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ABSTRACT 

The Q-based method of ll impedance matching network de- 
sign is studied systematically. A more practical definition of 
the loaded quality factor Q than that used hitherto is adopted. 
Designable conditions and design formulas based on the loaded 
Q are analytically demonstrated. Accurate explicit expres- 
sions of network frequency responses and harmonic rejection 
in term of the loaded Q are established and a method of de- 
termining the loaded Q for the required harmonic attenuation 
is developed. We also formulat,e all t,olerance and parasitic 
sensitivities and their relations to the loaded Q. 

INTRODUCTION 

Impedance matching networks are indispensible in radio trans- 
mitting and receiving systems and measuring circuits. The 
most widely used impedance matching network in practical 
situations is the low-pass II type due to its harmonic rejec- 
tion capability and wider matchable impedance range [l--81. 
Unlike L networks whose element values are uniquely deter- 
mined by the conjugate matching equations, there is one fur- 
ther degree of freedom in the accurate conjugate matching for 
II networks which allows us to select the loaded quality factor 
Q to incorporate other requirements, for example harmonic 
rejection. 

Q-based design theory of II impedance matching networks 
has undergone two periods of development. The first method 
was initiated by Pappenfus and Klippel in 1950 [l] and since 
then has been most widely used as a st,andard method for 
several decades. It was excellently outlined and developed by 
Grammer [2] and has appeared in various books and hand- 
books of electrical engineering [5, 61. The second approach 
was first proposed by Gibson in 1969 131 and has been fur- 
ther studied by Wingfield [4], which is highly commended in 
a recent book [GI. The two methods are mainly distinguished 
by the definition of the loaded Q of the network. The f i s t  
method treats wC1 R1 as the loaded Q, while t.he second de- 
fines the loaded Q as wL/RB, where RB is the real part of 
Z B ,  as shown in Fig.1. 

This paper will further investigate the Q-based design 
theory of II impedance matching net,works comprehensively. 
Many useful and interesting results will be presented. 

DESIGN FORMULAS A N D  DERIVATION 

Since in Q-based theory Q is clearly the key design parame- 
ter, it is important to precisely decide what is the real loaded 
Q. Considering that. resistance load transformation is often a 

good approximation of most practical cases and the basis of 
general complex impedance matching, discussion will be there- 
fore carried out for resistance matching as shown in Fig.1. We 
denote Bc, = wC1, Bc, = w C z ,  XL = w L ,  ZA = RA - jxa 
(ZA is the Thevenin equivalent impedance), Z B  = RE - jXB. 

L 
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Figure 1: Il impedance matching network 

The loaded Q is defined as Qo = XL/(RA + RE). 
If we represent 

Qi = RI Bc,, Qz = RzBc, (1) 

then according to the principle of series-parallel transforma- 
tion we have Q1 = XA/RA, and Qz = XB/RE. 

On the other hand the conjugate matching conditions can 
be described as RA = RE, and XL = XA + XB. 

Thus the loaded Q defined above can be formulated as 

Qo = (Qi + Q2)/2 (2) 

It should be pointed out that in the old standard formulas 
Q1 is treated as the loaded Q of the network [1,2,5,6], and in 
t,he improved design formulas XL./RB is used as t,he loaded Q 
[3,4,6]. Apparently Q1 is not the operating Q of the network. 
XL/RB is not either, since itdoes not consider the contribu- 
tion of RA ( or R1 ), although it was claimed [3,4,6] to be 
more accurate than Q1 used in the standard formulas. 

To facilitate the design we derive that RA = Ri/(1 + Qf) ,  
XA = RiQi/(1 + Qf),  RE = Rz/ ( l+  Q:), XB = RzQz/(l+ 
Q:). Substituting them into the conjugate matching condi- 
t,ions and with some manipulation we obtain 

( I+QT)/ ( l+Qi)=  Ri/Rz (3) 

X ~ = 2 Q o R i / ( l + Q : ) = 2 Q o R z / ( l + Q : )  (4) 

Definition : Given R I ,  Rz and Qo, the II network is said 
t,o be designable if and only if the values of elements Ci, c2 
and L can be determined at, any frequency. 
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Theorem : The necessary and sufficient conditions of des- 
ignability of the II network are 

( 5 )  

Equations 1-4 constitute the basic design equations. &om 
them we see that the designability of the network is equivalent 
to the existence of the non-negative solutions for Q1 and Q2 

of equations 2 and 3. Equation 3 may be written as QE = 
$(I + 8:) - 1. When RI 2 R2, to ensure that QZ 2 0 we 
must have & I .  2 d-. This can also be expressed 
in term of QO by using equation 2 as Qo 2 id-. 
Similarly, when RI 5 R2, we must have 9 2  2 d m  to 
guarantee that Q1 2 0. Or in term of Qo, Qo 2 
must be satisfied. 

tions 2 and 3 yields non-negative Qi and 'Q2, given by 
On the other hand if condition 5 or 6 holds, solving equa- 

Q2 = (2QoRz - .\/4Q;RlRz - ( R I  - &)')/(R2 - R I )  ( 8 )  

In particular, when R1 = R2, condition 5 or 6 becomes 
Qo 2 0 and equations 7 and 8 reduce to 

Qi  = Qz = Qo (9) 

Now the Q-based design procedure may be summarized as: 
a. Specify R I ,  Rz and Qo. b. Verify the designable condi- 
tions 5 and 6 (if they are not met, redesignate Qo until they 
are satisfied). c. Compute Q1 and Q2 using equations 7-9. 
d. Determine X L ,  Bc, and Bc, from equations 1 and 4 .  e. 
Calculate L ,  CI  and C2 at  m y  given frequency. 

For some special cases design equations may be simplified. 
When R1 = Rz = R, the design formulas become 

Bc, = Bca = Q o / &  X L  = 2QoR/(1 + Q i )  

The designed II network is therefore symmetrical. 

respectively given by 
Simplified design formulas for RI >> R2 and RI < Rz, are 

Bc,  = 2Qo/Ri, XL = 2Qo Ri /( 1 + 4 Q i )  

and 
Bc, = 2Qo/R2, X L  = 2QoR2/(1+ 4Q:) 

Bc, = '/= Ri 

From equations 2 and 3 we can see that. if RI >> Rz,  QI >> 
Q 2  and Q i  x 2 Q o ;  if RI <( Rz ,  QI  <( Q2 and QZ x 2Qo. For 
both cases we can further calculate 9 2  and Q1 by substituting 
the approximate expressions of QI and Q2 into equation 3, 
respectively. Then using equations 1 and 4 we can get the 
above formulas. 

From the designable conditions we can also see that given 
RI and Rz, the minimum loaded Qo, denoted by QOmin is 
determined by 

for RI > Rz and RI < R2, respectively. 
If Qo = @mi", the ll network reduces to L networks. 

For example, for RI > R2 there is Qo = gom;,, Q I  = 
2Q0min * Qz = 0. Thus we can attain 

In a similar way, for R1 < Rz we have QO = e 
91 = 0 9 2  = 2Qomin, which leads to 

Ra 
- 1 ,  XL = R I / $  - I 

From the above discussion we can see that the design of L 
networks is a special case of that of the II network. What 
interests us is that it is a limiting example. As will be seen 
later many interesting results relate to this limit. 

It is noted t,hat combining the designable conditions gives 

Thus given Qo and R2, the bound of R I ,  and given Qo and 
R I ,  the range of R2, and finally given Qo, the bound of the 
ratio k = R I / &  all can be determined from this equation. 

These three cases are very practical. For example, the 
impedance matching network may be used to match the out- 
put resistance of a rf power amplifier to the characteristic 
impedance of transmission lines, with the former being usu- 
ally variable and the latter being for instance Soohm [I--81. 
In the design of the antenna tuning unit, on the other hand, 
the matching network is required to transform the changeable 
antenna impedance to the 50ohm transmission line character- 
istic impedance [5-81. In some general interstage coupling 
problems the two impedances to be matched both may be 
changeable. For all these practical situations equation 10 gives 
the allowable changing ranges within which when the related 
R I ,  R2 or le varies, conjugate match can be achieved. It is 
clear that if one wants to match all the allowable range for re- 
spective cases, one will need adjustable elements. In this end 
equation 10 may also be used to determine the corresponding 
tunable ranges of element values. 

If the II network is desired to operate over a band of fre- 
quencies fm;n 5 f 5 fmoe for given R I ,  RZ and Qo, the 
ranges of C1, C2 and L to cover the frequency band may be 
determined in two steps: First utilize the basic design pro- 
cedure to get B c , ,  Bc, and XL for the given R I ,  R2 and 
Qo. Then determine the ranges of C I ,  CZ and L,  for example 

As discussed previously, as long as R I ,  R2 and QO are given 
Bel, Bc,  and X L  are accordingly fixed. However, the real 
loaded QO of the network is dependent on the operating fre- 
quency. In order to keep QO constant as given when the fre- 
quency changes, we must therefore adjust the values of GI, C2 

B c a / ( 2 ~ f m n z )  5 C2 5 B c 2 / ( 2 ~ f m i n ) .  
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and L to guarantee that Bel, Bc, and X L  are not altered. 
Thus a uniform or consistent performance of the network can 
be achieved at different frequencies within the specified range. 

FREQUENCY RESPONSES A N D  Q o  SELECTION 

Defining H ( s )  = Vz/E1, simple circuit analysis yields 

-2(k + 1 ) 4 4 k Q g  - (IC - 1)’]’+ 

[ ( 3 ( ~ )  - ( e I S ) ( k  - 1)’ - 8(e - (c)’)ICQ; 

+2( w, - ( E ) j ) ( k  + 1)QoJ4kQ; - (k - 1)2]2}3 

For the given R1 and Rz to be matched and the requirement 
of harmonic rejection, the determination of QO can be easily 
done by using this expression since any order harmonic perfor- 
mance in term of Q o  with k being as the parametric variable 
can be obtained. For instance, the second harmonic rejection 
is formulated as 

W W 

W 

H ( s )  = Rz/[s3LCiCzRiRz + s2(LCi RI + LCzRz) 

+ s ( L  + 4 RiRz + CzRiRz) + ( R I  + Rz)] 
By substituting s = j w  we can attain the complex frequency 

denoting the matching angular frequency and using the design 
formulas obtained we can derive the magnitude and the phase 
frequency responses: 

IH(jw)l = 2[(k + 1)Qo - J4kQg - (k - 1 ) ’ ] / { [ 2 ( k  + 1)’Qo- 

2(k + 1)J4kQi - (k - 1)2 - 2(k - l)’Qo(-) w 2 2  ] + [(3(k - 1)’ 

response H(jw) = I H ( j ~ ) l e j * ( ~ ) .  With k = RI/Rz and wm S ( 2 w m ,  Qo) = 2JiF[(k + 1)Qo - J4kQi - (IC - I)’]/ 

{[((IC + 1)2 - 4(k - l)’)Qo - (k + 1)J4kQ; - (k - 1)212+ 

[24kQi - 6(k + 1)QoJ4kQg - (k - 1)2 - (k - 1)’]’}* 
and the third harmonic attenuation is given by 

S(3wm, Qo) = 2JiF[(k  + 1)Qo - J4kQg - (k - 1)’ ] /  

{ [ ( ( k  + 1)’ - 18(k - 1)’)Qo - (IC + I)J4kQg - (IC - I)’]’+ 
U,,, 2 2  1 

[9GkQ; - 24(k + l)QoJ4kQ; - (k - 1)2 - 9(k - 1) ] }, 

W m  
W -8ICQE + 2 ( k  + l ) Q o  J4kQ; - (k - 1 ) 2 ) (  -)+ 

(‘ICQ; - ’(IC + ‘)QoJ4’Q; - (k - 1)2 - ( I c  - 1)2)(w1312)’ 
W m an illustration, wit,ll k = 0,0625 the second harmonic 

attenuation in dB is poltted with respect, to Q o  in Fig.2. 
9 ( w )  = -a r  ct,an({[3(k - 1)’ - SkQ;+ 

2 ( k  + 1)Qo J4kQi - (k - 1)2]-+ W 

W m  

w 3  [8kQi - 2 ( k  + 1)QoJGQ; - (k - 1)’ - (k - 1)’](;) } /  

[2(k+1)2Q~-2(l i+1)J4kQ,2 - (k - 1 ) 2 - 2 ( k - 1 ) 2 Q o ( ~ ) 2 ] )  

The magnitude arid phase at wm are derived as, respectively 
W,,, 

lH(jwnz)l = l / ( 2 & )  and 
J / ,  , , , , , I 

D I ,o .5 2 0  2 %  IO 35 (0 

Figure 2: Second harmonic and  Qo 
1 

(12 - 
9 ( w n I )  = - arctan( 

4kQo - (I; + 1 ) 4 4 k Q ;  - (k - 1 ) 2  

We can see that, t.he network frequency charart,eristics are 
completely determined by Q o  and k. For t.he known resistances 
RI and Rz (t,hat. is, k) and Q o  using t,hese explicit formulas 
we can readily analyse the network frequency performance. 

In the design of the Il mat~ching network 6he select.ion of 
the loaded Q is of prime importance. It is known that in 
the selection of the loaded Q ,  the most basic and import,ant, 
consideration is to meet the designable condition , t.hat. is, 
Qo 2 Qomin. The Q o  specified by all ot.her requirernent~s must 
comply with t,his restrict,ion. On t,he ot.lier hand, t,he II net- 
work is most, oft,en the choice mainly because it, can provide the 
expect.ed harmonic suppression apart from t.lie wider mat,cli- 
able impedance range. The harmonic reject.ioii requirement, 
must, thus be t.aken iiit.0 considemt.ion when choosing Qo . 

The select.ivity of a network may be defined as S ( w )  = 
~ H ( j ~ ) ~ / ~ H ( j w , ~ ~ ) ~ .  For t,he Il net.work i t  call he expressed 
as ( N0t.e t,hat Qo is highlighted as a variable) 

S(W, Qo) = 4 h [ ( k  + 1)Qo - d4kQ; - (k - I)’]/ 

{ [ ( 2 ( k  + 1)’ - 2 ( - ) ’ ( k  - l)?)QO 
W 

W771 

It can be seen that, for the given k and the required harmonic 
depression the corresponding Qo can be determined graphi- 
cally. For example, when RI = 5Oohms and Ra = 800ohms 
and 35dB second harmonic suppression are expected we can 
determine Qo = 10 from the graph in Fig. 2. In the case 
that the minimum allowable harmonic rejection is specified, 
we may first find the corresponding Q o ,  denoted by QOL, and 
then arbitrarily select Qo which meets Qo 2 QOL. If both sec- 
ond and t.hird harmonic rejections are specified, we can choose 
Qo = max{Qosecr Qothi}, where Qosec and Qothi correspond to 
t,he second and the third harmonic requirements respectively. 
It is clear that ll net.works have higher harmonic suppression 
t,han L networks since the L networks correspond to Qomin. 

SENSITIVITY ANALYSIS 

Sensit,ivity is an import,ant. criterion for assessing net,work 
quality. The magnit,ude and phase t.olerance sensitivities are 
respectively defined as 
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where t represents any normal circuit parameter. 
According to the definitions the tolerance sensitivities of 

the magnitude to L, CI, CZ, RI and R2 at wm and at the 
nominal state can be directly formulated as 0, 0, 0, -0.5, and 
0.5 respectively, and the phase tolerance sensitivities to them 
are derived as -Qo, -9112, -&2/2, 0, and 0 consecutively. 

In the above we assumed that the II network is lossless. 
However, in practical situations reactive components have al- 
ways some parasitic losses which can be equivalent to a par- 
allel conductance for a capacitor and a series resistance for 
an inductor. The magnitude and phase sensitivities to such 
parasitics are denoted by 

in which p may be the loss conductance gci of capacitor Ci, 
i = 1,2, or the loss resistance r L  of inductor L. 

They can be respectively computed from the phase and 
magnitude tolerance sensitivities to the associated reactive 
elements based on the Cauchy-Riemann theorem, which 
states, for example PS!Tf(jw)I = &TS:(W) and P.9:::) = 
-- ,;. TSLt(jw)'. Thus we can easily demonstrate that 

and P S ~ ~ ~ " " ' ) l  = -Ri/2,  i = 1,2,  and that all phase parasitic 
sensitivities are zero. 

The above analysis reveals that. the II matching network has 
very low sensitivities. Clearly all magnitude tolerance sensi- 
tivities, the phase tolerance sensitivities to R1 and Rz and all 
phase parasitic sensitivities reach the minimum. 

However the phase tolerance sensitivities to L,  Cl and Cz 
are proportional to Qo, Q1 and Qz, respectively. Therefore 
they will become higher as QO increases. Obviously the min- 
imum sensitivities correspond to Qo = Qomin and they are 
T S : ( ~ ~ )  = T S ; ? ~ )  = -;-, T S : ? ~ )  = 0,  for R > 1 

tivity cases the sensitivity to the inductance is equal to that 
to the corresponding capacitance and the Il network reduces 
to the respective L type. Generally we can conclude that the 
II network has larger phase tolerance sensitivities to reactive 
elements than the L counterpart. 

As for the magnitude parasitic sensitivities, we distinguish 
two cases. In the first case we see that the sensitivities to each 
capacitance loss are directly proportional to the termination 
resistance on the side of the capacitor. They can be high when 
RI andfor Rz are large and they are fixed for the given RI 
and Rz. These indicate respectively that it may not be safe to 
blindly ignore the effects of capacitor loss in some situations 
and that there is no way to decrease t,hese sensitivities for 
the given matching problem. Fortunately the parasitic loss 
conductances of capacitors are normally small. 

In the second the sensitivity to the inductor loss (rr,) is 
a function of Qo when k is specified. This sensitivity de- 
serves a special attention because inductor loss is usually larger 
compared with capacitor loss. Differentiating the sensitivity 

function (equation 11) with respect to Qo and letting the re- 
sult be zero we can solve that Qo = i- for IC > 1 and 
QO = for IC < 1. Substituting them into the sensi- 
tivity function we attain the minimum sensitivities to rb for 
k > 1 and k < 1 as -1/(2Rz) and -1/(2&) respectively. 
Interestingly the minimum sensitivity to r t  is inversely pro- 
portional to the smaller of the two termination resistances and 
it corresponds to L networks since the QO resulting in the min- 
imum sensitivity is the same as the minimum QO required by 
the network designability. 

the II network degener- 
ates to L networks, has the minimum phase tolerance aensi- 
tivities to the normal reactive elements L, Cl and Cz and the 
minimum magnitude parasitic sensitivity to the inductor loss 
resistance r L .  However the harmonic suppression meanwhile 
reaches the worst. Generally when QO increases the harmonic 
rejection increases and the relevent sensitivities become larger. 
Therefore a trade-off between harmonic attenuation and sen- 
sitivities ( especially that to the inductor loss ) may need to 
be made in the real design. 

As a summary when Qo = 

CONCLUSIONS 

A Q-based design theory of impedance matching networks has 
been explored. The Q-based method proposed is very attrac- 
tive due to extremely simple algebraic design formulas, the 
capability of achieving both precise impedance matching and 
harmonic suppression, and the adoption of the well-known Q 
concept. Although the method has been discussed for resis- 
tance matching of the Il network, the results obtained are 
dually suitable for T networks which are also extensively used 
and can be applied to general complex impedance matching 
problems with a little improvement. F'urthermore, they may 
also be extended to the design of more complicated match- 
ing networks which use L, II or T networks as basic sections. 
Some of the problems are dealt with in [SI and others will be 
the subject of a further publication. 
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