DIVISION OF COMPUTER SCIENCE

An Analysis of Automatic Differentiation on the VAX

Sandra Abbott

Technical Report No.159

July 1993

THE UNIVERSITY OF HERTFORDSHIRE

School of Information Sciences

An Analysis of Automatic Differentiation on the VAX

by

Sandra Abbott

Technical Report No. 159 July 1993

Abstract

The reverse accumulation algorithm is an efficient technique for implementing automatic
differentiation. It is able to calculate the complete gradient vector of a scalar function to the
same degree of accuracy as the target function and requires only about twice the amount of
floating point arithmetic as that needed to calculate the function itself. However, when
implemented on conventional architectures several overheads are incurred which degrade the
performance. This report analyses the performance of an Ada implementation on a
MicroVAX 3800 using VMS and discusses possible improvements.

i Introduction

Differentiation is a fundamental mathematical tool essential in a diverse range of applications
including gradient methods for optimisation and the iterative solution of non-linear equations.
Automatic differentiation comprises a number of processes for obtaining accurate derivatives
of functions by applying the chain rule directly to numerical values rather than to symbolic
expressions. The two established methods for calculating the derivative, forward and reverse
accumulation, can be compared in terms of the underlying computational graph of the
function. Forward accumulation yields the function value and its derivatives simultaneously
as the graph is traversed once from the independent to the dependent variables. Storage
requirements are relatively low as there is no need explicitly to store the graph. However, the
temporal and spatial requirements of the algorithm increase in proportion to the number of
independent variables unless sparse matrix techniques are applied [Dix090].

In reverse accumulation, the function is evaluated during the forward sweep of the graph but
the derivatives are calculated on a subsequent reverse pass as the graph is traversed from the
dependent to the independent variables. Memory bandwidth requirements are high because
the entire computational graph must be built and stored since the reverse pass takes explicit
account of the order in which the function was computed. Using reverse accumulation, the
complete gradient vector of a scalar function can be calculated to the same degree of accuracy
as the target function itself, and requires only about twice the amount of floating point
arithmetic as that needed to calculate the function [Irim87]. All permissible parallelism in the
function can also be exploited in the gradient calculation.

However, when current architectures are used to support manipulation of the computational
graph during reverse accumulation, a number of overheads are incurred. As a result,
implementations of reverse accumulation on architectures with good floating point support
spend only about ten percent of their time performing arithmetic, with a consequent ten-fold
handicap in performance. The majority of the processing time is spent manipulating the
function graph [Chri92a].

This report describes a series of investigations carried out using a MicroVAX/VMS 3800,
part of a VAX Cluster, at Farnborough College of Technology. The system uses a fast
version of the CVAX chip implemented in 1.5 micron CMOS technology, with a 60 ns cycle
time and a built-in 1KB cache. Extensive use was made of the Performance and Coverage
Analyzer supplied as part of the VAXset of software engineering tools. Tests were conducted
on an Ada implementation of reverse accumulation [Chri92a] with the aim of analysing the
CPU-time distribution of the algorithm in order to discover how much time is spent building
and traversing the graph.

2 The VAX Performance and Coverage Analyzer (PCA)

The PCA, analyses the dynamic behaviour of a program through two operational
components: the Collector and the Analyser. The Collector gathers performance data of a
type selected by the user and writes it to a file from where the Analyzer processes it to

1

produce performance histograms and tables. The Collector data options include:

» Program counter (PC) sampling data: sampling the program counter every 10
milliseconds of system time or at a user-defined rate.

« CPU sampling data: sampling the PC using virtual-process time and hence ignoring
time spent waiting for page faults, I/O transfers etc. This option was used during
most of the data-gathering program runs,

 Counters : counting the exact number of times that specified instructions execute.
This was used to check the frequency of function calls during program execution.

The Analyzer operates on the data file produced by the Collector and displays it in the format
specified by the user. A range of domains and filters can be applied to the data before display
in order to investigate selected areas of the program.

The most useful PCA options for this investigation were found to be CPU-sampling for data
collection and histogram plotting by program address for data analysis.

3 Algorithms for implementing automatic differentiation

The theory of automatic differentiation is well documented, for example [Grie89, Irim87].
The intention here is to summarise the algorithms in [Chri92a] for ease of reference as these
form the basis for the Ada package under investigation.

We start with the assumption that a function f(x, ... , X,) can be constructed from a sequence
of simple operations. A typical sequence would consist of unary and binary arithmetic
operations but may also contain control statements so that the active part of the graph will
vary depending on the values of the control variables and the nature of the inputs.

Building the graph
for i from n+1 upto m do -- after the independent variables in the list
X; = fi(xrtl, . x&n_) -- evaluate each intermediate value in the graph
enddo ' -- finishing with the function value at x,,

{(Xm = f(Xq5 ey Xp) }

where for each i > n, n; is the arity of f; and t; is a map from {1, ..., n;} into {1, ..., i-1}.

The forward pass through the graph is used to compute the function value: the reverse pass is
used to evaluate the first derivative,\J f. We define X; = 9x,,/dx;, for 1 <i < m. Then the
vector (Xy, ... , Xp) iSN/f. The algorithm is:

Forward pass - computes the function

For i from 1 upto ndo -- for each independent variable
;=0 -- initialise the adjoints which will accumulate the

enddo -- derivative on the reverse pass

for i from n+1 upto m do -- for each node following on from the independent
X; = fi(qu, s xt_‘nt) -- variables, calculate the node value
X;=0 -- initialise the adjoints

enddo

{xp = f(Xq, oo X)) -- the last node holds the function value

Reverse pass - computes the first derivative

Xy = 1 -- initialise the last adjoint ready for the reverse pass
for i from m downto n+1 do -- for all intermediate variables -

for p from 1 ton; do -- for each arc leading back from the node to others

Xip = i‘:P + X * (Dpf) (X 15 e Xen,)

enddo -- compute the contribution to the derivative

enddo
{(Xq, oo X)) = @DX1, o X)) -- solution given by adjoints of independent
-- variables

The reverse accumulation package also contains the functionality to enable the Hessian
(second derivative) matrix to be calculated. This is composed from a number of directional
second derivatives, each one requiring a further forward and reverse pass of the
computational graph. Hence the Hessian can be computed either in one operation by using n
parallel processors, or by making a further n iterations of the graph. A full discussion and
proof are contained in [Chri92a] whereas just the algorithm is reproduced here.

Forward pass - computes the function and prepares for the Hessian

For i from 1 upto ndo -- for each independent variable
X;=0 -- initialise the adjoints as before
wi= -- set up the initial vector values in the w;
w;= 0 -- initialise the Hessian adjoints to 0
enddo
for i from n+1 upto m do -- for each node following on from the independent
X; = fi(X 15 e s Xp) -- variables, calculate the node value
X =0 -- initialise the adjoints
w;= 0 -- and the w;
for p from 1 to n; do -~ calculate 'first half" of second derivative (df/dx)
Wi = Wi+ Wiy * Dpf)(xyy, ... ,xt;ng
enddo

w;= 0 -- initialise adjoint ready for reverse pass
enddo

{Xm = f(X{, oo Xp), Wi = @VD(x4, ... ,X))
-- last node holds function value and pre-Hessian

Reverse pass - computes the derivative and Hessian

Xn=1 -- initialise the last adjoint ready for the reverse pass
forifrom m downton+l do -- for all intermediate variables -
for p from 1 to n; do -- for each arc leading back from the node to others

-- compute the contribution to the derivative
Wt‘-p = Wtip + WI * (Dpfi)(xttl, sen g xtan'-.)) . .
-- compute the contribution to the Hessian
for q from 1 to n; do
-- repeat for each arc connected to the node
enddo
enddo
enddo
{(Xl’ oon j(n) = (Vf)(xb sue axn)’ (Wla oo ’Wn) = (UYf)(Xl, ’xn)}
-- solutions given by adjoints of the independent
-- variables

5 Automatic differentiation by reverse accumulation - the test function

The analysis was applied to the reverse accumulation package written in Ada. This
implemented the algorithm in a straightforward way using real valued adjoints at each node
to contribute to the final solution. The test program, in which all the operators except
assignment were overloaded, used the scalar valued Helmholtz energy function of a mixed
fluid in a unit volume at absolute temperature T:

f(x) = Rfoi log (x;/ (1 - bT x) - (xT Ax / 8bT x) log ((1+(1+ 2)bTx) / (1+(1- 2)bT x)

where 0 < x;, b;, beR?, A = ATg R nxn

With n = 100, the function generated a graph with 10206 independent variable nodes and
20818 calculated nodes. The function value, first derivative and a directional second
derivative were calculated. Later versions of the package [Chri92b, Bart93] will include code
to implement sparse adjoint vectors and to eliminate shared computational threads: both
techniques typically apply when it is necessary to compute the derivatives of vector valued
functions. Neither was included in the results that follow.

4

6 Automatic differentiation by reverse accumulation - the package

This section describes the Ada package for reverse differentiation used in this investigation.
It consists of a number of functions which are called as the computation proceeds. Part of the
package is concerned with graph building and function evaluation, part with the calculation
of the first derivative and part with evaluating the Hessian.

6.1 Graph building and function evaluation

Using operator overloading, the graph is constructed as the function is evaluated. Each graph
node contains the following information:

ID : NODE_ID; -- number for this node

KIND : NODE_KIND; -- many different node types to choose
-- from: SCRCHK CONSTK MINUSK
- INDEPK PLUSK TIMESK
- RECIPK EQUALK LESSTK
-- ABSK SQRTK EXPK
-- LOGK SINK ASINK

XF . ITEM; -- value of this node (item is a float)
XB : ITEM; -- first derivative
WF : ITEM; -- directional derivative
WB : ITEM; -- directional second derivative
D : ITEM -- cache for first derivative of unary op
P1 : REFNODE -- pointer to node containing first
-- argument of this operation
P2 : REFNODE; -- same for second argument
LF : REFNODE; -- forward link
LB : REFNODE; -- backward link

The nodes are stored as a doubly-linked list, the links being determined by the function under
test and its underlying graph structure. The list, which can be considered as a serial
representation of the function graph, contains the independent variables and constant values
followed by the intermediate nodes required by the function and ends with the dependent
variables. As the internal representation of the function is broken down into a series of unary
and binary elements, each node requires a maximum of two pointers to its arguments, as
shown.

The function MAKE_NODE is used to form each new node as required for constructing the
graph. XF_PROPAGATE evaluates the function, starting from the beginning of the list and
working forwards storing intermediate values as it proceeds.

6.2 Derivative evaluation

XB_PROPAGATE performs the reverse pass of the algorithm by moving back down the
pointers P1 and P2 to place the appropriate XB values there. It starts at the dependent variable
node and then moves along the backward link to the previous node, evaluating as it goes,
until it reaches the independent variable nodes, whereupon the process is complete.

6.3 Evaluating the Hessian

The hessian is accumulated according to the algorithm in 4 above by using the functions
WF_PROPAGATE for the forward pass and WB-PROPAGATE for the reverse pass. Full
details of the algorithms and the Ada implementation are to be found in [Chri90, Chri92a].

7 Time measurements

In order to gain some measure of the time taken for graph building and traversal, the program
(generated using the optimised compiler) was compared with a modified version that simply
evaluated the function using real arithmetic. Both versions were batch processed several
times and the minimum charged CPU-times used for comparison. The simplified program
required 1.46s, compared with 41.93s for reverse accumulation during which the graph was
constructed twice. Hence it would appear that graph construction and manipulation represent
considerable overheads and degrade performance.

8 Results

The performance analysis required a large number of run-time investigations as listed below,
the details of which follow.

Function call count

Non-optimised compilation

Optimised compilation

Order of "+" and "*" swapped in function listing
Conditional tests swapped in "+" and "*"

Order of conditional statements in "+" and "*" swapped
Conditional statements removed

Modified test function

Modified "*" function

10. Modified "+" function

11. Counting function calls in the incomplete function
12. Converting "+" to ADD

13. Optimised compilation with ADD function

14. Non-optimised compilation with ADD function
15. Assembler code from optimised compilation

00N O LR W

8.1 Function call count

The PCA Collector was set for Counters and compilation was carried out with the optimise
option switched off. The resulting data files were plotted by function name.

Function name Percentage of run-time cails
MAKE_NODE 49.7
"4 21.8
" * "w 2 1 .6
CONSTANT_VALUE 6.1

This shows that the "+" and "*" overloaded operator functions were called approximately the
same number of times. Hence it would seem reasonable to assume that each function would
account for roughly the same amount of CPU-time during graph construction. The difference
between the two arithmetic functions is simply that "+" assigns to the node the value of the
sum of its input parameters whereas "*" assigns the product.

8.2 Non-optimised Compilation

The PCA Collector was set for CPU-sampling and compilation was carried out with the
optimise option switched off. The resulting data files were plotted by function name and by

line number.

Function name Percentage of run-time

WB_PROPAGATE 13.9

" * " 12.8

MAKE_NODE 12.7

WF_PROPAGATE 123

XB_PROPAGATE 12.2

XF_PROPAGATE 11.3

H+" 8 . 1

Line No Percentage of run-time Function

386 5.3 o

76 5.1 H

160 4.0 MAKE_NODE
711 3.8 WB_PROPAGATE
665 3.6 WF_PROPAGATE
358 1.4 "

391 1.2 xR

363 1.1 4"

Note: The complete sequence is shown in Appendix 1.

Line No

386
76

160
711

665
358
391
363

Statement

IF ANODE.ID /= A.ID OR B.NODE.ID /= B.ID THEN ERROR

A_X :=A_X"+" ALJ) "*" X(J)

GRAPH.CHAIN.LAST_ALLOC := new GRAPH_NODE

CP1LWB :=CP1 WB + C.WB * CP2XF + CXB * CP2.WF {timesk}

C.WF := C.P1.WF * CP2XF + C.P2.WF * CP1.XF; {timesk }
IF A.NODE.ID/=A.ID OR B.NODE.ID/=B.ID THEN ERROR

C.NODE := ANODE.XF * B.NODE.XF
C.NODE := ANODE.XF + B.NODE.XF

This is the first indication that function "*" occupies the processor for approximately fifty
percent more time than "+" and that, in particular, the error check in line 386 is the most time
consuming operation of all, taking 3.78 times longer than the (identical) line 358. See 8.7
where this discrepancy is discussed further.

8

|

8.3 Optimised Compilation

The PCA Collector was set for CPU-sampling and compilation was carried out with the
optimise option switched on. The resulting data files were plotted by function name and by

line number.

Function name Percentage of run-time
MAKE_NODE 153
"*" 13 .5
WF_PROPAGATE 13.3
XF_PROPAGATE 124
WB_PROPAGATE 12.2
XB_PROPAGATE 109
"+" 9.1
Line No Percentage of run-time Function
160 6.4 MAKE_NODE
386 6.1 xR
76 4.7 H
665 4.2 WF_PROPAGATE
705 4.0 WB_PROPAGATE
358 1.1 "4
363 0.8 "
391 0.5 E
Line No Statement
160 GRAPH.CHAIN.LAST_ALLOC := new GRAPH_NODE
386 IF A.NODE.ID /= A.ID OR B.NODE.ID /= B.ID THEN ERROR
76 A_X:=A_X"+" ALJ) "*" X(J)
665 C.WF := CP1.WF * C.P2.XF + CP2.WF * CP1.XF; {timesk }
705 C.P1.WB :=CP1.WB + C.WB {plusk}
358 IF ANODE.ID/=A.ID OR B.NODE.ID/=B.ID THEN ERROR
363 C.NODE := ANODE.XF + B.NODE.XF
391 C.NODE := ANODE.XF * B.NODE.XF

The optimising facility of the compiler is generally less effective when using operator

overloading.

The compiler is unable to discern the overloaded code and may produce an

output which is less efficient than the non-optimised version. The results here, while
different from those in 8.2 above, do not show dramatic changes: "*" requires 1.48 more time
than "+" and line 386 requires 5.54 more time than line 358. The majority of the following
results were obtained with the optimising switch disabled.

9

8.4 Order of "+" and " *" swapped in function listing

The PCA Collector was set for CPU-sampling and compilation was carried out with the
optimise option switched off. The positions of the "*" and "+" functions in the code were

swapped.
Function name Percentage of run-time
WB_PROPAGATE 139
"*" 12.7
WF_PROPAGATE 124
MAKE_NODE 12.2
XB_PROPAGATE 12.1
XF_PROPAGATE 11.6
"+" 8.3
Line No Percentage of run-time Function
358 5.5 B
76 4.9 H
665 4.1 WF_PROPAGATE
160 4.0 MAKE_NODE
711 3.6 WB_PROPAGATE
386 1.7 "4
363 1.1 "4
391 1.0 B
Line No Statement
358 IF ANODE.ID /= A.ID OR B.NODE.ID /= B.ID THEN ERROR
76 A_X:=A_X"+" ALY "*" X(A)
665 C.WF := C.P1.WF * C.P2.XF + CP2.WF * CP1.XF; {timesk }
160 GRAPH.CHAIN.LAST_ALLOC := new GRAPH_NODE
711 CP1.WB :=CP1.WB + CWB * CP2.XF + C.XB * CP2.WF {timesk}
386 IF ANODE.ID/=A.ID OR B.NODE.ID/=B.ID THEN ERROR
363 C.NODE := ANODE.XF + B.NODE.XF
391 C.NODE := ANODE.XF * B.NODE.XF

The order in which the "*" and "+" functions appear in the reverse accumulation package was
swapped round to eliminate any local effects such as page boundary regions. The same
results were obtained as in the two previous tests.

10

8.5 Conditional tests swapped in "+" and " *"

The PCA Collector was set for CPU-sampling and compilation was carried out with the
optimise option switched off. The positions of the "*" and "+" functions in the code were
swapped as were the tests in the IF statement on line 358.

Function name Percentage of run-time
WB_PROPAGATE 139
MAKE_NODE 12.8
WF_PROPAGATE 12.8
"* " 12.4
XB_PROPAGATE 11.8
XF_PROPAGATE 11.5
"+" 8.0
Line No Percentage of run-time Function
76 53 H
358 5.2 o
160 4.2 MAKE_NODE
665 4.0 WF_PROPAGATE
711 3.5 WB_PROPAGATE
386 1.3 "+
363 1.1 "4
391 1.0 R
Line No Statement
76 A_X :=A_X"+" AL "*" X({J)
358 IF B.NODE.ID /= B.ID OR A.NODE.ID /= A.ID THEN ERROR
160 GRAPH.CHAIN.LAST_ALLOC := new GRAPH_NODE
665 C.WF :=C.P1.WF * CP2.XF + C.P2.WF * C.P1.XF; {timesk }
711 CP1.WB :=CP1.WB + CWB * CP2.XF + CXB * CP2.WF {timesk}
386 IF B.NODE.ID/=B.ID OR A.NODE.ID/=A.ID THEN ERROR
363 C.NODE := ANODE.XF + B.NODE.XF
391 C.NODE := ANODE.XF * B.NODE.XF

With the functions still in their swapped positions, this test was designed to detect any skew
in the node test of lines 358 and 386. Once again, no significant changes to the previous
results were detected.

11

8.6 Order of conditional statements in " +" and " *" swapped

The PCA Collector was set for CPU-sampling and compilation was carried out with the
optimise option switched off. The positions of the "*" and "+" functions in the code were
restored and the IF statement was swapped as in (5) above. -

Function name Percentage of run-time
WB_PROPAGATE 14.1
WF_PROPAGATE 12.6
"*" 12.6
MAKE_NODE 12.6
XB_PROPAGATE 124
XF_PROPAGATE 11.6
"+" 8.3
Line No Percentage of run-time Function
386 5.2 Y
76 4.5 H
160 3.7 MAKE_NODE
601 3.7 XB_PROPAGATE
711 3.7 WB_PROPAGATE
358 1.4 "
391 1.3 xR
363 1.3 4"
Line No Statement
386 IF B.NODE.ID /=B.ID OR A.NODE.ID /= A.ID THEN ERROR
76 A_X:=A_X"+" ALI) "*" X(J)
160 GRAPH.CHAIN.LAST_ALLOC := new GRAPH_NODE
601 C.P1.XB :=C.P1.XB + C.XB {plusk}
711 CP1L.WB :=CP1.WB + C.WB * CP2.XF + C.XB * CP2.WF {timesk}
358 IF B.NODE.ID/=B.ID OR A.NODE.ID/=A.ID THEN ERROR
391 C.NODE := ANODE.XF * B.NODE.XF
363 C.NODE := ANODE.XF + B.NODE.XF

Once again, these changes had little effect on the individual line timings.

12

8.7 Conditional Statements Removed

The PCA Collector was set for CPU-sampling and compilation was carried out with the
optimise option switched off. The "*" and "+" functions were in their original positions in
the code but both IF statements were commented out. This should help isolate the time
consuming section of the code.

Function name Percentage of run-time
WB_PROPAGATE 15.0
WF_PROPAGATE 133
XB_PROPAGATE 12.8
MAKE_NODE 12.7
XF_PROPAGATE 11.9
” * " 10 .5
"+" 7'0
Line No Percentage of run-time Function
76 53 H
391 4.8 o
160 4.3 MAKE_NODE
711 4.2 WB_PROPAGATE
665 4.2 WF_PROPAGATE
363 1.3 4"
Line No Statement

76 A_X:=A_X"+" A(ILJ) "*" X(J)
391 C.NODE.XF := ANODE.XF * B.NODE.XF
160 GRAPH.CHAIN.LAST_ALLOC := new GRAPH_NODE
711 CPLWB :=CP1.WB + C.WB * CP2.XF + CXB * CP2.WF {timesk}
665 C.WF := C.P1.WF * CP2.XF + CP2.WF * CP1.XF; {timesk}

363 C.NODE := ANODE.XF + B.NODE.XF

The two functions still require a markedly different amount of time but now the difference
appears to be accounted for by the multiplication instruction compared with the addition
instruction. This is quite likely although specific timings for individual VAX machine-code
instructions were not available. Neither line 391 nor line 363 had appeared as major
consumers of time in the previous experiments. It is possible that the PCA is not allocating
time correctly during function calls and has been wrongly crediting the conditional test
instructions with large amounts of CPU-time.

13

8.8 Modified test function

The PCA Collector was set for CPU-sampling and compilation was carried out with the
optimise option switched on. The order of calculation of the test function was modified to
consider the effect of residual partial results making some parameters readily available in the
registers while others had to be fetched from memory. The modified function, again with
overloaded operators, was:

(LOG((ONE + (ONE + SQRT_2) * B_DOT_X)/(ONE + (ONE - SQRT_2) * B_DOT_X))/
(B_LDOT_X * SQRT_8)) * X A X + RT * (SUM_X_LX - SUM_X * LOG(ONE -
B_DOT_X))

Function name Percentage of run-time
MAKE_NODE 15.1
" * " 1 3 .8
WF_PROPAGATE 13.1
XF_PROPAGATE 12.3
WB_PROPAGATE 11.8
XB_PROPAGATE 10.9
"+|! 9.6
Line No Percentage of run-time Function
386 6.3 ok
160 4.3 MAKE_NODE
76 53 H
146 3.8 MAKE_NODE
665 4.2 WF_PROPAGATE
705 3.6 WB_PROPAGATE
601 34 XB_PROPAGATE
365 1.5 "4
Line No Statement

386 IF B.NODE.ID /= B.ID OR A.NODE.ID /= A.ID THEN ERROR
160 GRAPH.CHAIN.LAST_ALLOC := new GRAPH_NODE
76 A_X:=A_X"+" ALJ) "*" X(J)
146 function MAKE_NODE (THIS_KIND : NODE_KIND) return REFNODE

665 C.WF := CP1.WF * CP2.XF + CP2.WF * C.P1.XF; {timesk }
705 C.P1.WB :=C.P1.WB + C.WB {plusk}
601 C.P1.XB :=C.P1.XB + C.XB {plusk}

363 C.NODE := A.NODE.XF + B.NODE.XF

This shows that the order in which the function is evaluated has no effect on the function
timings. 14

8.9 Modified " *" function

The PCA Collector was set for CPU-sampling and compilation was carried out with the
optimise option switched off. The "*" function was modified so that internally it was
identical to the "+" function. This modification, when applied to the test function, allowed
the graph to be built in the normal way but produced a run-time error when the function was
being evaluated. Hence the results which follow apply only to the graph building phase.

Function name Percentage of run-time

MAKE_NODE 70.6

"*H 9.2

H 6.6

"4 4.9

CONSTANT_VALUE 3.9

Line No Percentage of run-time Function

160 4.3 MAKE_NODE
76 53 H

146 3.8 MAKE_NODE

386 6.3 UF3l

Line No Statement

160 GRAPH.CHAIN.LAST_ALLOC := new GRAPH_NODE

76 A_X:=A_X"+" ALY "*" X(J)
146 function MAKE_NODE (THIS_KIND : NODE_KIND) return REF_NODE
386 IF B.NODE.ID /= B.ID OR A.NODE.ID /= A.ID THEN ERROR

While this set of results cannot be compared directly with earlier ones, it shows, at least for
the graph building phase of the program, that despite the two overloaded functions being
identical the "*" operation stills requires 1.87 times as much CPU-time as that for "+". The
following experiment was carried out with the functions modified so that they both performed
an identical "*" operation. The two functions were called approximately the same number of
times, were identical in their function yet the one labelled "*" requires 1.62 times the CPU-
time of "+".

15

8.10 Modified " +" function

The PCA Collector was set for CPU-sampling and compilation was carried out with the
optimise option switched off. The "+" function was modified so that it internally it was
identical to the "*" function. This modification, when applied to the test function, allowed
the graph to be built in the normal way but produced a run-time error when the function was
being evaluated. Hence the results which follow apply only to the graph building phase.

Function name Percentage of run-time

MAKE_NODE 66.8

" 10.7

" 6.6

Line No Percentage of run-time Function

160 55.7 MAKE_NODE

146 53 MAKE_NODE
76 4.9 H

386 3.9 !

Line No Statement

160 GRAPH.CHAIN.LAST_ALLOC :=new GRAPH__ NODE

76
146
386

A X:=A_X"+"A[J) "*" X(J)
function MAKE_NODE (THIS_KIND : NODE_KIND) return REF_NODE
IF B.NODE.ID /=B.ID OR A.NODE.ID /= A.ID THEN ERROR

8.11 Counting function calls in the incomplete function

The PCA Collector was set for Counters, the modified code as in 8.10 above was used and
compilation was carried out with the optimise option switched off. The resulting data files
were plotted by function name and show that the two arithmetic functions are called
approximately the same number of times.

Function name Percentage of run-time calls
MAKE_NODE 49.7
"4 16.7
ok 16.7

16

8.12 Converting "+" to ADD

The PCA Collector was set for CPU-sampling and compilation was carried out with the
optimise option switched off. The "+" function was modified to become ADD so that it no
longer relied on operator overloading. Internally it was identical to the "*" function. Once
again, this modification, when applied to the test function, allowed the graph to be built in the
normal way but produced a run-time error when the function was being evaluated. Hence the
results which follow apply only to the graph building phase. The experiment was designed to
test whether the PCA was able to differentiate between normal calls to + and calls to the "+"
function.

Function name Percentage of run-time
MAKE_NODE 66.8
"*“ 8.9
ADD 7.3
Line No Percentage of run-time Function
160 58.5 MAKE_NODE
181 4.1 H
386 3.8 o
87 3.5 H
146 2.3 MAKE_NODE
Line No Statement

160 GRAPH.CHAIN.LAST_ALLOC := new GRAPH_NODE
181 A(LJ) := CONSTANT_VALUE(ITEM(I+J)/100.0)
386 IF B.NODE.ID /= B.ID OR A.NODE.ID /= A.ID THEN ERROR
87 A_XX := A(I<J) "*" X(J) -- part expression added for ADD programming
146 function MAKE_NODE (THIS_KIND : NODE_KIND) return REFNODE

Running the PCA using Counters gave the following breakdown of the number of calls to the
various functions:

Function name Percentage of run-time calls
MAKE_NODE 49.9
o 16.7
"*" 16.6

These results look more promising as identical functions now occupy similar amounts of
time.

17

8.13 Optimised compilation with ADD function

The PCA Collector was set for CPU-sampling and compilation was carried out with the
optimise option switched on. The ADD function was used in place of the overloaded "+" and
the internal construction was returned to addition so that the test function would not give a
run_time error. The resulting data files were plotted by function name and by line number.

Function name

MAKE_NODE

wsen
WF_PROPAGATE
XF_PROPAGATE
WB_PROPAGATE
XB_PROPAGATE
ADD

Line No

160
386
146

76
705
665

Line No

Percentage of run-time

16.7
13.7
13.0
12.2
11.8
10.7

9.4

Percentage of run-time Function

6.8 MAKE_NODE
5.7 s

3.8 MAKE_NODE

47 H

3.5 WB_PROPAGATE
3.5 WE_PROPAGATE

Statement

160 GRAPH.CHAIN.LAST_ALLOC :=new GRAPH_NODE

386 IF A.NODE.ID /= A.ID OR B.NODE.ID /= B.ID THEN ERROR

146 function MAKE_NODE (THIS_KIND : NODE_KIND) return REFNODE
76 A_X:=A_X"+" ALY "*" X(J)

705 C.P1.WB :=C.P1.WB + CWB {plusk}

665 C.WF := CP1.WF * C.P2.XF + C.P2.WF * CP1.XF {timesk }

With the ADD function replacing the overloaded "+" operation the results showed a ratio of
1.45 between "*" and ADD compared with 1.48 in experiment (3). Similarly in the non-
optimised version in the next test compared with experiment (2), the ratios were 1.48 and

1.58 respectively.

18

8.14 Non-optimised compilation with ADD function

For completeness, the previous experiment was repeated with the compiler set for no

WF_PROPAGATE

WB_PROPAGATE
WB_PROPAGATE

{timesk }

optimisation.
Function name Percentage of run-time
WB_PROPAGATE 14.0
WF_PROPAGATE 12.7
"*" 12.6
MAKE_NODE 12.0
XB_PROPAGATE 11.9
XF_PROPAGATE 11.6
ADD 8.5
Line No Percentage of run-time Function
386 5.6 o
665 3.9
160 3.7 MAKE_NODE
711 3.7
705 3.7
Line No Statement
386 IF ANODE.ID /= A.ID OR B.NODE.ID /= B.ID THEN ERROR
665 C.WF := C.P1.WF * C.P2.XF + CP2.WF * CP1.XF;
160 GRAPH.CHAIN.LAST_ALLOC := new GRAPH_NODE
711 C.P1.WB :=CP1 WB + CWB * CP2XF + C.XB * CP2WF {timesk}
705 C.P1.WB :=CP1.WB + C.WB

The results show that the changes have had little effect on run times as the results are almost

the same as those in 8.2.

19

{ plusk}

8.15 Assembler code from optimised compilation

As an example of the low level code produced by an instruction manipulating a linked-list,
the following line from WF_PROPAGATE has been expanded using the optimise option:

line 665 C.WF:=CP1.WF * CP2.XF + CP2.WF * CP1.XF; ({timesk}

tstl 17 -- initial check that offset in R7
bneq vcg.10 -- is non-zero
jsb ADASRAISE_CONSTRAINT

veg.10:
movl 17,13 -- then used to access a second
tstl 25(r3) -- value which is similarly tested
bneq vcg.ll -- before becoming
jsb ADASRAISE_CONSTRAINT

veg.11:
movl 25(3),r4 -- the first operand pointer in R4
tstl 29(r3) -- process repeated for second ...
bneq vcg.12
jsb ADASRAISE_CONSTRAINT

veg.12:
movl 29(13),r2 -- operand pointer in R2
mulf3 13(r4),5(r2) 15 -- multiply first indirect values
mulf3 13(2),5(r4) 12 -- multiply second indirect values
addf3 r5,r2,13(r3) -- add then store by indirection
brb $CASE_JOIN349 ‘ »
tstl 0

Actual timings for individual instructions were not available.

The code for executing this Ada statement involves a large number of data manipulation and
testing instructions which access the operand pointers and check their validity before the
necessary arithmetic is carried out. The requirement for tracking through long chains of
pointers to access the data is inefficient and time consuming. This is especially true because
the same pointers were used when the graph was constructed so we should know where the
operands are and when they will be required again during the reverse pass. The need for
some sort of pointer cache or pipeline is indicated here.

9 Discussion

The PCA allows an in-depth analysis to be made of the performance of the reverse
accumulation algorithm for automatic differentiation. In particular it records how the
execution time is shared between the lines of code. Hence, instructions which take a long

20

time to execute can be identified. As expected, assignment statements which need to access
data via long chains of pointers occupy much CPU-time.

However, the results are not conclusive and several anomalies need to be resolved. In
particular there appears to be a discrepancy when dealing with the "+" and "*" overloaded
operator functions and some time was spent in analysing this situation. The ADA code for
"*" is as follows:

383 function "*" (A, B : VARY) return VARY is

384 C: VARY;

385 begin

386 if AINODE.ID /= A.ID OR B.NODE.ID /= B.ID then

387 ERROR ("deallocated variable as parameter to VARY operation");
388 end if;

389 C.NODE := MAKE_NODE(TIMESK); -- (PLUSK) for "+"
390 CID := C.NODE.ID;

391 C.NODE.XF := ANODE.XF * B.NODE.XF; -- + here for "+"
392 CNODE.P1 :=ANODE;

393 CNODE.P2 :=B.NODE;

394 return C;

395 end "*";

The two functions, "*" and "+", are identical except for the arithmetic assignment to the
function value. Both functions contain code which checks that valid parameters have been
passed and issues an error message When necessary. It was this part of each function that
consumed most time and the amount required did not coincide with the frequency with which
each function was called. In all measurements made on the code, it was found that both
functions were called with approximately the same frequency and yet the error check for "*"
consistently required of the order of fifty percent more time than the error check for "+". This
remained the case even when the positions of the functions in the program code were
swapped (in case a page boundary always penalised one and not the other) and when the
function bodies were changed so that they were identical.

No firm conclusion has been reached as to why these effects occurred and it has not been
possible to rule out the option that the effect is only illusory, being a product of the PCA
itself. It is clear that a lower level analysis tool is required, which will monitor the movement
of the code through the processor and record, amongst other things, the number of cache hits
and misses that occur. The PCA is not sufficiently fine-grained to give detailed information
regarding the graph construction. However, it has been able to provide some useful
information in generally determining where the program is spending time.

It is clear that the algorithm is spending a large proportion of the execution time manipulating
the graph. As the majority of the graph handling is effected through linked-lists, it would
seem appropriate to consider various ways in which the architecture could provide more
support for this type of data structure. In the past, a great deal of effort was expended to
provide efficient support for floating point operations. This satisfied an obvious need and is
now included in most architectures. The need for linked-list support has, perhaps, not been

21

so obvious but it now appears that it deserves at least as much attention. It is likely that
automatic differentiation will be widely adopted by numerical mathematicians once modern

programming languages (e.g., Fortran90, C++) with facilities for operator overloading
supersede the established numerical languages (e.g., Fortran77). In general, older languages
require a preprocessor to implement automatic differentiation. However, once the new
languages are established, a wide range of applications and algorithms, many previously
considered infeasible because of the higher derivatives required, are likely to be introduced.
Developments in image processing and program code analysis both require large dynamic
data structures: image processing for feature extraction, and code analysers to run a program
backwards and forwards in order to locate errors. Thus, automatic differentiation is just one
of a number of techniques requiring fast and efficient access to dynamic data structures. It
should also be pointed out that recent developments in both forward and reverse
accumulation require the use of sparse data structures and these, too, are implemented using
linked-lists.

In discussion [Chri91], a number of ways of matching the architecture to the algorithm have
been suggested. Implicit within the reverse accumulation technique is the need to be able to
traverse a computational graph in exactly the opposite order to that in which it was built.
Hence we must be able to store each new version of each variable and archive the old version
for later. We need some way of storing the sequence of operations executed so that this
information can be reversed to accumulate the derivatives.

This work has concentrated on analysing one implementation of reverse accumulation on a
conventional architecture and has highlighted the need for architectural support for dynamic
data structures. More work is needed to investigate similar algorithms using other languages
and on other architectures.

22

References

[Bart93]

[Chri90]

[Chri91]

[Chri92a]

[Chri92b]

[Dixo87]

[Dix090]

[Grie89]

[Irim87]

M.C. Bartholomew-Biggs, L. Bartholomew-Biggs, D. B. Christianson,
Optimisation and Automatic Differentiation in Ada: Some Practical Experience,
to be published, 1993.

D. B. Christianson, Automatic Hessians by Reverse Accumulation in Ada,
unpublished, 1990.

D. B. Christianson, private communication, 1991,

D. B. Christianson, Automatic Hessians by Reverse Accumulation, IMA Journal
of Numerical Analysis, 12, pp 135-150,1992.

D.B. Christianson, L.C.W. Dixon, Reverse Accumulation of Jacobians in
Optimal Control, Technical Report, The University of Hertfordshire, 1992.

L. C. W. Dixon, Automatic Differentiation and Parallel Processing in
Optimisation, Numerical Optimisation Centre Technical Report No. 180, The
Hatfield Polytechnic, 1987.

L. C. W. Dixon, Z. Maany, and M. Mohsenina, Automatic Differentiation of
Large Sparse Systems, Journal of Economic Dynamics and Control, 14, North-
Holland, 1990.

A Griewank, On Automatic Differentiation, in Mathematical Programming 88,
Klewer Academic Publishers, Japan, 1989

M. Iri and K. Kubota, Methods of Fast Automatic Differentiation and
Applications, Research Memorandum RMI 87-02, Department of Mathematical

Engineering and Information Physics, Faculty of Engineering, University of
Tokyo, 1987.

23

Appendix 1 Non-optimised Compilation Timings

The following list gives full details of the twenty five most time-consuming statements
observed during investigation 8.2 in which the PCA Collector was set for CPU-sampling and
compilation was carried out with the optimise option switched off. The resulting data files
were plotted by function name and by line number.

Line No Percentage of run-time Function

386 5.3 xR

76 5.1 H

160 4.0 MAKE_NODE

711 3.8 WB_PROPAGATE
665 3.6 WF_PROPAGATE
601 3.5 XB_PROPAGATE
712 3.5 WB_PROPAGATE
705 3.2 WB_PROPAGATE
146 3.1 MAKE_NODE

607 3.0 XB_PROPAGATE
661 2.8 WF_PROPAGATE
554 2.8 XF_PROPAGATE
550 2.5 XF_PROPAGATE
264 24 SCRATCH_GRAPH
544 24 XF_PROPAGATE
655 24 WEF_PROPAGATE
608 2.2 XB_PROPAGATE
172 20 MAKE_NODE

389 1.7 "4

355 1.7 xRy

383 1.6 "

583 1.6 K"

706 1.5 WB_PROPAGATE
358 14 "

391 1.2 "

363 1.1 "

24

