DIVISION OF COMPUTER SCIENCE

An Evaluation of the iHARP Multiple Instruction
Issue Processor

Fleur L Steven
Gordon B Steven
Liang Wang

Technical Report No.179

February 1994

An Evaluation of the iHARP Multiple Instruction Issue Processor

Fleur L Steven, Gordon B Steven and Liang Wang
Division of Computer Science
University of Hertfordshire

ABSTRACT

RISC processors have approached an execution rate of one instruction per cycle by using pipelining to speed
up execution. However, to achieve an execution rate of more than one instruction per cycle, processors
must issue multiple instructions in each processor cycle. This paper evaluates the architectural features of
iHARP, a VLIW (Very Long Instruction Word) processor with an instruction issue rate of four, which has
been developed at the University of Hertfordshire. One of the distinctive features of iHARP is the provision
of Boolean guards on all instructions. Every iHARP instruction is only executed at run time if the attached
Boolean guard is true. This paper evaluates the benefits of guarded instruction execution and quantifies its
performance advantage. Other architectural features considered include instruction issue rate, code size,
number of data cache ports, number of register file write ports, number of branch units and addressing
mechanisms. The evaluation uses RLS, a resource limited instruction scheduler, specifically developed to
statically reorder code for parallel execution on iHARP.

Key Words: VLIW Superscalar Instruction Scheduling Guarded Instruction Execution

1. INTRODUCTION

iHARP is a multiple instruction issue (MII)
processor which fetches a 128 bit long instruction
word from an instruction cache in each cycle.
Each long instruction defines four, 32-bit RISC
primitives which are dispatched to four integer
pipelines for parallel execution, iHARP is
therefore a VLIW processor which relies on a
software instruction scheduler to detect groups of
instructions which can be executed in parallel and
to place these groups into a long instruction word
at compile time. This approach contrasts with the
superscalar [1] approach where it is left 1o the
hardware to detect instructions which can be
executed in parallel at run time.

This paper describes the development of RLS, a
resource limited instruction scheduling system,
and its use in the evaluation of the iHARP
architecture [2]. The features considered include
instruction issue rate, code size, number of data
cache ports, number of branch units, number of
register file write ports and addressing
mechanisms.

The usefulness of the HARP conditional
execution facility, which allows a Boolean guard
to be attached to every iHARP instruction, is also
quantified. Although guarded instruction
execution has been widely proposed in the
literature, quantitative evaluations of the benefits
of guarded execution are not widely available.

The remainder of this paper is organised as
follows: Section 2 discusses the impact of data
dependencies on instruction scheduling; section 3
reviews other research in the area ol static
instruction scheduling; section 4 describes the
compiler/scheduler software and the HARP models
used in this research; section 5 contains our
evaluation of iHARP and presents our results;
section 6 offers some concluding remarks.

2. DATA DEPENDENCIES

Scheduling instructions for parallel execution can
be viewed as a process in which each instruction is
successively moved or percolated [3] up through
the code structure in an attempt (o ensure that it is
executed at the earliest possible opportunity. This
code motion is ultimately stopped by data
dependencies between pairs of instructions.

Three classes of data dependencies can be
identified: Read after write (RAW), write after read
(WAR) and write after write (WAW). However,

only RAW dependencies represent true data
dependencies and therefore ultimately limit the
performance of MII processors. In contrast, WAR
and WAW data dependencies can both be removed
by using register renaming.

For example, in the instruction sequence below
instruction 12 has a WAR or anti-dependence on
I1.

I ADD RS, R6, R7
12 ADD R0, RS, #256

This dependence can be removed by returning the
result of 12 to an unallocated register, in this case
R20. This renaming allows 12 to be percolated
ahead of 1 in the instruction schedule:

2 ADD R20, RS, #256
I ADD RS, R6, R7

MOV R6, R20

The move instruction is required to restore the new
result to R6, Note this extra instruction need not
introduce further data dependencies since
subsequent instructions using R6 can equally well
use R20.

Register renaming can also be used to remove
spurious data dependencies which arise when code
is moved between basic blocks. Consider the
following example:

NE B6, R1,R2 ; set B6 if R1 <> R2
BT B6, Label ; if B6 is true goto Label

Label:
LD R6, 8(SP)

The LD instruction could be moved ahead of the
branch instruction and executed speculatively'
giving the following code:
NE B6, R1, R2
LD R6, 8(SP)
BT B6, Label
Label:

Unfortunately if R6 is live on the alternative path,

' An instruction is executed speculatively if it is

executed before it is known whether the path
containing the instruction will actually be taken.

it will have been incorrectly updated whenever the
branch fails. Register renaming can be used (o
avoid this problem:

NE B6, R1, R6
LD R20, 8(SP) ; R6 replaced by R20
BT B6, Label

Label:
MOV R6, R20

As before, a MOV instruction is required to copy
the contents of R20 into R6 if the branch is taken.

An alternative solution is to use guarded
instruction execution. On iHARP any of the
eight Boolean registers which are used to record
the results of a relational instruction can also be
used as Boolean guards. In the above example B6
can therefore be used to guard the execution of the
LD instruction:

NE B6, R1, R2
TB6 LD R6, 8(SP) ; Execute load if B6 is true
BT B6, Label

Label:
Now the Boolean guard ensures that the LD will
only be executed if the branch is taken,

Any further code motion will move the LD
instruction beyond the scope of the Boolean guard.
Now only register renaming can be used 10 remove
any data dependence:

LD R20, 8(SP) ; R6 replaced by R20
NE B6, R1, R6
BT B6, Label

Label:
MOV R6, R20

The above code illustrates a further problem
introduced by the speculative execution of
instructions. Suppose the load instruction in the
previous example generates an invalid memory
reference. If the path originally containing the
load instruction is not actually followed, the
instruction will generate a spurious exception
which will incorrectly terminate the program,

To solve this problem, all non-branch
instructions must exist in two forms. In the first
form, any exception generated by an instruction is
immediately taken in the usual way. In the second
speculative form, an exception will cause a

polluted value to be loaded into the instruction’s
result register. For example, consider the code
below:

BT B6, Label
LD R6, 8(SP)
SUB RS, R6, #1
NE B3, R8, #0

Label:

Now assume that both the load and subtract
instructions are scheduled speculatively ahead of
the branch instruction:

LD! R6, 8(SP) ; speculative load
SUB! RS, R6, #1 ; speculative subtract
BT B6, Label

NE B3, RS, #0

Label:

If the load instruction generates an exception, R6
will be marked as polluted. Since the subtract
instruction is also executed speculatively, it will
in turn mark R& as polluted when it attempts to
use the polluted value in R6. An exception will
only be taken when the non-speculative relational
instruction attemplts to use the polluted value held
in R8. Note this is the-earliest point in the code
where we can be certain that the speculative load
should have been executed.

To support speculative execution an extra bit
must be added to all processor registers, including
the Boolean registers, to mark polluted values.
This hardware support allows loads and other
instructions, such as adds which generate an
exception on overflow, to be executed
speculatively. However, store instructions can
still not be exccuted speculatively. Stores can
only be safely percolated into a preceding basic
block if they can be guarded.

3. INSTRUCTION SCHEDULING

This section first considers the amount of
parallelism that is ultimately available to MII
processors and then reviews current work in
instruction scheduling.

3.1 Potential Instruction Level Parallelism

Wall [4] used simulations based on instruction

traces to investigate the parallelism available to
superscalar processors. Even with perfect
renaming and memory disambiguation, the
parallelism realised rarely exceeded seven and was
typically only five. However, when Wall
substituted perfect branch prediction for his
hardware branch prediction model, the amount of
parallelism realised increased spectacularly.

Yale Patt’s [S] group also used trace driven
simulations to investigate superscalar
performance. The group concluded that current
technology could achieve execution rates of
between two and six instructions per cycle and
looked forward to significantly faster execution
rates in the future.

By far the most spectacular upper bounds on

fine-grained parallelism were reported by Lam [6].
Lam recognised that superscalar processors, which
rely on hardware to exploit parallelism, can only
extract parallelism between successive branch
mispredictions. Avoiding this restriction
significantly increases the available parallelism.,
Lam’s results range from two instructions per
cycle for her basic model to 159 instructions per
cycle for an ORACLE model with perfect branch
prediction,
All of the above studies emphasise that
significantly more parallelism is available (o MII
processors than is realised in current designs. This
gap reflects both limited hardware resources and
the current early stage of development of
instruction scheduling technology.

The role of accurate branch prediction is also
emphasised, reflecting the inability of current
superscalars to extract parallelism across mis-
predicted branches. However, static instruction
scheduling can remove this dependence on branch
prediction by percolating instructions across
branches from both successor basic blocks.
Parallelism is then ultimately limited only by true
data dependencies, resources, unresolved memory
ambiguities and, of course, by the scheduling
technology.

3.2 Scheduling Techniques

In general, global instruction scheduling can be
divided into low-level and high-level components.
Low-level code scheduling is concerned with the
movement of individual instructions subject to
data dependencies and resource constraints. High-
level scheduling involves scheduling precedence,
transformations of the program graph and

applications of low-level scheduling. Low-level
scheduling techniques can be divided into two
categories: List Scheduling [7] and the core
transformations of Percolation Scheduling {3]. To
fully realise the benefits of List Scheduling, the
high-level must enlarge the scheduling scope
before List Scheduling is applied. Forming traces
in Trace Scheduling [8] and Instruction Boosting
[9]1, unrolling loops, inlining functions and
enlarging basic blocks can all be viewed as high-
level techniques which enlarge the scope for List
Scheduling. List Scheduling can also be used to
schedule loops and basic blocks in Lam’s software
pipelining and Hierarchical Reduction {10].

The core transformations, on the other hand,
allempt to move individual instructions upwards
through the flow graph to seck parallelism
between an instruction and its predecessors, Data
dependencies and hardware constraints are therefore
checked dynamically as each instruction is moved.
Enhanced Percolation Scheduling [11] is a high-
level scheduling technique which applies the core
transformations to cyclic as well as acyclic code.
The distinctive features of Enhanced Percolation
Scheduling are the concept of tree instructions,
code percolation across loop back edges and the
equal treatment of branch successors.

4. THE HARP PROJECT

The aim of the HARP project was to develop an
MII architecture which could sustain an instruction
execution rate significantly in excess of one
instruction per cycle. As part of the project
iHARP [12], a VLIW processor with an issue rate
of four, was designed, fabricated and tested.

4.1 iHARP Processor

iHARP provides 32, general-purpose registers and
cight, 1-bit boolean registers. Four parallel
pipelines and a memory unit share the general
purpose register file.

iHARP uses a four-stage pipeline. In the IF
stage four instructions are fetched from the
instruction cache; in the RF stage register
operands are accessed; in the ALU/MEM stage
instructions are executed or access the data cache;
finally in the WB stage results are returned to the
register file. To allow the data cache to be
accessed in the third pipeline stage, all addresses
are formed in the RF stage. Complete operand
bypassing then allows the results of ALU and load

instructions to be used in the following cycle.
Since branch conditions are also resolved in the
RF stage, the branch delay is one,

While all pipelines are able to support ALU,
relational and a limited range of shift instructions,
the functionality of each pipeline is inevitably
restricted by the need to conserve hardware
resources. As a result only two pipelines, one and
three, support branch instructions. Similarly
memory reference instructions are restricted to
pipelines zero and two. However, although two
branches can be executed in parallel, the single
data cache port precludes the parallel execution of
two memory references instructions. Finally 32-
bit literals are introduced by providing 64-bit
instructions which occupy two adjacent instruction
positions.

4.2 MII HARP Architectures

To evaluate the HARP architecture, a family of
MII architectures with different instruction issue
rates was postulated. Each model has the same
instruction set, addressing modes and pipeline
stages as iHARP and provides hardware support
for speculative instruction execution. It is
assumed that every pipeline will support ALU,
relational and shift operations. Also, in line with
iHARP, a maximum of two branch instructions
and one memory reference instruction can be
issued in each cycle. These base parameters were
then systematically varied to evaluate the
architecture.

4.3 HARP Compiler and Instruction Scheduler

A HARP C compiler was generated using the
GNU CC compiler generator [13]. The sequential
HARP code produced by the compiler was then
scheduled for multiple instruction issue using a
Resource Limited Scheduler developed by Liang
Wang [2]. The HARP simulator [14] was used to
execute both sequential and parallel code.

RLS is a resource limited scheduler which was
developed specifically to exploit fine-grained
parallelism in iHARP, Since iHARP has only
four pipelines, clearly the scheduler has only
limited resources at its disposal. Furthermore,
VLIW architectures inevilably expand code size
since, in practice, it is impossible to fill every
long instruction with useful operations. RLS
aims to control this code expansion by ensuring
that the number of long instructions generated

never exceeds the original number of sequential
instructions. The scheduler is therefore also
‘resource limited’ in this sense.

Conceptually RLS consists of a high level and
a low level. The high level transforms the
sequential instructions of a procedure into a linked
data structure, detects basic blocks, constructs a
flow graph and unrolls simple loops. It then uses
a set of heuristics to select the next basic block for
the low-level scheduler.

The low-level scheduler percolates individual
instructions from a basic block into an instruction
graph of previously scheduled instructions.
Guarded instruction execution, renaming and
memory disambiguation are all used to increase
parallelism. Also after each loop has been
scheduled, an attempt is made to move code across
the loop back edge to reduce the size of the loop
body and to achieve software pipelining.

5. iHARP EVALUATION

This section evaluates the HARP architecture
using the well-known Stanford set of integer
benchmarks. The HARP model with an issue
rate of one is used as a reference model and is
referred to as the HARP RISC. To ensure a fair
comparison, a single pipeline scheduler [2] was
first used to fill the branch delay slots in the
sequential HARP code. On average filling the
delay slots improved the performance of the
HARP RISC by 7.3%. All the speedup figures
presented are relative to the HARP RISC after, and
not before, the branch delay slots have been filled.

5.1 Instruction Issue Rate

Fig 5.1 shows the average speedups achieved by
RLS as a function of instruction issue rate. Each
model is assumed to have an ALU per pipeline,
two branch units and a single data cache port.
The average speedups obtained for issue rates of
two, three, four, five and eight are 1.45, 1.66,
1.74, 1.76 and 1.77 respectively. RLS therefore
performs well for its four-pipeline target
processor, but fails to deliver significant additional
parallelism as further pipelines are added.

These figures compare favourably with other
groups working in the area. For example, the
IMPACT group [15] obtained a speedup of 1.6 and
2.00 for issue rates of two and four respectively.

o
n o
@
@
=

Issue Rate

Fig 5.1 Speedup over HARP RISC

Code size increased by 1.38, 1.86, 2.34 and 2.82
for issue rates of two, three four and five (Fig
5.2). RLS therefore comfortably achieves its
design target of ensuring that the number of long
instruction words after scheduling never exceeds
the initial sequential instruction count.

One of the main disadvantages of a VLIW
processor is the disproportionate number of NOPs
introduced into the code. It is therefore instructive
to compare HARP with a minimal superscalar
architecture [16] executing scheduled HARP code
from which all the NOPs have been removed® .
The minimal superscalar processors have the same
instruction fetch rate and functional capabilities as
the equivalent HARP model. However, the
superscalars fetch instructions into an instruction
window and then issue multiple independent
instructions from the window to the functional
units. If the superscalar is restricted to in-order
instruction issue and if the maximum instruction
issue rate equals the fetch rate, the superscalar
will, in the worst case, simply reconstruct the
long instruction word schedule generated for
HARP. Performance will therefore equal or exceed
HARP at all issue rates. However, since all the
NOPs have been removed, code size will be
dramatically reduced to the number of operations
in the HARP code. Code expansion would then
be only 15% for an issue rate of two, rising (o
18% for an issue rate of five (Fig 5.2).

? To preserve the semantics of the program, minor
reordering of instructions within each LIW would
also be required.

3.0

em=f= |ncluding NOPs
==0= Excluding NOPs
2,5+

Code Size Increase
N
=Y
X

O Qe Q)

T T
2 4 5 8
! Issue Rate

Fig 5.2 Code Size versus Issue Rate

5.2 The number of cache memory ports

Some of the benchmarks execute a high percentage
of memory reference instructions. For these
programs a single data cache port represents an
obvious performance bottleneck, particularly as
the instruction issue rate is increased. In spite of
the high cost, it is therefore useful to consider
adding additional data cache ports. With two data
cache ports, the speedups range from 1.51 with an
issue rate of two to 1.97 with an issue rate of
eight (Fig 5.3), and the average performance of a
four pipeline processor is improved by
approximately 10%. With three cache ports, the
speedups range from 1.84 with an issue rate of
three to 2.04 with an issue rate of eight (Fig 5.3),
and the average performance of a four pipeline
processor is improved by approximately 14%.

2.1
2.0 4
1.9 4

S 184

3

‘% 1.7
16 4 =g speedup-1M

’ —Q= speedup-2M

15 ~@— speedup-3M
1.4 ¥ T ¥ T

0 2 4 6 8 10
Issue Rale

Fig 5.3 Speedup vs number_of data cache ports

The improvements recorded varied widely between
individual benchmarks. Four ‘memory intensive’
programs, perm, bubble, queens and tower, all
achieved significant gains. For example, with an
issue rate of four, the addition of a second port
improved the execution time of perm by 27%. In
contrast, two ‘ALU intensive’ programs intmm
and puzzle obtained virtually no benefit from
additional data cache ports.

5.3 Guarded instruction execution

Guarded instruction execution has been proposed
by a number of people including Hsu and
Davidson [17] and was incorporated in the
pioneering Acorn ARM processor [18]. Guarded
instructions also form an integral part of the
HARP architecture. RLS was therefore designed
to make optimum use of both guarded instruction
execution and register renaming. However, to
evaluate their relative merits, RLS can also rely
solely on either guarded execution or renaming,

Fig 5.4 and 5.5 demonstrate the performance
benefits of guarded instruction execution. With
one memory port, the speedups obtained using
both register renaming and guarded execution range
from 1.45 to 1.77. These figures fall o0 1.45 and
1.68 if only guarded execution is used and to 1.38
and 1.63 if only renaming is used (Fig 5.4).

Similar results are recorded with two data cache
ports (Fig 5.5). With both renaming and guarded
instruction execution, speedups range from 1.51 (o
1.97. These figures then fall to 1.51 and 1.84
with guarded execution only and to 1.44 and 1.72
with renaming only.

Since, in practice, there is little point in using
guarded execution on its own, these figures
suggest that using guarded execution will improve
performance by 9.4% with one memory porl and
by 14.4% with two memory ports.

2.0

g 1.7
b
3
& 18
1.5 —fg— Cond. Ex. 1M
1.4 == Reg. Rename. 1M
’ —O— Both 1M
1.3 T T T T
0 2 4 6 8 10
issue Rate

Fig 5.4 Impact of guarded execution using
one memory port

Speedup

157 —&— Cond.Ex.2M
=#~ Reg. Rename. 2M
== Both 2M

o
R o
<

6
Issue Rate

Fig 5.5 Impact of guarded execution using
(w0 memory ports

Both renaming and guarded execution have
advantages and disadvantages. Renaming has two
advantages. First, it is more flexible, since it
supports code motion across multiple branch
edges; second, it can be used to remove RAW and
WAW dependencies. The disadvantage is that it
introduces additional restoring code. As well as
consuming resources, these copy instructions
introduce new data dependencies which the
scheduler may then not be able to remove.
Guarded instruction execution has three main
advantages: First it avoids restoring code and
therefore conserves resources; second it avoids
using additional registers; third it allows store
instructions to be percolated across conditional
branch edges. Sole use of guarded execution also
avoids live variable analysis and speculative
execution. There are two main disadvantages:
First guarded execution introduces a new data
dependence between the boolean guard and the
instruction being moved; second guarded execution
can not be used to remove WAR and WAW data
dependencies.
When RLS scheduled the Stanford benchmarks,
there were always sufficient registers available to
support renaming. Also the flat nature of the
speedup curves at the higher issue rates suggests
that resources were not a problem. The advantage
of guarded execution over renaming has therefore
three possible explanations. First, the additional
copy instructions added by renaming introduced
further data dependencies which the scheduler was
unable to remove. Second, guarded instruction
execution allowed store instructions to be
percolated across branch edges. Finally since RLS
was conceived as a scheduler for iHARP, it is
possible that RLS is biased towards guarded
instruction execution.

5.4 ORed Indexing

A further distinctive feature of iHARP is the use
of ORed indexed addressing. In ORed indexing the
two memory address components are logically
ORed together instead of being added in the
conventional manner. This simplified addressing
mechanism allows all address computations to be
performed in the RF stage and gives rise to the
compact four-stage pipeline with no load delay
described earlier in this paper. ORed indexing was
investigated in a paper presented at Euromicro93
[19] where it was demonstrated that its use
typically boosted HARP performance by 10%.

5.5 The number of register writeback ports

Throughout this study it has been assumed that
sufficient write ports were always provided on the
general-purpose register file 1o allow all results o
be returned to a register in the final pipeline stage.
This is equivalent to assuming that the number of
write ports is always equal to the number of
pipelines.

In practice, multiple write ports can be costly to
implement. The performance impact of reducing
the number of write ports in a four pipeline model
was therefore investigated. On average, reducing
the number of write ports from four to three
degraded performance by a negligible 0.6%, while
reducing the number of ports to two reduced
performance by only 4.6%.

The iHARP chip was implemented with only
two write-back ports on the register file. This
design compromise therefore reduced performance
by less than 5%. An additional mechanism was
provided on iHARP to enable results to be
bypassed directly to the following long instruction
word without being written to the register file
{12]. The objective was to reduce the pressure on
the register file write ports. However, RLS has
not attempted to use this facility, since the
maximum possible gain is less than 5%.

5.6 Parallel Execution of Branch Instructions

This study has also assumed that two branch units
were always available, allowing two branch
instructions to execute in parallel. Surprisingly,
removing the second branch unit has a negligible
impact on performance, less than 0.25% on
average. This result may be partially attributed o
the ability of RLS to schedule branches in branch

delay slots. Although such scheduling is unusual,
it is easily achieved in iHARP by adding a
Boolean guard (o the branch placed in the delay
slot.

6. CONCLUSIONS

This paper has described RLS, a resource limited
scheduler, which has been used to evaluate
iHARP, a VLIW processor with an issue rate of
four, With four pipelines a speedup of 1.76 was
achieved using non-numeric benchmarks.
Significantly, this performance was based on an
architecture which has been implemented in
silicon, and not on an abstract model. Also the
speedup recorded is relative to optimised single
pipeline code where branch delay slots have been
filled wherever possible.

The above performance improvement was
achieved by increasing code size by 134%.
Significantly, this increase could be reduced to
only 18% by moving to an equivalent minimal
superscalar architecture.

A single memory port is an obvious bottleneck
in a processor with an issue rate of four.
Providing two data ports improved performance by
10% while three data ports improved performance
by 14% and achieved a speedup of two.

The benefits of guarded instruction execution
were also quantified. Our figures give guarded
execution an advantage of 9.4% and 14.4% over
renaming with one and two memory ports
respectively. While these figures are encouraging,
we feel that it is premature to come to any firm
conclusion regarding guarded execution. In
particular, it will be interesting to see how guarded
exccution performs with more aggressive
scheduling algorithms and higher instruction issue
rates.

Other results suggest that our original decision
to incorporate ORed indexing in iHARP. was fully
justified and provided a 10% boost in performance.
Similarly, restricting the register file to two write
back ports did not significantly degrade
performance. Finally, we note that RLS was not
able to make significant use of the two parallel
branch units in iHARP.

ACKNOWLEDGEMENTS
The authors would like to thank the rest of the

HARP team, in particular, Roger Collins, Corrie
Elston, Rod Adams and Dave Whale from

Computer Science and Paul Findlay, Brian
Johnson and Dave McHale from Electrical
Engineering. They would also like to thank
Professor M Loomes, Dr S L Stott, J A Davis and
Professor P Kaye for their support throughout the
HARP project. The HARP project is supported
by SERC Research Grant GR/F88018.

REFERENCES

1. Johnson M "Superscalar Microprocessor
Design, Prentice Hall, 1991.

2. Wang L "Instruction Scheduling for a Family
of Multiple-Instruction-issue Architectures,"
PhD Thesis, University of Hertfordshire, Dec.
1993.

3. Nicolau A “Uniform Parallelism Exploitation
in Ordinary Programs,” Proc. of Int. Conf. on
Parallel Processing, Aug. 1985, pp614-618.

4. Wall DW "Limits of Instruction-Level Parall-
elism," ASPLOS IV, April 1991, pp 176-188.

5. Butler M, Yeh Tse-Yu, Patt Y, Alsup M,
Scales H and Shebanow M "Single
Instruction Stream Parallelism is Greater than
Two," 18th Ann. Int. Symp. on Computer
Architecture, Toronto, May 1991, pp 276-286.

6. Lam M S & Wilson R P "Limits of Control
Flow on Parallelism," 19th Ann. Int. Symp.
on Computer Architecture, Gold Coast,
Australia, May 1992, pp 46-57.

7. Landskov D, Davidson S, Shriver B & Mallett
P W "Local Microcode Compaction
Techniques,” Computing Surveys, Vol. 12,
No. 3, September 1980, pp 261-294,

8. Fisher J A "Trace Scheduling: a technique for
global microcode compaction," IEEE
Transactions on Computers, C-30, (7), July
1981, pp 478-490.

9. Smith M D, Horowitz M & Lam M "Efficicnt
Superscalar Performance Through Boosting,"
ASPLOS V, October 1992, pp 248-259.

10.Lam M S "Software pipelining: an effective
scheduling technique for VLIW machines,"
SIGPLAN 88 Conference of Programming
Language Design and Implementation,
Georgia, USA, June 1988, pp 318-328,

11.Moon S & Ebcioglu K "An Efficient
Resource-Constrained Global Scheduling
Technique for Superscalar and VLIW
Processors,” Micro25, Portland, Oregon,
December 1992, pp 55-71.

12.Steven G B, Adams R G, Findlay P A &
Trainis S A "iHARP: a multiple instruction

issue processor," IEE Proceedings-E, Vol. 139,
No. 5, September 1992, pp439-449,

13.Stallman R M “Using and Porting GNU
CC”, Free Software Foundation, 1989,

14. Whale D J "Development of a Processor
Simulation for iHARP," Division of
Computer Science, University of
Hertfordshire, April 1992,

15.Chang P P, Mahlke S A, Chen W Y, Warter N
J & Hwu W W "IMPACT: An Architectural
Framework for Multiple-Instruction-Issue
Processors," 18th Ann. Int. Symp. on
Computer Architecture, Toronto, May 1991,
Pp 266-275.

16.Collins R “A Simulator for the HSP
Superscalar Processor”, Division of Computer
Science Technical Report No. 172, University
of Hertfordshire, 1993,

17.Hsu P Y T & Davidson E § "Highly
concurrent scalar processing," 13th Ann. Int.
Symp. on Computer Architecture, 1986, pp
386-395.

18.Furber S "VLSI RISC Architecture and
Organization,” Marcel Dekker, 1989,

19.Steven F L, Adams R G, Steven G B, Wang L
& Whale D J “Addressing mechanisms for
VLIW and superscalar processors,” Euromicro
93, Barcelona, September 1993, pp 75-78.

