in Figure 6.3 on page 122, the rule True, describes the demand derivation

for the true expression. Given an expression true with an existing set of demands S ,
I add the new demand δc ` δ to the set of demands using the join operation S / δc ` δ.
This operation is defined as follows:

Definition 6.1.5 (Join of Demand Contexts). Given a set of demand contexts S and
a context with demand δc ` δ, the join of the demand contexts, S / δc ` δ, is defined as

S / δc ` δ :=

{
(S \ {δc ` δ′}) ∪ {δc ` δ} if some δc ` δ′ ∈ S exists,
S ∪ {δc ` δ} otherwise.

As can be seen, the join of a demand S / δc ` δ replaces any existing demand for the
context δc in S with the new demand δ. Another way to define the join would be to
compute the union of the existing demand and the new demand. However, this is not
strictly necessary, as in multiple rounds of demand annotation, the demand for a given
expression under any context can only become stronger.
Analogously, the demand is propagated in rules False and Unit in Figure 6.3 on

page 122 for expressions of kind false and ~. In all three cases, the function environment

124

6.1. A Binding-Time Analysis for Non-Nested LRecC

F and variable environment EA remain unchanged.
The rule Var handles demand derivation for identifiers that occur in applied positions.

As in the other rules discussed so far, the demand is added to the existing demand an-
notations for that variable. Furthermore, I update the variable environment by inserting
the new demand and context δc ` δ for the identifier α. This is facilitated by means of
the insertion function EA

D
^ (α, δc ` δ), which is defined as follows:

Definition 6.1.6 (Variable Demand Insertion). Given a variable environment EA, an
identifier α and a demand with context δc ` δ. The insertion of the demand with context
δc ` δ into the variable environment EA for the identifier α, EA

D
^ (α, δc ` δ), is then

defined as

EA
D
^ (α, δc ` δ) :=

{
(EA \ {(α,S)}) ∪ {(α,S ′)} if some (α,S) ∈ EA exists,
(EA ∪ {(α, {δc ` δ})} otherwise,

where

S ′ :=

{
(S \ {δc ` δ′}) ∪ {δc ` δ′] δ} if some δc ` δ′ ∈ S exists,
S ∪ {δc ` δ} otherwise.

Thus, the demand insertion into the variable environment EA adds the demand to the
corresponding set of demands and, if such a demand already exist, computes the union of
the existing and new demand. Here, contrary to the join of demand contexts, computing
the union of the new and existing demand is strictly necessary: As variables might be
used in different expression positions, different demands might arise. However, as I have
shown in Theorem 6.1.3 on page 119, the union of two demands satisfies both demands.
Thus, using the demand insertion defined above, the resulting demand on the bound
expression for a variable suffices to satisfy the demand at each applied occurrence.
Next in Figure 6.3 on page 122 is the rule Equal for demand analysis on equality

expressions. Again, I annotate the new demand to the expression. Furthermore, as
the equality operation contains sub-expressions, I rewrite these, as well. The order in
which the demands for the two expressions are derived is not of importance. However,
it is important that the updated function and variable environments are propagated
properly. This is achieved in rule Equal by using the updated environment returned
by the demand analysis of the first expression during the demand analysis of the second
expression.
Instead of directly propagating the demand on the overall equality expression to the

sub-expressions, I use the demand δc ` ⇑ (δ), which is defined as:

Definition 6.1.7 (Lifting of Demands). Given a demand δ. Then the lifting of the
demand δ, ⇑ (δ), is defined as

⇑ (δ) :=

{
{} if δ = {},
↑ {δ} otherwise.

125

6. Guiding Partial Evaluation

The idea is that we need to know the full values of both sub-expressions to compute any
partial result of the equality operation. Only for the empty demand, i.e., if we do not
need the value of the equality operation at all, we do not need to compute the values of
the sub-expressions either.
For LRecC, it would suffice to propagate the demand on the equality operation to its

sub-expressions, as in LRecC only Boolean values can be compared and Boolean values
are either fully evaluated or not at all. However, when more complex data structures
are added, this might no longer be the case. To cater for these cases and allow for an
easier extension of the demand derivation, I use the explicit lifting operation ⇑ (δ) to lift
all but the empty demand to the full evaluation demand ↑ {δ}. Note that using ↑ {δ}
directly would not suffice, as in this case the arguments would always be fully evaluated.
The rule Record in Figure 6.3 on page 122 describes demand analysis for record

expressions. Again, I annotate the demand at the expression. Additionally, for each
component of the record the corresponding sub-expressions are rewritten using the sub-
demand elemd, if the corresponding label is part of the domain of the demand. Otherwise,
no demand is propagated. To ensure proper propagation of function demands and vari-
able demands, the two corresponding environments F and EA are threaded though all
demand derivations for the components of the record. Formally, this is specified by the
inductive definition of the result environments Fn and EA

n.
For the dual expression to record construction, the selection of a component of a record,

demand derivation is defined by rule Selection. Here, I rewrite the expression that the
selection is performed on using the new demand δc ` nest(l, δ), which is defined as:

Definition 6.1.8 (Nesting of Demands). Given a demand δ and a label l. Then the
nesting of the demand δ with label l, nest(l, δ), is defined as

nest(l, δ) :=

{
{} if δ = {},
{(l, δ)} otherwise.

This nesting of demands reflects that, if no information about a component of a record
is required, no information about the record itself is required either. In case that the
demand on the component is non-empty, the corresponding demand on the corresponding
record is a record demand where the selected label is associated with the demand of the
component that is selected.
The demand derivation for the any operation is defined by rule Any in Figure 6.3 on

page 122. As the any operation may yield any of its argument as its result, I propagate
the demand for the any expression to all the argument expressions. Again, to ensure the
propagation of demands on functions and variables, the corresponding environments F
and EA are threaded through the demand analysis for the sub-expressions.
The rule Cond describes demand derivation for conditionals. For evaluating a condi-

tional partially, the full value of the predicate expression and the partial value of either
the then or else branch is required. However, if the demand for the conditional is empty,
none of its sub-expressions needs to be evaluated. To express this, I use ⇑ (δ) as the
demand for the predicate expression, similar to the rule Equal for equality operations.

126

6.1. A Binding-Time Analysis for Non-Nested LRecC

fund(Fδ,≺, D) := (Fδ,≺,
⋃
d∈D

fun′d(d))

where

fun′d(d) :=

{
{f} × instd({i1, . . . , in}) if d ≡ fun f i1 · · · in,
∅ otherwise.

with
instd(I) :=

⋃
i∈I

inst′d(i)

where

inst′d(α1{ l11, . . ., l1n1
} S1 · · · αm{ lm1 , . . ., lmnm} Sm = e S)

:= {(((α1, {l11, . . . , l1n1
},S1), . . . , (αm, {lm1 , . . . , lmnm},Sm)), e S)}

Figure 6.4.. Definition of function fund as used in Figure 6.8 on page 136.

For the then and else expressions, the demand on the overall conditional expression is
propagated as we do not know during demand analysis which expression will be evalu-
ated.
Next in Figure 6.3 on page 122 is the rule Guard for guard operations. Similar

to conditionals, to evaluate a guard operation partially, the full value of the second
argument is required. Thus, I propagate the demand ⇑ (δ) to that expression. For the
first argument, the demand on the guard operation itself is used. As the guard operation,
if it can be evaluated, is the identity on the first argument, the demand on that argument
is equal to the demand on the operation itself.
The demand inference for the second guard operation witness is defined by rule Wit-

ness. It is similar to the rule Guard except that for witness operations the lifted
demand ⇑ (δ) is propagated to all but the first argument expression.
The penultimate rule in Figure 6.3 on page 122, the rule Let, defines demand propa-

gation for let constructs. Demand propagation in this case is performed in four steps.
First, the function environment F is extended by the functions defined by the let con-
struct. This is expressed by means of the function fund as defined in Figure 6.4. The
function fund mostly resembles its counterpart for full and partial evaluation fun. The
resulting function environment only differs in the additional encoding of the sets of de-
mand contexts that are annotated at the pattern of each function instance. To keep
the structure of the function environment for demand inference and the corresponding
function environment for partial evaluation similar and thus to allow for a later reuse,
the function environment for demand inference contains an order on labels ≺, as well.
This order, however, is not used during demand inference and thus remains empty.
Using the extended function environment, I next derive the demands that arise from

the body expression of the let construct. This might yield a modified function environ-
ment, if the function definitions contained in the environment have been extended due

127

6. Guiding Partial Evaluation

propvar(F ,EA, δc, (d1, . . . , dn)) := (Fn,EAn, Dn)

with

F0,EA0, D0 := (F ,EA, ())

Fi+1,EAi+1, Di+1 :=

{
(F ′i ,EA

′
i, (var α = e′ S ′) +Di) if dn−i ≡ var α = e S

(Fi,EAi, (di+1) +Di) otherwise.

where
F ′i ,EA

′
i, e
′ S ′ := propvar′(Fi,EAi, δc, α, e S)

The function propvar′ is defined as

propvar′(F ,EA, δc, α, e S) := (F ′,EA
′′, e′ S ′)

with

EA
′ := {(β, δ′c ` δ′) ∈ EA | α 6= β ∨ δ′c 6= δc}

F ′,EA
′′, e′ S ′ :=

{
A

r
F ,EA

′, δc ` δ, e S
z

if (α, δc ` δ) ∈ EA,

F ,EA
′, e S otherwise.

Figure 6.5.. Definition of function propvar as used in Figure 6.3 on page 122.

to function applications in the let body. Furthermore, alongside the extended body ex-
pression, an updated variable environment EA

′ is returned, which contains the demands
for all variables used in the let body.
Using this extended variable environment, I next propagate the demands on variables

to the variable bindings of the let construct. This step is expressed by the function
propvar as defined in Figure 6.5.
Given the current function environment F ′′, the updated variable environment EA

′, the
current context demand δc and the sequence of definitions, the function propvar computes
an updated function environment, a variable environment where the local bindings have
been removed and an annotated sequence of definitions. This is achieved by applying
the function propvar′ to each var definition in the sequence of definitions D. The order
definitions using the rel construct are ignored.
Note that the demand analysis is performed bottom-up: In each step i + 1, the def-

inition dn−i is analysed. As in previous demand inference rules, I thread the function
environment and variable environment through the sequence of demand derivations to
ensure the correct propagation of demands on functions and variables.
Finally, the function propvar′ propagates the demand for a single variable binding.

If the environment contains a demand for the current identifier α under the current
derivation context δc, this demand is propagated into the right hand side. As the identifier
is no longer in scope, I use an updated variable environment where the demand for the

128

6.1. A Binding-Time Analysis for Non-Nested LRecC

disperse((F ,≺, {ι1, . . . , ιn}), D) := (F , Dn)

with
D0 := erase(D)
Di+1 := D + disperse′(ιi+1)

where the function erase is defined as

erase(D) := (d ∈ D | d 6≡ fun · · ·)

and where the function disperse′ is defined as

disperse′(f, (((α1, p1,S1), . . . (αn, pn,Sn)), e S))
:= fun f α1 p1 S1 · · · αn pn Sn = e S .

Figure 6.6.. Definition of function disperse as used in Figure 6.3 on page 122.

identifier under the current context has been removed. It is important here that only
the demand for the current context is removed from the environment, as the demands
for other contexts are still in scope and might be needed later.
The last step in the demand analysis for let constructs is the function disperse as

defined in Figure 6.6. It is the dual operation to the function fund defined in Figure 6.4
on page 127. Given a nested function environment and a sequence of definitions, the
function disperse returns a new function environment and an updated sequence of def-
initions. The new function environment is computed by stripping off the top-level of
the old environment. The sequence of definitions is updated by first erasing all function
definitions using the function erase and then adding a corresponding function definition
for each instance in the top-level set of instances of the old function environment.
As a last step, the updated definitions and the extended body expression are combined

again into a let construct.
The final rule in Figure 6.3 on page 122, the rule Ap, covers function applications.

To derive the demands on the arguments of a function application, I first propagate
the demand into the function definition using the function apply. It yields a modified
function environment F ′ and a sequence of demands that contains the demand for each
function argument. These demands are then propagated into the corresponding argument
expressions.
The function apply is defined in Figure 6.7 on the following page. First, the function

apply traverses the nested function environment until it either hits the initial empty en-
vironment ⊥ or finds a nesting level where some instance for the function f is defined.
In the former case, no function f is defined in the current scope. To nonetheless continue
demand analysis, the function apply in this case returns empty demands for all param-
eters. An alternative choice would be to fail the demand analysis, as the corresponding
expression cannot be evaluated. In the latter case, i.e., if at least one instance has been
found, the demands for the parameters are derived using the function lookup.

129

6. Guiding Partial Evaluation

The function apply is defined as

apply(F , f, n, δ) :=



lookup((F ′,≺, I), f, n, δc)
if F = (F ′,≺, I) and some
(f, (s, e)) ∈ I exists,

((F ′′,≺, I), (δ1, . . . , δn))
if F = (F ′,≺, I) and no
(f, (s, e)) ∈ I exists,

(F , ({}, . . . , {})) if F =⊥,

where
F ′′, (δ1, . . . , δn) := apply(F ′, f, n, δc).

Furthermore, the function lookup is defined as

lookup((F ,≺, I), f, n, δc)

:=


((F ,≺, I), (δ1, . . . , δn))

if δ1, . . . , δn ∈ D exists and
(f, (((α1, p1,S1), . . . , (αn, pn,Sn)), e S) ∈ I
exists such that δc ` δi ∈ Si

for all i ∈ {1, . . . , n},
fix(F ,≺, I ′, f, n, δc) otherwise.

with
I ′ :=

⋃
ι∈I

amend(ι, f, n, δc)

where amend is defined as

amend((f ′, (((α1, p1,S1), . . . , (αm, pm,Sm)), e S)), f, n, δc)

:=

(f ′, (((α1, p1,S1 / δc ` ∅), . . . , (αm, pm,Sm / δc ` ∅)), e S))
if f = f ′

and m = n,
(f ′, (((α1, p1,S1), . . . , (αm, pm,Sm)), e S)) otherwise.

and fix denotes the fix-point iteration on the result of derive, defined as

fix(F ,≺, I, f, n, δc) :=

{
((F ,≺, I), (δ1, . . . , δn)) if F = F ′ and I = I ′,
fix(F ′,≺, I ′, f, n, δc) otherwise,

where
F ′, I ′, (δ1, . . . , δn) := derive(F , I, f, n, δc).

The function derive is defined as

derive(F , {ι1, . . . , ιm}, f, n, δc) := ((Fm, {ι′1, . . . , ι′m}), (δ1, . . . , δn))

Figure 6.7.. Definition of function apply as used in Figure 6.3 on page 122.

130

6.1. A Binding-Time Analysis for Non-Nested LRecC

with

F0 := F
δ0i := pattern(I0, f, n, i)

Fj+1, ιj+1, (δ
j+1
1 , . . . , δj+1

n) := derive′(Fj , f, n, ιj+1, δc)

δk :=
⊎
j∈{0,...,m} δ

j
i for all k ∈ {1, . . . , n}

ι′k := propdem(ιk, f, n, δc, (δ1, . . . , δn)) for all
k ∈ {1, . . . ,m}

where the function pattern is defined as

pattern({ι0, . . . , ιm}, f, n, i) :=

(
⋃
j∈{1,...,m} pattern

′(ιj , f, n, i) \
⋂
j∈{1,...,m} pattern

′(ιj , f, b, i))× {∅}

with

pattern′(ι, f, n, i) :=

{
pi if ι ≡ (f, (((α1, p1,S1), . . . , (αn, pn,Sn)), e S)),
∅ otherwise.

Furthermore, the function derive′ is defined as

derive′(F , f, n, ι, δc)

:=

{
(F ′, ι′, (δ1, . . . , δn)) if ι ≡ (f, (((α1, p1,S1), . . . , (αn, pn,Sn)), e S)),
(F , ι, ({}, . . . , {})) otherwise,

where

F ′,EA, e
′ S ′ := A

q
F , {}, δc ` δc, e S

y

ι′ := (f, (((α1, p1,S1), . . . , (αn, pn,Sn)), e′ S ′))

δi :=

{
δαi if (αi, δαi) ∈ EA,
{} otherwise,

for all i ∈ {1, . . . , n}.

Lastly, the function propdem is defined as

propdem(ι, f, n, δc, (δ1, . . . , δn)) :={
ι′ if ι ≡ (f, (((α1, p1,S1), . . . , (αn, pn,Sn)), e S)),
ι otherwise,

where
ι′ := (f, (((α1, p1,S1 / δc ` δ1), . . . , (αn, pn,Sn / δc ` δn)), e S)).

Figure 6.7.. Definition of function apply as used in Figure 6.3 on page 122 (contd.).

131

6. Guiding Partial Evaluation

The traversal of the nested function environment as performed by the function apply
corresponds to the lookup stage of the instance matching process during evaluation as
defined in Figures 3.12 and 5.4 for full and partial evaluation, respectively. There, as
well, the first environment that contains some instance definition for a given function
name is used. In both cases, this models the scoping rules for LRec, i.e., it encodes
that a function definition at a certain nesting level shadows all other definitions using
the same name in surrounding nesting levels, regardless of the arity of the function.
Furthermore, it is important to note here that throughout the function apply and

its sub-functions, the function environment is only extended but no instances are ever
removed. In the recursive descend of the function apply, the original environment is
reconstructed by adding the outer nesting levels of the function environment that con-
tained no matching instances back to the updated lower nesting levels. Moreover, all
sub-functions operate on the full set of instances defined at a given nesting level, leav-
ing non-matching functions unchanged. This, as well, ensures that the structure of the
function environment remains unchanged.
If some instances for the function name f have been found, the function lookup in

Figure 6.7 on page 130 is used to derive the demands on the function parameters that
result from these instances. The function lookup expects as arguments the function
environment for the nesting level the function is defined in, the function name, the arity
to lookup and the demand to propagate. If for the given function name, arity and demand
an instance that has already been annotated can be found, the corresponding demands
on the function parameters are returned. It suffices to find a single instance that has
been annotated, as always all instances of a given arity are annotated with the same
demands.
If no such instance can be found, the demands are freshly derived. This is encoded by

the function fix. It expects the outer function environment and the set of instances, the
function name and the arity to derive demands for, and the demand on the result of the
function application. It is important here that the set of instances given to the function
fix is first extended by empty demands for the current context using the function amend.
This is done to ensure that recursive calls to a function, for which demands are currently
derived, do not trigger a further identical derivation process. Instead, the function lookup
will yield the empty demands in this case.
The function fix derives the demands for all matching function instances using the

function derive until no new demands in the function environment (F , I) arise. As
noted before, such a fix-point needs to exist, as demand derivation is monotonically
increasing and the maximum demand that can arise is the demand on all labels that are
used in an expression.
In the function derive, the new demand on the i-th parameter is computed by first

computing the demand that arises due to the pattern matching δ0i using the function
pattern. Furthermore, for each instance ιj , the corresponding demand is inferred using
the function derive′. Finally, all individual demands for each parameter are combined
using the union on demands] and annotated at the function instances using the function
propdem.
To ensure that no demands on other functions that arise during the demand derivation

132

6.1. A Binding-Time Analysis for Non-Nested LRecC

for the matching instances get lost, the function environment F and the set of instances
I is threaded through the multiple demand derivation steps. These demands are then
propagated back up alongside the demands that have been inferred for the matching
instances.
The function pattern first computes the set of labels used in the pattern for a given

argument in each matching instance, i.e., in each instance for the function f with the
correct arity. The filtering of non-matching instances is performed using the function
pattern′. The demand that arises from the pattern match is then computed as the
Cartesian product of set of differentiating labels, i.e., the set of labels that are used in
the pattern of some but not all instances, with the empty set. The resulting demand
thus contains the empty demand for each label that is used in some but not all instances.
The function derive′ derives the demand that arises from an instance. If the instance

does not match, i.e., if it uses a different function name or has the wrong arity, the
resulting demand is empty. For matching instances, the demand is derived by applying
the demand analysis to the body expression of the instance, using an empty variable
environment and the current demand as context demand. As all functions are closed in
LRec, the resulting environment contains only the demands to the function parameters.
These are then extracted and combined to the sequence of demands for the arguments.
Furthermore, the instance is updated with the amended body expression.
However, the inferred demands are not yet annotated at the function parameters.

To ensure that each instance is annotated with the same demands, this is performed
during the next stage of derive, once all demands have been derived. The corresponding
rewriting of the function instances is performed by applying the function propdem to
each instance at the current nesting level. Given an instance, a function name and arity,
the context demand and the demands for the parameters, the function propdem joins
the demands into the existing demands for the parameters of an instance, if the instance
matches the given function name and arity. Otherwise, the instance remains unchanged.
Once the demands on the argument expressions in rule Let have been computed using

the function apply, the last step is to continue the demand derivation for each argument
expressions. Again, the function and variable environments are threaded through the
demand derivations for the argument expressions to ensure that all demands are properly
propagated back up.
This completes the description of the demand derivation for expressions in LRecC

without nested records. Using the above demand analysis, an expression in LRecC
can be annotated with demands such that the result of partial evaluation satisfies a
given demand. I will show that the annotated demands indeed suffice to guide partial
evaluation to a desired partial result later in this section. However, first I formalise the
notion of using the demand annotations to guide partial evaluation.

6.1.3. Demand Driven Partial Evaluation

As mentioned in the introduction to this chapter, the partial evaluation as presented
in Section 5.3 does not yield a uniquely defined result. Even worse, it indeed might
get stuck although full evaluation succeeds. The underlying cause is that the rules for

133

6. Guiding Partial Evaluation

partial evaluation as presented in Figure 5.2 on page 86 allow for two degrees of freedom.
Firstly, it is not defined when to use the rule Partial and thus stop further evaluating
an expression and when to actually evaluate an expression at least to a partial result
using the specific rule for that kind of expression. Furthermore, in the rule Record for
record expressions, it is not defined which components of such a record expression shall
be evaluated and which not.
Secondly, the computation of the anti-domain of record values in rules Record and

Unit is largely unconstrained. The sole condition is that only labels that are not con-
tained in the domain of the full value may be part of the partial value, i.e., only those
labels that are not part of the record expression may be in the anti-domain.
Using the results of the demand analysis, I can now further constrain the evaluation

rules to enforce a certain level of partial evaluation. In particular, I will constrain the rules
such that for every expression with a demand annotation at most one rule matches. Thus,
the resulting guided partial evaluation is uniquely defined up to the non-determinism
introduced by the any operation.
To ease the specification of the constrained semantics, I first define two helper predi-

cates empty and empty for empty and non-empty demand annotations, respectively.

Definition 6.1.9 (Empty Demand). Given a set of demand contexts S and a context
demand δc, the predicate empty(δc,S) is defined as follows:

empty(δc,S) := δc ` {} ∈ S

Thus, empty(δc,S) is true if the set of demand annotations S contains the empty
demand context δc ` {} for the demand δ. Dually, I define a predicate for non-empty
demand annotations.

Definition 6.1.10 (Non-Empty Demand). Given a set of demand contexts S and a
context demand δc, the predicate empty(δc,S) is defined as follows:

empty(δc,S) := ∃δ ∈ D \ {{}} : δc ` δ ∈ S

The predicate empty(δc,S) is true if the set of demand contexts S contains a context
δc ` δ for the context demand δc, where δ is not the empty demand.
Apart from these predicates, I define a shorthand notation for the extraction of a

demand for a given context from a set of demand annotations:

Definition 6.1.11 (Demand Extraction). Given a context demand δc and a set of de-
mand annotations S . Then the extracted demand from S in the context δc is defined
as

extract(δc,S) :=

{
δ if some δ ∈ D exists with δc ` δ ∈ S ,
undefined otherwise.

Using these definitions, I can now define a constrained semantics for partial evaluation
with demand annotations that yields a uniquely defined result. For the rules of this big-
step operational semantics as presented in Figure 6.8 on page 136, I use the same notation

134

6.1. A Binding-Time Analysis for Non-Nested LRecC

as for the semantics for unguided partial evaluation presented in Figure 5.2 on page 86.
As before, (Fδ,≺,Eδ, δc) : e ↓ v is to be read as: Given an environment (Fδ,≺,Eδ, δc),
the term e can be evaluated to a partial value v. Note that, compared to the previous
semantics for partial evaluation, the environment (Fδ,≺,Eδ, δc) additionally contains
the current context demand δc. This information is used to chose the right demand
annotations depending on the current evaluation context. Furthermore, the variable
environment Eδ, apart from the identifier and its bound value, additionally contains
the demand that this value satisfies. This demand is not necessary for evaluation but
will be used to define the notion of a satisfying environment in later proofs. Thus,
an implementation may not actually store this additional demand in the environment.
Similarly, the function environment Fδ additionally contains the demand annotations for
function parameters. I use the same function environment for the evaluation as during
demand inference. However, in contrast with demand inference, during evaluation the
order on labels contained in the function environment may be non empty. As with the
variable environment, the additional demand information is not needed for evaluation
and only serves for later proofs. The remaining component of the environment, i.e., the
order on labels ≺, remains unchanged.
The first striking difference between the unconstrained evaluation rules in Figure 5.2

on page 86 and the corresponding constrained rules in Figure 6.8 on the following page is
the addition of a further premise to each rule. For example, the first two rules, i.e., the
rules True and False for Boolean constants, now require that the demand annotations
of the expression to evaluate are non-empty. Note that, in order to ensure that the
demand is non-empty in the current evaluation context, the premise makes use of the
context demand δc that is part of the evaluation environment. Similarly, all other rules
for specific expressions now require non-empty demand annotations. Thus, using these
extended semantics, an expression can only be evaluated if its value is actually required
by the demand annotations.
The only rule that does not require non-empty demand annotations is the last rule

in Figure 6.8 on the next page, i.e., the rule Partial. Contrary to all other rules, the
rule Partial requires that the demand annotation of the expression to evaluate in the
current demand context is empty. Therefore, the rule Partial can only be used to
evaluate expression whose value is not flagged as needed by the demand annotations.
These additional premises resolve the first degree of freedom. It is now well defined

which expressions are evaluated and where evaluation is stopped by application of the
special rule Partial.
A further change in the rules of Figure 6.8 on the following page compared to those

in Figure 5.2 on page 86 is the construction of the anti-domain in the rules for unit ex-
pressions and record expressions. The unconstrained versions of these rules as presented
in Figure 5.2 on page 86 do not restrict the anti-domain of a record value apart from
requiring that each label that is part of the anti-domain of a partial value may not be
in the domain of the corresponding full value. For the rule Unit, this means that the
anti-domain can contain any label as the domain of the unit value is always empty.
This degree of freedom may lead to situations where a pattern match cannot be decided

for the partial evaluation whereas it is decidable in the full evaluation case. To circumvent

135

6. Guiding Partial Evaluation

True :
empty(δc,S)

(Fδ,≺,Eδ, δc) : true S ↓ true

False :
empty(δc,S)

(Fδ,≺,Eδ, δc) : false S ↓ false

Unit :
empty(δc,S) ∃δ := extract(δc,S)

(Fδ,≺,Eδ, δc) : ~S ↓ domd(δ)× {!}

Var :
(i,S ′, v) ∈ E empty(δc,S)

(Fδ,≺,Eδ, δc) : i S ↓ v

EqualTrue :

(Fδ,≺,Eδ, δc) : e1 S1 ↓ v1
(Fδ,≺,Eδ, δc) : e2 S2 ↓ v2 v1, v2 6∈ Rp

v1
v
= v2 empty(δc,S)

(Fδ,≺,Eδ, δc) : (e1 S1 = e2 S2) S ↓ true

EqualFalse :

(Fδ,≺,Eδ, δc) : e1 S1 ↓ v1 S2

(Fδ,≺,Eδ, δc) : e2 S1 ↓ v2 S2 v1, v2 6∈ Rp

v1 6
v
= v2 empty(δc,S)

(Fδ,≺,Eδ, δc) : (e1 S1 = e2 S2) S ↓ false

Record :

empty(δc,S) ∃δ := extract(δc,S)
∀i, j ∈ {1, . . . , n} : i 6= j ⇒ li 6= lj

∀li ∈ domd(δ) ∩ {l1, . . . , ln} : (Fδ,≺,Eδ, δc) : ei Si ↓ vi
(Fδ,≺,Eδ, δc) : {l1=e1 S1, . . ., ln=en S2} S
↓ {(li, vi) | li ∈ domd(δ) ∩ {l1, . . . , ln}} ∪R

where R := (domd(δ) \ {l1, . . . , ln})× {!}

RecordFull :

empty(δc,S) ∃δ ∈ D :↑ {δ} = extract(δc,S)
∀i, j ∈ {1, . . . , n} : i 6= j ⇒ li 6= lj

∀li ∈ {l1, . . . , ln} : (Fδ,≺,Eδ, δc) : ei Si ↓ vi
(Fδ,≺,Eδ, δc) : {l1=e1 S1, . . ., ln=en Sn} S

↓ {(l1, v1), . . . , (ln, vn)} ∪R

where R := (domd(δ) \ {l1, . . . , ln})× {!}

Selection :

empty(δc,S)
(Fδ,≺,Eδ, δc) : eb Sb ↓ v v ∈ Rp l ∈ rangep(v)

(Fδ,≺,Eδ, δc) : eb Sb.l S ↓ elemp(v, l)

Figure 6.8.. An operational semantics for partial evaluation of LRecD.

136

6.1. A Binding-Time Analysis for Non-Nested LRecC

Any :
empty(δc,S) ∃i ∈ {1, . . . , n} : (Fδ,≺,Eδ, δc) : ei Si ↓ v

(Fδ,≺,Eδ, δc) : any(e1 S1, . . ., en Sn) S ↓ v

CondThen :

empty(δc,S)
(Fδ,≺,Eδ, δc) : ep Sp ↓ true (Fδ,≺,Eδ, δc) : et St ↓ v

(Fδ,≺,Eδ, δc) : if ep Sp et St ee Se S ↓ v

CondElse :

empty(δc,S)
(Fδ,≺,Eδ, δc) : ep Sp ↓ false (Fδ,≺,Eδ, δc) : ee Se ↓ v

(Fδ,≺,Eδ, δc) : if ep Sp et St ee Se S ↓ v

Guard :

empty(δc,S) (Fδ,≺,Eδ, δc) : eg Sg ↓ true
(Fδ,≺,Eδ, δc) : ev Sv ↓ v

(Fδ,≺,Eδ, δc) : guard(ev Sv eg Sg) S ↓ v

Witness :

empty(δc,S)
∀i ∈ {1, . . . , n} : (Fδ,≺,Eδ, δc) : ei Si ↓ true

(Fδ,≺,Eδ, δc) : ev Sv ↓ v
(Fδ,≺,Eδ, δc) : witness(ev Sv e1 S1 · · · en Sn) S ↓ v

Let :
empty(δc,S) (F ′δ,≺′,E ′δ , δc) : ebSb ↓ v

(Fδ,≺,Eδ, δc) : let d1 · · · dn in eb Sb end S ↓ v

where
≺′ = rel(≺, {d1, . . . , dn})
F ′δ = fund(Fδ,≺′, {d1, . . . , dn})
E ′ = vald(F ′δ,≺′,E , δc, (d1, . . . , dn))

Ap :

empty(δc,S) ∃δ := extract(δc,S)
∀i ∈ {1, . . . , n} : (Fδ,≺,Eδ, δc) : ei Si ↓ vi ∈ R
{(F ′δ,≺′,E ′, eb Sb)} = matchd(Fδ, f, (v1, . . . , vn))

(F ′δ,≺′,E ′δ , δ) : eb Sb ↓ v
(Fδ,≺,Eδ, δc) : (f e1 S1 . . . en Sn) S ↓ v

Partial :
empty(δc,S)

(Fδ,≺,Eδ, δc) : e S ↓ ?
Figure 6.8.. An operational semantics for partial evaluation of LRecD (contd.).

137

6. Guiding Partial Evaluation

vald(Fδ,≺,E , δc, (d1, . . . , dn)) := En

where
E0 := E

Ei+1 :=



Ei
d
^ (l,S , v)

if di+1 ≡ val l=eS

and (Fδ,≺,Ei, δc) : eS ↓ v,
Ei if di+1 ≡ fun f i1 · · · im,
Ei if di+1 ≡ rel l1 <: l2,
undefined otherwise.

Figure 6.9.. Definition of function vald as used in Figure 6.8 on page 136.

these situations, the demand analysis annotates all discriminating labels of a pattern
match as required. Therefore, I use this information in rule Unit to construct the anti-
domain of the partial result. As can be seen in Figure 6.8 on page 136, the anti-domain of
the partial result of evaluating a unit expression is the domain of the demand annotation.
Formally, this is expressed by computing the value of a unit expression as the Cartesian
product of the domain of the demand domd(δ) with the special partial value !.
For record expressions the situation is slightly more complex. Record expressions are

handled by two rules in Figure 6.8 on page 136. The first rule, the rule Record, handles
the evaluation of records where the annotated demand is a non-empty record demand.
The special case of the demand for full evaluation ↑ {·} is handled by the second rule
RecordFull.
In both rules, similarly to the rule Unit, the anti-domain of the partial result is com-

puted using the domain of the demand domd(δ). However, contrary to unit expressions,
the domain of record expressions is not necessarily empty. Thus, to enforce the invariant
that the anti-domain of a partial value may not contain any labels that are part of the
domain of the corresponding full value, these are excluded from the anti domain R.
For records that need not to be evaluated fully, the domain of the partial result is

computed in rule Record as the intersection of the domain of the demand with the set
of labels that are contained in the record expression. Thus, all components of the record
that are marked as required are computed. In case that the demand for full evaluation
is annotated, the rule RecordFull evaluates all components of the record expression.
Using these modified evaluation rules, all results of partial evaluation always contain all

labels that are flagged as required to decide consecutive pattern matches by the demand
annotations.
The last two differences between the semantics for guided partial evaluation in Fig-

ure 6.8 on page 136 and the unconstrained semantics in Figure 5.2 on page 86 are of
rather technical nature. Firstly, the rule Let uses functions vald and fund instead of the
functions valp and fun defined in Figure 5.3 on page 88 and 3.10, respectively. Figure 6.9
gives the definition of vald. As can be seen, the function mainly differs in the evaluation
relation and evaluation environment they use. The function vald uses the additional con-

138

6.1. A Binding-Time Analysis for Non-Nested LRecC

text demand δc. Furthermore, it stores the set of demand contexts S that the bound
value satisfies alongside the identifier and the bound value in the environment. This
is achieved by means of an extended variable insertion function

d
^ which is defined as

follows:

Definition 6.1.12 (Variable-Demand Insertion). Given a set E ⊂ I ×D × Vp, the set

E
d
^ (i,S , v) where i ∈ I , S ∈ D ×D and v ∈ V is defined as

E
d
^ (i,S , v) := {(i′,S ′, v′) | (i′,S ′, v′) ∈ E ∧ i 6= i′} ∪ {(i,S , v)}

Similar to ^ as defined in Definition 3.3.4 on page 53, the variable insertion with demands
d
^ overwrites existing bindings in the environment to model the scoping of the let
construct.
Likewise, the function fund as defined in Figure 6.4 on page 127 only differs in the

way the resulting function environment is constructed. Analogously to the construction
of the function environment during demand inference, the function environment during
evaluation now contains the inferred demands for all function parameters, as well.
This modification of the function environment requires a modification to the rule Ap,

as well. Instead of using the partial matching function matchp, I use a partial matching
function matchd that can handle the additional demand annotations in the function
environment Fδ. Its definition is given in Figure 6.10 on the following page. As can
be seen, it is largely identical to the partial matching function matchp as defined in
Figure 5.4 on page 90. The first two stages, i.e., the lookup and arity stages, are identical
to those used in the functions match and matchp. The third and fourth stage, i.e.,
the patternd and orderd stages, have been modified to handle the additional demand
annotations. However, the matching process as such remains unchanged. In particular,
the Lemmata 5.3.1 and 5.3.2 apply to these stages, as well. The last stage, i.e., the bindd

stage, has been adapted such that it produces a variable environment with demands Eδ by
extracting the corresponding set of demand contexts from the set of matching instances.
Besides the different matching function, I have modified the rule Ap to appropriately

switch the demand context, as well. For each function application, the function body
is evaluated using a new context demand. This context demand, analogously to the
demand analysis, is the demand on the result of the function application.
This completes the discussion of the semantics of guided partial evaluation. Before

I show the final result of this section, i.e., that the guided partial evaluation always
succeeds if the full evaluation does and furthermore, that the result of such partial eval-
uation satisfies the annotated demand, I first give the promised proof that the demand
annotations inferred by the demand analysis suffice to decide the partial pattern match.
In particular, I will show that knowledge of the existence of all discriminating labels of
the parameter pattern suffices to decide a partial pattern match if the corresponding
pattern match under full evaluation is decidable, i.e., if the pattern match under full
evaluation yields any instances. All discriminating labels here refers to those labels that
are part of the pattern of corresponding parameters of some instances but not all in-
stances. In Theorem 5.3.1 on page 99 I have already shown that the partial matching

139

6. Guiding Partial Evaluation

matchd := bindd ◦ orderd ◦ patternd ◦ arity ◦ lookup

with lookup and arity as defined in Figure 3.12 on page 60. The function patternd is
defined as

patternd(Fδ,≺, I, (a1, . . . , an)) := (Fδ,≺, In, (a1, . . . , an))

where
I0 := I

Ii+1 := filterd2(filterd1(Ii, (a1, . . . , an), i), i)

with

filterd1(I, a, i) := {(((α1, p1,S1), . . . , (αn, pn,Sn)), e S) ∈ I | pi ∩ domp(a) = ∅}

and

filterd2(≺, I, (a1, . . . , an), i) :=
(((α1, p1,S1), . . . ,

(αn, pn,Sn)), e S) ∈ I

∣∣∣∣∣∣∣∣
∀(((α′1, p′1,S ′

1), . . . , (α′n, p
′
n,S

′
n)), e′ S ′) ∈ I :

(∃j ∈ {1, . . . , i} :
pj \ domp(aj) 6= p′j \ domp(aj)) ∨
|pi ∩ domp(ai)| 6< |p′i ∩ domp(ai)|

 .

The function orderd is defined as

orderd(Fδ,≺, I, (a1, . . . , an)) := (Fδ,≺, In, (a1, . . . , an))

where
I0 := I

Ii+1 := filter′d(≺, Ii, (a1, . . . , an), i)

with

filter′d(≺, I, (a1, . . . , an), i) :=

(((α1, p1,S1), . . . ,
(αn, pn,Sn)), e S) ∈ I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀(((α′1, p′1,S ′
1), . . . , (α′n, p

′
n,S

′
n)), e′) ∈ I :

(∃j ∈ {1, . . . , n} :
pj \ domp(aj) 6= p′j \ domp(aj)) ∨

(∃j ∈ {1, . . . , i− 1} :
∃(((α′′1, p′′1,S ′′

1), . . . , (α′′n, p
′′
n,S

′′
n)),

e′′ S ′′) ∈ I : p′j
→
≺ p′′j ∧ pj 6

→
≺ p′′j) ∨

(∃j ∈ {1, . . . , i− 1} :
∃(((α′′1, p′′1,S ′′

1), . . . , (α′′n, p
′′
n,S

′′
n)),

e′′ S ′′) ∈ I : p′′j
→
≺ pj) ∨

pi 6
→
≺ p′i



.

Figure 6.10.. Pattern matching function for partial best match with demands matchd

as used in Figure 6.8 on page 136.

140

6.1. A Binding-Time Analysis for Non-Nested LRecC

Lastly, the function bindd is defined as

bindd(Fδ,≺, I, a) := {(Fδ,≺, bind′d(P, a), e S) | (P, e S) ∈ I}

where

bind′d(((α1, p1,S1), . . . , (αn, pn,Sn)), (a1, . . . , an)) := {(α1,S1, a1), . . . , (αn,Sn, an)}.

Figure 6.10.. Pattern matching function for partial best match with demands matchd

as used in Figure 6.8 on page 136 (contd.).

function matchp always yields at least those instances that the matching function for full
evaluation match does. Thus, it remains to be shown that if all discriminating labels are
known, the partial matching functions returns only instances that are returned by the
full matching function, as well, if the full matching function returns any instances at all.
I will use the same proof strategy as in the proof of Theorem 5.3.1 on page 99. As both

matching functions match and matchp use exactly the same two first steps, it suffices to
show that the third and fourth step, i.e., the pattern and order steps, yield the same set of
matching instances. To differentiate between the results of the full and partial matching
process, I will use the superscripts f and p, respectively, in the following. First, I show
the identity of the result sets for the pattern step.

Lemma 6.1.1 (Guided Partial Match: Step 3). Given a function environment F , a
complete partial order on labels ≺, a set of function instances I, where I is of the form
{(((α1

1, p
1
1), . . . , (α

1
n, p

1
n)), e1), . . . , (((αm1 , p

m
1), . . . , (αmn , p

m
n)), em)}, and two tuple of argu-

ments af = (af1 , . . . , a
f
n) ∈ V n and ap = (ap1, . . . , a

p
n) ∈ V n

p . Let (F f ,≺f , If , a′f) :=
pattern(F ,≺, I, a) and (F p,≺p, Ip, a′p) := patternp(F ,≺, I, ap). Then the following
statement holds:

(∀i ∈ {1, . . . , n} : afi v a
p
i ∧
⋃
j∈{1,...,m} p

j
i \
⋂
j∈{1,...,m} p

j
i ⊆ rangep(a

p
i)) ∧ If 6= ∅

⇒ F f = F p∧ ≺f=≺p ∧af = a′f ∧ ap = a′p ∧ If = Ip

Proof. Given that for all i ∈ {1, . . . , n} the statements afi v api and
⋃
j∈{1,...,m} p

j
i \⋂

j∈{1,...,m} p
j
i ⊆ rangep(a

p
i) hold. Furthermore, assume that If 6= ∅. I will show that

then the equalities F f = F p, ≺f=≺p, af = a′f , ap = a′p and If = Ip are true, as well.
The first four equalities in the statement to be shown follow directly from the definition

of pattern and patternp in Figures 3.12 and 5.4, respectively. Remains to be shown that
If = Ip holds, as well.
From Lemma 5.3.1 on page 96, we already know that If ⊆ Ip holds. Thus, it suffices

to show that If ⊇ Ip holds. The result of the order matching functions order and orderp

is defined inductively over the arguments. I will therefore show the above property by
co-induction over the computation steps in function pattern and patternp.
In the initial step, the statement If0 ⊇ I

p
0 is obviously true.

141

6. Guiding Partial Evaluation

For the inductive step, given i ∈ {1, . . . , n + 1}, and Ifi and Ipi as the resulting sets
of matching instances from the previous filtering step, assume that Ifi ⊇ I

p
i holds. I will

show by contradiction that then Ifi+1 ⊇ I
p
i+1 holds, as well.

First, I will show some properties of the instances contained in Ipi . Assume Ipi :=
{(((α1

1, p
1
1), . . . , (α

1
n, p

1
n)), e1), . . . , (((αm1 , p

m
1), . . . , (αmn , p

m
n)), em)}. We know from the as-

sumptions that the partial arguments ap1, . . . , a
p
n contain all discriminating labels, i.e.,

we know that the condition
⋃
j∈{1,...,m} p

j
k \
⋂
j∈{1,...,m} p

j
k ⊆ rangep(a

p
k) is true for all

k ∈ {1, . . . , n}. Furthermore, we know that for all j ∈ {1, . . . ,m},k ∈ {1, . . . , i − 1} the
statement pjk ∩ domp(a

p
k) = ∅ holds, as otherwise the corresponding instance would have

already been filtered out by the function filterp1. Let Rk :=
⋃
j∈{1,...,m} p

j
k \ rangep(a

p
k)

for all k ∈ {1, . . . , i− 1}. It follows that for all f := (((α1, p1), . . . , (αn, pn)), e) ∈ Ipi the
statement pk \ domp(a

p
k) = Rk holds for all k ∈ {1, . . . , i− 1}.

Now assume it exists f := (((α1, p1), . . . , (αn, pn)), e) ∈ Ipi+1 with f 6∈ Ifi+1. As f is
not filtered out in the i + 1-th step, we know that pi ∩ domp(a

p
i) = ∅. Furthermore,

we know that for all other instances f ′ := (((α′1, p
′
1), . . . , (α

′
n, p
′
n)), e′) ∈ Ifi either there

exists k ∈ {1, . . . , i} such that pj \ domp(a
p
k) 6= p′j \ domp(a

p
k) or |pi ∩ domp(a

p
i)| 6<

|p′i ∩ domp(a
p
i)| per definition of filterp2. However, for all k ∈ {1, . . . , i − 1} we know

that pk \ domp(a
p
k) = Rk = p′k \ domp(a

p
k) holds. Therefore, only the two conditions

pi \ domp(a
p
i) 6= p′i \ domp(a

p
i) and |pi ∩ domp(a

p
i)| 6< |p′i ∩ domp(a

p
i)| remain. I will show

that both cannot be true.
From the assumptions, we know that If 6= ∅. It follows that Ifi+1 6= ∅ by definition

of the filtering process filter. With Lemma 5.3.1 on page 96, it follows that Ifi+1 ⊆
Ipi+1. Thus, there exists at least one instance f ′ := (((α′1, p

′
1), . . . , (α

′
n, p
′
n)), e′) ∈ Ifi+1

with f ′ ∈ Ipi+1 and thus f ′ ∈ Ipi . As f ′ in Ipi+1, we know that p′i ∩ domp(a
p
i) = ∅.

Combined with the assumption that api contains all discriminating labels, it follows that
pi \ domp(a

p
i) = p′i \ domp(a

p
i). Thus, the first remaining condition cannot be true for all

instances in Ipi .
Remains to be shown that |pi ∩ domp(a

p
i)| 6< |p′i ∩ domp(a

p
i)| cannot be true. From

f ′ ∈ Ifi+1, it follows that |p′i∩dom(afi)| is maximal with respect to all instances contained
in Ifi by definition of the matching function pattern.. In particular, as f 6∈ Ifi+1, it follows
that |p′i ∩ dom(afi)| > |pi ∩ dom(afi)|. From afi v api we can follow that dom(afi) ⊇
domp(a

p
i). As rangep(a

p
i) contains all discriminating labels and with pi ∩ domp(a

p
i) =

∅ = p′i ∩ domp(a
p
i), it follows that pi ∪ p′i \ pi ∩ p′i ⊆ domp(a

p
i). Overall, it follows that

|pi ∩ domp(a
p
i)| < |p′i ∩ domp(a

p
i)|.

This contradicts f ∈ Ipi+1.

With this lemma in place, for the pattern match I lastly show that a similar property
holds for the fourth matching step, i.e., the matching based on the order of labels.

Lemma 6.1.2 (Guided Partial Match: Step 4). Given a function environment F , a
complete partial order on labels ≺, a set of function instances I and arguments af =
(af1 , . . . , a

f
n) ∈ V n and ap = (ap1, . . . , a

p
n) ∈ V n

p . Let (F ,≺, If , af) := pattern(F ,≺
, I, af) and (F ,≺, Ip, ap) := patternp(F ,≺, I, ap). Furthermore, let (F f ,≺f , I ′f , a′f) :=

142

6.1. A Binding-Time Analysis for Non-Nested LRecC

order(F ,≺, If , af) and (F p,≺p, I ′p, a′p) := orderp(F ,≺, Ip, ap). Then the following
statement holds:

(∀i ∈ {1, . . . , n} : afi v a
p
i ∧
⋃
j∈{1,...,m} p

j
i \
⋂
j∈{1,...,m} p

j
i ⊆ rangep(a

p
i)) ∧ I 6= ∅

⇒ F f = F p∧ ≺f=≺p ∧af = a′f ∧ ap = a′p ∧ I ′f = I ′p

Proof. Given that for all i ∈ {1, . . . , n} the statements afi v api and
⋃
j∈{1,...,m} p

j
i \⋂

j∈{1,...,m} p
j
i ⊆ rangep(a

p
i) hold and that I 6= ∅ is true. I will show that then statement

F f = F p∧ ≺f=≺p ∧af = a′f ∧ ap = a′p ∧ I ′f = I ′p holds, as well.
The first four equalities in the above statement follow directly from the definition of the

pattern and order matching steps pattern and order, and patternp and orderp as defined
in Figures 3.12 and 5.4, respectively. From Lemma 5.3.1 on page 96 we already know
that If = Ip holds. Remains to be shown that then I ′f = I ′p holds, as well.
As the result of the functions order and orderp is defined inductively over the number

of arguments, I will show this property by co-induction over the single filtering steps.
In the initial step, the statement I ′f0 = I ′p0 follows from the definition of If and Ip,

and the result of Lemma 6.1.1 on page 141.
For the inductive step, assume that Ifi = Ipi holds for some i ∈ {1, . . . , n}. From the

proof of Lemma 5.3.2 on page 98 we already know that I ′fi+1 ⊆ I
′p
i+1 holds. It remains to

be shown that I ′f ⊇ I ′p holds, as well. I will show that then Ifi+1 ⊇ Ipi+1 holds, as well,
by contradiction.
Assume an instance f := (((α1, p1), . . . , (αn, pn)), e) ∈ I ′pi+1 exists with f 6∈ I ′fi+1. From

the inductive assumption and the monotonicity of the order filtering process, it follows
that f ∈ I ′pi . Then, by definition of the order matching function orderp we know that for
all instances f ′ := (((α′1, p

′
1), . . . , (α

′
n, p
′
n)), e′) ∈ I ′pi one of the following conditions must

be true, as otherwise f would not be filtered in the i+ 1-th step.

1. ∃j ∈ {1, . . . , n} : pj \ domp(aj) 6= p′j \ domp(aj)

2. ∃j ∈ {1, . . . , i} : ∃(((α′′1, p′′1), . . . , (α′′n, p
′′
n)), e′′) ∈ I ′pi : p′j

→
≺ p′′j ∧ pj 6

→
≺ p′′j

3. ∃j ∈ {1, . . . , i} : ∃(((α′′1, p′′1), . . . , (α′′n, p
′′
n)), e′′) ∈ I ′pi : p′′j

→
≺ pj

4. pi 6
→
≺ p′i

I will show for each condition that it cannot be true. As neither f nor f ′ has been
filtered during the patternp filtering step, we know that for all pattern pj and p′j with
j ∈ {1, . . . , n} the statement pj∩domp(a

p
j) = ∅ and p′j∩domp(a

p
j) = ∅ hold. Furthermore,

as for all j ∈ {1, . . . , n} the partial value apj contains all discriminating pattern of the
instances in Ipi , it follows that pj \ domp(a

p
j) = p′j \ domp(a

p
j). This invalidates the first

condition.
The second and third conditions cannot be true either. From the inductive assump-

tion, we know that I ′pi = I ′fi holds. Assume there exists an instance f ′′ with f ′′ :=

(((α′′1, p
′′
1), . . . , (α′′n, p

′′
n)), e′′) ∈ I ′pi such that for some j ∈ {1, . . . , i} the statement p′j

→
≺

143

6. Guiding Partial Evaluation

p′′j ∧ pj 6
→
≺ p′′j holds. As f ′′ ∈ I ′pi , it follows that f ′′ ∈ I

′f
i is true, as well. Thus, f ′ 6∈ I ′fi

due to p′j
→
≺ p′′j . This contradicts that f ′ ∈ I

′f
i+1.

Similarly, assume that for some j ∈ {0, . . . , i} the statement p′′j
→
≺ pj holds. Then

f ′′ 6∈ I ′fi , as f ∈ I ′fi . Combined with the inductive assumption this contradicts that
f ′′ ∈ I ′pi .
Lastly, assume the fourth condition holds, i.e., assume that pi 6

→
≺ p′i is true for all

instances f ′ ∈ I ′pi . From the inductive assumption we know that I ′fi = I ′pi . It follows
that the instance f cannot be filtered out in the i + 1-th step of the order function, as
no other instance shadows it. This contradicts f 6∈ I ′fi+1.
Overall, it follows that I ′f = I ′p.

Thus, it indeed suffices to annotate a demand for all discriminating labels of the pattern
of a set of instances to ensure that the partial match is decidable if the full match would
be. It is worth noting here that even if all discriminating labels are known, the partial
pattern match might still yield an instance where the full pattern match would not
yield any instances. The above two lemmata are conditional on the full pattern match to
succeed, i.e., they are conditional on the full pattern match to yield at least one instance.
Thus, by design, the result of partial evaluation in my approach is always conditional on
the full evaluation to succeed. However, as stated earlier, this is a general property of any
kind of partial evaluation. Even without the dependency of partial pattern matching on
the success of the corresponding full pattern match, the result of partial evaluation would
still be dependant on full evaluation to succeed. For instance, full evaluation might get
stuck evaluating a component of a record expression that is not evaluated under partial
evaluation.
Given these lemmata, I can now show the final result of this section, i.e., that the

guided partial evaluation always succeeds if the full evaluation does and furthermore,
that the result of such partial evaluation satisfies the annotated demand. As a prereq-
uisite to the proof of this property, I first extend the notion of demand satisfaction to
environments:

Definition 6.1.13 (Satisfying Environment). Given a variable environment E , a partial
variable environment with demands Eδ and a context demand δc ∈ D . We say that E is

satisfied by Eδ in the context δc, or E
δc→
v Eδ for short, if the following condition holds:

∀(i, v) ∈ E !∃(i,S , v′) ∈ Eδ : ∃δ ∈ D : δc ` δ ∈ S ∧ v
δ

v v′

Thus, a partial variable environment with demands satisfies a full variable environment
if for each binding in the latter exactly one corresponding binding in the former exists
such that the former bound value satisfies the latter in the context δc.
Similarly, I define the notion of matching function environment with demands.

Definition 6.1.14 (Matching Function Environment With Demands). Given a function
environment F and a function environment with demands Fδ. We say that F is matched
by Fδ, or F

d≡Fδ for short, if the following statement holds:

144

6.1. A Binding-Time Analysis for Non-Nested LRecC

• If F is empty, then Fδ is empty, as well, and

• if F has the form (F ′,≺, D) for some order on labels ≺ and instances D then Fδ

has the form (F ′δ,≺, D′) where

1. F ′ is matched by F ′δ,

2. D′ contains the same instances as D modulo demand annotations,

3. the demand annotations in D′ can be computed from D using the demand
inference for function instances as defined by function apply in Figure 6.7 on
page 130.

Furthermore, I extend the partial binding property of valp as shown in Lemma 5.3.3 on
page 100 to the function for evaluating value bindings with demands vald.

Lemma 6.1.3 (Partial Bindings With Demands). Given a function environment F and
a matching function environment with demands Fδ, a complete partial order on labels

≺, two variable environments E and Eδ with E
δc→
v Eδ. Furthermore, let δc be a context

demand and δ be a demand. Lastly, let d1, . . ., dn be definitions of a let construct and
d′1, . . ., d

′
n be definitions of the corresponding let construct that results from a demand

inference using F , some variable environment EA and δc ` δ.
Assume that for every expression e in LRecC with a given nesting depth i ∈ N and a

corresponding expression e′S in LRecD, where e′S is the result of the demand inference
A

q
F ,EA, δc ` δ, e

y
, the statement (F ,≺,E) : e ⇓ v ⇒ (F ,≺,E ′, δc) : eS ↓ v′ ∧

v
δ

v v′ holds.
Let E f ′ := val(F ,≺,E f , (d1, . . . , dn)) and E d′ := vald(F ,≺,E d, δc, (d1, . . . , dn)) with

val as defined in Figure 3.11 on page 58 and vald as defined in Figure 6.9 on page 138.

Then the statement E f ′
δc→
v E p′ holds.

Proof. Both functions val and vald compute the new environment inductively starting
out with the old environment and then step-wise amending the environment by the
bindings produced by each definition. To prove the above statement, I will show by
induction that during each processing step, the resulting environment in vald satisfies
the corresponding environment in val. To simplify the presentation, I will assume that
corresponding definitions occur in the same order.
For the initial step, this is trivially the case as E f

→
v E d holds.

Let E f ′
j be the result of j-th processing step in the function val and E d′

j be the

corresponding result of the j-th processing step in the function vald. Assume E f ′
j

δc→
v E d′

j

holds.
The definition dj+1 can be one of three different kinds: A function definition using the

fun keyword, a order definition using the rel keyword or a value binding using the val

keyword. I will show for each case that E f ′
j+1

→
v E p′j + 1j holds.

145

6. Guiding Partial Evaluation

Case 1: fun definition Assume dj+1 is a definition of the from fun l i1 · · · ik where the
i1, . . ., ik are instance definitions. Then d′j+1 is a corresponding function definition,
as well. From the definition of val and vald it follows that E f ′

j+1 = E f ′
j and

E d′
j+1 = E d′

j , respectively. Thus, from the inductive assumption, it follows that

E f ′
j+1

δc→
v E d′j + 1j holds.

Case 2: rel definition E f ′
j+1

δc→
v E d′j + 1j follows analogously to case 1.

Case 3: val definition Assume dj+1 is a definition of the form val l=e and d′j+1 is the
corresponding definition of the form val l=e′S . From (F ,≺,E f ′

j) : e ⇓ v we
can then follow that δc ` δ ∈ S exists by definition of demand inference and

(F ,≺,E d′
j , δc) : eS ↓ v′ with v

δ

v v′. Thus, E f ′
j ^ (l, v)

δc→
v E d′

j

d
^ (l, δ, v′) holds.

Therefore, E f ′
j+1

δc→
v E d′j + 1j, holds as well.

Overall, it follows that in the i+ 1-th step the statement E f ′
j+1

δc→
v E d′

j+1 holds.

As a last prerequisite, I show that, given a function environment and a matching function
environment with demands, the function fund produces a new function environment with
demands that matches the function environment returned by the function fun.

Lemma 6.1.4 (Construction of Matching Function Environments). Given an order on
labels ≺, a function environment F and a matching function environment with demands
Fδ. Furthermore, let δc be a context demand and δ be a demand. Lastly, let d1, . . ., dn
be definitions of a let construct and d′1, . . ., d

′
n be definitions of the corresponding let

construct that results from a demand inference using F , some variable environment EA
and δc ` δ. Then the following statement holds:

fun(F ,≺, {d1, . . . , dn})
d≡ fund(Fδ,≺, {d′1, . . . , d′n})

Proof. The above follows trivially from the definition of fun and fund.

Using the above definitions and lemmata, I can now show the final result for this section.

Theorem 6.1.4 (Partial Evaluation with Demands). Given that the choice of the argu-
ment expression to evaluate for the any operator is deterministic and identical for full
and partial evaluation. Let e be an expression in LRecC and δ ∈ D . Furthermore, let
e′S be the expression that results from the demand analysis A

q
⊥, ∅,⊥ ` δ, e

y
. Then

the following statement holds:

(⊥, ∅, ∅) : e ⇓ v ⇒ (⊥, ∅, ∅, δ) : e′S ↓ v′ ∧ v
δ

v v′

146

6.1. A Binding-Time Analysis for Non-Nested LRecC

Proof. To prove the above statement, I will show the following, more general statement:
Let F be a function environment, E be a variable environment, E ′ be a partial variable

environment with E
δc→
v E ′ and ≺ be an order on labels. Furthermore, let F be a

function environment with demands that matches F and EA be some variable-demand
environment. Lastly, let e be an expression in LRecC, δc ∈ D be the current context
demand and δ ∈ D be the current demand. Then for the expression e′S that results
from the demand inference A

q
F ,EA, δc ` δ, e

y
the following statement

(F ,≺,E) : e ⇓ v ⇒ (Fδ,≺,E ’, δc) : e′S ↓ v′ ∧ v
δ

v v′

holds.
For the proof, assume that (F ,≺,E) : e ⇓ v holds. I will show that then the

statements (Fδ,≺,E ’, δc) : e′S ↓ v′ and v
δ

v v′ hold, as well, by induction over the
nesting depth of the expression e. Note that e′ by definition of the demand inference
has the same nesting depth as e: The demand inference does not modify the structure
or kind of an expression but merely annotates demands.
To start the induction, assume that e is an expression with a nesting depth of 0. Then

e by definition of LRecC in Figure 3.6 on page 50 can either be a Boolean expression,
the special ~ expression, an empty record expression or an identifier.
We know from the definition of the demand inference, that δc ` δ ∈ S . I will handle

the special case of δ = ∅ separately. In this case, regardless of e, the rule Partial in
Figure 6.8 on page 136 and only that rule applies for e′. Thus, (Fδ,≺,E ′, δc) : e′ ↓ v′

holds with v′ = ?. It directly follows that v
δ

v v′.
Now assume that δ 6= ∅. We have to consider four cases:

Case 1: true Then v = true. As δ 6= ∅, the single rule True in Figure 6.8 on page 136
matches. Thus, (Fδ,≺,E ′, δc) : e′ ↓ v′ with v′ = true, as well. It follows that

v
δ

v v′.

Case 2: false This case is analogous to case 1 using rule False.

Case 3: ~ We know that v = {} by definition of rule Unit in Figure 3.8 on page 52.
From δ 6= ∅ it furthermore follows that the single rule Unit in Figure 6.8 on
page 136 matches. Thus, (Fδ,≺,E ′, δc) : e′ ↓ v′ with v′ = domd(δ)×{!}. It follows
directly from the definition of demand satisfaction that then v

δ

v v′.

Case 4: Empty Record Then v = {}. As e′ = {}, both rules Record and Record-
Full yield the same result v′ = domd(δ). Furthermore, as δ 6= ∅, only either
of these two rules can match but one does match. It follows that the statement
(Fδ,≺,E ′, δc) : e′S ↓ v′ holds with v′ = domd(δ)× {!} and therefore v

δ

v v′.

Case 5: Identifier Thus e = α for some α ∈ I . From (F ,≺,E) : e ⇓ v it then follows

that (α, v) ∈ E . As E
δc→
v E ′ holds, we know that some δ′ ∈ D exists with (α, δ′, v′) ∈

147

6. Guiding Partial Evaluation

E ′ and v
δ′

v v′. Thus, (Fδ,≺,E ′, δc) : e′S ↓ v′ holds. By construction of the demand
inference combined with Theorem 6.1.3 on page 119, we can furthermore follow that

v
δ

v v′ then holds, as well.

Overall, it follows that for expressions with nesting depth 0 the statement to be shown
holds.
For the inductive step, assume that for all expressions e ∈ LRecC with some nesting

depth i ∈ N the statement (F ,≺,E) : e ⇓ v ⇒ (Fδ,≺,E ′, δc) : e′S ↓ v′ ∧ v
δ

v v′

holds. I will show that the statement then holds for expressions with nesting depth i+1,
as well.
For this, assume e ∈ LRecC to be such expression and e′S to be the expression result-

ing from the demand inference A
q
F ,EA, δc ` δ, e

y
. From the definition of the demand

inference, we then know that δc ` δ ∈ S . Furthermore, assume that (F ,≺,E) : e ⇓ v
holds, as well, for some v ∈ V .
Again, I will handle the special case where δ = ∅ separately. For this, assume that δ

indeed is the empty demand. Then, regardless of e and e′, the single matching rule in
Figure 6.8 on page 136 is the rule Partial. Thus, (Fδ,≺,E ′, δc) : e′S ↓ v′ holds with
v′ = ?. It follows, that for all v ∈ V the statement v

δ

v v′ is true.
For the situation that δ 6= ∅, we have to consider 9 cases. As e has a nesting depth

greater than 0, e can either be a non-empty record expression, a selection operation, an
application of the any operation, a conditional, an application of the guard operation,
an application of the witness operation, the equality operation on non-record values, a
let expression or a function application.

Case 1: Record Expression Then e has the form {l1=e1, . . .,ln=en} and e′ has the form
{l1=e′1S1, . . ., ln=e′nSn} where n ∈ N, and ej ∈ LRecC, e′jSj ∈ LRecD and
lj ∈ L for all j ∈ {1, . . . , n}. As e can be evaluated to v, we know that all ej can
be evaluated to some vj ∈ V . By definition of the demand inference, we know that
for all lj with j ∈ {1. . . . , n} the context δc ` elemd(δ, lj) is in Sj . Thus, using the
inductive assumption, we can follow that for all j ∈ {1, . . . , n} some v′j ∈ Vp exists

with (Fδ,≺,E ′, δc) : e′j ↓ v′j and vj
elemd(δ, lj)

v v′j .

We now have to differentiate two situations: Either δ ∈ Dr. Then the rule Record
matches. Thus, (Fδ,≺,E ′, δc) : e′ ↓ v′ with v′ = {(lj , vj) | lj ∈ domd(δ) ∩
{l1, . . . , ln}}∪(domd(δ)\{l1, . . . , ln})×{!}. It follows from the definition of demand

satisfaction that v
δ

v v′.
Otherwise exists some δ′ ∈ Dr with δ =↑ {δ′}. In this case the rule RecordFull
matches. Therefore, (Fδ,≺,E ′, δc) : e′S ↓ v′ with v′ = {(l1, v1), . . . , (ln, vn)} ∪
(domd(δ) \ {l1, . . . , ln}) × {!}. Again, by definition of demand satisfaction, v

δ

v v′

holds.

Case 2: Selection Operation Then e has the form eb.l and e′ has the form e′bSb.l.
From the definition of demand inference, we can follow that δc ` {(l, δ)} ∈ Sb. As

148

6.1. A Binding-Time Analysis for Non-Nested LRecC

e can be evaluated to v, we know that eb can be evaluated to a value vb ∈ R with l ∈
dom(vb). With the inductive assumption it follows that (Fδ,≺,E ′, δc) : e′bSb ↓ v′b
with vb

{(l,δ)}

v v′b. Thus, l ∈ domp(v
′
b) and elem(vb, l)

δ

v elemp(v
′
b, l). It follows that

(Fδ,≺,E ′, δc) : e′S ↓ v′ with v
δ

v v′.

Case 3: any Operation Then e has the form any(e1 · · · en) and e′ has the form any(
e′1S1 · · · e′nSn). From the definition of demand inference, it follows that δc ` δ ∈
Sj for all j ∈ {1, . . . , n}. As (F ,≺,E) : e ⇓ v holds, we can follow that for some
j ∈ {1, . . . , n} the statement Senvs : ej ⇓ v holds, as well. From the inductive

assumption directly follows that then (Fδ,≺,E , δc) : e′jSj ↓ v′ with v
δ

v v′. As
we assume the any operation to be deterministic, we have (Fδ,≺,E , δc) : e′S ↓ v′

with v
δ

v v′.

Case 4: Conditional Here, e has the form if ep et ee and e′ has the form if e′pSp

e′tSt e
′
eSe. From (F ,≺,E) : e ⇓ v, we can follow that (F ,≺,E) : ep ⇓ vp

with vp = true or vp = false. I will assume the former case in the following.
The latter case follows analogously. From the definition of demand inference, we
know that δc ` ↑ {δ} ∈ Sp. It follows with the inductive assumption that then

(Fδ,≺,E ′, δc) : e′p ↓ v′p with vp
↑ {δ}
v v′p. Thus, by definition of demand satis-

faction, v′p = true follows from δ 6= ∅. Similarly, we know that δc ` δ ∈ St and
that (F ,≺,E) : et ⇓ v. Again we can follow from the inductive assumption

that then (Fδ,≺,E ′, δc) : e′tSt ↓ v′ with v
δ

v v′. It directly follows that then

(Fδ,≺,E ′, δc) : e′S ↓ v′ with v
δ

v v′ holds, as well.

Case 5: guard operation In this scenario, e has the form guard(ev eg) and e′ has
the form guard(e′v Sv e′g Sg). From (F ,≺,E) : e ⇓ v we can follow that
(F ,≺,E) : ev ⇓ v and (F ,≺,E) : eg ⇓ true. As δ is non-empty, we know from
the definition of demand inference that δc ` ↑ {δ} ∈ Sg. With the inductive as-
sumption we then get (Fδ,≺,Eδ, δc) : e′g Sg ↓ true, as true is the only value that
satisfies the result of full evaluation true given the demand ↑ {δ}. Furthermore, we
know from the definition of demand inference that δc ` δ ∈ Sv. Thus, we get with

the inductive assumption that (Fδ,≺,Eδ, δc) : e′v Sv ↓ v′ with v
δ

v v′. It then

directly follows that (Fδ,≺,Eδ, δc) : e′ S ↓ v′ with v
δ

v v′, as well.

Case 6: witness operation Here, e has the form witness(ev e1 · · · en) and e′ has
the form witness(e′v Sv e′1 S1 · · · e′n Sn). From (F ,≺,E) : e ⇓ v we can
follow that (F ,≺,E) : ev ⇓ v and (F ,≺,E) : ej ⇓ true for all j ∈ {1, . . . , n}.
Furthermore, we know from the definition of demand inference that δc ` δ ∈ Sv

and δc ` ↑ {δ} ∈ Sj for all j ∈ {1, . . . , n}. Thus, with the inductive assumption

it follows that (Fδ,≺,Eδ, δc) : e′v Sv ↓ v′ with v
δ

v v′ holds. Similarly, it follows

that (Fδ,≺,Eδ, δc) : e′j Sj ↓ v′j with true
↑ {δ}
v v′j holds for all j ∈ {1, . . . , n}.

149

6. Guiding Partial Evaluation

It follows, that v′j = true for all j ∈ {1, . . . , n}. From this, we can follow that

(Fδ,≺,Eδ, δc) : e′ S ↓ v′ with v
δ

v v′.

Case 7: Equality Operation Then e has the form (e1 = e2) and e′ has the form (
e′1S1 = e′2S2) S . From (F ,≺,E) : e ⇓ v, we know that (F ,≺,E) : e1 ⇓ v1
with v1 6∈ R and (F ,≺,E) : e2 ⇓ v2 with v2 6∈ R. Furthermore, from the
definition of demand inference, we know that δc ` ⇑ (δ) ∈ S1 and δc ` ⇑ (δ) ∈ S2.
As δ 6= ∅, it follows that ⇑ (δ) =↑ {δ}. With the inductive assumption, we can

follow that for j ∈ {1, 2} the statement (Fδ,≺,E ′, δc) : ejSj ↓ v′j with vj
↑ {δ}
v v′j

holds. From vj 6∈ R, by definition of demand satisfaction, it follows that vj = v′j .

Thus, (Fδ,≺,E ′, δc) : e′S ↓ v′ with v′ = v. Therefore, trivially v
δ

v v′ holds.

Case 8: let Construct Then e is of the form let d1 · · · dn in eb end and e′ has the
form let d′1 · · · d′n in e′bSb end S where for each definition dj in e a corre-
sponding definition d′k in e′ exists. From (F ,≺,E) : e ⇓ v, it follows that
(Fl,≺l,El) : eb ⇓ v for some Fl, ≺l and El that are computed by the functions
fun, rel and val, respectively, as defined in Figures 3.10, 3.9 and 3.11. Let Fδl and
Eδl be the function and variable environments computed by the functions fund and
vald, respectively, as defined in Figures 6.4 and 6.9. From Lemma 6.1.3 on page 145

we know that Fl

δc→
v Fδl holds. Furthermore, with Lemma 6.1.4 on page 146 we

know that Fl
d≡ Fδl holds, as well. Thus, with the inductive assumption, we can

follow (Fδl,≺l,E ′l , δc) : e′bSb ↓ v′ with v
δ

v v′. Finally, we get by definition of rule
Let in Figure 6.8 on page 136 that (Fδ,≺,E ′, δc) : e′S ↓ v′.

Case 9: Function Application Lastly, e can be of the form (f e1 · · · en) and e′ then
has the form (f e′1S1 · · · e′nSn) S . From (F ,≺,E) : e ⇓ v it follows that
the function match as used in rule AP in Figure 3.8 on page 52 yields a single
instance and that for all j ∈ {1, . . . , n} we have (F ,≺,E) : ej ⇓ vj . Further-
more, from the inductive assumption it follows that for all j ∈ {1, . . . , n} some δj

exists with δc ` δj ∈ Sj such that (Fδ,≺,E ′, δc) : e′j ↓ v′j with vj
δj

v v′j . By
definition of the function apply in Figure 6.7 on page 130, we know that the set of
instances selected after the lookup stage corresponds to the set of instances selected
after the second stage of the function match. Thus, each demand δj contains at
least all discriminating labels for the corresponding patterns. With Lemmata 6.1.1
and 6.1.2, it then follows that after the fourth stage, i.e., the order stage, the sets
of instances returned in the functions match as defined in Figure 3.12 on page 60
and matchp as defined in Figure 6.10 on page 140 contain both the same instance.
Let Fb, ≺b, Eb and eb be the function environment, order on labels, variable en-
vironment and body expression as returned by the function match. Furthermore,
let Fδb, ≺′b, Eδb and e′b Sb be the function environment with demands, order on
labels, variable environment with demands and body expression as returned by the
function matchd. From F

d≡ Fδ, we know that ≺b=≺′b. Furthermore, as all partial

150

6.2. Extending the Binding-Time Analysis to Full LRecC

arguments satisfy the full arguments, we know that Eb

δc→
v Eδb, as well. As Fb and

Fδb are computed form F and Fδ, respectively, by peeling off the same number
of nesting levels, we know that Fb

d≡ Fδb. From (F ,≺,E) : e ⇓ v, it follows that
(Fb,≺b,Eb) : eb ⇓ v, as well. Thus, with the inductive assumption, we can follow

that (Fδb,≺b,Eδn, δ) : eb Sb ↓ v′ with v
δ

v v′. It follows by definition of rule Let
in Figure 6.8 on page 136 that then (Fδ,≺,Eδ, δc) : e S ↓ v.

As I have shown, using the demand inference, partial evaluation can be guided to evaluate
specified auxiliary computations only. However, so far, this only applies to expressions
in LRecC without nested records. In the next section, I will extend the demand analysis
such that the above holds for arbitrary expressions in LRecC.

6.2. Extending the Binding-Time Analysis to Full LRecC

The demand inference and guided partial evaluation presented in the previous section
might not terminate for expressions in LRecC that compute nested records. As an
example for such a case, consider the following definition of a function last on non-
empty lists of Boolean values.

let
2 fun

last L{ List , Next}
4 = (last L.Next)

L{ List , Last}
6 = L

val L = true{ List , Next=false{ List , Last}}
8 in

(last L)
10 end

Similar to the encoding of the Expr algebraic data type in Section 2.4, I use three labels
to model non-empty lists. The first label, the tag List, is used to identify data as non-
empty lists in general. To encode the structure of a list, I decompose the list into a
nesting of one-element lists. The tag Last thereby identifies the last one-element list in
a chain of one-element lists. The chain itself is constructed using the Next label. The
label Next carries as value the remainder of the list. For both list components, the value
element of the record contains the actual element of the list.
Line 7 above shows the encoding of the list (true, false) using the record structure

described above. The last element is represented by the record expression false{ List,
Last}. To model the full list, I then wrap the expression for the last element into a
further record using the Next tag.
To access the last element of a list, I define in Line 3 a function last that recur-

sively descends through the nested structure until it reaches an element with a Last tag.

151

6. Guiding Partial Evaluation

The first instance in Line 3 thereby performs the recursive descend whereas the second
instance in Line 5 is used to terminate the recursion.
Now, consider we want to know whether the result of an application of last carries

the Last tag, i.e., whether the function Last for a given argument actually returns the
last one-element list. To derive this demand, I start out with a demand of {(Last,∅)} on
the application of last in Line 5 above. Below, the result after propagating the demands
into the instances of last after one round of the fix-point iteration is given. To ease
the presentation, I have only annotated the demands that are of interest in the following
discussion.

let
2 fun

last L{ List , Next}{(Last,∅)}`{(Last,∅),(Next,∅)}

4 = (last L{(Last,∅)}`∅.Next){(Last,∅)}`{(Last,∅)}

L{ List , Last}{(Last,∅)}`{(Last,∅),(Next,∅)}

6 = L{(Last,∅)}`{(Last,∅)}

val L = true{ List , Next=false{ List , Last}}
8 in

(last L)⊥`{(Last,∅)}

10 end

As can be seen, the demand has been propagated from the application of last in Line 9
to the body expression of each instance. For the second instance in Line 5, the demand
derivation is trivial, as it is the identity on its argument. However, for the first instance
in Line 3, the demand inference is more complex. The instance is defined by a recursive
call to the function last with the Next component of the argument as parameter. As we
have not yet inferred a demand for last, the propagation yields the empty demand. By
adding the demand that results from the pattern, we get a final demand of {(Last, ∅)} `
{(Last, ∅), (Next, ∅)} for both instances after round one of the fix-point iteration.
To check whether the fix-point has been reached, we have to perform a second round

of demand inference. The resulting demand annotations are given below. Again, I have
only annotated those demands that are of interest here.

let
2 fun

last L{ List , Next}{(Last,∅)}`{(Last,∅),(Next,{(Last,∅),(Next,∅)})}

4 = (last L{(Last,∅)}`{(Next,{(Last,∅),(Next,∅)})}.Next){(Last,∅)}`{(Last,∅)}

L{ List , Last}{(Last,∅)}`{(Last,∅),(Next,{(Last,∅),(Next,∅)})}

6 = L{(Last,∅)}`{(Last,∅)}

val L = true{ List , Next=false{ List , Last}}
8 in

(last L)⊥`{(Last,∅)}

10 end

The demand derivation for the second instance in Line 5 above remains unchanged.
However, as we already have inferred a demand for the function last, we can now
propagate this demand in the recursive application in the second instance in Line 3.

152

6.2. Extending the Binding-Time Analysis to Full LRecC

Thus, we get a demand of {(Last, ∅)} ` {(Last, ∅), (Next, ∅)} for the parameter of the
recursive call. After nesting the demand, we get an additional demand on the argument
L of {(Last, ∅)} ` {(Next, {(Last, ∅), (Next, ∅)})}. Finally, after adding in the demand of
the other instance and the demand that arises from the pattern match, we get a demand
of {(Last, ∅)} ` {(Last, ∅), (Next, {(Last, ∅), (Next, ∅)})} on the parameter of the function
last.
As the demand annotation has changed, we have not reached a fix-point, yet. Moreover,

we will obviously never reach such a fix-point as during each iteration on the demand
analysis, we get a further nesting of the demand for the label Next. The demand inference
as defined in the previous section will thus never terminate.
These infinite demands are a general result of recursive functions on the nesting struc-

ture of record values. As such functions descend through a nested record until some
property holds, e.g. until the argument carries the Last label in the above example, we
cannot decide without knowing the argument at what level such function will terminate
and, thus, how far the argument needs to be evaluated. For the example above, the
demands inferred so far would already suffice. The argument as defined in Line 7 above
only has one nesting level. Thus, if we propagate the demands as inferred so far, we get
the desired result.

let
2 fun

last L{ List , Next}{(Last,∅)}`{(Last,∅),(Next,{(Last,∅),(Next,∅)})}

4 = (last L{(Last,∅)}`{(Next,{(Last,∅),(Next,∅)})}.Next){(Last,∅)}`{(Last,∅)}

L{ List , Last}{(Last,∅)}`{(Last,∅),(Next,{(Last,∅),(Next,∅)})}

6 = L{(Last,∅)}`{(Last,∅)}

val L = true{ List ,
8 Next=false{ List ,

Last⊥`∅

10 }⊥`{(Last,∅),(Next,∅)}

}⊥`{(Last,∅),(Next,{(Last,∅),(Next,∅)})}

12 in
(last L)⊥`{(Last,∅)}

14 end

For the value bound to L in Line 7, we get a demand that only requires the presence of
the labels Next and Last to be know at each level. Thus, using the partial evaluation
with demand as defined in Figure 6.8 on page 136, the value bound to L would only
be evaluated to {(Next, {(Last, ?)})}. This, however, suffices to partially evaluate the
application of the function last to the value {(Last, ?)}. Thus, we have found out that
the result of the above example indeed carries the Last tag.
Remains the challenge to decide how far to compute an infinite demand annotation.

The key observation here is that during partial evaluation, at each step only the top-level
demands are required. In the above example, to evaluate the outer record expression that
is bound to L, we only need to know that we have to evaluate the Next component. When,
in turn, evaluating that component, we only need to know that the Last label is required.
Similarly, to decide demand satisfaction as defined in Definition 6.1.3 on page 117 for a

153

6. Guiding Partial Evaluation

given demand and value, we only need to know the demand at each level of the nested
value. And the list goes on. All properties of demands as used in the previous section
either only inspect the top level of a demand or only inspect a finite number of levels
that is given by some record value.
Thus, to incorporate infinite demands that arise from recursive functions on nested

record values, I postpone the actual demand computation until evaluation time. The
demand inference, instead of computing the demand on some expression, then computes
abstract demands, i.e., expressions that can be evaluated to some actual demand. These
abstract demands then again are finite and thus demand inference terminates. Further-
more, as partial evaluation at each step only requires the top-level demand to be known,
the evaluation of the abstract demands to such a top-level demand is finite again, as well.
The argument here is the same as for finite demands that arise from non-nested record
expressions: As the set of labels that are used in any expression in LRecC is finite, such
are all demands that can arise for each level of a nested record expression.
My approach uses the same idea as used in lazy evaluation [Friedman and Wise, 1976;

Henderson and Morris, 1976] for functional programming languages like Haskell. The
classical example in that setting is the partial evaluation of infinite lists. Similar to
delaying the evaluation of infinite demands until some part is actually needed, in lazy
evaluation the elements of a list, and the actual structure of the list itself, are computed
only if they are required for the result to be computed. If, for instance, a function only
iterates over a finite prefix of an infinite list, only that prefix will be computed. Like in
the demand analysis presented here, this allows programs on infinite lists to terminate if
only finite prefixes of the list are required to compute the result.
It is worth noting here that I in this thesis use the equivalent of a call-by-name [Plotkin,

1975] evaluation strategy: Instead of computing demands, I propagate unevaluated de-
mand expressions. In particular, these demand expressions might be copied multiple
times into different contexts. This leads to a potentially significant overhead when com-
puting the actual demands for each sub-expression of a program. However, as with lazy
evaluation, an actual implementation might use a call-by-need strategy [Ariola et al.,
1995; Maraist et al., 1998; Wadsworth, 1971], which memoizes the result of evaluating
common demand expressions and reuses these results if multiple copies of a demand
expression exist.
To formalise the delayed evaluation of demand annotations, I first define an applied

lambda calculus for demand expressions. The corresponding syntax is shown by Fig-
ure 6.11 on the facing page. The production rule demand defines all valid demand
expressions. Apart from the record demands as used in the demand annotations for non-
nested record expressions, I additionally allow lambda abstractions on demands and the
corresponding application of such an abstraction to a demand. I use a single variable ∆
for abstractions, as demand annotations will only be parametrised by a single demand
context. Furthermore, demand annotations may contain lifting, nesting and selection
operations that correspond to the respective computation on demands in the non-nested
case. Finally, a demand can be a union of two demands or the identifier ∆ as used in
lambda abstractions.

154

6.2. Extending the Binding-Time Analysis to Full LRecC

demand ⇒ record
| λ ∆ . demand
| (identifier demand)
| ⇑ demand
| nest (label , demand)
| demand . label
| demand] demand
| ∆

record ⇒ { [label = demand [, label = demand]*] }

Figure 6.11.. Demand language in extended Backus Naur form.

In the following, I will use D to refer to the set of demand expressions that can be
produced using the rule demand above and Dr to refer to only those demands that can
be produced using the rule record.
I provide a formal semantics for this demand language in Figure 6.16 on page 165.

They correspond to the standard semantics of an applied lambda calculus known from
textbooks like [Pierce, 2002]. Before I discuss the semantics in detail, I first introduce
the modified demand inference that computes appropriate demand annotations using the
above language.
The demand inference scheme AF as shown in Figure 6.12 on the following page is

parametrised with a function-demand environment FA, a variable environment EA, a
binding environment BA, the demand to propagate δ and the expression to annotate e.
It yields an amended function environment, an extended variable environment and the
annotated expression.
The function environment used in the demand inference for abstract demands differs

from the corresponding environment used in demand inference presented in the last
section. Instead of using a nested environment to model the scoping of the let construct,
I employ an α-conversion scheme when storing the demands for function arguments in
the environment. The corresponding mapping from a function’s name and its arity to
the α-converted name of the demand is stored in the binding environment BA. That
environment contains tuples of the form (f, n, i, α) where f is the function name, n its
arity and i the parameter starting from 1 for the left-most parameter. The identifier α
then is the α-converted name of the corresponding demand in the function environment
FA.
The variable environment EA is structurally identical to the corresponding environment

of the demand inference for non-nested record expressions. However, instead of actual
demands, it now stores demand expressions as define in Figure 6.11.
Lastly, the demand to propagate is a demand expression, as well. However, instead

of propagating a fixed demand, I initially propagate the abstract demand ∆. This later
enables the partial evaluation of the annotated expression with respect to any actual

155

6. Guiding Partial Evaluation

(True) AF

q
FA,EA,BA, δ, true

y

 (FA,EA, true λ∆.δ)

(False) AF

q
FA,EA,BA, δ, false

y

 (FA,EA, false λ∆.δ)

(Unit) AF

q
FA,EA,BA, δ, ~

y

 (FA,EA, ~ λ∆.δ)

(Var) AF

q
FA,EA,BA, δ, α

y

 (FA,EA
D
^ (α, δ), α λ∆.δ)

(Equal) AF

q
FA,EA,BA, δ, (e1 = e2)

y

 (FA
′′,EA

′′, (e′1 = e′2) λ∆.δ)

where
FA
′,EA

′, e′1 := AF

q
FA,EA,BA,⇑ (δ), e1

y

FA
′′,EA

′′, e′2 := AF

q
FA
′,EA

′,BA,⇑ (δ), e2
y

(Record) AF

q
FA,EA,BA, δ, {l1=e1, . . ., ln=en}

y

 (FA
n,EA

n, {l1=e′1, . . ., ln=e′n} λ∆.δ)

where
EA

0 := EA
FA

0 := FA

FA
i+1,EA

i+1, e′i+1 := AF

q
FA

i,EA
i,BA

i, δ.li+1, ei+1

y

Figure 6.12.. Demand analysis scheme AF for translating expressions in full LRecC
into expressions in LRecD with demand annotations.

156

6.2. Extending the Binding-Time Analysis to Full LRecC

(Selection) AF

q
FA,EA,BA, δ, e.l

y

 (FA
′,EA

′, e′.l λ∆.δ)

where
FA
′,EA

′, e′ := AF

q
FA,BA,EA, nest(l, δ), e

y

(Any) AF

q
FA,EA,BA, δ, any(e1 · · · en)

y

 (FA
n,EA

n, any(e′1 · · · e′n) λ∆.δ)

where
EA

0 := EA
FA

0 := FA

FA
i+1,EA

i+1, e′i+1 := AF

q
FA

i,EA
i,BA, δ, ei+1

y

(Cond) AF

q
FA,EA,BA, δ, if ep et ee

y

 (FA
3,EA

3, if e′p e′t e
′
e λ∆.δ)

where
FA
′,EA

′, e′p := AF

q
FA,EA,BA,⇑ (δ), ep

y

FA
′′,EA

′′, e′t := AF

q
FA’,EA’,BA, δ, et

y

FA
3,EA

3, e′e := AF

q
FA”,EA”,BA, δ, ee

y

(Guard) AF

q
FA,EA,BA, δ, guard(e1 e2)

y

 (FA
′′,EA

′′, guard(e′1 e′2) λ∆.δ)

where
FA
′,EA

′, e′1 := AF

q
FA,EA,BA, δ, e1

y

FA
′′,EA

′′, e′2 := AF

q
FA’,EA’,BA,⇑ (δ), e2

y

(Witness) AF

q
FA,EA,BA, δ, witness(ev e1 · · · en)

y

 (FA
n,EA

n, witness(e′v e′1 · · · e′n) λ∆.δ)

where
FA
′,EA

′, e′v := AF

q
FA,EA,BA, δ, ev

y

FA
i+1,EA

i+1, e′i+1 := AF

q
FA

i,EA
i,BA,⇑ (δ), ei+1

y

Figure 6.12.. Demand analysis scheme AF for translating expressions in full LRecC
into expressions in LRecD with demand annotations (contd.).

157

6. Guiding Partial Evaluation

(Let) AF

q
FA,EA,BA, δ, let d1 · · · dn in e end

y

 (FA
3,EA

′′, let d′1 · · · d′n in e′ end λ∆.δ)

where
FA
′,BA

′, D = derivefun(FA,BA, (d1, . . . , dn))
FA
′′,EA

′, e′ = AF

q
FA
′,EA,BA

′, δ, e
y

FA
3,EA

′′, (d′1, . . . , d
′
n) = derivevar(FA

′′,EA
′,BA

′, D)

(Ap) AF

q
FA,EA,BA, δ, (f e1 · · · en)

y

 (FA
n,EA

n, (f e′1 · · · e′n) λ∆.δ)

where
EA

0 := EA
FA

0 := FA

FA
i+1,EA

i+1, e′i+1 := AF

q
FA

i,EA
i,BA, (apply(BA, f, n, i) δ), ei+1

y

Figure 6.12.. Demand analysis scheme AF for translating expressions in full LRecC
into expressions in LRecD with demand annotations (contd.).

demand. Similarly, the demands that are derived for functions are parametrised by an
abstract demand, as well. This makes the demand context as used in the non-nested case
superfluous: Instead of deriving and annotating different demands for different contexts,
I use parametrised demands and compute the actual demand when it is required.
Most rules for AF as shown in Figure 6.12 on page 156 are largely identical to their

counterparts for the non-nested case given in Figure 6.3 on page 122. However, instead of
computing a demand, I compute a demand expression. For example, in rule Equal, the
demand expression ⇑ (δ) is annotated at both sub-expressions. As each sub-expression is
only processed once instead of once for each context in the non-nested case, I do not need
to store sets of demands and join demand annotations. Instead, I simply annotate one
demand expression. However, the demand δ that is passed as argument to the demand
inference contains free occurrences of the abstract demand ∆ that provide the current
context. Therefore, I first wrap the demand δ into a lambda abstraction λ∆. This
wrapped demand can then later be specialised to a given context by applying it to the
corresponding context demand.
Apart from these minor changes, the main differences are in the rules Let for let con-

structs and the rule Ap for function applications. In the rule Let first a new function
environment and amended function definitions are computed using the function derive-
fun. As I derive abstract demands that are parametrised by the context of function
application, I no longer need to postpone the derivation of the demands on functions to
the application time. Instead, the function derivefun directly infers the demands for all

158

6.2. Extending the Binding-Time Analysis to Full LRecC

function instances and rewrites the function definitions. The definition of derivefun is
is given in Figure 6.13 on the following page. To derive the demands for the functions,
I first extract all function definitions from the definitions contained in a let construct
using the function inst. The resulting set of instances is structurally identical to the set of
instances in the function environment used in the demand inference for non-nested record
expressions. Furthermore, I compute a set A that contains for each defined function f
of arity n a tuple (f, n). This set is used twofold. Firstly, I construct a new binding
environment BA

′ that contains fresh names for each argument of the newly defined func-
tions. This step basically performs the α-conversion of function names. It is important
here that in each extension of the binding environment new variables are used to ensure
that no parasitic demand bindings are introduced at later stages. Secondly, I will use
this set to later compute the set of discriminating labels for each function.

Using this extended binding environment, I then derive the demands for each in-
stance. This is achieved using the function deriveinst. Given a function environment,
the extended binding environment and the set of instances, it computes a new func-
tion environment and an updated set of instances with demand annotations. The new
function environment needs to be propagated, as the instances might contain function
definitions themselves. Their corresponding demands need to be incorporated into the
overall function environment.

The function deriveinst derives the demand for each instance by applying the function
deriveinst′ to each single instance. That function computes the actual demands by ap-
plying the demand inference to the function body using the abstract demand ∆. Thus,
the annotated demands will be parametrised by ∆. Furthermore, I use an empty variable
environment as all functions in LRecC are closed. Similar to the demand inference for
non-nested records, the demands for the parameters of the instance are extracted from
the variable environment returned by the demand inference for the body expression. If
no demand is annotated for a parameter, the empty demand ∅ is used.
After this step, the set of instances now contains annotated body expressions and an

additional tuple for each instance that contains the demands for the parameters of that
instance. However, so far these demands do not yet contain the demands that result
from pattern matching. This demand is added using the function pattern. The function
expects a function environment FA, a binding environment BA, a set of instances I and
the (name of function,arity) tuples computed earlier. The latter are then used by the
function pattern′ to compute the final demand for each function definition f with a given
arity n. This demand is computed for each parameter by collecting the demands for the
corresponding parameter of each instance and adding the demand that arises from the
pattern match. Note here that in the definition of pattern′ the symbol] refers to the
corresponding expression in the demand language and not the] operation used in the
demand inference for non-nested record expressions. The resulting demands are then
added to the function environment FA. As the demands contain unbound occurrences
of the abstract demand ∆, I first wrap each into a lambda abstraction λ∆. Thus, the
demand for each parameter can later be specialised for a specific context by applying the
demand to that context.

159

6. Guiding Partial Evaluation

The function derivefun is defined as

derivefun(FA,BA, (d1, . . . , dn)) := derivefun’(FA,BA, In, Dn)

where

I0 := ∅
D0 := ()

Ii+1, Di+1 :=

{
(Ii ∪ (inst(f, {ι1, . . . , ιn})), Di) if di+1 ≡ fun f ι1 · · · ιn,
(Ii, Di + (di1) otherwise,

with
inst(f, I) :=

⋃
ι∈I

inst′(f, ι)

where
inst′(f, α1 p1 · · · αn pn = e) := (f, (((α1, p1), . . . , (αn, pn)), e)).

The function derivefun′ is then defined as

derivefun′(FA,BA, I,D) := (FA
′′,BA

′, D′)

where BA
′, FA

′′ and D′ are defined as

BA
′ := {(f ′,m, l, β) ∈ BA | f 6= f ′} ∪

⋃
(f,n)∈A

{(f, n, 1, α1), . . . , (f, n, n, αn)}

with all α being fresh demand variables,

FA
′, I ′ := deriveinst(FA,BA

′, I),
FA
′′, I ′′ := pattern(FA

′,BA
′, I, A), and

D′ := disperse(I ′′,BA, D).

The set A above is defined as

A := {(f, n) | (f, ((a1, . . . , an), e)) ∈ I}.

The function deriveinst is defined as

deriveinst(FA,BA, {ι1, . . . , ιn}) := (FA
n, In)

with
FA

0 := FA

FA
i+1, ι′i+1 := deriveinst′(FA

i,BA, Ii, ιi+1)

Figure 6.13.. Definition of function derivefun as used in Figure 6.12 on page 156.

160

6.2. Extending the Binding-Time Analysis to Full LRecC

where deriveinst′ is defined as

deriveinst′(FA,BA, (f, (((α1, p1), . . . , (αn, pn)), e))) := FA
′, I ′

with
FA
′,EA, e

′ := AF

q
FA, ∅,BA,∆, e

y

δi :=

{
δαi if (αi, δαi) ∈ EA,
∅ otherwise,

for all i ∈ {1, . . . , n},

and
ι′ := (f, (((α1, p1), . . . , (αn, pn,)), e

′), (δ1, . . . , δn)).

The function pattern is defined as

pattern(FA,BA, I, (a0, . . . , an)) := FA
′

where
FA0 := FA

FAi+1 := pattern′(FAi,BA, I, ai+1)
.

The function pattern′ is defined as

pattern′(FA,BA, I, (f, n)) := FA
′

with

διi :=
⊎

(f,(s,e),(δ′1,...,δ
′
n))∈I δ

′
i

δpi := (
⋃

(f,(((α1,p1),...,(αn,pn)),e),δ)∈I pi \
⋂

(f,(((α1,p1),...,(αn,pn)),e),δ)∈I pi)× {∅}
δi := διi] δ

p
i

for all i ∈ {1, . . . , n} and

FA
′ := FA ∪ {(α, λ∆.δi) | i ∈ {1, . . . , n} ∧ (f, n, i, α) ∈ BA}.

Lastly, the function disperse is defined as

disperse({ι1, . . . , ιn}, D,BA) := Dn

where
D0 := D

Di+1 := Di + disperse′(ιi,BA)

with

disperse′((f, (((α1, p1), . . . , (αn, pn)), e)),BA) := (fun f α1 p1 β1 · · · αn pn βn = e)

where for all i ∈ {1, . . . , n} the tuple (f, n, i, βi) ∈ BA.
Figure 6.13.. Definition of function derivefun as used in Figure 6.12 on page 156

(contd.).

161

6. Guiding Partial Evaluation

derivevar(FA,EA,BA, D) := (FAn,EAn, Dn)

with

FA0,EA0, D0 := (FA,EA, ())

FAi+1,EAi+1, Di+1 :=

{
(FA

′
i,EA

′
i, Di + (var α = e′)) if dn−i ≡ var α = e

(FAi,EAi, Di + (di+1)) otherwise.

where
FA
′
i,EA

′
i, e
′ := derivevar′(FAi,EAi,BA, α, e).

The function derivevar′ is defined as

derivevar′(FA,EA,BA, α, e) := (FA
′,EA

′′, e′)

with
EA
′ := {(β, δ′) ∈ EA | α 6= β}

FA
′,EA

′′, e′ :=

AF

r
FA,EA

′,BA, δ, e
z

if (α, δ) ∈ EA,

AF

r
FA,EA

′,BA, ∅, e
z

otherwise.

Figure 6.14.. Definition of function derivevar as used in Figure 6.12 on page 156.

As the last step in the derivation of demands for functions, I transform the function
environment FA back to function definitions. This is done using the function disperse.
For each instance ι in the set of instances I, I create a corresponding function definition.
However, instead of using the demands that are annotated in ι, I annotate the identifiers
that correspond to the demands for that instance in the function environment FA. This
is done to keep the annotations consistent: The demands annotated in ι do not contain
demands from other instances or those demands that arise due to the pattern match.
However, the annotated demands are not used for evaluation and thus serve merely a
documentation purpose.
After deriving demands for function definitions in rule Let, I next derive the demand

for the body expression. The body expression needs to be handled first, as the demand
inference is a bottom up process. Again, the body of the let expression may contain
further function definitions, thus I propagate the resulting function environment.
Lastly, the demands for variable bindings are computed. This step is performed using

the function derivevar as defined in Figure 6.14. The function closely corresponds to its
counterpart propvar for demand inference in the non-nested case as defined in Figure 6.5
on page 128. The function derivevar annotates the set of definitions D by applying the
helper function derivevar′ bottom-up to each instance definition. This helper function
rewrites a variable binding by first computing a new variable environment where the
binding for the currently processed variable has been removed and then rewriting the
body expression. The latter is done with the demand that is annotated for the variable,

162

6.2. Extending the Binding-Time Analysis to Full LRecC

The function apply is defines as

apply(BA, f, n, i) :=

{
α if (f, n, i, α) ∈ BA),
λ∆.∅ otherwise.

Figure 6.15.. Definition of function apply as used in Figure 6.12 on page 156.

if such demand exists, or the empty demand otherwise. All definitions that are not
variable bindings are left as is.
Thus, after the derivevar stage, the entire let construct has been annotated with de-

mands. It is important here that the modified binding environment BA is used through-
out the let construct but not passed back further up. This corresponds to the scoping
rules for function definitions in LRecC. Similarly, after the derivevar stage, all local
bindings have been removed from the variable environment EA. Only the function en-
vironment FA is passed back up. This is important, as demands inferred for variables
that are defined outside the scope of the current let construct may contain references
to the demand of the parameters of local functions. To later be able to evaluate these
references, we need to keep the corresponding demands in the function environment.
The last rule in Figure 6.12 on page 156 is the rule for function applications Ap. As

can be seen, for the function application itself, the current demand wrapped in a lambda
abstraction is annotated. Furthermore, the demand for all argument expressions is com-
puted by applying the demand inference to the corresponding expressions. However,
instead of computing a specialised demand for the current context as done in the non-
nested case, I construct a demand expression that evaluates to this demand. As a first
step, the demand expression for the corresponding function parameter is looked up in the
function environment using the function apply as defined in Figure 6.15. The function
apply expects the current binding environment BA, a function name f , the arity of the
function n and the number i of the parameter counting left to right starting with 1.
Using this information, the function apply looks up the corresponding identifier in the
binding environment. This identifier refers to the demand expression for that function
parameter in the function environment FA. If no such identifier can be found, i.e., if the
corresponding function does not exist in the current scope, the demand expression λ∆.∅
is returned. It evaluates to the empty demand regardless of the context. An alternative
design would be to fail the demand inference, as the corresponding expression cannot be
evaluated. However, I have chosen the first approach to ensure that the demand inference
succeeds for all expressions in LRecC.
In either case, the demand for each parameter is a λ-abstraction. As a second step,

to specialise each parameter to the context of the application at hands, I apply the
parameters to the current demand. The resulting demand expressions are then used to
infer the demands for the arguments.
This completes the definition of the extended demand inference for arbitrary expres-

sions in LRecC. Using the above definition, I can now derive demands for the example

163

6. Guiding Partial Evaluation

of the function last given at the beginning of this section. The corresponding annotated
expression is given below. As before, I have only annotated those demands that are of
interest for the discussion.

let
2 fun

last L{ List , Next}λ∆.α

4 = (last Lλ∆.nest(Next,(α∆)).Nextλ∆.(α∆))λ∆.∆

L{ List , Last}λ∆.α

6 = Lλ∆.∆

val L = true{ List ,
8 Next=false{ List ,

Lastλ∆.α.Next.Last

10 }λ∆.α.Next

}λ∆.α

12 in
(last L)λ∆.∆

14 end

The corresponding function environment FA returned by the demand inference contains
a single entry for α with the demand λ∆.nest(Next, (α∆))]∆]{(Next,∅),(Last,∅)}.
The first component of this demand stems from the first instance in Line 3 above. It
captures the recursive nature of that instance with a recursive application of the overall
demand α. Obviously, this component encodes an infinite demand. The second compo-
nent of the demand corresponds to the second instance in Line 5. As that instance is the
identity on its argument, the demand for that instance simply is the abstract demand ∆.
Lastly, the third component of the demand arises from the pattern match. It contains
the empty demand for each discriminating label, i.e., for the labels Next and Last.
To make use of the above demand annotations for partial evaluation, I next define the

evaluation of demand expressions to top-level normal form. As a reminder: To guide the
partial evaluation, at each step only the top-level demands of a nested record demand
are required. A corresponding small-step operational semantics that computes these
top-level demands from demand expressions is given in Figure 6.16 on the next page.
The statement FA : e → e′ is to be read as: Given a function environment FA, the
expression e can be reduced to the expression e′. The function environment FA thereby
is the function environment returned by the demand inference that has computed the
expression e.
The first rule, i.e., rule Apply, defines the reduction of function applications. A func-

tion application can be reduced if the function environment contains a corresponding
lambda abstraction. The reduced expression is then the body of that lambda abstraction
where all free occurrences of the abstract demand ∆ have been substituted by the argu-
ment expression. The substitution function δb[∆/δ] is defined in the usual way [Pierce,
2002] and does not substitute bound occurrences, i.e., those occurrences that are pro-
tected by a surrounding lambda abstraction.
The next three rules define the reduction of the lifting of demands ⇑. Rule Lift defines

the reduction in case the argument is not yet a record demand. Then the lift operation

164

6.2. Extending the Binding-Time Analysis to Full LRecC

Apply :
(α, λ∆.δb) ∈ FA

FA : (α δ) → δb[∆/δ]

Lift :
δ 6∈ Dr FA : δ → δ′

FA : ⇑ (δ) → ⇑ (δ′)

LiftEmpty :
δ = {}

FA : ⇑ (δ) → {}

LiftNEmpty :
δ ∈ Dr δ 6= {}

FA : ⇑ (δ) → ↑ {δ}

Nest :
FA : nest(l, δ) → {(l,δ)}

Selection :
δ ∈ Dr

FA : δ.l → elemd(δ, l)

SelArg :
δ 6∈ Dr FA : δ → δ′

FA : δ.l → δ′.l

Union :
δ1 ∈ Dr δ2 ∈ Dr

FA : δ1] δ2 → δ1] δ2

UnionL :
δ1 6∈ Dr FA : δ1 → δ′1
FA : δ1] δ2 → δ′1] δ2

UnionR :
δ2 6∈ Dr FA : δ2 → δ′2
FA : δ1] δ2 → δ1] δ′2

Figure 6.16.. Small step operational semantics for the demand language defined in
Figure 6.11 on page 155.

165

6. Guiding Partial Evaluation

can be reduced if the argument can be reduced and the result is the lifting of the reduced
argument. In case the argument is the empty demand, rule LiftEmpty allows to reduce
the lifting of the demand to the empty demand, as well. For the other case where the
argument is a non-empty record demand, we can reduce the demand to the corresponding
demand for full evaluation. These two rules correspond to the definition of lifted demands
in Definition 6.1.7 on page 125.
The next rule, i.e., rule Nest, handles the nest operation on demands. The resulting

demand is then a new record demand that contains the label given as argument and the
demand given as argument as that label’s demand. Note here that the argument of a
nest operation is never reduced. As it is not part of the top-level, it need not be reduced
for the top-level normal from.
For selection operations, the semantics are defined in rules Selection and SelArg.

In case the demand argument of a selection operation already is a record demand,the rule
Selection allows the reduction to the corresponding element. If, however, the demand
argument is not yet a record demand, it can be reduced using rule SelArg.
Lastly in Figure 6.16 on the previous page, I define three rules for the reduction of

the] operation. The first of these, the rule Union, defines the union of two record
demands. Note that the] sign on the right hand side of the reduction rule refers to
the union of demands as defined in Definition 6.1.4 on page 118. In case that either of
the two arguments is not yet a record demand, the rules UnionL and UnionR allow for
reduction of the left or right argument, respectively.
Deliberately, the semantics for top-level normal form reduction do not contain a rule

for record demands. These need not be evaluated further as they already are in top-level
normal form.
Using these semantics, I can define the notion of top-level normal form as follows:

Definition 6.2.1 (Top-Level Normal Form). Given a demand expression e and a corre-
sponding function environment FA. We say e is in top-level normal form, if no demand
expression e′ exists with

FA : e → e′.

Thus, the top-level normal form of an expression is computed by applying the reduction
relation → until no further reduction is possible. In the following, I will denote this
reduction to top-level normal from using the reduction operation ∗→.
As an example, consider the previous example now annotated with reduced demands

below. I have used the context demand {(Last, ∅)}, i.e., I have applied all annotated
abstractions to that demand.

let
2 fun

last L{ List , Next}α

4 = (last L{(Next,(α{(Last,∅)}))}.Next{(Next,(α{(Last, ∅)})),(Last,∅)}

L{ List , Last}α

6 = L{(Last,∅)}

val L = true{ List ,
8 Next=false{ List ,

166

6.2. Extending the Binding-Time Analysis to Full LRecC

Last∅

10 }{(Next,(α{(Last, ∅)})),(Last,∅)}

}{(Next,(α{(Last, ∅)})),(Last,∅)}

12 in
(last L){(Last,∅)}

14 end

As can be seen, the reduced demands encode the required information for guided partial
evaluation. In particular, the expression bound to the identifier L in Line 7 will only
be evaluated up to the partial value {(Next, {(Last, ?)})}, which suffices to compute the
final partial result {(Last, ?)}.
To incorporate the reduction of the annotated demand expressions to top-level normal

form into the guided partial evaluation as defined in Figure 6.8 on page 136, it suffices
to redefine the functions extract, empty and empty as follows.

Definition 6.2.2 (Demand Extraction for Demand Expressions). Given a function en-
vironment for demand expressions FA. Let e δ be an annotated expression in LRecD
and δc be a context demand. Then the extraction of the demand from e in context δc is
defined as

extract(δc, δ) := δ′

where FA : (δδc)
∗→ δ′.

Thus, to extract a demand for a given context from a demand annotation, the context
demand is applied to the annotated demand expression. The corresponding demand in
top-level normal form is then the demand for that expression in the given context.
Similarly, the functions empty and empty can be redefined.

Definition 6.2.3 (Empty Demand Expression). Given a function environment for de-
mand expressions FA. Let e δ be an annotated expression in LRecD and δc be a context
demand. Then the predicate empty(δc, δ) is defined as

empty(δc, δ) := FA : (δδc)
∗→ ∅.

Definition 6.2.4 (Non-Empty Demand Expression). Given a function environment for
demand expressions FA. Let e δ be an annotated expression in LRecD and δc be a
context demand. Then the predicate empty(δc, δ) is defined as

empty(δc, δ) := FA : (δδc)
∗→ δ′ ∧ δ′ 6= ∅.

As can be seen in the above definitions, a demand annotation is empty if the application
of the demand expression to the context demand yields the empty demand under top-level
normal form reduction; it is not empty, if the application of the demand expression to the
context demand yields any non-empty demand under top-level normal form reduction.
Using these definitions, the semantics for guided partial evaluation presented in Fig-

ure 6.8 on page 136 applies to expressions annotated using the demand inference for
expressions in full LRecC, as well. As a last definition, I extend the notion of demand
satisfaction to demand expressions, as well.

167

6. Guiding Partial Evaluation

Definition 6.2.5 (Demand Satisfaction for Demand Expressions). Let FA be a function
environment for demand expressions. Given a value v ∈ V and a partial value v′ ∈ Vp
with v v v′. For any demand expression δ ∈ D and context demand δc ∈ Dr, we say

that v′ satisfies the demand (δδc) with respect to v, or v
(δδc)

v v′ for short, if one of the
following statements holds:

1. v′ = ? and FA : (δδc)
∗→ ∅

2. v 6∈ R and v′ 6= ?

3. v ∈ R and v′ ∈ Rp and FA : (δδc)
∗→ δ′ for some δ′ ∈ Dr and dom(v)∩domd(δ

′)\

domp(v
′) = ∅ and domd(δ

′) ⊆ domp(v
′)∪domp(v

′) and ∀l ∈ domp(v
′) : elem(v, l)

δ′.l

v
elemp(v

′, l)

4. v ∈ R and v′ ∈ Rp and FA : (δδc)
∗→ ↑ {δ′} for some δ′ ∈ Dr and dom(v) =

domp(v
′) and domd(δ

′) \ dom(v) ⊆ domp(v
′) and ∀l ∈ dom(v) : elem(v, l)

δ′.l

v
elemp(v

′, l).

In the above definition, demand satisfaction is now defined by first evaluating the demand
expression to top-level normal form and then applying the same rules as in the original
Definition 6.1.3 on page 117. Using this adapted notion of demand satisfaction, the
property shown in Theorem 6.1.4 on page 146 holds for expressions in full LRecC, as
well. Even the proof remains largely unchanged. Thus, using the demand inference for
full LRecC, any expression in LRecC that can be evaluated can be partially evaluated
to satisfy a given demand, as well.
Before I end this chapter with a final example, I first discuss two special cases of

top-level normal form reduction of demand expressions, for which the corresponding
semantics presented in Figure 6.16 on page 165 alone do not suffice. In particular, top-
level normal form reduction may not terminate, even though the top-level normal form
as such is finite. As a first example, consider the following expression in LRecC:

let
2 fun id A{} = (id A)

in
4 (id true {})

end.

In Line 2 above, I define a recursive function id as the application of itself to its single
argument. Obviously, the above function does not terminate. However, the demand
inference does and yields the following demand annotations:

1 let
fun id A{}α = (id Aλ∆.(α∆))λ∆.∆

3 in
(id true{}λ∆.α)λ∆.∆

5 end.

168

6.2. Extending the Binding-Time Analysis to Full LRecC

The corresponding function environment FA contains a single definition for the identifier
α as λ∆.(α∆). Thus, the demand for the argument to the application of id in Line 4
above is a recursive function, as well. However, it never produces any demand and only
replicates itself during reduction using the rule Ap in Figure 6.16 on page 165. As a
consequence, the top-level normal form reduction never terminates.
This kind of empty cycle in demand expressions needs to be detected and the reduction

stopped once no more top-level demands arise. A second kind of non-terminating demand
expressions may arise in recursive record constructions. As an example, consider the
LRecC expression below:

1 let
fun wrap A{}

3 = (wrap true{ Wrapped=A})
wrap A{ Wrapped}

5 = A
in

7 (wrap true {})
end

The function wrap defined in lines 2ff. above wraps an argument into a new record value
with the component Wrapped that contains the original value. In case the argument
already is wrapped, i.e., in case it already has a Wrapped component, the argument is
returned. To trigger a cyclic demand, I use a recursive application of wrap in the first
instance. This application is the identity on the argument, as the newly constructed
record always carries a Wrapped component. We can derive demands for the above
example as follows:

let
2 fun wrap A{}α

= (wrap true{ Wrapped=Aλ∆.(α∆).Wrapped}λ∆.(α∆))λ∆.∆

4 wrap A{ Wrapped}α

= Aλ∆.∆

6 in
(wrap true {})λ∆.∆

8 end

In the above example, α is defined in FA as λ∆.(α∆).Wrapped]∆]{(Wrapped,∅)}.
The first component arises from the first instance in Line 2 above. As the second instance
in Line 4 is the identity on its argument, we get ∆ as the second component. Lastly, the
this component is the demand due to the pattern match.
If we now start to reduce the above demand to top-level normal from using for exam-

ple the context {Wrapped, ∅)}, we get after some reductions the demand {(Wrapped,∅)
](α{(Wrapped,∅)}).Wrapped.Wrapped}. The second component of this demand, if fur-
ther reduced, keeps producing nestings of selection operations using the label Wrapped.
However, these demands refer to levels above the current top-level and thus are empty
with respect to the current top-level. Like the first example for empty cycles, these
demands on higher levels need to be detected and removed, as well.

169

6. Guiding Partial Evaluation

6.3. Examples, Revisited

To conclude this chapter, I revisit the example of the algebraic expression data type
first presented in Section 2.4. As promised there, I will show that by using the demand
analysis to guide partial evaluation, it is indeed possible to statically infer the kind of an
expression.
To start, I below give the partly de-sugared version of the definition of the data type

constructors from Section 2.4. I have replaced implicit equality constraints, implicit
bindings of labels and contracts by their lowered equivalent. However, for the sake of
readability, I have kept the implicit label of the value component of records. When ap-
plying the demand inference and semantic rules for evaluation, these have to be rewritten
on the fly. I will, however, use the explicit value label in the demand annotations.
For the tuples used in those examples, I use the demand annotations and demand

derivation as described in Appendix B.2. I omit a detailed description here. For the
following example, it suffices to know that tuples are rewritten into records with numerical
indices as labels.

let
2 fun ENum I{}α1

= (!I){ Expr , ENum , Kind=Int}
4 fun EBool B{}β1

= (!B){ Expr , EBool , Kind=Bool}
6 fun ECond P{ Expr , Kind}γ1 T{ Expr , Kind}γ2 E{ Expr , Kind}γ3

= let
8 P = guard(P (P.Kind = Bool))

T = guard(T (T.Kind = E.Kind))
10 E = guard(E (T.Kind = E.Kind))

in
12 witness ((P, T, E){ Expr , ECond , Kind=any(T.Kind E.Kind)}

(P.Kind = Bool)
14 (T.Kind = E.Kind))

end
16 fun EIsZero E{ Expr , Kind}δ1

= let
18 E = guard(E (E.Kind = Int))

in
20 witness ((E){ Expr , EIsZero , Kind=Bool}

(E.Kind = Int))
22 end

fun EDiv A{ Expr , Kind}ε1 B{ Expr , Kind}ε2
24 = let

A = guard(A (A.Kind = Int))
26 B = guard(B (B.Kind = Int))

in
28 witness ((A, B){ Expr , EDiv , Kind=Int}

(A.Kind = B.Kind)
30 (A.Kind = Int)

(B.Kind = Int))

170

6.3. Examples, Revisited

32 end
in

34 (EIsZero (EBool true))∆

end

As can be seen in lines 6ff., 16ff. and 23ff. above, the pattern guards have been replaced
by explicit data-flow annotations using the guard and witness operations. Furthermore,
I have annotated the abstract demands at each function parameter. To preserve space
and enhance readability, I have not annotated the full demand expressions but I use
place holders instead. The actual demands are given in Figure 6.17 on the next page. I
use a Greek letter to denote the demands for each function and a numerical subscript to
specify which parameter of a function a demand belongs to. The first parameter thereby
has subscript 1 and subscripts increment left to right.
For the first data constructor, i.e., the ENum function, I use the Greek letter α. As can

be seen in Figure 6.17 on the following page, the demand for the value component of the
single argument of the function ENum is, rather straight forward, the demand on the first
component of the function’s result’s value. The function ENum uses no pattern guards
and thus no demands from guard or witness operations arise. Furthermore, its result is
computed by wrapping the value of the argument into a tuple and then using that tuple
as value component of the result.
Similarly, the demand for the EBool constructor can be inferred. As it computes its

result in a similar manner, the result demand annotation β1 is identical.
The demand annotation for the third data constructor is more complex. As can be

seen in lines 6ff., the function ECond contains guard and witness operations. This shows
in the resulting demand annotations, as well. As an example, consider the demand γ1
for the first argument of ECond. The demand consists of three parts. The first part, i.e.,
∆.val.#1, results from the construction of the result record: The record contains the
first argument as first element of the tuple used as the record’s value component.
The second part of the demand annotation, i.e., nest(Kind,⇑ (⇑ (∆))), arises from the

witness operation. The first guard expression in Line 13 requires the Kind component
of the first argument to be known in order to be evaluated. Thus, if the overall result of
the witness operation is needed at all, the Kind component needs to be evaluated. The
double nesting of ⇑ results from the demand inference rules for witness and = operations.
Each passes on the demand for full evaluation if the result of the respective operation is
required at all. The surrounding nest then passes this demand, if it is non-empty, on to
the Kind component.
Lastly, the third part of the demand, i.e.,

nest(Kind,⇑ (⇑ (∆.val.#1] nest(Kind,⇑ (⇑ (∆)))))),

is triggered by the guard operation in Line 8. To use the first argument, the corresponding
guard expression needs to evaluate to true. Thus, if the demand on the first argument,
which so far consists of the first two parts of the overall demand, is non-empty, the Kind
component of the first argument’s value needs to be known. Again, the double ⇑ artifact
is caused by the use of the = operation inside of a guard operation.

171

6. Guiding Partial Evaluation

α1 λ∆. nest(val,∆.val.#1)
β1 λ∆. nest(val,∆.val.#1)

γ1

λ∆. ∆.val.#1]
nest(Kind,⇑ (⇑ (∆)))]
nest(Kind,⇑ (⇑ (∆.val.#1] nest(Kind,⇑ (⇑ (∆))))))

γ2

λ∆. ∆.val.#2] nest(Kind,∆.Kind)]
nest(Kind,⇑ (⇑ (∆)))]

nest(Kind,⇑
(
⇑
(

∆.val.#2] nest(Kind,∆.Kind)]
nest(Kind,⇑ (⇑ (∆)))

))
)]

nest(Kind,⇑
(
⇑
(

∆.val.#3] nest(Kind,∆.Kind)]
nest(Kind,⇑ (⇑ (∆)))

))
)]

γ3

λ∆. ∆.val.#3] nest(Kind,∆.Kind)]
nest(Kind,⇑ (⇑ (∆)))]

nest(Kind,⇑
(
⇑
(

∆.val.#2] nest(Kind,∆.Kind)]
nest(Kind,⇑ (⇑ (∆)))

))
)]

nest(Kind,⇑
(
⇑
(

∆.val.#3] nest(Kind,∆.Kind)]
nest(Kind,⇑ (⇑ (∆)))

))
)]

δ1
λ∆. ∆.val.#1] nest(Kind,⇑ (⇑ (∆)))]

nest(Kind,⇑ (⇑ (∆.val.#1] nest(Kind,⇑ (⇑ (∆))))))

ε1
λ∆. ∆.val.#1] nest(Kind,⇑ (⇑ (∆)))]

nest(Kind,⇑ (⇑ (∆.val.#1] nest(Kind,⇑ (⇑ (∆))))))

ε2
λ∆. ∆.val.#2] nest(Kind,⇑ (⇑ (∆)))]

nest(Kind,⇑ (⇑ (∆.val.#2] nest(Kind,⇑ (⇑ (∆))))))

Figure 6.17.. Demand annotations for the data constructors for the algebraic
expression data type.

The demands for the remaining two arguments are derived similarly. Note here the
interdependency between the two arguments: If the second argument is required at all,
the guard operation in Line 9 will trigger a demand on the Kind component of the third
argument. Dually, the guard operation in Line 10 will trigger a demand on the Kind
component of the second argument if the third argument is needed. Furthermore, as the
Kind component of the result is derived using an any operation on the Kind component
of the second and third argument, the demand on the Kind component is passed on to
those two arguments.
The demands for the arguments of the remaining data constructors result from similar

derivations. I omit a detailed discussion here. Using these demands, we can now apply
the demand analysis to expressions that make use of the data constructors. As a first
example, I have provided a simple construction of a Boolean expression in Line 34. Lets
assume, I want to know the expression kind of that expression statically. Thus, I need to

172

6.3. Examples, Revisited

propagate the demand ∆ = {(Kind, ↑ {})}. From the demand δ1 for the first argument
of the function EIsZero, we can directly follow the demand on the application of EBool
as (δ1 {(Kind, ↑ {})}). Using the evaluation rules for demand expressions defined in
Figure 6.16 on page 165, this expression can be reduced to the top-level normal form
{(Kind,⇑ (⇑ ({(Kind, ↑ {})}))] ⇑ (⇑ ({(Kind, ↑ {})}.val.#1] nest(Kind,⇑ (⇑
({(Kind, ↑ {})}))))))}. Thus, to evaluate the Kind component of the application of
EIsZero, I need to compute the Kind component of its first argument.
Next, to compute the demand on the argument of EBool, I propagate that demand

into the demand expression β1. After evaluation to top-level normal form, this yields the
empty demand, as the demand on the result of EBool does not contain a demand on the
val component.
Using this demand knowledge, I can now apply the rules for partial evaluation with

demands given in Figure 6.8 on page 136. The function EBool is evaluated up to its Kind
component, only. Thus, evaluation yields the value {(Kind,Bool)}. This is then passed
as argument to the function EIsZero. Note that, as the Kind component of the argument
is known, the guard and witness operations contained in EIsZero can be evaluated and
succeed. Furthermore, due to the demand on the result of EIsZero, the Kind component
of its result is computed, as well. Thus, ultimately, we get {(Kind, Int)} as the overall
result.
As can be seen, using the demand inference and partial evaluation, I have computed

the kind of the expression by only evaluating kind related sub-expressions. In particular,
the actual value of the expression has never been constructed in the process.
Of course, the sample expression I have chosen was correct and thus evaluation had

to succeed. As a final example, I will show the above process for an application of
data constructors that constructs a malformed expression. For this, consider the LRec
expression below:

1 (ECond (ENum 1) (EBool true) (EBool false))

Again, I start by propagating the overall demand {(Kind, ↑ {})} into the application of
the function ECond. This gives the following demands after top-level evaluation for the
three arguments:

{(
Kind, ⇑ (⇑ (∆))]

⇑ (⇑ ({(Kind, ↑ {})}.val.#1] nest(Kind,⇑ (⇑ ({(Kind, ↑ {})})))))

)}
,




Kind,

{(Kind, ↑ {})}.Kind] ⇑ (⇑ ({(Kind, ↑ {})}))]

⇑

 ⇑
 {(Kind, ↑ {})}.val.#2]

nest(Kind, {(Kind, ↑ {})}.Kind)]
nest(Kind,⇑ (⇑ ({(Kind, ↑ {})})))

 ]
⇑

 ⇑
 {(Kind, ↑ {})}.val.#3]

nest(Kind, {(Kind, ↑ {})}.Kind)]
nest(Kind,⇑ (⇑ ({(Kind, ↑ {})})))

 




, and

173

6. Guiding Partial Evaluation




Kind,

{(Kind, ↑ {})}.Kind] ⇑ (⇑ ({(Kind, ↑ {})}))]

⇑

 ⇑
 {(Kind, ↑ {})}.val.#2]

nest(Kind, {(Kind, ↑ {})}.Kind)]
nest(Kind,⇑ (⇑ ({(Kind, ↑ {})})))

 ]
⇑

 ⇑
 {(Kind, ↑ {})}.val.#3]

nest(Kind, {(Kind, ↑ {})}.Kind)]
nest(Kind,⇑ (⇑ ({(Kind, ↑ {})})))

 




.

As can be seen, to evaluate the Kind property of the overall expression, the Kind property
of all arguments is required. Next, these demands can be propagated through the argu-
ment expressions. As in all cases the corresponding demand expressions do only refer to
the value component of the result, the demands on the arguments of the applications of
EBool and ENum, respectively, are empty.
Using these demands, I can now evaluate the expression accordingly. First, the

arguments to ECond are evaluated up to the Kind property. This yields arguments
{(Kind, Int)}, {(Kind,Bool)} and {(Kind,Bool)}, respectively. Given the first argument,
the guard expression in Line 8 will fail as the first argument is not of Boolean kind. Thus,
the expression is rejected. Again, note that the actual value component or structure of
the expression was computed at no time.
As these examples show, demand annotation can quickly grow. However, I use a

rather naïve approach here by strictly only evaluating to top-level form. By taking
further rewriting rules into account, the above demands can be further reduced. Possible
candidates in these examples would be

• the distributivity of ↑ with respect to],

• that ↑ and] are idempotent, and

• that it is always safe to reduce primitive selections like {(Kind, ↑ {})}.Kind.

I leave a further exploration of rewriting rules to minimise demand annotations as future
research. In particular, it would be interesting to show whether a principal demand,
similar to principal types in type systems [Pierce, 2002], exists.

6.4. Conclusions

As motivated in the previous chapter, computing static information from auxiliary com-
putations by means of partial evaluation consists of two steps: A first step that infers
which sub-expressions need to be evaluated and a second step that evaluates the entire
expression accordingly. In the previous chapter, I have discussed the second step. The
corresponding semantics for partial evaluation, however, are under constrained: They
allow a sub-expression to be evaluated to different degrees. Thus, the result of partial
evaluation using only those semantics is not uniquely defined. Even more, partial evalu-
ation might get stuck if sub-expressions have been evaluated to an insufficient degree.

174

6.4. Conclusions

In this chapter I have extended the partial evaluation semantics by the concept of
demands. A demand formally defines to what degree a sub-expression needs to be evalu-
ated. Thus, the result of partial evaluation with demand annotations is uniquely defined.
However, using demand annotations alone, partial evaluation can still get stuck.
To ensure progress of evaluation, I have furthermore specified analyses that, given a

demand on the overall result of an expression, infer sub-demands for all sub-expressions.
As I have shown, an expression that has been annotated with demands using such analyses
can always be evaluated partially if full evaluation succeeds and the result of partial
evaluation satisfied the given demand.
I have specified the demand analysis in two steps. The first version specified in Sec-

tion 6.1 only caters for expressions without nested records. In that version of the analy-
sis, demands are non-nested records, as well. However, to accommodate expression with
nested records and demand analysis in the case of recursively constructed records, the
demand language needs to be more expressive. In particular, as I have shown, such
expressions require the ability to express infinite demands.
To cater for full LRec, I have therefore extended my demand language in Section 6.2

to a small applied lambda calculus. The corresponding demand analysis then supports
nested record expressions and full recursion, as well. Infinite demands that arise during
demand analysis are handled by using lazy evaluation of demand expressions. As I have
discussed, this ensures that both, demand analysis and demand evaluation during partial
evaluation, always terminate.
Lastly, I have applied the demand analysis and partial evaluation to the example of

an algebraic expression data type first presented in Section 2 to show that my approach
is expressible enough to model and statically check the kind of an expression.

175

176

7. Conclusion and Future Work

I have shown in this thesis that static properties of data can be modelled, checked and
exploited without the need for a sophisticated type system. My approach, in contrast
to type based approaches, does not a priori differentiate between dynamic and static
parts of a program. Instead, it allows to model properties in a dynamic fashion using
auxiliary computations and uses partial evaluation to prove some if not all of these
properties statically. Static and dynamic properties thereby are not distinguished in
the program text itself: The decision, which properties to compute statically, is guided
by instrumenting the evaluation of the program. Thus, the users of the language can
decide at any time, which properties they want to be computed and when these should
be computed, without modifying the program text. In particular, the program remains
executable at all stages, even if a property cannot be statically computed.
The contribution of this thesis is two-fold. Firstly, I have designed a language that

allows to enrich existing programs by properties of data in a non-intrusive way. This in-
cludes the concept of auxiliary computations and a pattern matching based programming
approach thereon. Properties in my approach thereby may depend on other properties
and even values from the actual program itself. Whilst drastically increasing the range
of properties that can be modelled, such expressiveness significantly complicates the
derivation of static knowledge by partial evaluation: It is no longer clear which parts of
a program need to be evaluated to compute a desired property.
This challenge leads to my second contribution. I have shown that it is always possible

to statically determine which parts of a program need to be evaluated to compute a
desired property. Using the notion of evaluation demands, I have devised an analysis
that, given a evaluation demand on an expression, computes corresponding evaluation
demands for all sub-expressions of such expression. I have proven that partial evaluation
instrumented by these demands will indeed yield the desired property.

7.1. Auxiliary Computations

To be able to enrich existing programs by additional properties, whether dynamic or
static, I have developed the concept of auxiliary computations and the basic principles of
a corresponding programming language. Auxiliary computations allow the programmer
to encode additional properties of data alongside the main computation, in a language
he knows. I have presented a core language LRec that demonstrates the language con-
structs required to program with auxiliary computations. The language features of LRec
are chosen such that auxiliary computations are non-intrusive to existing programs: A

177

7. Conclusion and Future Work

program can be enriched by auxiliary computations only partially, if desired. At the
interface with code that does not use the additional properties offered by auxiliary com-
putations, these will automatically be discarded. Likewise, the enriched and original
versions of functions can co-exist. Using a pattern matching based function overload-
ing mechanism, I ensure that always the version that makes the most use of auxiliary
computations is chosen.

To express general constraints on data, I have added support for contracts to LRec.
Again, I have chosen an encoding for this language feature that can be easily added
to existing languages. Instead of adding contracts as a core feature, I have presented
a data-flow based encoding that ensures evaluation of contracts even in the presence of
compiler optimisations. Using this encoding, it suffices to extend an existing language by
two special, conditional-like constructs, without the need to check existing optimisations
for their contract awareness and prove their correctness in the presence of contracts.

7.2. Demands and Partial Evaluation

By nature, auxiliary computations are dynamic, runtime computations much like the
actual stream of computation. As such, they are only evaluated during program execu-
tion and thus provide no additional static information. However, separating auxiliary
computations syntactically from the main stream of computation allows me to evaluate
some or all auxiliary computations at compile time, if desired. To this effect, I have
presented a partial evaluation semantics that formalise the evaluation of only certain
auxiliary computations. As I have shown, the result of such partial evaluation always
yields the same result for auxiliary computations as a full evaluation would, if both yield
a result.

To allow the programmer to choose which auxiliary computations to evaluate statically
and which of them to delay until runtime, I have introduced the notion of demands. A
demand allows the programmer to specify to what extent he wants an expression to be
evaluated. Starting out with such a programmer specified demand annotation, I then
use a demand inference to propagate demands to the entire program. As I have shown,
the resulting annotated program can always be evaluated to satisfy the desired demand,
if the program could be fully evaluated.

Using both techniques, i.e., the partial evaluation semantics and demand inference,
auxiliary computations can be used to statically check properties of programs. I have
shown how this applies to two scenarios: In the context of numerical applications on
arrays, I have shown for the example of a element-wise matrix addition how auxiliary
computations can be used to statically check the compliance of argument shapes. For a
setting with algebraic data types, I have shown how an evaluator for a small expression
language can be extended to identify a range of invalid expressions at their construction
time.

178

7.3. Future Work

7.3. Future Work

Jointly with Bernecky et al. [2010], I have studied the use of symbiotic expressions to
facilitate advanced symbolic optimisations in the context of the array programming lan-
guage SaC [Scholz, 2003]. Like in the approach presented here, we use existing symbolic
optimisations to partially evaluate auxiliary computations of the minima and maxima
of iteration spaces. The gained static knowledge is then used by Bernecky to perform
sophisticated symbolic optimisations to improve the runtime performance even in cases
where array boundaries and the corresponding iteration spaces are not statically known.
Symbiotic expressions extend the idea of using partial evaluation to gain static knowl-

edge into the realm of refinement types [Freeman and Pfenning, 1991; Xi and Pfenning,
1999], also referred to as predicate subtyping [Rushby et al., 1998]. Similar to refinement
types, symbiotic expressions annotate predicates at expressions, i.e., the minimum and
maximum value of an iteration index. However, in contrast with refinement types, these
predicates are annotated by the compiler.
Symbiotic expressions differ in some key points from the concept of auxiliary compu-

tations as presented in this thesis. Firstly, symbiotic expressions are not specified by the
programmer but automatically inserted by the compiler at compile time. Furthermore,
purely to reduce the implementation effort, symbiotic expressions do not use records to
glue the main computation and the computation of the minima and maxima together but
instead use dedicated data-flow hooks in the style of the contracts presented in Chapter 4.
Lastly, as the symbiotic expressions are only of interest to the compiler and only useful
during compilation, they are stripped out before the actual runtime code is generated
and thus are never evaluated at runtime.
Despite these differences, applying the demand analysis used for auxiliary computa-

tions in the setting of symbiotic expressions seems desirable and possible, as well. So
far, we use an on-line partial evaluation approach to simplify symbiotic expressions. By
switching to an off-line approach using demands, I would expect major improvement in
the static knowledge gathered. Such an off-line approach would require the demand anal-
ysis and partial evaluation to be lifted to symbolic evaluation, as well. In particular, the
demand annotations and inference would need to cater for different levels of evaluation,
i.e., the evaluation of an expression to a value or merely symbolic simplification of such
expression.
Apart from type safety and program optimisation, type information is increasingly used

for generic programming, as well. One interesting line of research in this context would
be to explore how the additional properties encoded in auxiliary computations can be
exploited for generic programming. In particular, approaches like the data type generic
programming known from mainstream functional languages like Haskell [Hinze, 1999,
2000, 2006; Hinze et al., 2006; Lämmel and Peyton-Jones, 2003] or Clean [Alimarine
and Plasmeijer, 2002; Alimarine and Smetsers, 2004, 2005] seem to be applicable to my
setting, as well. In those approaches, structural information about algebraic data types is
used to express algorithms generically for arbitrary algebraic data types. All approaches
have in common that, as a prerequisite, some form of abstract view on the data type
is required that decomposes a specific data type into common components, usually a

179

7. Conclusion and Future Work

sums-of-products view.
With auxiliary computations in LRec, this view comes nearly for free, as the record

based encoding used in LRec already makes most of the structure of data explicit. I
have used this for a limited form of generic programming in the matrix addition examples
presented first in Chapter 2.2. There, I provide a generic instance for arbitrary matrices
alongside more specialised instances for matrices that fulfil certain structural criteria.
However, the current approach does not suffice to write generic functions that transform
the structure of data in some way.
As an example for such a setting, I have studied the use of enhanced structural informa-

tion in the context of nested arrays [Herhut et al., in press]. Nested arrays are common in
numerical applications. For instance, in SaC an array of complex numbers in fact is an
array of two-element double vectors. Similarly, a colour image can be seen as a matrix of
three-element vectors. Although such abstractions allow for a clean design and are thus
clearly desirable, they come with their own challenges: As nested arrays are structurally
different from common, flat arrays, even basic operations like element-wise addition and
multiplication do no longer apply. Instead, these need to be reimplemented for every new
nested structure. The added boilerplate code often outweighs the advantages of nesting
in the first place.
Generic programming in this setting enables code reuse and thus reduces the amount

of boilerplate code. For instance, element-wise addition is similar for both matrices of
complex numbers and images: To add either, it suffices to element-wise add the array
with the nesting removed.
Ignoring the nesting structure of the arguments, given a suitable encoding, is already

possible in LRec as presented in this thesis. However, reinstating the nesting structure
in the result is not. The root cause here is that labels and thus the structure of data,
are not first-class objects in LRec and thus cannot be passed from the arguments of
a generic function to the result. In the limited setting presented in [Herhut et al., in
press], I use two dedicated language constructs to remove and reinstate nesting of arrays.
However, this approach does not scale to the general case. Adding labels as first-class
object to LRec, on the other hand, would significantly complicate the demand analysis
and best match pattern matching used in LRec.
Type information is furthermore increasingly used to reason about the resource usage

of applications [Hughes et al., 1996; Pareto, 1998; Portillo et al., 2003; Shkaravska et al.,
2007; Tamalet et al., 2009; Vasconcelos and Hammond, 2004]. This property is particu-
larly of interest in the setting of embedded systems. When deploying an application to
a chosen hardware platform, it is essential that the application, even in the worst case,
can be executed within the resource limitations of that platform.
Type system based approaches typically use a specialised form of type annotation and

type inference to approximate resource usage. However, size constraints to a certain de-
gree can be modelled in general purpose dependently-typed languages, as well [Grobauer,
2001]. In this context, it would be interesting to see how resource bounds could be ex-
pressed as properties in my approach and to what extent such an encoding could be used
to statically compute resource bounds.
Apart from spreading the use of the techniques discussed in this thesis to further

180

7.3. Future Work

application areas, open questions about the approach itself remain, as well. Firstly, the
partial evaluation technique itself could be further optimised. A key area that comes
to mind here is reducing the degree to which a program needs to be evaluated in order
to show a certain property statically. As discussed in Section 5.3, conditionals have a
key impact to this regard. Like in classical type systems, undecidability is looming here:
Simply evaluating both branches of a conditional to infer properties of the overall result
may not terminate if the branch that would not be computed during full evaluation does
not terminate. This is commonly the case for the termination conditional in recursive
functions. To overcome this, in classical type systems, both branches of a condition are
required to have the same type or, in the setting of subtyping, a least upper bound needs
to exist [Pierce, 2002]. Thus, if a type can be derived for one branch of a conditional,
that type can be used for the overall expression regardless of whether the type inference
would terminate for the other branch. In contrast, I evaluate the predicate expression of a
conditional to decide during partial evaluation which branch to evaluate. This approach
provides the additional freedom that the properties of both branches of a conditional
need not to be related. However, this freedom comes at a price: Evaluating the predicate
expression of a conditional commonly leads to large parts of a program being evaluated.
These two design choices are a classical example for a trade-off between flexibility and
efficiency.
A third approach would be to allow the programmer to decide which approach to use

on a per-property basis. One could encode this by means of monomorphic labels, i.e.,
labels for which both branches of a conditional are guaranteed to yield the same result.
In such a setting, to compute a partial result containing only monomorphic labels, it
would suffice to compute the partial result for one branch only. Thus, if both branches
are evaluated concurrently, the evaluation can be stopped as soon as one result has been
found. Ultimately, this would ensure that evaluation still terminates whilst reducing the
degree to which a program needs to be evaluated.
Lastly, I would like to further investigate the boundaries between my approach and

general type systems. I, for example, have shown that auxiliary computations can be
used to encode static properties similar to generalised algebraic data types in Has-
kell [Peyton-Jones et al., 2006]. However, such a comparison may seem unfair. Whereas
my approach as presented in this thesis is limited to first order languages, Haskell
supports higher order functions, which significantly complicate the type theory involved.
Adding higher order functions to my approach, on the other hand, would complicate the
demand inference. Naïvely, to support higher order functions, a higher order demand
language would be required. Whereas at first glance an extension of the demand language
and corresponding inference in that direction seems possible, a formalisation of such an
approach remains future work.
Apart from extending my approach, I am interested in the interplay between subtyping

based type systems and my demand analysis. The record encoding used in LRec lends
itself nicely to a subtyping based type theory. Records, quite naturally, form a subtype
relationship. It would be interesting to see whether my approach can be formulated as a
type system, as well.
In the context of the SaC programming language with its subtyping based array

181

7. Conclusion and Future Work

types, I am currently looking into reformulating the type system by means of auxiliary
computations. However, this research is at an early stage.

7.4. Closing Remark

This dissertation has illuminated types and their inference from a new angle. I have put
forward the idea to treat types and values uniformly, both in syntax and semantics. With
auxiliary computations, demands and demand inference, I have presented the techniques
that are required to develop languages that follow my idea. I have shown that it is
feasible to use partial evaluation to compute static type information.
The foundation has been laid. Now, it is up to you to build on my work and put these

ideas into action.

182

8. Bibliography

The citations in this bibliography are sorted alphabetically and thus do not appear in
the order they are cited in the main body of this thesis. However, at the end of each
bibliography entry, I have annotated the page numbers of all pages it appears on.

Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith, and Jer-
rold L. Wagener. Fortran-95 Handbook — Complete ANSI/ISO Reference. MIT Press,
Cambridge, Massachusetts, USA, 1997. 3

Artem Alimarine and Rinus Plasmeijer. A generic programming extension for Clean.
In IFL ’02: Selected Papers from the 13th International Workshop on Implementation
of Functional Languages, pages 168–185, London, UK, 2002. Springer-Verlag, Berlin,
Heidelberg, New York. ISBN 3-540-43537-9. 179

Artem Alimarine and Sjaak Smetsers. Efficient generic functional programming. Techni-
cal Report NIII-R0425, Nijmegen Institute for Computing and Information Sciences,
June 2004. 179

Artem Alimarine and Sjaak Smetsers. Improved fusion for optimizing generics. In Manuel
Hermenegildo and Daniel Cabeza, editors, Proceedings of Seventh International Sym-
posium on Practical Aspects of Declarative Languages, number 3350 in Lecture Notes
in Computer Science, pages 203 – 218. Long Beach, CA, USA, Springer-Verlag, Berlin,
Heidelberg, New York, January 2005. 179

Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. A
call-by-need lambda calculus. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 233–246, New
York, NY, USA, 1995. ACM. ISBN 0-89791-692-1. 154

Lennart Augustsson. Cayenne – a language with dependent types. In ICFP ’98: Pro-
ceedings of the third ACM SIGPLAN International Conference on Functional Program-
ming, pages 239–250, New York, NY, USA, 1998. ACM Press. ISBN 1-58113-024-4.
5

Henk P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, volume 103 of
Studies in Logics and the Foundations of Mathmatics. North-Holland, 1981. 55

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon

183

8. Bibliography

Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland,
and Dave Thomas. Manifesto for agile software development. Available online at
http://agilemanifesto.org/ as of March 2009, 2001. 2

Robert Bernecky. Reducing computational complexity with array predicates. In APL
’98: Proceedings of the APL98 Conference on Array Processing Language, pages 39–43,
New York, NY, USA, 1998. ACM Press. ISBN 1-58113-181-X. 4, 63

Robert Bernecky. Shape cliques. ACM SIGAPL Quote Quad, 35(3):7–17, September
2007. 66

Robert Bernecky and Paul Berry. SHARP APL Reference Manual. Iverson Software
Inc., 2nd edition, 1993. 10

Robert Bernecky, Stephan Herhut, and Sven-Bodo Scholz. Symbiotic expressions. In Im-
plementation and Application of Functional Languages, 21st International Symposium
(IFL’09), South Orange, New Jersey, USA, Revised Selected Papers, Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Heidelberg, New York, 2010. 179

L. Susan Blackford, James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg
Henry, Michael Heroux, Linda Kaufman, Andrew Lumsdaine, Antoine Petitet, Roldan
Pozo, Karin Remington, and R. Clint Whaley. An updated set of basic linear algebra
subprograms (BLAS). ACM Transactions on Mathematical Software, 28(2):135–151,
2002. ISSN 0098-3500. 17

Guy E. Blelloch. Nesl: A nested data-parallel language. Technical report, Carnegie
Mellon University, March 1994. 11

Guy E. Blelloch, Jonathan C. Hardwick, Jay Sipelstein, Marco Zagha, and Siddhartha
Chatterjee. Implementation of a portable nested data-parallel language. Journal of
Parallel and Distributed Computing, 21(1):4–14, 1994. ISSN 0743-7315. 11, 12

Guy E. BlellochBlelloch and Gary W. Sabot. Compiling collection-oriented languages
onto massively parallel computers. Journal of Parallel and Distributed Computing, 8:
119–134, 1990. 12

F. Warren Burton. Nondeterminism with referential transparency in functional program-
ming languages. Computer Journal, 31(3):243–247, 1988. ISSN 0010-4620. 55

David Cann, John Feo, Wim Bohm, and Rodney Oldehoeft. The SISAL 2.0 reference
manual. Technical Report UCRL-MA-109098, Lawrence Livermore National Labora-
tory, December 1991. 12

David C. Cann. Compilation techniques for high performance applicative computation.
Technical Report CS-89-108, Lawrence Livermore National Laboratory, LLNL, Liver-
more California, 1989. 12

184

http://agilemanifesto.org/

8. Bibliography

Robert Cartwright and Mike Fagan. Soft typing. In PLDI ’91: Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and Implementation,
volume 39, pages 278–292, New York, NY, USA, 1991. ACM. 3

James Cheney and Ralf Hinze. First-class phantom types. Technical report, Cornell
University, 2003. 32

Alonzo Church and J. Barkley Rosser. Some properties of conversion. Transactions of
the American Mathematical Society, 39(3):472–482, 1936. ISSN 00029947. 55

William Clinger. Nondeterministic call by need is neither lazy nor by name. In LFP
’82: Proceedings of the 1982 ACM Symposium on LISP and Functional Programming,
pages 226–234, New York, NY, USA, 1982. ACM. ISBN 0-89791-082-6. 55

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. K Zadeck. An
efficient method of computing static single assignment form. Technical report, Brown
University, Providence, RI, USA, 1988. 67

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An
extended set of FORTRAN basic linear algebra subprograms. ACM Transactions on
Mathematical Software, 14(1):1–17, 1988. ISSN 0098-3500. 17

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Ian S. Duff. A set of level
3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16
(1):1–17, 1990. ISSN 0098-3500. 17

Cormac Flanagan. Hybrid type checking. In POPL ’06: Conference record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
245–256, New York, NY, USA, 2006. ACM. ISBN 1-59593-027-2. 4

Tim Freeman and Frank Pfenning. Refinement types for ML. In PLDI ’91: Proceedings
of the ACM SIGPLAN 1991 Conference on Programming Language Design and Im-
plementation, pages 268–277, New York, NY, USA, 1991. ACM. ISBN 0-89791-428-7.
179

Daniel P. Friedman and David S. Wise. CONS should not evaluate its arguments. In
S. Michaelson and R. Milner, editors, Automata, Languages, and Programming, pages
257–281. Edinburgh University Press, Edinburgh, Scotland, 1976. 154

Gerhard Gentzen. Untersuchungen über das logische schliessen. Mathematische
Zeitschrift, 39:176–210, 1934. 51

James Gosling, Bill Joy, Guy L. Steele, and Gilad Bracha. The Java Language Specifica-
tion. Java series. Prentice Hall PTR, third edition, 2005. 1

Bernd Grobauer. Cost recurrences for DML programs. In ICFP ’01: Proceedings of the
sixth ACM SIGPLAN International Conference on Functional Programming, pages
253–264, New York, NY, USA, 2001. ACM. ISBN 1-58113-415-0. 180

185

8. Bibliography

Peter Henderson and James H. Morris, Jr. A lazy evaluator. In POPL ’76: Proceed-
ings of the 3rd ACM SIGACT-SIGPLAN Symposium on Principles on Programming
Languages, pages 95–103, New York, NY, USA, 1976. ACM. 154

Stephan Herhut, Sven-Bodo Scholz, Robert Bernecky, Clemens Grelck, and Kai Tro-
jahner. From contracts towards dependent types: Proofs by partial evaluation. In
Implementation and Application of Functional Languages: 19th International Work-
shop, IFL 2007, Freiburg, Germany, September 27-29, 2007. Revised Selected Papers,
pages 254–273, Berlin, Heidelberg, 2008. Springer-Verlag, Berlin, Heidelberg, New
York. ISBN 978-3-540-85372-5. 63

Stephan Herhut, Sven-Bodo Scholz, and Clemens Grelck. Generic programming on the
nesting structure of arrays. In Proceedings of the 2007 APL conference, New York,
NY, USA, in press. ACM Press. 180

High Performance Fortran language specification V1.1. High Performance Fortran Forum,
1994. 3

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and Lambda Cal-
culus, volume 1 of London Mathematical Society Student Texts. Cambridge University
Press, 1986. 55

Ralf Hinze. A generic programming extension for Haskell. In Erik Meijer, editor, Pro-
ceedings of the Third Haskell Workshop, number UU-CS-1999-28 in Technical report
of Utrecht University, 1999. 179

Ralf Hinze. A new approach to generic functional programming. In POPL ’00: Proceed-
ings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 119–132, New York, NY, USA, 2000. ACM Press. ISBN 1-58113-
125-9. 179

Ralf Hinze. Generics for the masses. Journal of Functional Programming, 16(4-5):451–
483, 2006. ISSN 0956-7968. 179

Ralf Hinze, Andres Löh, and Bruno C. d. S. Oliveira. "Scrap your boilerplate" reloaded.
In Proceedings of the Eighth International Symposium on Functional and Logic Pro-
gramming, FLOPS 2006, Lecture Notes in Computer Science. Springer-Verlag, Berlin,
Heidelberg, New York, 2006. 179

John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems
using sized types. In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 410–423, New York, NY,
USA, 1996. ACM. ISBN 0-89791-769-3. 180

Roger K.W. Hui and Ken E. Iverson. J Introduction and Dictionary. Jsoftware Inc.,
2004. 10

186

8. Bibliography

International Standards Organization. Programming Language APL, Extended. ISO
N93.03, ISO, 1993. 4, 10

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and automatic
program generation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993. ISBN
0-13-020249-5. 79

Murat Karaorman, Urs Holzle, and John Bruno. jContractor: A reflective java library
to support design by contract. In Proceedings Reflection’99, The Second International
Conference on Meta-Level Architectures and Reflection, pages 19–21, Santa Barbara,
CA, USA, 1999. University of California at Santa Barbara. 24

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice
Hall Professional Technical Reference, 1988. ISBN 0131103709. 1

R. Kramer. iContract - The Java(tm) design by contract(tm) tool. In TOOLS ’98:
Proceedings of the Technology of Object-Oriented Languages and Systems, page 295,
Washington, DC, USA, 1998. IEEE Computer Society. ISBN 0-8186-8482-8. 24

Ralf Lämmel and Simon Peyton-Jones. Scrap your boilerplate: a practical design pattern
for generic programming. In TLDI ’03: Proceedings of the 2003 ACM SIGPLAN
International Workshop on Types in Languages Design and Implementation, pages 26–
37, New York, NY, USA, 2003. ACM. ISBN 1-58113-649-8. 179

Craig Larman and Victor R. Basili. Iterative and incremental development: A brief
history. Computer, 36(6):47–56, 2003. ISSN 0018-9162. 2

Charles L. Lawson, Richard J. Hanson, David R. Kincaid, and Fred T. Krogh. Basic
linear algebra subprograms for FORTRAN usage. ACM Transactions on Mathematical
Software, 5(3):308–323, 1979. ISSN 0098-3500. 17

John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calculus.
Journal of Functional Programming, 8(3):275–317, 1998. ISSN 0956-7968. 154

Robert Cecil Martin. Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003. ISBN 0135974445. 2

MathWorks. Matlab User’s Manual. Natick, MA, 2009. URL http://www.mathworks.
com. 2

Conor McBride. Epigram: Practical programming with dependent types. In Advanced
Functional Programming, pages 130–170, 2004. 5

Conor McBride and James McKinna. The view from the left. Journal of Functional
Programming, 14(1):69–111, 2004. ISSN 0956-7968. 5

John McCarthy. A basis for a mathematical theory of computation, preliminary report.
In IRE-AIEE-ACM ’61 (Western): Papers presented at the May 9-11, 1961, western

187

http://www.mathworks.com
http://www.mathworks.com

8. Bibliography

joint IRE-AIEE-ACM computer conference, pages 225–238, New York, NY, USA, 1961.
ACM. 13, 54

John McCarthy. A basis for a mathematical theory of computation. Technical report,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1962. 13, 54

Vijay S. Menon, Neal Glew, Brian R. Murphy, Andrew McCreight, Tatiana Shpeisman,
Ali-Reza Adl-Tabatabai, and Leaf Petersen. A verifiable ssa program representation for
aggressive compiler optimization. In POPL ’06: Conference record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 397–
408, New York, NY, USA, 2006. ACM. ISBN 1-59593-027-2. 70

Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1990. ISBN 0-13-247925-7. 24

Bertrand Meyer. Applying "design by contract". Computer, 25(10):40–51, 1992. ISSN
0018-9162. 24

Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348–375, 1978. 1

Robin Milner, Mads Tofte, Robert Harper, and David Macqueen. The Definition of
Standard ML - Revised. The MIT Press, May 1997. ISBN 0262631814. 2, 15

Lars Pareto. Sized Types. PhD thesis, Chalmers University of Technology, Göteborg,
Sweden, 1998. 180

Simon Peyton-Jones. Haskell 98 Language and Libraries. Cambridge University Press,
Cambridge, UK, 2003. 1, 26

Simon Peyton-Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn.
Simple unification-based type inference for GADTs. In Proceedings of the Eleventh
ACM SIGPLAN International Conference on Functional Programming, Portland, Ore-
gon, September 2006. ACM SIGPLAN. 32, 181

Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge, MA,
USA, 2002. ISBN 0-262-16209-1. 51, 72, 87, 155, 164, 174, 181

Reinhold Ploesch. Design by contract for Python. In APSEC ’97: Proceedings of the
Fourth Asia-Pacific Software Engineering and International Computer Science Con-
ference, page 213, Washington, DC, USA, 1997. IEEE Computer Society. ISBN 0-
8186-8271-X. 24

G. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Sci-
ence, 1(2):125–159, December 1975. ISSN 03043975. 154

Alvaro J. Rebon Portillo, Kevin Hammond, Hans-Wolfgang Loidl, and Pedro Vasconcelos.
Cost analysis using automatic size and time inference. In Implementation of Functional
Languages, 14th International Workshop, IFL 2002, volume 2670 of Lecture Notes

188

8. Bibliography

in Computer Science, pages 232–248. Springer-Verlag, Berlin, Heidelberg, New York,
2003. 180

John Rushby, Sam Owre, and N. Shankar. Subtypes for specifications: Predicate sub-
typing in PVS. IEEE Transactions on Software Engineering, 24(9):709–720, sep 1998.
179

Gary W. Sabot. The Paralation Model: Architecture-Independent Parallel Programming.
MIT Press, Cambridge, MA, USA, 1989. ISBN 0262192772. 12

S.-B. Scholz. Single Assignment C — efficient support for high-level array operations in
a functional setting. Journal of Functional Programming, 13(6):1005–1059, 2003. 10,
63, 179

Tim Sheard. Languages of the future. In OOPSLA ’04: Companion to the 19th annual
ACM SIGPLAN conference on Object-oriented programming systems, languages, and
applications, pages 116–119, New York, NY, USA, 2004. ACM. ISBN 1-58113-833-4.
1

Tim Sheard. Putting curry-howard to work. In Haskell ’05: Proceedings of the 2005
ACM SIGPLAN Workshop on Haskell, pages 74–85, New York, NY, USA, 2005. ACM
Press. ISBN 1-59593-071-X. 1

Olha Shkaravska, Ron van Kesteren, and Marko van Eekelen. Polynomial size analysis of
first-order functions. In Typed Lambda Calculi and Applications, volume 4583 of Lecture
Notes in Computer Science, pages 351–365. Springer-Verlag, Berlin, Heidelberg, New
York, 2007. 180

Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Scheme
and Functional Programming Workshop, pages 81–92, September 2006. 3

Jay M. Sipelstein and Guy E. Blelloch. Collection-oriented languages. Technical report,
Carnegie Mellon University, March 1991. 11

Alejandro Tamalet, Olha Shkaravska, and Marko van Eekelen. Size analysis of algebraic
data types. In Peter Achten, Pieter Koopman, and Marco T. Morazán, editors, Trends
in Functional Programming, volume 9 of Trends in Functional Programming, pages
33–48. Intellect, 2009. ISBN 978-1-84150-277-9. 180

Kai Trojahner and Clemens Grelck. Dependently typed array programs don’t go wrong.
Journal of Logic and Algebraic Programming, 78(7):643 – 664, 2009. ISSN 1567-8326.
The 19th Nordic Workshop on Programming Theory (NWPT 2007). 4

Kai Trojahner, Clemens Grelck, and Sven-Bodo Scholz. On optimising shape-generic ar-
ray programs using symbolic structural information. In Zoltan Horváth and Viktória
Zsók, editors, Implementation and Application of Functional Languages, 18th Interna-
tional Symposium (IFL’06), Budapest, Hungary, Revised Selected Papers, volume 4449
of Lecture Notes in Computer Science, pages 1–18. Springer-Verlag, Berlin, Heidelberg,
New York, 2007. 66

189

8. Bibliography

Pedro B. Vasconcelos and Kevin Hammond. Inferring cost equations for recursive, poly-
morphic and higher-order functional programs. In Implementation and Application
of Functional Languages, volume 3145 of Lecture Notes in Computer Science, pages
86–101. Springer-Verlag, Berlin, Heidelberg, New York, 2004. 180

Christopher P. Wadsworth. Semantics and Pragmatics of the lambda-calculus. PhD
thesis, Programming Research Group, Oxford University, 1971. 154

Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In POPL
’99: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 214–227, New York, NY, USA, 1999. ACM. 179

Dana N. Xu. Extended static checking for Haskell. In Haskell ’06: Proceedings of the
2006 ACM SIGPLAN Workshop on Haskell, pages 48–59, New York, NY, USA, 2006.
ACM. ISBN 1-59593-489-8. 24

Dana N. Xu, Simon Peyton-Jones, and Koen Claessen. Static contract checking for
Haskell. In POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 41–52, New York, NY,
USA, 2009. ACM. 24

Na Xu. Static Contract Checking for Haskell. PhD thesis, University of Cambridge, 2008.
24

Christoph Zenger. Indexed types. Theoretical Computer Science, 187(1-2):147–165, 1997.
ISSN 0304-3975. 4

Christoph Zenger. Indizierte Typen. PhD thesis, Universität Karlsruhe, 1998. 4

190

Appendix A.

Source Code for Examples

A.1. Amended Evaluator for Haskell

A.1.1. Using an Additional Tag

1 data Kind = KInt | KBool
data Expr = ENum Kind Int

3 | EBool Kind Boolean
| ECond Kind Expr Expr Expr

5 | EIsZero Kind Expr
| EDiv Kind Expr Expr

7

eval (ENum _ v) = ENum v
9 eval (EBool _ v) = EBool v

eval (ECond _ p t e) = case (eval p) of
11 | EBool v -> if v (eval t) (eval e)

eval (EIsZero _ e) = case (eval e) of
13 | (ENum v) -> EBool (v = 0)

eval (EDiv _ a b) = case ((eval a), (eval b)) of
15 | ((ENum va), (ENum vb)) -> ENum (va/vb)

17 eval (EIsZero KBool (EDiv KInt (ENum KInt 5) (ENum KInt 2)))

A.1.2. Using a Stratified Approach

1 data IKind = ENum Int
| EDiv IKind IKind

3 | EICond BKind IKind IKind
data BKind = EBool Boolean

5 | EBCond BKind BKind BKind
| EIsZero IKind

7 data Expr = IExpr BKind
| BExpr BKind

9

eval (IExpr e) = IExpr (evalI e)
11 eval (BExpr e) = BExpr (evalB e)

191

Appendix A. Source Code for Examples

13 evalI (ENum v) = ENum v
evalI (EDiv a b) = case ((evalI a), (evalI b)) of

15 | ((ENum va), (ENum vb)) -> ENum (va/vb)
evalI (EICond p t e) = case (evalB p) of

17 | EBool v -> if v (evalI t) (evalI e)

19 evalB (EBool v) = EBool v
evalB (EIsZero e) = case (evalI e) of

21 | ENum v -> EBool (ve = 0)
evalB (EBCond p t e) = case (evalB p) of

23 | EBool v -> if v (evalB t) (evalB e)

192

Appendix B.

Language Extensions

In this appendix, I provide for reference the extensions to LRecC that are required for the
examples given throughout this thesis. The next section describes the extensions needed
for the examples that use integers and vectors as data. For those examples that use tuples
to model algebraic data-types, the corresponding extensions are given in Section B.2.

B.1. Matrix Examples

First, I in Figure B.1 describe the syntax extensions to LRecC. As can be seen, three
additional token have been added to the production rule expression. The first, the
production rule integer defines the syntax for integer values in the usual way. Using
these integer values, I furthermore allow the construction of vectors as described in the
production rule vector. A vector consists of an opening bracket [, a potentially empty
list of integers and a closing bracket].
Lastly, I have added three built-in functions as defined by the production rule builtin.

In general, the application of a built-in function syntactically consists of the function
name and a sequence of argument expressions enclosed in parentheses. For the vect_add
function, this sequence needs to contain the two vectors to add. The two functions
diag_add and ldiag_add additionally require a third argument.
Before I define the semantics of these extensions, I first extend the set of legal values

as used as range of the evaluation relations ⇓ and ↓. As non-record values are always
fully evaluated, these extensions apply to both the set of full values and the set of partial
values. Figure B.2 shows the production rules for these additional values.
As can be seen, I have added two more kinds of values: integer values and vectors of

integers. Their syntax is identical to the syntax of the corresponding expressions in the
extend LRecC. I will in the following use I and In to refer to the set of values that can
be produced using only the rule integer and vector, respectively.
To allow for comparing integer values and vector values using the equality operation

=, I furthermore extend the equality relation v
= on non-record values as follows:

Definition B.1.1 (Extended Equivalence of Values). The equivalence relation v
= ⊂ V ×

V on values is defined as
v
= := {(true, true), (false, false)} ∪ {(i, i) | i ∈ I} ∪ {(v, v) | v ∈ In}

193

Appendix B. Language Extensions

expression ⇒ · · ·
| integer
| vector
| builtins

integer ⇒ [-][numeral]+

numeral ⇒ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

vector ⇒ [[integer [, integer]*]]

builtins ⇒ (vect_add expression expression)
| (diag_add expression expression expression)
| (ldiag_add expression expression expression)

Figure B.1.. Syntax extensions for matrix examples in extended Backus Nauer form.

In the above definition, apart from the equality on Boolean values, I now define that
each integer and vector equates to itself. The above extension suffices to extend the
equality operation to integer and vector values, as well. As can be seen in rules Equal-
True and EqualFalse in Figures 3.8, 5.2 and 6.8, the existing rule only requires the
arguments to evaluate to values that are not in R. This, by definition of the set R, is
true for integer and vector values.
The semantics for integer and vector expressions are straight forward. Both reduce to

themselves, as expressions and the corresponding values have the same form. For the
built-in functions, I provide corresponding semantic rules in Figure B.3. However, I only
provide rules for full evaluation. The corresponding rules for partial evaluation can easily
be derived by adding a further condition that the annotated demand is not empty in the
current context and by using the partial evaluation relation ↓ with the corresponding

value ⇒ · · · | integer | vector

integer ⇒ [-][numeral]+

numeral ⇒ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

vector ⇒ [[integer [, integer]*]]

Figure B.2.. Extension of the set of values and partial values for matrix examples in
extended Backus Nauer form.

194

B.1. Matrix Examples

VectAdd :
(F ,≺,E) : e1 ⇓ [v11, . . . , v

1
n] (F ,≺,E) : e2 ⇓ [v21, . . . , v

2
n]

(F ,≺,E) : vect_add(e1 e2) ⇓ [v11 + v21, . . . , v
1
n + v2n]

DiagAdd :

(F ,≺,E) : e1 ⇓ [s1, s2]
(F ,≺,E) : e1 ⇓ [v11, . . . , v

1
s1s2] (F ,≺,E) : e2 ⇓ [v21, . . . , v

2
s1s2]

(F ,≺,E) : diag_add(e1 e2 e3) ⇓ [v1, . . . , vs1s2]

where vi :=

{
v1i + v2i if i÷ s2 + 1 = i mod s2,
v1i otherwise.

LDiagAdd :

(F ,≺,E) : e1 ⇓ [s1, s2]
(F ,≺,E) : e1 ⇓ [v11, . . . , v

1
s1s2] (F ,≺,E) : e2 ⇓ [v21, . . . , v

2
s1s2]

(F ,≺,E) : ldiag_add(e1 e2 e3) ⇓ [v1, . . . , vs1s2]

where vi :=

{
v1i + v2i if i÷ s2 + 1 ≤ i mod s2,
v1i otherwise.

Figure B.3.. Semantics extensions for matrix examples.

environments.
The first rule in Figure B.3, rule VectAdd, gives the semantics for the special

vect_add operation. As can be seen, as a prerequisite I require both arguments of
the vect_add operation to evaluate to integer vectors of equal lenght n. The vect_add
operation itself is then evaluated to the n-element vector where each element equates to
the sum of the corresponding two elements of the argument vectors.
Similarly, rule DiagAdd gives the semantics for the diag_add operation. As the

diag_add operation only adds the elements along the diagonal of the second matrix
argument, more structural information is required in the form of an additional shape
argument. In the semantics this is reflected by the additional precondition that the
shape-vector argument evaluates to a two-element integer-vector. Furthermore, both
matrix arguments need to evaluate to integer vectors with a valid lenght for the given
shape vector. In rule DiagAdd this is expressed by requiring that both vectors have
s1s2 many elements, where s1 and s2 are the number of rows and columns as specified
by the shape argument. The result is then defined for each index depending on whether
it lies on the diagional of the matrix. If so, the result at that index is computed as the
sum of the two corresponding elements of the matrix arguments. Otherwise, the result
at that index equates to the corresponding value of the first matrix argument.
Lastly, the semantics for the ldiag_add operation are defined by rule LDiagAdd. It

corresponds largely to the rule for the diag_add operation. The only difference is that
now for all indices below the diagonal an actual sum is computed.
The demand inference for the additional non-record values and operations thereon is

identical to that for the existing non-record values and corresponding operations. For
integer values, the demand is simply annotated analogously to the rules True and False

195

Appendix B. Language Extensions

(Integer) AF

q
FA,EA,BA, δ, i

y

 (FA,EA, i λ∆.δ)

(Vector) AF

q
FA,EA,BA, δ, [e1, . . ., en]

y

 (FAn,EAn, [e′1, . . ., e′n] λ∆.δ)

where
FA0 := FA

EA0 := EA
FAi+1,EAi+1, e

′
i+1 := AF

q
FAi,EAi,BA, δ, ei+1

y

(BuiltIn) AF

q
FA,EA,BA, δ, op(e1 · · · en)

y

 (FAn,EAn, op(e′1 · · · e′n) λ∆.δ)

where
FA0 := FA

EA0 := EA
FAi+1,EAi+1, e

′
i+1 := AF

q
FAi,EAi,BA, δ, ei+1

y

Figure B.4.. Extensions to the demand analysis scheme AF as required for the
matrix examples.

in Figures 6.3 and 6.12. I provide the corresponding rule Integer for the generalised
demand analysis in Figure B.4. In case of integer vectors, additionally to annotating the
demand, the demand needs to be propagated to the components of the vector. Note that
other than for record expressions, no sub-demand is selected. This follows the notion
that vectors as non-record values are either fully evaluated or not at all. Thus, if the
initial demand is the empty demand, so is the demand on the components of the integer
vector. In all other cases, i.e., if the demand is non-empty, the full vector needs to be
evaluated.

For the three operations on vectors, i.e., vect_add, diag_add and ldiag_add, I have
only specified one single rule BuiltIn. In all three cases, the demand is annotated at the
overall expression and propagated to each argument. Analogously to the rule for integer
vectors, I directly propagate the overall demand to each argument position. Again, this
is motivated by the fact that integer vectors are either fully evaluated or not at all.

196

B.2. Algebraic Data-Type Examples

expression ⇒ · · ·
| tuple
| tupleselection
| integer
| builtins

tuple ⇒ ([expression [, expression]*])

tupleselection ⇒ expression # [numeral]+

integer ⇒ [-][numeral]+

numeral ⇒ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

builtins ⇒ (expression != expression)
| (expression / expression)
| (expression || expression)

Figure B.5.. Syntax extensions for algebraic data-type examples in extended Backus
Nauer form.

B.2. Algebraic Data-Type Examples

The extensions to the syntax of LRec required for the examples on algebraic data-types
are given in Figure B.5. Like the extended syntax for vectors presented in the previous
section, the syntax defined in Figure B.5 extends LRec by integer numbers. However,
instead of vectors, the syntax of LRec now is extended by tuples. A tuple is represented
by a, potentially empty, comma-separated list of expressions surrounded by parentheses.
It is worth noting here that, other than vectors, tuples may contain arbitrary expressions.
Thus, in particular, tuples may be nested.
A further addition to the syntax of LRec is the selection on tuples. To differentiate it

from the existing record selection, I use the symbol # instead of the .-symbol. Like the
record selection, the selection on tuples is an infix operation that expects the argument
to select from on the left-hand and the index to select with on the right-hand. However,
other than the record selection, the tuple selection uses integers as indices: Tuple elements
are indexed from left to right, starting with the index 0 for the left-most element.
Lastly, I have extended the syntax of LRec by some additional infix operations: An

inequality operation != on values, a division operation / on integer values and the Boolean
or operation ||.
Having the extended syntax in place, I next define the semantics of the additions

presented above. For tuples and the selection thereon, I do so by providing a lowering
step from LRec with tuples to LRecC. The idea is to represent tuples as records with

197

Appendix B. Language Extensions

(Tuple) Li
q

(e1, . . ., en)
y

 {#0=e1, . . ., #n− 1=en}

(TupleSel) Li
q
expression#i

y

 Li
q
expression.#i

y

Figure B.6.. Transformation scheme Lx to resolve tuples.

special labels. As the tuple selection does not allow for expressions as indices, i.e., as the
selection index is not a first class value, such a mapping is relatively easy to achieve. It
suffices to rewrite all tuple creations into record creations and tuple selections into record
selections. The rewriting rules for the corresponding lowering scheme Lx are given in
Figure B.6.
The first rule, rule Tuple, rewrites a tuple expression into a record expression. For

each subexpression of the tuple expression, the newly created record expression contains a
corresponding label-expression pair. The label thereby is derived from the index positon
of the subexpression within the tuple expression by prepending the index with the #-
symbol. I use a special symbol for readability reasons only. Instead, any other injective
mapping from indices to labels could be used.
The second rule in Figure B.6 specifies the rewriting of tuple-selection expressions. As

tuple expressions are rewritten into record expressions, tuple-selection expressions are
rewritten into record-selection expressions. I use the same translation from indices to
labels.
The further rules for the rewriting only drive the translation into all subexpressions of

an expression. I omit those here.
As tuple expressions are rewritten to record expressions, the extension of LRec pre-

sented in this section does not require tuples on the value level. Thus, the extended set
of values as given in Figure B.7 does not contain any production rules for tuple values.
Instead, only the extensions integer values are given. The corresponding production rule
integer is identical to the one presented in the previous section.
Using this extended set of values, I next define the semantics of the extensions to

LRecC. As before, the semantics for rewritten expressions, i.e., tuple and tuple-selection
expressions in this case, is given by the semantics of the corresponding rewritten expres-
sion. For all other extensions, the corresponding rules are given in Figure B.8. As for the
extensions to LRec to support the matrix examples, I only provide rules for full evalu-
ation. The corresponding rules for partial evaluation can easily be derived by adding a
further condition that the annotated demand is not empty in the current context and by
using the partial evaluation relation ↓ with the corresponding environments.

198

B.2. Algebraic Data-Type Examples

The first two rules, i.e., the rules NEqualTrue and NEqualFalse, define the se-
mantics for the inequality operation !=. They are the inverse of the corresponding rules
for the equality operation presented in Figure 3.8. For an application of the inequality
operation to be evaluated, both operands must evaluate to non-record values. Note that
v
= referts to the extended version given in Definition B.1.1. Thus, integer values are
comparable. However, tuples are not comparable, as they are represented by records in
LRecC.
Next, rule Or defines the semantics of the Boolean or operation. For such an oper-

ation to be evaluated, both arguments need to evaluate to Boolean values. The overall
expression then evaluates to true if either value is true.
Lastly, the semantics for the division operation are given by rule Div. Here, both

operand expression need to evaluate to integer values. In this case, the result is the
integer division of the left-hand and right-hand operand. I use the ÷-symbol to denote
integer division.
Finally, it remains to extend demand derivation by the extensions presented in this

section. Again, as tuples are mapped to records, the only extensions that need to be
supported by demand inference are integer values and the three additional infix opera-
tions. The corresponding rules are given in Figure B.9. The first rule, i.e., rule Integer,
described demand derivation for integer expressions. The rule is identical to the rule pre-
sented in the previous section; it annotates the current demand at the integer expression.
Lastly, the rule Infix defines demand derivation for infix operations. As all three

infix operations operate on non-record values only, any non-empty demand encodes that
they need to be fully evaluated. Thus, the operands need to be fully evaluated for all
non-empty demands on the overall expression, as well. However, if the demand on the
overall infix operation is empty, such is the demand on its operands. Consequently, it
suffices to simply propagate the demand for the infix operation to both operands.

value ⇒ · · ·
| integer

integer ⇒ [-][numeral]+

numeral ⇒ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure B.7.. Extension of the set of values and partial values for algebraic data-type
examples in extended Backus Nauer form.

199

Appendix B. Language Extensions

NEqualTrue :

(F ,≺,E) : e1 ⇓ v1 (F ,≺,E) : e2 ⇓ v2
v1, v2 6∈ R (v1, v2) 6∈

v
=

(F ,≺,E) : (e1 != e2) ⇓ true

NEqualFalse :

(F ,≺,E) : e1 ⇓ v1 (F ,≺,E) : e2 ⇓ v2
v1, v2 ∈ R (v1, v2) 6∈

v
=

(F ,≺,E) : (e1 != e2) ⇓ false

Or :

(F ,≺,E) : e1 ⇓ v1 (F ,≺,E) : e2 ⇓ v2
v1, v2 ∈ {true, false}

(F ,≺,E) : (e1 || e2) ⇓ v1 ∨ v2

Div :
(F ,≺,E) : e1 ⇓ v1 (F ,≺,E) : e2 ⇓ v2 v1, v2 ∈ Z

(F ,≺,E) : (e1 / e2) ⇓ v1 ÷ v2
Figure B.8.. Semantics extensions for algebraic data-type examples.

(Integer) AF

q
FA,EA,BA, δ, i

y

 (FA,EA, i λ∆.δ)

(Infix) AF

q
FA,EA,BA, δ, (e1 op e2)

y

 (FA
′′,EA

′′, (e′1 op e′2) λ∆.δ)

where
FA
′,EA

′, e′1 := AF

q
FA,EA,BA, δ, e1

y

FA
′′,EA

′′, e′2 := AF

q
FA
′,EA

′,BA, δ, e2
y

Figure B.9.. Extensions to the demand analysis scheme AF as required for the
matrix examples.

200

Appendix C.

Transformation Schemes

C.1. Remaining Rules for Lt

(Let) Lt
q

let d1 · · · dn in expression end
y

 let Lt
q
d1

y
· · · Lt

q
dn

y
in Lt

q
expression

y
end

(Relation) Lt
q
identifier <: identifier

y

 identifier <: identifier

(Function) Lt
q

fun instance1 · · · instancen
y

 fun Lt
q
instance1

y
· · · Lt

q
instancen

y

(Instance) Lt
q
quantifiers guards = expression

y

 quantifiers Lt
q
guards

y
= Lt

q
expression

y

Figure C.1.. Remaining rules for the transformation scheme Lt in Section 3.2.1.

201

Appendix C. Transformation Schemes

(Value) Lt
q

val identifier expression
y

 val identifier = Lt
q
expression

y

(Guards) Lt
q

| g1 · · · gn
y

 | Lt
q
g1

y
· · · Lt

q
gn

y

(Selection) Lt
q
expression.label

y

 Lt
q
expression

y
.label

(Blink) Lt
q

!expression
y

 !Lt
q
expression

y

(Any) Lt
q

any(e1 · · · en)
y

 any(Lt
q
e1

y
· · · Lt

q
en

y
)

(Conditional) Lt
q

if predicate then else
y

 if Lt
q
predicate

y
Lt

q
then

y
Lt

q
else

y

(Application) Lt
q

(identifier e1 · · · en)
y

 (identifier Lt
q
e1

y
· · · Lt

q
en

y
)

Figure C.1.. Remaining rules for the transformation scheme Lt in Section 3.2.1
(contd.).

202

C.2. Remaining Rules for Le

C.2. Remaining Rules for Le

(Let) Le
q

let d1 · · · dn in expression end
y

 let Le
q
d1

y
· · · Le

q
dn

y
in Le

q
expression

y
end

(Relation) Le
q
identifier <: identifier

y

 identifier <: identifier

(Function) Le
q

fun instance1 · · · instancen
y

 fun Le
q
instance1

y
· · · Le

q
instancen

y

(Value) Le
q

val identifier expression
y

 val identifier = Le
q
expression

y

(Guards) Le
q

| g1 · · · gn
y

 | Le
q
g1

y
· · · Le

q
gn

y

(Record) Le
q
eval{ l1=e1, . . ., ln=en}

y

 Le
q
eval

y
{ l1=Le

q
e1

y
, . . ., ln=Le

q
en

y
}

Figure C.2.. Remaining rules for the transformation scheme Le in Section 3.2.2.

203

Appendix C. Transformation Schemes

(Selection) Le
q
expression.label

y

 Le
q
expression

y
.label

(Blink) Le
q

!expression
y

 !Le
q
expression

y

(Any) Le
q

any(e1 · · · en)
y

 any(Le
q
e1

y
· · · Le

q
en

y
)

(Conditional) Le
q

if predicate then else
y

 if Le
q
predicate

y
Le

q
then

y
Le

q
else

y

(Application) Le
q

(identifier e1 · · · en)
y

 (identifier Le
q
e1

y
· · · Le

q
en

y
)

Figure C.2.. Remaining rules for the transformation scheme Le in Section 3.2.2
(contd.).

204

C.3. Remaining Rules for Li

C.3. Remaining Rules for Li

(Let) Li
q

let d1 · · · dn in expression end
y

 let Li
q
d1

y
· · · Li

q
dn

y
in Li

q
expression

y
end

(Relation) Li
q
identifier <: identifier

y

 identifier <: identifier

(Function) Li
q

fun instance1 · · · instancen
y

 fun Lq
q
instance1

y
· · · Lq

q
instancen

y

(Instance) Li
q
pattern guards = expression

y

 Li
q
pattern

y
Li

q
guards

y
= Li

q
expression

y

(Value) Li
q

val identifier expression
y

 val identifier = Lq
q
expression

y

(Guards) Li
q

| g1 · · · gn
y

 | Li
q
g1

y
· · · Li

q
gn

y

Figure C.3.. Remaining rules for the transformation scheme Li presented in
Section 3.2.3.

205

Appendix C. Transformation Schemes

(Selection) Li
q
expression.label

y

 Li
q
expression

y
.label

(Any) Li
q

any(e1 · · · en)
y

 any(Li
q
e1

y
· · · Li

q
en

y
)

(Conditional) Li
q

if predicate then else
y

 if Li
q
predicate

y
Li

q
then

y
Li

q
else

y

(Application) Li
q

(identifier e1 · · · en)
y

 (identifier Li
q
e1

y
· · · Li

q
en

y
)

Figure C.3.. Remaining rules for the transformation scheme Li presented in
Section 3.2.3 (contd.).

206

C.4. Remaining Rules for Lc

C.4. Remaining Rules for Lc

(Let) Lc
q

let d1 · · · dn in expression end
y

 let Lc
q
d1

y
· · · Lc

q
dn

y
in Lc

q
expression

y
end

(Relation) Lc
q
identifier <: identifier

y

 identifier <: identifier

(Function) Lc
q

fun instance1 · · · instancen
y

 fun Lc
q
instance1

y
· · · Lc

q
instancen

y

(Value) Lc
q

val identifier expression
y

 val identifier = Lc
q
expression

y

(Guards) Lc
q

| g1 · · · gn
y

 | Lc
q
g1

y
· · · Lc

q
gn

y

(Record) Lc
q
eval{ l1=e1, . . ., ln=en}

y

 Lc
q
eval

y
{ l1=Lc

q
e1

y
, . . ., ln=Lc

q
en

y
}

Figure C.4.. Remaining rules for the transformation scheme Lc in Section 4.2.

207

Appendix C. Transformation Schemes

(Selection) Lc
q
expression.label

y

 Lc
q
expression

y
.label

(Any) Lc
q

any(e1 · · · en)
y

 any(Lc
q
e1

y
· · · Lc

q
en

y
)

(Conditional) Lc
q

if predicate then else
y

 if Lc
q
predicate

y
Lc

q
then

y
Lc

q
else

y

(Application) Lc
q

(identifier e1 · · · en)
y

 (identifier Lc
q
e1

y
· · · Lc

q
en

y
)

Figure C.4.. Remaining rules for the transformation scheme Lc in Section 4.2
(contd.).

208

	Introduction
	Existing Approaches
	My Approach
	Overview

	Design Decisions
	A Data Representation for Auxiliary Computations
	Programming with Auxiliary Computations
	Supporting Constraints
	Example: Encoding a Typed Expression Language
	Conclusions

	A Formal Definition of LRec
	Syntax of LRec
	Towards a Sugar-Free LRec
	Resolving Tags in Records
	Resolving Implicit Equality Constraints and Bindings in Patterns
	Resolving Implicit Labels for Values
	Syntax of LRecC

	An Operational Semantics For LRecC
	Conclusions

	Checking Constraints
	An Encoding for Guards
	Guards by Conditionals
	Weaving Guards into the Dataflow
	Using Explicit Evidence

	A Lowering Transformation for Guards
	Formal Definition of LRecC with Guards
	Conclusions

	Partial Evaluation
	Some Background
	Partial Evaluation of Auxiliary Computations
	A Partial Semantics of LRecC
	Conclusions

	Guiding Partial Evaluation
	A Binding-Time Analysis for Non-Nested LRecC
	Binding-Time Analysis By Example
	A Formal Definition of Demand Inference
	Demand Driven Partial Evaluation

	Extending the Binding-Time Analysis to Full LRecC
	Examples, Revisited
	Conclusions

	Conclusion and Future Work
	Auxiliary Computations
	Demands and Partial Evaluation
	Future Work
	Closing Remark

	Bibliography
	Source Code for Examples
	Amended Evaluator for Haskell
	Using an Additional Tag
	Using a Stratified Approach

	Language Extensions
	Matrix Examples
	Algebraic Data-Type Examples

	Transformation Schemes
	Remaining Rules for Lt
	Remaining Rules for Le
	Remaining Rules for Li
	Remaining Rules for Lc

