DIVISION OF COMPUTER SCIENCE
A Review of Twenty Formal Speciﬁcation Notations
R J Vinter

Technical Report No. 240

February 1996

A Review of Twenty Formal Specification Notations

R J Vinter

Division of Computer Science,
University of Hertfordshire.

Tel: +44-01707-285122
Email: R.Vinter@herts.ac.uk

February 1996
Abstract

This report describes a general review that was conducted as part of the
Human Cognition and Formal Methods research project at the University of
Hertfordshire during the latter half of 1995. The main purpose of the sur-
vey was to determine which of the formal notations currently available would
be most suitable as a model for testing the project’s specific research theories.
Twenty notations from the state-based, process algebra and algebraic domains
of formal specification were selected and reviewed against a list of predefined
criteria. This report discusses the review’s findings and discusses some of the
main intellectual problems facing the designers of formal notations.

1 Introduction

A software specification is an abstract description of a proposed system’s functional
and non-functional behaviour intended to serve as the basis for its design or imple-
mentation. A formal specification is one that is written entirely in a formal notation,
that is, “a language with an explicitly defined syntax and semantics” [LIS79, page
277). Most formal systems, or “formalisms”, contain a formal notation and a deduct-
ive apparatus [WOO88]. The formal notation component is normally based around
on or more systems of formal logic, which provide a basis for describing in precise,
mathematical terms the software systems to be developed. The deductive appar-
atus component, comprising axioms and inference rules, provides an independent
means by which designers can test whether their intuitive theories about selected
properties of a specification are correct.

Although formal methods have been available for over thirty years, industry
has generally been reluctant to adopt them because of doubts surrounding their
commercial viability. This might explain designers’ preoccupation with natural
language based techniques in the past, which has tended to result in the creation
of large, unwieldy documents that are prone to ambiguity, inconsistency and error.
However, gradual advances in formal methods technology and some highly success-
ful applications in industry have helped to dispel many of the software engineering
community’s initial doubts and formal methods are now gradually gaining wide-
spread acceptance. In fact, it is widely believed that formal logic based notations
could hold the key to overcoming some of the classical problems associated with
program specification. However, the number of formal notations has been steadily
increasing as a result of ongoing academic research and the types of formalism now
available vary widely in their purpose, popularity and logical foundations. Hence,
the main purpose of this review was to determine which particular notation would
be most likely to fulfill the specific requirements of the Human Cognition and Formal
Methods project; not to critically compare each formalism’s effectiveness for solving
particular types of software engineering problem.

2 Types of Formalism

2.1 The State Based Approach

Under the state based (or “model-oriented”) approach to formal specification, an
abstract representation of a system is constructed using well defined underlying
calculi (such as propositional or predicate logic) and common mathematical tools
(such as sets, relations or functions). However, the formalisms that fall under this
category often contain slight extensions or variations of these. System behaviour is
expressed by specifying operations that cause transitions in local or global states -
these operations are typically constructed using standard data types. Examples of
state based formalisms include Gypsy, VDM and Z.

2.2 The Process Algebra Approach

Under the process algebra approach, a system is described in terms of individual
processes which may intercommunicate and interact with their environment. Gen-
erally, the formalisms that fall under this category tend to be aimed at the spe-
cification of systems in which processes may run in parallel and intercommunicate,
such as networked or concurrent applications. Most process algebras allow designers
to specify a logical and temporal order for operations which tends to give rise to
detailed specifications of system behaviour. Examples of this approach include the
formalisms CCS, CSP and LOTOS.

2.3 The Algebraic Approach

Algebraic (or “equational”) specification techniques aim to describe objects in terms
of relationships between the operations that use them. Typically, these objects are
specified as abstract data types such as arrays, lists or queues. Algebraic specific-
ations contain no notion of machine state and do not describe system behaviour
explicitly, at least in the same sense as those produced under the state based ap-
proach. Under the algebraic approach, a program is modelled as a “many-sorted
algebra”, which comprises sets of values and operations on those sets; each set is
given a name, called its “sort”. The “signature” of a data type comprises its sorts,
the names of its operations, and the sorts of these operations’ domains and ranges.
An “abstract data type” is a class of many-sorted algebras with the same signa-
ture and some specified common properties. Hence, an “algebraic data type” is
the definition of an abstract data type by means of a signature and some axioms
(i.e. logical formulae) that the algebrae of the class must satisfy. The nature of
algebraic notations make them particularly well suited to applications such as the
specification of programming language semantics. Some popular formalisms that
fall under the algebraic approach include Clear, Larch and OBJ.

3 A Review of Twenty Formal Notations

The Human Cognition and Formal Methods project plans to conduct a series of psy-
chological reasoning experiments within the grammatical framework provided by a
formal notation. It also plans to formulate complexity metrics based on the findings
from such experiments. It is therefore important that the notation chosen to fulfill
this role is both popular and that its grammatical foundations are representative
of those found in other formal notations. A methodological approach was adopted
to the review of each formalism, guided mainly by the project’s requirement for
specific types of information. In particular, the following information was sought.

e Founder. The institution or personnel responsible for the initial creation of the
notation and those responsible for any major subsequent developments.

e Date Founded. The approximate year in which the notation was first developed.
e Underlying Calculi. A description of the notation’s logical foundations.

e Class of Notation. A statement of the class under which the notation may be
categorised - i.e. state-based, process algebra or algebraic.

e Target Application Type. The kind of software system that the notation is particu-
larly suited to describing, if applicable.

e References. Recommended sources of further reading.

e Popularity. An indication of the extent to which the notation has gained acceptance
in academia and industry.
o Ezamples. A concise specification (or a subset thereof) expressed in the notation is

presented in order to give a general idea of the grammatical constructs and sym-
bology belonging to the notation.

3.1 ADL

The Algebraic Design Language (ADL) is a higher-order specification language de-
veloped by Kieburtz and his colleagues at the Oregon Graduate Institute of Science
and Technology. Having been developed during the early 1990s, it represents one
of the more recent of the formalisms reviewed. Although the language has yet to
be fully developed, a preliminary definition of the main core of the ADL notation is
given by Kieburtz and Lewis [KIE94]. The semantics of the ADL notation are based
entirely on equational logic and set theory. Modularity is achieved through the use of
“functors,” which are conceptually isolatable units abstracted with respect to ADL
structure algebras and coalgebras. Each signature declaration specifies a variety!
of structure algebras, the terms of a particular algebra, and the free term algebra of
the signature - the latter, according to Kieburtz and Lewis, corresponds to a data
type in a typed, functional programming language, such as ML or Miranda.

In order to specify a program using algebras, one must first decide upon appro-
priate control and data structures. Control is expressed through the use of type-
parametric combinators applied to inductively defined algebras. ADL’s data type
definitions are always inductive and construct types from a finite number of alternat-
ives, each of which is a typed N-tuple. ADL includes strong type-checking features.
All well-typed ADL programs are guaranteed to terminate, although, checking the
correctness of ADL expressions can sometimes give rise to proof obligations which
cannot be discharged automatically, that is, using machine verification. The syntax
of ADL bears close resemblance to that of the ML language and, like Standard ML,
ADL contains a core language with a modular structure. The following example
shows a specification for a binary tree “divide-and-conquer” algorithm.

signature Btree{type c; btree(a)/c = {$emptytree, $node of ¢ * a * c}}
sort = hom[btree] Btree{c := list(int);
$emptytree := Nil,
$node := \(xs,x,ys) append xs (Cons(x,ys))}
(\xs case xs of
Nil => $emptytree
| Cons(x,xs’) =>
let (ys,ys') = part x xs’
in $node(ys,x,ys’)
end)

Adapted from Kieburtz and Lewis [KIE94].

1Here, the term “variety” is used to refer to a class of algebras which share a common signature.

One of the fundamental aims underlying ADL’s development was ease of pro-
gram refinement - i.e. “the improvement of algorithms by meaning-preserving,
algebraic transformation of programs” [KIE94]. The notation’s basis upon equa-
tional logic supports this aim by making ADL amenable to program transformation
according to the equational theories of its algebras. Owing to its relatively recent
development, both industrial and academic application of ADL is still quite lim-
ited. According to its designers, one intended use of the language is to provide the
computational semantics of specialised software design languages.

3.2 Affirm

Affirm provides an integrated, interactive system for the specification and verific-
ation of software systems. It was first developed at the University of Southern
California during the early 1980s in order to test the application of algebraic spe-
cification research theories propounded by the likes of Guttag and Horning [GUT78]
to complex applications. The Affirm formalism includes an axiomatic specification
language based on the theory of abstract data types, a verification condition (VC)
generator, an interactive theorem prover for verifying properties of specifications or
programs, and a library of predefined data types - queues and sets, for example. An
Affirm specification contains a series of data type definitions and a number of equa-
tional axioms describing the semantics of each type. By presenting a specification
in such a manner, it is possible to achieve a high level of abstraction and so avoid
low level implementation details. Each Affirm data type definition may comprise
three sections, described as follows:

e Constructors. Operations which create values of the data type being defined, and
whose range is restricted to that same data type.

o Eztenders (or modifiers). Operations which also have the data type being specified
as their range, but unlike constructors, they are not needed to express values of the
data type - that is, these operations can be expressed in terms of constructors.

e Selectors (or predicates). Operations which yield values with types'other than the
one being specified.

Adapted from Sunshine et al. [SUN82].

The following example illustrates the Affirm notation. It shows an excerpt from
a simple message buffering system in which a single message may be communicated
from sender to receiver simultaneously. A sender must wait until the corresponding
receiver has processed the previous message before the next one can be sent.

type SimpleMessageSystem;
needs types Message, QueueOfMessage, ControlState;
declare s: SimpleMessageSystem;
declare m: Message;
interface State(s): ControlState;
interfaces Sent(s), Received(s), Buffer(s): QueueOfMessage;
interfaces InitializeService, UserSend(s,m), SendComplete(s),
UserReceive(s), ReceiveComplete(s): SimpleMessageSystem;
interface Induction(s): Boolean;
axioms
State(UserSend(s,m)) == if State(s) = ReadyToSend
then Sending
else State(s),
State(SendComplete(s)) == if State(s) = Sending
then ReadyToReceive
else State(s),

State(UserReceive(s)) == if State(s) = ReadyToReceive
then Acking
else State(s),
State(ReceiveComplete(s)) == if State(s) = ReadyToReceive
then Acking
else State(s),
State(InitializeService) == ReadyToSend;
nochange State, Sent, Received, Buffer;
end {SimpleMessageSystem);

Sunshine, Thompson, Erickson, Gerhart, and Schwabe [SUN8&2].

Affirm’s natural deduction theorem prover enables designers to prove properties

about data types interactively - these properties are expressed in the predicate cal-

culus in the form of theorems. Affirm automatically simplifies propositions using
the axioms associated with data types (as rewrite rules). These axioms must be
proved as theorems of each data type’s definition using the theorem prover. Fol-
lowing this first stage of verification, each data type is normally implemented as a
file of separate routines in a programming language so that the VC generator can
then be applied to the implementation and its results proved using Affirm’s theorem
prover [COHS86].

Owing to its heavy reliance upon equational axioms to describe the operational
semantics for its specifications, the Affirm notation may be classified as an algebraic
specification technique. Although the notation was developed primarily for the
purpose of specifying abstract data types, it is also ideally suited to the description
of concepts underlying state transition machines. It is particularly amenable to
describing events that occur in protocol systems, the behaviour of processes and
communication channels. However, Affirm has been found to contain a number of
limitations. In particular, Sunshine et al. [SUN82] emphasise its lack of support
for specifying and verifying concnrrent processes, and handling and recovering from
error conditions. Nevertheless, the Affirm formalism has been influential in the
design of the Larch notation. ' ‘

3.3 Anna

The Anna notation and its accompanying tool set were developed by the Program
Analysis and Verification group at Stanford University during 1980s. Anna (“An-
notated Ada”) adopts an altogether different approach to the formal specification
process. Its designers came to the conclusion that it would not be possible to de-
velop a perfect specification language in a single “giant leap” because the current
state of software kriowledge did not fully comprehend all of the component activit-
ies of the development process at the time of the notation’s design. Thus, Anna’s
designers decided to adopt an evolutionary approach. Rather than designing a new
specification language from first principles, they believed that it would be wiser in
the long term to experiment with primitive specification notations initially. They
believed that it was only through gaining insight and experience from the use of
these that they could begin to develop more powerful ones. Anna represents one
such primitive language.

Conventionally, whilst informal text annotations tend to aid a human reader’s
comprehension of a program, they do not help a machine to validate the program’s
behaviour. However, Anna’s designers believed that, by expressing such comments
in a formal language, they can be translated into executable form and used to
verify a program’s behaviour. This is the central philosophy behind the design of
the Anna language. Thus, Anna’s designers began with the target programming
language itself (i.e. Ada) and simply extended it with features that are useful for

(W34

specifying and verifying program behaviour. In fact, many of Anna’s constructs are
simply extensions of Ada’s original features. These constructs enable designers to
annotate various Ada entities such as: packages, generic units, exceptions, types,
statements and assertions. So, an Anna program is effectively an Ada program
containing formal, Boolean-valued annotations. Annotations are commonly referred
to as “formal comments” and are preceded by the “—— |” symbol. An annotation
may refer to any entity of the Ada program that is visible within the annotation’s
scope. Anna reserved words may be used to bind an annotation to a particular Ada
statement or else define its application in some way. Annotations can, for example,
be used to specify constraints on an entity or else to specify its interrelations with
other entities in the program. The following examples illustrate the basic types of
annotation possible.

1. A type annotation:

type SQUARE is record
X,Y : NATURAL;
end record
—— where S : SQUARE => S.X = 8.Y;

2. A result annotation of a function:

function SQUARE(X : NATURAL) return NATURAL;
—— | where return X * X;

3. An out annotation of a procedure:

procedure QUICKSORT(A : in out VECTOR);
—— where out (A = SORTED(in A));

4. An object annotation:

S : SQUARE;
——| 8X>0andS.Y > 0;

5. An assertion:

S = (3, 3);
—— | SQUARE(S.X) = 9;

Luckham [LUC90, pages 20-21].

According to Luckham [LUCY0], there are four main ways of using annotations
within the Anna language. These are described as follows:

1. Specification of programs prior to implementation.
Annotations are used to express formally the behaviour and properties of a program
before it is implemented.

2. Goal-oriented programming.
Annotations are used to define the goals of each major program component.

3. Definition of run-time checks.
Checks may either be used temporarily (for debugging purposes) or be incorporated
permanently into a program.

4. Documentation.
All annotations provide a form of formal documentation for the underlying program
once it is completed.

Adapted from Luckham [LUC90, pages 10-11].

One particularly useful application of annotations during program development
is to act as a guarantee to the users of a package that subprograms in the package
will, when implemented, possess the stated properties. An annotation may, there-
fore, be a constraint on a package body to implement these properties. However,
it should be noted that annotations, like normal Ada program statements, are sub-
ject to certain computational hazards, such as exception propagation. In addition
to annotations, Anna supports a secondary type of comment called “virtual text,”
which is preceded by the “—— :” symbol. All virtual text must conform to valid
Ada syntax and semantic rules just as if it were part of the underlying program.
However, virtual text does not affect computation of the underlying program in any
way. It is included for a number of reasons: to aid debugging or tracing, to define
“virtual attributes” (which can be referred to in annotations and virtual text), and
to provide a means for naming or parameterising expressions. The Anna notation
also incorporates some of the concepts from the predicate calculus, such as quanti-
fied and conditional expressions. Furthermore, it permits the use of some common
mathematical symbols including: not, and, or, —, «, for all, exist, /=, <= and
>=..These have been included mainly in order to encourage the use of abstraction
- i.e. to express functional properties without stating computational details. The
following specification illustrates a first (informal) attempt at specifying a “stack”
data type and its associated operations in the Anna notation.

Informal stack specification.

generic
type ITEM is private;
MAX : POSITIVE;

package STACK is

— Basic functions.
——: function MEMBER(X : ITEM) return BOOLEAN;
——: function LENGTH return NATURAL;
——: function TOP return ITEM;

OVERFLOW, UNDERFLOW : exception

— Actual operations.
procedure PUSH(X : in ITEM);
—— | where
— If the stack length is MAX then propagate OVERFLOW,
— otherwise increment the stack length and put the item on top.

procedure POP(Y : out ITEM);

where

— If the stack is empty then propagate UNDERFLOW, delete
— its top item and store it in Y.

—— | axiom)
— All stacks are initially empty, PUSH adds an item and does
- not delete items, and PUSH and POP have inverse effects on
— the STACK.

end STACK;

Adapted from Luckham [LUC90, pages 174-175].

The following example illustrates how program development under the Anna
framework progresses; the informal, English annotations in the original specification
have been translated into formal Anna annotations.

Formal stack specification.

generic
type ITEM 1s private;
MAX : POSITIVE;

package STACK is

— Basic functions.
——: function MEMBER(X : ITEM) return BOOLEAN;
——: function LENGTH return NATURAL;
—— function TOP return ITEM,;
——: function "=" (S, T : STACK’TYPE) return BOOLEAN;

OVERFLOW, UNDERFLOW : exception

— Actual operations.

procedure PUSH(X : in ITEM);
—— | where in STACK.LENGTH = MAX = raise OVERFLOW,
— out (STACK.LENGTH = in STACK.LENGTH+1),
—— out (STACK.TOP = X);

procedure POP(Y : out ITEM);
—— | where in STACK.LENGTH = 0 = raise UNDERFLOW,
- out (STACK.LENGTH = in STACK.LENGTH-1),
—— | out (Y = in STACK.TOP);

—— | axiom

——| for all S: STACK’TYPE; U, V : ITEM =

— STACK’INITIAL.LENGTH = 0,

— not STACK’INITIAL. MEMBER(U),

— S[PUSH(V)].MEMBER,(U) = S.MEMBER(U) or U =V,
—— | S[PUSH(U); POP(V)] = S;

end STACK;

Adapted from Luckham [LUC90, pages 175-176].

Amongst Anna’s tool set is an Annotation Transformer module, which translates
annotations into run-time checks, and a Verifier module, which analyses a program
in order to determine whether it will behave consistently with its annotation. Other
available tools include a run-time checking tool and a symbolic execution tool.
However, before Anna can be applied to complex, large-scale development projects
with any degree of success, Luckham believes that it must undergo a number of
significant improvements. Anna’s current limitations are listed as follows:

1. All programs specified in Anna must eventually be implemented in the Ada pro-
gramming language.

2. There are currently no special annotations for Ada’s tasking constructs.”

3. Anmna’s current facilities for manipulating annotations are severely limited.

4. The Anna constructs that define abstract interfaces between Ada programs contain
deficiencies that cannot be corrected simply by adding annotations.

2 According to Luckham, this is due to the fact that research has failed to determine the kinds
of annotation that would be useful for the process of specifying concurrent systems.

3.4 The B-Method

The B-Technologies are a suite of tools, notations and methods designed to facil-
itate the practical application of formal methods to complex software development,
projects. Its three major components are: the B-Method, the B-Tool, and the
B-Toolkit. Their development began at BP International and Oxford University’s
Programming Research Group during the mid-1980s, and further research and de-
velopment continued at B-Core from 1993. Under the B-Method, specifications,
designs and implementations are presented as “Abstract Machines”. An Abstract
Machine is a software component comprising a state together with operations on
that state, and is specified using Abstract Machine Notation (AMN). An AMN
specification contains three conceptually separable parts. Firstly, there is a set
of global declarations, such as constraints, constants and abstract sets. Secondly,
there is a set of abstract states expressed using set-theoretic concepts, such as sets,
relations, functions and sequences. Finally, there is a set of operations on those
abstract states, which are modelled using pre- and post-conditions, and constructs
for guiding functionality, such as sequencing and choice. AMN also includes a vari-
ety of features aimed at promoting the structuring of specifications. These include
facilities for manipulating specification modules, such as: importation, inclusion,
using, refining, parameterisation, renaming, extending and hiding.

All of AMN’s constructs are defined under the Generalised Substitution Lan-
guage (GSL). In fact, it is an underlying set of syntactic rewriting rules, which
substitute AMN expressions for corresponding lower level GSL terms, that form
the basis for AMN’s “pseudo-programming” specification notation. GSL is based
on Dijkstra’s guarded command notation® but includes extensions for unbounded
choice, pre- and post-conditioning. The following examples illustrate how AMN
constructs can be defined in the GSL calculus:

AMN Substitution GSL Substitution
BEGIN S END S

IF P THEN $ ELSE T END P=S[-P=>T
ANY z WHERE P THEN S END @z.(P = 8)

Adapted from B-Core [BCO95a].

According to B-Core [BCO95b], the B-Method is actually based on a number
of embedded notations, where AMN represents the highest level notation. These
embedded notations include: a logical notation, basic set notation, a relational
notation, a mathematical object notation, the GSL notation and the AMN notation.
Significantly, since the expression of an Abstract Machine’s implementation is based
on a set-theoretical model and its operations are described using a restricted subset
of AMN, a designer can use virtually the same notation for the purposes of both
specification and implementation. The following example of the AMN notation
specifies the simple arithmetic operations: “Clear,” “inc” and “decrease”.

MACHINE

Simple
VARIABES

number
INVARIANT

number : NAT
OPERATIONS

Clear =

BEGIN number := 0 END;

3E.W. Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.

inc =
BEGIN number := number + 1 END;
decrease =
PRE
number > 0
THEN
ANY newnum WHERE
newnum < number &
newnum : NAT
THEN
number := newnum
END
END
END

B-Core [BCO95a).

According to B-Core [BCO95a], the B-Theory Language (B-TL) is a program-
ming language that is specifically intended for the development of software engin-
eering tools like generators, translators and verifiers. A B-TL program comprises a
series of theories, each containing a number of rules and some data (i.e. formulae)
which the program may manipulate. “Tactics” are used to determine exactly when
a specific rule is applied. In fact, specifications, designs and implementations writ-
ten in AMN are data upon which B-TL programs operate. The B-Tool language
interpreter and run-time environment provides a means for checking and executing
B-TL programs.

The B-Toolkit is a set of integrated tools which use the B-Tool as a form of
software platform and is designed to support the B-Method’s integrated software
development environment. This contains: a syntax-checker and type-checker for
AMN, a proof obligation generator, interactive and automatic theorem-proving as-
sistants, an automated C code generator, a specification animator, an automated
documentation preparation tool, a library of reusable specified and coded modules,
a proof printer, an interface generator and a configuration management system. The
B-Toolkit thus caters for all aspects of the software engineering process from spe-
cification through to implementation and maintenance. Furthermore, it encourages
an object-oriented approach and the reuse of specified and coded modules.

One of its designers’ main aims was to ensure that the B-Method promotes incre-
mental development. This was achieved by providing it with facilities for program
modules to be specified and verified in isolation. Another of its designers’ aims
was to ensure that specified or coded modules are reusable. This was achieved by
allowing for Abstract Machines to be parameterised so that instances of machines
could be created and reused. Owing to the B-Method’s reliance on machine states
and its use of set-theoretic concepts to model such concepts, its underlying notation
clearly falls under the category of model-based specification techniques. Despite its
relatively recent release, the B-Method has already gained popular acceptance in
industry and academia. It has been applied on a number of large scale industrial
projects and is also currently being taught on numerous computer science degree
programmes across the country.

3.5 CCS

Milner’s Calculus of Communicating Systems (CCS) provides a process algebra?
notation and a range of facilities for manipulating and reasoning about expressions

4Milner prefers to classify CCS as a “process calculus” rather than a “process algebra” because
the former is a more general term implying the inclusion of traditional forms of logic and branches
of mathematics [MIL89, page 4].

10

in the notation. It was developed during the 1970s and, like Hoare’s CSP notation,
is based around the notion of indivisible interactions between processes, or “agents”.
An agent may perform an action itself independently or else intercommunicate with
other agents - where a communication between two agents does not pass any data
value, this is called a “synchronisation”. The CCS process algebra incorporates a
considerably extended set theory and its own “synchronous” calculus.® Expressions
in the calculus may be constructed in five main ways: Prefix, Summation, Compos-
ition, Restriction and Relabelling. The symbolism of the language is exemplified in
the following “Jobshop” specification in which there exists four agents and various
actions involving them.

Jobshop = (Jobber | Jobber | Hammer) \
{geth, puth} | Mallet) \ {getm, putm}
Hammer = geth.Busyhammer
Busyhammer = puth.Hammer
Mallet = getm.Busymallet
Busymallet = putm.Mallet
Jobber = in(job).Start(job)
Start(job) = if easy(job) then Finish(job)
else if hard(job) then Usehammer(job)
else Usetool(job)
Usetool(job) = Usehammer(job) + Usemallet(job)
Usehammer(job) = geth.puth. Finish(job)
Usemallet(job) = getm.putm.Finish(job)
Finish(job) = out(done(job)).Jobber

Adapted from Milner [MIL89, pages 27-31].

CCS also provides a set of proof tools for reasoning about specifications. Mil-
ner’s Labelled Transition System consists of a set of inference rules designed to
check the validity of transitions between states in CCS expressions. Equational and
Static laws may be used to determine the behavioural equality of two agents. An
Expansion law is used for expanding the behaviour of agents expressed as restricted
compositions. CCS also provides various mechanisms that enable one to determine
the precise degree of equivalence that holds between two systems.®

Unlike model-based specifications, process algebras such as CCS and CSP gener-
ate explicit rather than implicit specifications and appear well suited to the specific-
ation of concurrent systems. Both represent the execution of a process as a sequence
of events, where the execution of each event consumes no time whatsoever. Thus,
any two independent processes running concurrently are commonly referred to as
an “interleaving of events”. According to Hull, the main differences between CCS
and CSP lie in the various ways in which they can manipulate the specification of
a proposed system [HUL93]. For instance, CSP provides a unique facility for spe-
cifying allowable traces of events formally and explicitly. These are the properties
of requirements that a system must satisfy. The notation also provides facilities

5A fundamental principle of the synchronous calculus is that processes running concurrently
always perform at least one action per time period, despite the fact that this might not always be
possible in reality.

6For details of CCS’s notions of equivalence, the reader is referred to Milner’s chapters on
Strong Equivalence, Observation Equivalence and Observation Congruence in Communication
and Concurrency [MIL89).

11

for reasoning about these traces - they can, for example, be represented as lists
and their members as elements of sets. CCS, on the other hand, contains no such
equivalent facility. Another striking difference is the inclusion of an internal hand-
shaking operation 7 (“tau”) within CCS. A 7 action is invisible to external agents
but becomes significant when contemplating the possible forms of equivalence that
can hold between two systems in CCS.

3.6 CIRCAL

CIRCAL (CIRcuit CALculus) is a process algebra which can be used to describe,
verify and simulate concurrent systems. These systems may be hardware or soft-
ware based, although, in fact all previous industrial applications of CIRCAL have
been confined to the specification and verification of digital hardware. The notation
was developed by Milne [MIL85] during the early 1980s with the main aim being
to create a calculus with considerable expressive power yet conceptual simplicity.
CIRCAL is based on a combination of Milne’s dot calculus” and set theory, but
contains a number of modifications and extensions. One such extension is that
CIRCAL permits the representation of simultaneously occurring distinct actions,

" whereas the dot calculus, CCS and CSP each enforce the arbitrary interleaving of

concurrent actions. This makes it possible to describe synchronous and asynchron-
ous behaviour, and allows for the representation and analysis of timing properties at
different levels of detail. The design concepts central to CIRCAL, and its differences
from other process algebras, are encompassed within six “core” operators: guarding,
choice, nondeterminism, termination, concurrent composition and abstraction.

1. Guarding ((aB)P). Guarding appends a term to a label-set creating a new term.

2. Choice (P + Q). The choice operator produces a composite term which may perform
different actions - in this case, those of P or those of Q.

3. Nondeterminism (P @ Q). Actions belonging to P or @ may occur but the envir-
onment has no control as to whether P or @ is chosen.

4. Termination (PA). The termination operator represents “no further action”. In
this case, only the P action is performed and then the agent terminates.

5. Concurrent composition (P e Q). In CCS, communication is represented by a
synchronisation between at most two agents. However, concurrent composition in
CIRCAL allows synchronised multiway interaction - i.e. where one sender may
interact with two or more receivers.

6. Abstraction (—a). The CIRCAL abstraction operator allows systems to be described
at various levels of information content.

Adapted from Milne [MIL85).

Like most process algebras, the behaviour of a CIRCAL agent is described in
terms of the various interactions that it may have with the other agents in its
environment. The “term” construct is used to represent such behaviour. The set
of ports through which an agent may interact is called its “sort”. Multiple agents
may have the same sort, although, those that utilise these ports differently do not
possess the same semantic behaviour. The set of sorts belonging to terms describe
the spatial properties of a system, whilst the terms themselves express its behaviour.
Like all sorted algebras, every CIRCAL operator is defined to have a particular sort.

A form of operational semantics, called “acceptance semantics,” is used to
provide CIRCAL with its facilities for active experimentation. These give meaning

7(.J. Milne, Abstraction and nondeterminism in concurrent systems. In Proceedings of the
Third International Conference on Distributed Computing Systems, IEEE Computer -Society
Press, 1982. :

12

to CIRCAL’s primitive operators and form the basis from which to construct and
execute proofs about system behaviour.® Milne argues that acceptance semantics
capture our intuitive understandings of the behaviour of concurrent systems. CCS’s
observational semantics restricts a designer to merely observing actions, whereas
CIRCAL permits active experimentation. Its semantics enable users to determine
how agents, represented by terms, would respond to a stimulus on any of its ports
or connectors. Milne states that two possible kinds of result may arise from an
experimentation: either the stimulus will be accepted with the term evolving to
a new term or else the stimulus will be rejected with the metasymbol “*” being
produced [MIL85]. This is expressed formally as follows:

PROG, is the set of all terms of sort L. For terms T, T' € PROG, and
label-set m C L, the relation << T',m >, T' > for sort L is written as

T3 7' for T, T' of sort L.
Here term T accepts the m stimulus and evolves to T".

If T 5 « then m is not supported by T, and the result of an m experi-
ment on T is the special symbol *. For instance, if term T is defined in such
a way as to exclude interaction on its a port, the experimenting on its o port
causes “state” * to be reached, T = *, and T rejects a.

Adapted from Milne [MIL85].

Active experimentation provides a basis for conducting equivalence proofs in
CIRCAL. Two terms P and Q may be considered equivalent (written P ~ Q) if
they produce equivalent terms given the same stimulus for all stimuli taken from
the powerset of their sort - although, P and @ must have the same sort. For any
given stimulus, if “x” results, then experimentation on an equivalent term must also
generate “#” for the two terms to be considered equivalent [MILS85).

CIRCAL includes an “abstraction operator” which enables systems to be mod-
elled at different levels of detail and allows for the introduction of nondeterminism.
Nondeterminism appears when we are unable to predict or control the behaviour
of one of a number of events. But Milne believes that nondeterminism is always
resolvable at a certain level of detail - i.e. some agent is always capable of resolv-
ing the choice as to how events occur. Thus, the extent to which nondeterminism
manifests itself depends largely upon the amount of detail that is abstracted away.
The following example illustrates how the CIRCAL notation can be used to model
precisely an n-bit binary register memory device.

inl? bout1?
REG?

in0' ¢ ut0!

in1? bout1?
REG!

in1?e bout0>

S Acceptance semantics are used by Milne in [MIL85], for example, to underpin a system of proof
properties by establishing a set of consistent CIRCAL laws including: idempotency, comunutativity,
associativity and identity.

13

o

A (MEM") memory device comprises n registers, defined as follows:
REG! REG? e --- ¢ REG".

Each register has its own input and output lines:

REG' <= REG{in0"/in0}{in1"/in1} {out0’/out0}{outl’/outl}
Thus, a 2-cell memory device is specified by:

REG! <= in1' REG!(1) + in0' REG'(0)
REG! (1) «= outl’ REG(1) +
in0* REG*(0) + inl' REG'(1) +
(outl! in0*) REG!(0) +
(outl® in1*) REG*(1)

REG' ¢ REG® = in'[REG'(1) ¢ REG?]
+ in0*[REG'(0)e REG?]
+ in1?[REG! ¢ REG?(1))
+ in0?[REG! o« REG*(0)]
+ (in1! in1?)[REG'(1)e REG?(1)]
+ (in0* in0*)[REG!(0)e REG’(0))
+ (inl1! in0?)[REG(1)e REG*(0)]
+ (in0' in1%)[REG*(0)e REG?(1)]

Adapted from Milne [MIL85].

3.7 COLD-1

Development of COLD-1 (Common Object-oriented Language for Design) began
in the early 1980s when Jonkers® first began work combining properties of algeb-
raic and state based specification techniques. The notation was later developed at
Phillips Research in Eindhoven, during the late 1980s, where it has been used in
the development of various consumer electronics devices. It is still being used as a
basis for ongoing language research at Phillips Research Laboratories. COLD-1is a
wide-spectrum language which aims to cater for program specification, design and
implementation. Its underlying logical foundations have been extended to include
first-order predicate logic and its design is essentially based around the principles
of the algebraic approach. The formal semantics of COLD-1 are defined in terms
of the COLD-K kernel language, although it does include a number of extensions,
such as: user definable infix and postfix operators, patterns for procedure defini-
tions, patterns for components, and a variety of naming mechanisms. According to
Feijs [FEI94a], COLD-K comprises six sub-languages at the syntactic level: a name
language, an expression language, an assertion language, a definition language, a
scheme language, and a design language. Whereas, at the semantic level, COLD-K
comprises three logical systems for giving meaning to the kernel language: the logic
MPL,, the algebra CA, and the A7 calculus.

Specification under COLD-1 is based on the conventional view that a software
system comprises a collection of states; one initial state and a number of state
transformers - i.e. procedures. In COLD-1, state components are precisely defined
structures and come in three different forms: sorts (i.e. collections of objects),
functions (i.e. partial mappings from domain sorts to range sorts), and predic-
ates (i.e. relations on domain sorts). Hence, states are modelled as many-sorted

9H.B.M. Jonkers, An introduction to COLD-K. In M. Wirsing and J.A. Bergstra (Eds.), Algeb-
raic Methods: Theory, Tools and Applications, Springer-Verlag LNCS 394, pp. 139-205, Springer-
Verlag, 1989.

14

algebras [FEI94b, page 40]. A software system, then, is modelled in COLD-1 by
definitions of sorts and operations, as well as various axioms and theorems which
characterise defined sorts and operations. There are three possible kinds of oper-
ation: functions are mappings from one data type to another, predicates describe
properties of data types, whilst procedures are operations which are affected by
and affect states. The inclusion of constructs for describing system behaviour via
equational axioms and pre- and post-conditions enables COLD-1 to express either
algebraic or model-oriented style specifications. The notation provides mechanisms
for importing, hiding and parameterising specification modules which are optionally
parameterisable and may contain: definitions, axioms, theorems, lists of other mod-
ules which may be imported, and lists of hidden sorts and operations. The design
principles underlying COLD-1’s modular structuring mechanisms were as follows:

1. To enhance the comprehensibility of the specification.

[

To make reasoning about the specification easier.

To improve the adaptability of the specification.

e

To make reuse of the specification possible.
Adapted from Feijs, Jonkers and Middleburg [FEI94b, pages 325-326].

The “CLASS” construct is a central concept to a COLD-1 specification. A class
can be viewed as an abstract machine with a number of associated machine states.
These states are many-sorted algebras with predicates and (partial) functions, with
all of the states of a function having the same signature. A class definition contains
an interface part (containing an export signature, an import clause and precondi-
tions), and a body (containing imports, operation definitions and a list of modific-
ation rights). A “scheme” is the result of modularising and parameterising a set
of operations. Finally, schemes that are combined to form a functional component
constitute a subsystem [LAV94]. The following simple COLD-1 exaniple shows one
of the preliminary, abstract specifications produced by Feijs et al. [FEI94b] for de-
scribing the components of a vending machine system. Here, the COLD-1 reserved
word “FREE” denotes a forward declaration item - i.e. definition of its precise
structure will be postponed until a later stage, when the specification is refined.

COMPONENT VENDING2 SPECIFICATION
IMPORT

VENDING1

VALUE
CLASS

SORT ValueTable FREE

SORT PriceTable FREE

SORT ProdTable FREE

FUNC validate : ValueTable # Coin — Value FREE
FUNC price : PriceTable # Selection — Value FREE
FUNC yield : ProdTable # Selection — Product FREE

FUNC value_table : — ValueTable FREE
FUNC price_table : — PriceTable FREE
FUNC product_table : — ProductTable FREE

FUNC vend : Coin # Selection — Product

IN ¢,s

DEF (price(price_table,s) <= validate(value_table,c) 7
; yield(product._table,s)

)

15

END

Feijs, Jonkers and Middleburg [FEI94b, page 12].

The following example employs a wider range of COLD-1’s constructs, and illus-
trates how various properties of Boolean sorts and operations can be characterised

through the use of axioms and theorems.

COMPONENT BOOL SPECIFICATION

EXPORT
SORT Bool % names of sort and
FUNC false : — > Bool, % functions
true : — > Bool,
not : Bool — > Bool,
and : Bool # Bool — > Bool
CLASS
SORT Bool
FUNC false : — > Bool % the constructors of Bool
FUNC true : — > Bool

DECL b,c : Bool

PRED is_gen : Bool % inductive definition of
IND is_gen(false); % is-generated predicate
is_gen(true)

AXIOM false! AND true!; % axiom characterising
NOT false = true; % “I”, “=” and “Bool”
is_gen(b)

FUNC not : Bool — > Bool % inductive definitions of
IND not(false) = true; % negation and conjunction
not(true) = false

FUNC and : Bool # Bool — > Bool

IND and(false,false) = false;
and(false,true) = false;
and(true,false) = false;
and(true,true) = true

THEOREM not(b)! AND and(b,c)! % theorem about definedness
END

Feijs, Jonkers and Middleburg [FEI94b, page 330].

COLD-1 also supports algorithmic definitions (in an imperative or functional
style), which effectively allow designers to construct explicit implementations. Ac-
cordingly, the language incorporates a number of imperative programming con-
structs in order to ease the program transformation process. State components can
thus comprise entirely specification oriented descriptions or both specification and
implementation parts. The modelling of explicit implementations normally requires
designers to consider algorithms with regard to program efficiency and perform-
ance. In the following example, for instance, the specification part describes what

~the “MACHINE” component does, in terms of three sorts and four procedures. In
contrast, the implementation part describes how the machine achieves this in terms
of technical implementation modules [FEI94, pages 89-91].

16

COMPONENT MACHINE

SPECIFICATION
EXPORT
PROC imsert : Coin - >,
check : - >,
select @ Selection — >,
produce : — > Product
IMPORT
VENDING
END

IMPLEMENTATION
IMPORT
COIN,
VALUE,
SELECTION,
PRODUCT,
HASHMAP’[Selection,Product,max2,hash?]

END

Adapted from Feijs, Jonkers and Middleburg [FEI94b, page 90].

Wherever implementation parts are specified, designers must ensure that an “im-
plementation relation” exists between the specification and implementation parts.
Firstly, the signature exported by the specification part must be a subset of the
signature exported by the implementation part. Secondly, all facts and properties
described in the specification part must be logical consequences of the definitions
given in the implementation part. The process of establishing this implementation
relation nearly always gives rise to proof obligations.

3.8 CSP

Communicating Sequential Processes (CSP) was developed by Hoare [HOAS85] and
his fellow members of the Programming Research Group at Oxford University dur-
ing the early 1980s. It originated mainly in response to some of the difficulties being
experienced during the design of parallelism in software relating to the likes of: mu-
tual exclusion, semaphores, interference, interrupts and asynchronous behaviour. It
comprises both a specification notation and a deductive proof system, whereby the
latter is defined in the form of inference rules.

The CSP notation is based on elementary algebra, set theory and the predicate
calculus. It is a process algebra which models a system as a collection of independent
processes. Each process is defined in terms of the possible interactions that it may
have with other processes and the environment - invariably, the environment itself is
modelled as just another process. The interactions between processes are described
in terms of instantaneous atomic synchronisations, or “events”. Any two processes
may intercommunicate providing both are ready and have been suspended in order
for a synchronised transfer of data to take place - this is termed a “rendezvous”.
Designers can impose constraints upon processes by restricting the set of names
denoting the events in which they may engage, the order in which events occur and
the conditions under which they may execute. As the concerns of CSP specifications
are constrained purely to the behaviour of processes and their intercommunication,
all internal system state information is effectively abstracted away.

CSP enforces a strictly bottom-up approach to design; only after one has iden-
tified all of the various processes and sub-processes that comprise a target system

17

can one begin to postulate their various interrelations and behaviour. The notation
is one of the most popular process algebras in existence and has been used not only
as a tool for specifying concurrent systems, but its language mechanisms have been
greatly influential in the progression of empirical software and hardware knowledge.
In particular, CSP’s underlying “rendezvous” mechanism has influenced the design
of processor hardware (an Inmos transputer, for example) and the definition of
programming languages (such as Ada and Occam).

The notion of “prefixing” is central to the CSP notation. If there exists a process
P and a is any event from P’s alphabet then ¢ — P denotes a process which first
engages in event a then behaves like the process P. Choice is expressed using the
“|” operator. For example, (z — P | y — Q) first engages in event z or event y, as
determined by the environment. Aside from choice based on input values, various
alternative forms of choice are supported such as: choice by channel, prioritised
choice and non-deterministic choice. More than one process may be joined to form
a single, composite process via sequencing or parallel composition. In addition,
processes may be recursively defined so as to permit the expression of iteration,
which may or may not terminate [OU90]. The following example provides a small
flavour of CSP’s extensive notation. It describes the behaviour of a vending machine
system which dispenses a coffee drink or chocolate bar depending upon whether the -
user inserts a small or large coin, respectively. It also permits the user to insert two
small coins (rather than one large coin) in exchange for a chocolate bar, and returns
the correct change in the event of a user inserting more than an item’s value.

VM = (large — (choc — VM
| coffee — small VM))
| small — (coffee — VM
| small — (choc — VM))

Adapted from Hoare [HOAS85, page 30].

The foundations for the CSP notation itself lie in a number of different areas
including: the predicate calculus, set theory, standard mathematical tools (such
as functions), Hoare’s own notational symbols (such as those for processes, traces
and special events) and elementary algebra. The notation provides constructs for
describing all aspects of process behaviour including: sequencing, alternation, par-
allelism and recursion. However, one potential drawback to readability is the large
number of parentheses that can appear within even the simplest of CSP expressions.
Designers might therefore avoid cluttering expressions by selectively delimiting the
number of parentheses used and rely upon their readers resolving any possible am-
biguities with recourse to CSP’s algebraic laws.

3.9 Clear

The Clear notation was developed by Burstall and Goguen during the late 1970s.
Although it is intended primarily as a tool for program specification, it also serves
to represent knowledge (i.e. “theories”) in algebraic, machine readable form. Before
discussing the notation itself, it is first necessary to introduce some terminology. A
Clear specification basically consists of two parts; a set of syntactic declarations
(called a “signature”), and a set of axiomatic declarations (the equational part).
A “signature” comprises a set of “sort” name declarations (one for each sort of
data involved, such as nat or bool) and a set of operational symbol declarations
(such as a unary successor operation on nat called “succ”). The axiomatic part
comprises a series of equations expressing the relations between certain pairs of
terms introduced in the signature [BUR81]. Hence, a Clear “theory” comprises a
signature and a set of equations closed under inference by reflexivity, transitivity

18

and symmetry of equality and by substitution [BUR77]. The following example
illustrates an algebraic theory of natural numbers and Boolean values.

sorts nat, bool
operations zero : — nat
succ : nat — nat

iszero : nat — bool
true : — bool
false : — bool

not : bool — bool
or : bool, bool = bool
variables mymn : nat

equations iszero(zero) = true
iszero(succ(n)) = false
not(true) = false
not(false) = true

Burstall and Goguen [BURTT].

The Clear notation contains theory building operations which enable design-
ers to construct “theory expressions” denoting complex interrelated theories.!® In
Clear, it is possible to express parameterised specifications, called “procedures”,
which take theories as arguments and return theories as values. Such procedures
impose requirements on their arguments in the form of axioms which must be true
before their application becomes meaningful; these requirements are themselves
theories [BUR81]. Program specifications in Clear, then, comprise constant and
procedure declarations, followed by a sequence of theories constructed using Clear’s
theory-building operations and the previously declared constants and procedures.
The following example shows a more comprehensive theory procedure for the sort
“Stack”. Any type of element can be put onto a stack - this is indicated by its
acceptance of a trivial theory, called “Triv,” as an input parameter.'!

proc Stack (Value : Triv) =
induce enrich Value + Bool b_y

sorts stack
opns nilstack : — stack
push : value, stack — stack
empty : stack — bool
pop : stack — stack
top : stack — value

erroropns underflow: — stack
undef : — value
eqns empty(nilstack) = true
T empty(push(v,s)) = false
pop(push(v,s)) =s
top(push(v,s)) = v
erroreqns pop(empty) = underflow
top(empty) = undef
pop(underflow) = underflow
enden

Burstall and Goguen [BURTT].

Oror details of the “combine”, “enrich”, “induce” and “derive” constructors, the reader is
directed to Burstall and Goguen [BURTT].

1 The doubly underlined terms are themselves theory procedures defined elsewhere, each satis-
fying the obvious. Clear theories often become hierarchically interdependent in this way.

19

Burstall and Goguen speculate that perhaps the “main intellectual task of pro-
gramming is elaborating the theories which describe all the concepts used in the
actual program” [BURT77]. Clear is a language for communicating precise prob-
lem specifications to people, aimed mainly at programmers, who are more likely
to immediately recognise some correspondence between a Clear specification and a
program’s structure. In view of the way in which Clear specifications focus on sorts
and the operations on those sorts, this makes Clear well suited to the specification
of abstract data types in particular. Naturally, complex software systems require
the development of complex theories, which in turn contain numerous subtheories
- some of these specify particular data structures and operations, while others as-
sert, axioms which may be satisfied by any of a variety of structures. This is the
philosophy upon which the Clear notation is founded.

It is generally believed that certain types of formalism are more appropriate
for the development of certain kinds of application owing to the nature of their
underlying logical systems and formal semantics. However, the Clear language
has been defined in such a way as to allow different underlying logical systems
to be used, so long as they satisfy certain conditions regarding the relationship
between theories and models. Burstall and Goguen refer to such logical systems as
“institutions” [BUR81, SAN91]. Some common institutions include equational logic
(for describing general purpose system behaviour), first order logic (for describing
concurrent systems), temporal logic (for describing error-handling behaviour) and
continuous equational logic (for describing non-terminating behaviour).

3.10 Extended ML

Extended ML provides a framework for the development of executable Standard ML
programs from property oriented, algebraic specifications. It is commonly referred
to as a “wide-spectrum” language because its notation can be used to formally
describe a nrogram throughout all stages of its development, including those inter-
mediate stages where it contains both specification and program parts. Extended
ML extends the Standard ML programming language by allowing the inclusion of
axioms in module interfaces and their substitution for code in module bodies. These
axioms are used to put constraints on the permitted behaviour of components and
can be used as a basis for proving program correctness. The Extended ML frame-
work was initially developed at the University of Edinburgh during the mid-1980s.
The main aims of its language designers were as follows:

1. Formality. To use a formal calculus to prove that the outcome of a program devel-
opment process is correct with respect to a requirements specification.

2. Methodology. To define a number of development steps which may be applied to

specifications of a certain form, together with a list of conditions which must be
established in order to guarantee correctness.

3. Modularity. Large programs should be built in modular fashion from small and
relatively independent program units. The Extended ML framework should support
this approach and, in turn, promote module reusability.

4. Machine Support. Computer-aided tools should support the various software devel-
opment activities and to help minimise the possibility of human error.

Adapted from Sannella [SAN91].

Typically, development under the Extended ML framework proceeds firstly by
producing incomplete program modules. Here, the term “incomplete” is used in
the sense that some parts of the program are specified only by means of axioms,
rather than Standard ML executable programming constructs. Thus, at various

20

stages of development, an Extended ML program might contain both non-executable
(abstract) and executable elements. Bach refinement step gives rise to one or more
proof obligations, which must then be proven in order to establish the validity of that
refinement. Program development under the Extended ML framework concludes
when all of the specification axioms have been translated into the corresponding
Standard ML code. The following specification is an example of an sorting routine
for a sequence of elements, and is expressed in the Extended ML notation.

functor Sort(X : PO) : sig include SORT
sharing Elements = X
end =
struct
structure Elements : PO =X
datatype sequence =
nil
| cons of Elements.elem % sequence
fun append(nil,s) = s
| append(cons(a,sl),s2) = cons(a,append(sl,s2))
fun member(a:Elements.elem,s:sequence) = 7 : bool
axiom member(a,nil) = false
axiom member(a,cons(a,s)) = true
axiom a<>b => member(a,cons(b,s)) = member(a,s)
fun insert(a:Elements.elem,s:sequence) = ? : sequence
axiom member(a,insert(a,s))
axiom insert(a,s) = append(sl,cons(a,s2))
=> append(sl,s2) = s
andalso (member(al,s1) => Elements.le(al,a))
andalso (member(a2,52) => Elements.le(a,a2))
fun sort nil = nil
| sort(cons(a,s)) = insert(a,sort s)
end :

Sannella [SAN91].

Although first-order equational logic is used in the example specification shown,
the formal underpinnings of Extended ML are theoretically independent of the logic
(or “institution”) used. However, for practical reasons, it is wise to select a logic
that has the Standard ML core language as a subset. This has the advantage of
enabling one to easily recognise that program development has finished; when all
of the specification axioms have been translated to this executable language subset
[SAN91]. According to Sannella, Extended ML’s semantics view executable code
as a special form of axiomatic description. So, Extended ML can theoretically be
used to develop programs in target programming languages other than Standard
ML. For example, the Extended ML framework could support the development of
modular Prolog programs by switching to untyped first-order predicate logic and
by viewing Horn clauses as the executable subset of this logic.

3.11 Gypsy

Gypsy provides a notation, called “Program Description Language” (PDL), and an
environment for conducting deductive proofs, called “Gypsy Verification Environ-
ment” (GVE). Gypsy was first developed at the University of Texas in 1974, and
is aimed in particular at supporting the development of reliable concurrent com-
municating systems. The Gypsy notation is designed to enable the description of
a program throughout all stages of its development - i.e. from initial specifica-
tion through to final implementation, verification and any subsequent evolution.

21

It, thus, incorporates both specification language facilities (based around the pre-
dicate calculus) and a high-level programming language (which is based on the
syntax of Pascal). According to the language’s designers, Ambler et al. [AMB77],
the incorporation of specification and programming facilities into a single language
is beneficial to the program verification process in three ways. Firstly, it means
that formal proofs can be constructed before program execution occurs. Secondly,
specifications can be validated by execution at run-time. Finally, Gypsy’s trace
facilities support post-execution program analysis. According to Ambler et al., the
following represent some of the specific goals that Gypsy’s designers had hoped to
achieve from the language.

L. Complete verifiability. All features of Gypsy must be fully verifiable either by formal
proof or validation at run-time.

2. Incremental development. The language must support incremental program devel-
opment and simplify verification by encouraging the use of small, logically distinct
units that can be verified independently.

3. Systems programming. Gypsy must support the development of systems software
(including process concurrency, synchronisation and real-time dependencies).

4. Imperfect execution environments. Gypsy must allow for the fact that programs are
rarely executed in perfect execution environments and, hence, the language must
also provide facilities for error detection, isolation and recovery.

[w24

. Specification capability. The language must provide extensive features for the pur-
pose of specification - formal proof, run-time validation and monitoring must form
a well integrated whole.

Adapted from Ambler et al. [AMBT77].

Although PDL was originally derived from the Pascal language, it underwent
several extensive modifications in order to provide a sufficiently flexible paradigm
for incremental program development. In particular, facilities were added for ex-
pressing concurrency, communication, synchronisation, timing constraints, external
events, error recovery and monitoring. The specification component of the language
includes the predicate calculus, recursive functions, and enables specifications to be
written as Floyd-Hoare style program annotations, algebraic style axioms and ab-
stract state machine descriptions.

A Gypsy program consists of a series of independently verifiable units, which
may be functions, procedures or programs. Each unit contains a header section
describing the unit’s pre- and post-conditions. Access rights to any unit are specified
in an “access list”. Gypsy processes communicate through finite length message
buffers and are invoked using a “cobegin” statement. The concept of real-time
is provided by “clock” variables which are a special kind of internal variable that
are constantly being updated. In addition, there are a large number of predefined
“conditions” which correspond to hardware errors and semantic language errors.

Gypsy’s specification language component permits the description of functional
properties of software systems. These properties are stated in terms of valid states
that are to be maintained on the data objects of the program at various points
in the program’s execution. All Gypsy specifications are expressed as Boolean-
valued statements - these may be verified either by proof, by run-time validation,
or they may simply be assumed. Specifications need not be evaluated at run-time
and, hence, they need not be parsed and may freely contain various constructs
that would not otherwise be permitted in executable programs - such as logically
quantified statements. The following example shows a Gypsy program specification
for the channels of communication between a network and its external environment.

22

program Network(var upa:PortArray) = pending;
type PortArray = array(Userld) of Port;

type Userld = integer(1l..NUsers);
const NUsers:integer = pending;

type Port = record(Get,Put:Line);
type Line = buffer(CSize) of Message;
const Csize:integer = pending;

type Message = pending;
Ambler, Good, Browne, Burger, Cohen, Hoch, and Wells [AMB77].

The following example shows a Gypsy procedure specification for an operation
which writes a sequence of bytes to a data file.

procedure WRITE_TO_SEQUENCE (in_file : file;
offset : natural;
data : byteseq) : byte.seq =
begin
exit (result =
if (offset le size (in_file))
then in_file (1..offset-1) @ data
else in_file @ n_zeros ([offset - size (in_file)] + 1)
@ data
fi;
end; (write_to_sequence)

Young [YOUB8Y].

The kind of abstraction provided by Gypsy is called “procedural” because re-
lated data items are combined into single modules. However, Young [YOU89] is
critical of this approach and argues that, once such items have been associated with
a particular structure, this effectively leads to a biased implementation because it is
extremely difficult to re-associate data items later on. Also, if the corresponding pro-
gramming language implementation is structurally different from a specification’s
grouping of related data items, then the procedural nature of a Gypsy specification
can, in fact, obscure rather than clarify the mapping between specification and pro-
gram code. Other notations overcome this problem in various ways. For example,
the Z notation provides “schema” abstraction, where individual data items may be
included in different schemas and no correspondence to particular implementation
structurings are implied. Young is also opposed to the idea that all data structures
accessed by a Gypsy module must either be locally defined or else passed in as para-
meters because this means that module headers tend to become easily cluttered and
extremely verbose. Although, this does have the advantage that Gypsy modules
can always be understood in isolation, without need to reference their calling en-
vironment. In comparison, to gain a full understanding of a Z schema, one might
need to expand all of the schemata in the hierarchy beneath it.

The overall procedure for development under the Gypsy framework consists of
writing a specification in the PDL notation then expanding each of its units into
explicit programs. The correctness of each program unit can then be proven (with
respect to its specification unit) with the aid of GVE’s integrated tool set. GVE
comprises a collection of tools for creating, specifying, maintaining and verifying
Gypsy programs. These tools include a parser, verification condition generator, in-
teractive proof checker, algebraic simplifier and language compiler. Gypsy appears

23

well suited towards the specification and verification of concurrent, communicat-
ing systems, such as network applications. However, one distinguishing feature of
Gypsy’s specification of real-time systems is that it relies upon the histories of mes-
sage buffers in order to describe process behaviour, as opposed to other types of
formalism which use conventional state transition methods. Gypsy concentrates
purely on the external or input/output behavior of processes and includes language
constructs for referring to the history of messages read and written by the processes
in each buffer.

3.12 IOTA

The IOTA system provides a modular software development environment, under
which program modules may be specified, verified, compiled and maintained inde-
pendently. It was developed at Kyoto University’s Research Institute for Mathem-
atical Science, Japan. IOTA’s integrated development system contains five major
subsystems, each of which are coordinated via the system’s central component,
called its “modulebase”.

1. Developer. This analyses, checks then translates the given source text into an ap-
propriate representation for storage in the system’s modulebase.

2. Debugger. An abstraction-oriented dynamic debugging facility.

3. Verifier. An interactive verification system specially designed for modular system
development.

4. Prover. An interactive proof system for a certain many-sorted first-order logic.

5. Ezecutor. This generates executable code from the inner representations of modules,
which is then loaded and executed.

Adapted from Yuasa and Nakajima [YUAS85].

There are three types of IOTA module: “type” modules contain .abstract data
type definitions, “procedure” modules contain definitions of functions which oper-
ate on data types, whilst “sype” modules specify the parameters of parameterised
type and procedure modules. All IOTA module types include an interface part,
containing declarations of the operations introduced by the module together with
their domains and ranges, and a specification part, consisting of axioms in a many-
sorted first-order (predicate) logic. Type and procedure modules also contain an
additional “realization” part, which contains an implementation of the module to
satisfy the axioms given in its specification. The following example shows Yuasa
and Nakajima’s English requirements description and formal specification for their
“Keyword in Context” application.

“Given a list of titles (e.g. book titles) and a set of words called nonsignificant
words, the function kwic generates an alphabetically sorted list of all rotations
of the titles that begin with significant words.”

INTERFACE PROCEDURE kw
FN kwic: (list(title),set(string)) — list(title)
END INTERFACE

SPECIFICATION PROCEDURE kw
VAR titles:list(title); nonsigs:set(string); t,t1:title;
AXIOM 1: is_sorted(kwic(titles,nonsigs))
2: element_of(t,kwic(titles,nonsigs))
et=\=ni
A —~in(first(t),nonsigs)

24

A3t L(element_of(t1,titles) A is_rotation_of(t,t1))
END SPECIFICATION

REALIZATION PROCEDURE kuw
FN kwic(titles:list(title); nonsigs:set(string))
RETURN (sigrots:list(title))
VAR rots:list(title);
sigrots := nil;
WHILE titles # nil DO -
rots := get_allrotations(head(titles));
WHILE rots # nil DO
IF —in(first(head(rots)),nonsigs)
THEN sigrots := insert(sigrots,head(rots))
END IF;
rots := tail(rots);
END WHILE;
titles := tail(titles);
END WHILE
END FN
END REALIZATION

Adapted from Yuasa and Nakajima [YUAS85].

According to the IOTA system development philosophy, a specification should be
regarded only as “partial” because it describes only part of the properties required
by a program realization - i.e. specifications abstract away various implementation
details. Thus, the notion of completeness in IOTA is regarded as a undecidable
property for specifications given by first order axioms. Owing to the fact that a
specification may be partial, there may exist many different versions of a specifica-
tion even for the most trivial of implementations. Hence, Yuasa and Nakajima claim
that this flexibility promotes the use of specifications as well defined descriptions
of individual modules, as opposed to complete (but vague) descriptions of entire
systems. However, the specification is still regarded as a mechanism to aid program
development rather than as a means of documentation. A specification provides
a module’s declarative description, whilst an implementation provides a module’s
procedural description. Both are complementary and, according to Yuasa and Na-
kajima, the parallel development, modification, and verification of each makes it an
easier task to guarantee correctness.

Having recognised that modification of a module on large scale development
projects might affect other developers who, directly or indirectly, refer to that mod-
ule, IOTA’s designers included facilities to aid developers in maintaining consistent
interrelations between module interfaces. The language was designed in such a
way as to limit the effects of modifications as locally as possible so that details
of updates to the affected developers would be transmitted promptly. Modular
programming requires proofs to be done on a relatively large number of axioms.
Theoretically, the verification of a single module could involve the axioms specified
in all of the modules that the unit under verification refers to. Thus, Yuasa and
Nakajima admit that module verification in IOTA can often result in a lengthy for-
mula amounting to pages to be proved about only a few axioms, without knowing
for certain whether this really is a theorem. One of the primary aims of IOTA’s
designers was to discover how an integrated formal specification and verification
environment would affect traditional programming activities. According to Yuasa
and Nakajima [YUAS85], IOTA was developed for “experimental and educational”
purposes uses only, and was never intended to be practically applied to large scale,
complex software development projects. If, however, IOTA were to be amended for
use on industrial applications, then its program verification techniques would need

25

to be simplified considerably.

3.13 Larch

Larch was developed in the main by Guttag and Horning [GUT85a, GUT85Dh] at.
MIT laboratories, during the early 1980s. Unlike most other formalisms, the term
“Larch” does not refer to one specific formalism, but to a whole range of formal
specification notations, each one being based on existing programming languages.
Every Larch specification comprises two parts; one is based on a specific program-
ming language, the other is general to all languages. The former is called a Larch
“interface” language, the latter is the Larch “shared” language.

A Larch interface language is used to specify program components, with par-
ticular attention being paid to the interaction between components and their en-
vironment. Thus, only a program’s externally observable behaviour is specified, as
opposed to its internal workings. An interface language allows a designer to write
assertions about program states, which can be translated into predicate calculus
formulae. It also provides facilities for describing general programming issues, such
as: side effects, exceptions and iteration.

The Larch shared language is used to formally define the terms introduced in
interface specifications. According to Guttag et al. [GUT8bal, it generates “theor-
ies” that are independent of any particular programming language and which are
free from implementation detail. Shared language specifications are expressed in
algebraic form, with equations defining the relations between operators. Central
to the Larch shared language is the notion of a “trait”, which is used to introduce
operators and describe their formal properties - where sets of operators serve to
describe abstract data types. The following trait illustrates how a Larch shared
language can be used to specify a class of tables that may store values in indexed
positions. The first part of the specification (following the “introduces” clause) de-
clares a set of operators (correspouding to program function identifiers), each with
its own signature - i.e. the sorts of its domain and range. The equations presented
in the second part effectively constrain the operators introduced in the first part by
relating terms containing operators.

Tablespec: trait
introduces
new: — Table
add: Table, Index, Val — Table
€ #: Index, Table — Bool
eval: Table, Index — Val
isEmpty: Table — Bool
size: Table — Card
constrains new, add, €, eval, isEmpty, size so that
for all [ind, indy: Index, val: Val, ¢: Table]
eval(add(t, ind, val),ind1) = if ind = ind1 then val else eval(t, ind;)
ind € new = false
ind € add(t, indi, val) = (ind = ind1) | (ind € t)
size(new) = 0
size(add(t,ind,val)) = if ind € ¢ then size(t) else size(t) + 1
isEmpty*(t) = (size(t) = 0)

Guttag, Horning and Wing [GUT85a, page 6].

One of the main roles of a shared language specification is to define the theories
that will eventually be implemented in executable form. Larch’s trait mechanism
provides a means for achieving this because a theory may informally be associated
with each trait declaration.

26

“A theory is a set of well-formed formulas of typed first-order
predicate calculus with equations as atomic formulas. The
theory, call it Th associated with a trait written in the Larch
shared language is defined by:

e Axioms: Each equation, universally quantified by the variable declara-
tions of the containing constrains clause, is in Th.

o Inequation: # (true = false) is in Th. All other equations in Th are
derivable from this one and the meaning of =.

e First-order predicate calculus with equality: Th contains the axioms

of conventional typed first-order predicate calculus with equality and is
closed under its rules of inference”.

Guttag, Horning and Wing [GUT85a].

Every Larch interface language is designed around a particular programming
language so that there is a clear correspondence between concepts in the two lan-
guages - the meanings of an interface language’s reserved words, for instance, are
derived from their corresponding meanings in the programming language. The fol-
lowing is an example of data abstraction in a Larch/Pascal interface specification:

type Bag exports baglnit, bagAdd, bagRemove, bagChoose
based on sort MSet from Multiset with [integer for E]
procedure baglnit(var b: Bag)
modifies at most [b]
ensures bpost = {}
procedure bagAdd (var b: Bag; e: integer)
requires numElements(insert(d, e)) < 100
modifies at most [b]
ensures bpost = insert(b,e)
procedure bagRemove (var b: Bag; e: integer)
modifies at most [b]
ensures bpost = delete(b,e)
function bagChoose (b: Bag; var e: integer) : boolean
modifies at most [e]
ensures if ~IsEmpty(b)
then bagChoose & count(b, epost) > 0
else —~bagChoose & modifies nothing
end Bag

Guttag, Horning and Wing [GUT85a, page 15].

The “Bag” interface specification describes which routines must be implemented,
indicating the pre-condition and post-condition for each. This constitutes a form of
contract between client and developer. The client must ensure that the conditions
described in the “requires” clause are met at each point of call and may assume
the truth of the “ensures” clause on return from the routine, whereby only those
variables listed in the “modifies at most” may be changed. The developers are
entitled to assume the truth of the “requires” clause on entry to a routine and must
themselves make sure that the conditions specified in the “ensures” clause are true
on return, whilst making sure that only those variables that are explicitly listed in
the “modifies at most” clause are altered.

A Larch “two-tiered” specification differs from conventional model based spe-
cifications in several significant ways. Firstly, Larch’s shared language is used to
specify theories rather than models. Secondly, interface languages are built around
the predicate calculus rather than operational notations. This, according to Guttag
et al. [GUTS85a], means that Larch based specifications are less prone to imple-
mentation bias than many other formal notations. Owing to the fact that there

27

exist substantial differences between programming languages (say, with regard to
exception signalling, parameter passing, and storage allocation), their correspond-
ing Larch interface languages also differ widely. Larch interface languages have
already been designed for a variety of programming languages including: Ada, C,
C++, CLU, ML and Smalltalk. Larch is also supported by a tool set for generating
deductive proofs which comprises: a shared language syntax checker, an interface
specification checker and a theorem prover.

3.14 LOTOS

During the late 1980s, the International Organisation for Standardisation (ISO)
developed a range of methods for the description of data communication protocols
and services, called “Open Systems Interconnection” (OSI). It was recognised that,
in order for OSI to become recognised as a genuine standard it must be supported
with an appropriate formal description technique in which its protocols and services
could be specified and verified. An international committee set out to produce this
formal technique which eventually resulted in the creation of the language LOTOS.
Since becoming registered as an international standard in 1989.12 However, LOTOS
has proved useful not only in the specification of OSI protocols and services, but also
in the development of a wide range of distributed systems. The following principles
were central to the design of LOTOS:

1. To provide complementary formalisms for “data” and “control”. No single existing
formalism was considered general enough to express conveniently both the control
and data components of a specification. Accordingly, LOTOS’ designers sought to
incorporate the appropriate parts from two formalisms: ACT ONE for the data
part, and CCS/CSP for the control part.

2. To produce a precisely and formally defined notation. LOTOS includes a formally
defined syntax with static semantics (defined by an attributed grammar) and dy-
namic semantics (described operationally in terms of infercuce rules).

3. To obtain all the deductive proof capabilities of a conventional process algebra. The
operational semantics of LOTOS were defined in such a way as to enable designers to
prove a large and varied range of algebraic equivalence properties based on various
types of equivalence relations.)

4. To wmplement the principle of interleaving concurrency. Events are seen as atomic
actions and the parallel execution of two events o and b is defined as a situation
of choice, where a can occur before b, or vice versa. Any LOTOS behaviour ex-
pression can be rewritten as an expression consisting of a choice between behaviour
expressions, each prefixed by a single action.

5. To achieve specification ezecutability. Since its semantics are defined operationally, it
is possible for LOTOS specifications to be machine interpreted or semi-automatically
translated to program code. Executable specifications can be viewed as fast prototype
models of a system under specification.

6. To achieve specification modularity and module reusability. LOTOS favours stepwise
decomposition of processes and their parameterisation promotes their reusability.

Adapted from Logrippo, Faci and Haj-Hussein [LOG90b].

LOTOS’ static semantics are defined by an attributed grammar, whilst its dy-
namic semantics are based on algebraic concepts. LOTOS’ data type component
is based on the algebraic data type formalism ACT ONE, which permits the defin-
ition of data structures and value expressions. Its control component is based on

2International Standards Organisation, LOTOS - A Formal Description Technique Based on
the Temporal Ordering of Observational Behaviour. ISO Information Processing Systems, Open
Systems Interconnection, ISO International Standard 8807, 1988.

28

a mixture of Milner’s CCS [MIL89] and Hoare’s CSP [HOAS85], and permits the
description of process behaviour and communication channels. LOTOS’ dynamic
semantics for the control component are expressed in operational terms by inference
rules, and its operators enable one to prove a wide range of algebraic equivalence
properties. Thus, the language is to some extent “executable” (by virtue of its
operational semantics) and amenable to proof techniques (by virtue of its algebraic
properties) [LOG90a].

An action in LOTOS contairs three components: a gate, a list of events and an
optional predicate. If two processes name the same gate, their event lists match and
any supplementary predicates are satisfied, then they can synchronise on the named
gate. Events can offer (!) or accept (?) values and predicates can be used to describe
the precise conditions under which values can be offered or accepted. Actions that
can be executed independently by a process and which also require synchronisation
with the environment are represented by the internal action 7. These actions are
offered at synchronisation points called “gates”. When an action is executed, the
behaviour expression of the process is transformed into another behaviour expres-
sion. It is the inference rules of LOTOS’ dynamic semantics that determine which
actions are offered and executed by a process and how behaviour expressions are
transformed by effect of the execution of actions [LOG90b].

Where a process declares itself ready to synchronise with other processes and
establish one or more values, this is termed an “action offer”. For example, “¢97z :
integer” states that the process is ready to synchronise on any integer value with
other processes, on gate “g”. Action offers can be combined through the use of
several operators: “[]” (choice), “|[A]|” (parallel execution with synchronisation
via gates in set A), “||” (parallel execution with synchronisation on all gates), “|||”
(parallel execution with interleave; no synchronisation), “hide” (abstract hiding of
gates), “>>" (sequential composition of processes)!?, and “[>” (disable, modelling
non-deterministic interruption). There exist two behaviour expressions which de-
note the state of a process: “stop” denotes deadlock, and “ezit” denotes a process’s
successful termination. Behaviour expressions can be preceded by guards (“[]7),
which must be true in order for the former to be allowed to execute.

specification Max[inl, in2, in3, out] : noexit

type integer is
sorts int
opns
zero : — int
succ : int — int
largest : int, int — int
eqns forall X, Y : int ofsort int
largest(zero, X) = X;
largest(X, zero) = X;
largest(succ(X), succ(Y)) = succ(largest(X, Y));
endtype

behaviour
hide mid in

Max2[inl, in2, mid]
|[mid]|
Max2[mid, in3, out]
13In P1 >> P2, the enable operator “>>" expresses sequential composition between the two

processes, although its semantics differ slightly from those of the action prefix operator “” de-
pending upon whether an “ezit” event occurs in process P1.

29

where
process Max2[vall, val2, max] : noexit :=

(vall?X : int; exit(X; any int)
If

| val2?Y : int; exit(any int, Y)

i)

| >> accept V :int, W : int in

: max!largest(V, W); stop

; endproc

endspec

Adapted from Logrippo, Melanchurch and DuWors [LOG90a).

According to Logrippo et al., there are four main styles in which a LOTOS
specification can be presented: monolithic, state-oriented, resource-oriented and
constraint-oriented. However, the different styles can obviously be mixed depending
upon the type of application being specified and the document’s audience.

1. Monolithic. The main operator used is the “[|” cioice operator, while parallel
composition operators are not used and the specification is written as a “tree” of
alternatives.

2. State-oriented. Explicit state variables are used.

3. Resource-oriented. Specification modules are selected in such a way as to identify
potential modules for implementation.

4. Constraint-oriented. Processes identify families of constraints and the parallel com-
position of processes specifies the simultaneous satisfaction of all constraints.

Adapted from Logrippo, Melanchurch and DuWors [LOG90a].

Based on its application to large-scale, complex software projects, Logrippo et al.
drew several conclusions with regard to LOTOS’ practical application in industry:

e Establishing the correspondence between LOTOS events and real-life events can be
problematic.

e LOTOS promotes precise reasoning about a specification.
e LOTOS helps identify incompleteness and inconsistency in requirements.
e LOTOS forces the meticulous resolution of ambiguities in a specification.

e Simulated execution leads to a greater appreciation of the total interdependencies
between components.

e It is probably easier to introduce translation errors when implementing from a LO-
TOS specification.

e Stylistic concerns are just as important as for traditional programming languages;
it is possible in LOTOS, as in any other language, to write confusing complex spe-
cifications or programs.

Adapted from Logrippo, Melanchurch and DuWors [LOG90a).

Owing to its basis on CSP and CCS, LOTOS represents a considerably expressive
notation. Both the data type and the control part of LOTOS are each sufficiently
powerful to describe complex systems. It is largely the decision of the specifier
how to balance the two, but the way in which this trade-off is solved can greatly
influence the ease of writing a specification and its readability. It encourages highly
modularised, structured specifications and supports both a top-down as well as a

30

bottom-up approach to design. Furthermore, since its standardisation, it has been
applied extensively in industry for the specification of communication protocols,
and is continually undergoing further research in academia. A number of utilities
are currently available to support the development of LOTOS specifications. These
include: a language interpreter, symbolic expander, theorem prover, abstract data
type persistency checker, trace checker, and automated code generator.

3.15 OBJ

OBJ derives its name from one of the central conceptual entities of the notation,
that is, the “object”. It was initially conceived during the late 1970s as a means for
testing algebraic specifications of abstract data types, although it has become widely
used as a general purpose specification language for producing executable prototypes
and for defining programming language semantics. OBJ’s underlying grammatical
semantics are based on equational logic, whilst its operational semantics are based
upon “rewrite rules”.!* The OBJ language is aimed at achieving four specific design
goals: modular and parameterisable specifications, strong typing and subsorts, im-
plementation facilities, user interaction and language flexibility. Furthermore, ac-
cording to Goguen and Tardo [GOGT79], OBJ is designed at overcoming several’
specific problems that have traditionally become associated with algebraic design
languages: typographical errors, imprecise notations, failure to handle special cases
(such as boundary cases), specifications that give rise to different results if applied
in different ways, specifications that fail to terminate when they should, and failure
to handle error conditions.

OBJ encourages reusability by supporting parameterisable modules. These mod-
ules are effectively generic because they can be used in different ways simply by
changing the types of their parameter values. A high degree of interaction is re-
quired during program entry where users must select from a series of structured
menus; this is in confrast to non-interactive forms of program development, such as
keyword entry and subsequent machine parsing. The Command Interpreter Gener-
ator (CIG) is OBJ’s built-in application generator which facilitates the generation
of prototype systems and allows various forms of experimentation with OBJ’s syn-
tax and semantics. The language also.enables users to create their own abstract
descriptions of program properties, using any desired syntax, and subsequently to
use these abstractions as if they were built-in. For example, OBJ’s “mixfix” syn-
tax permits prefix, postfix, infix, outfix and distributed fix operations, in which
keywords and arguments may be placed in any order. If desired, users can provide
efficient implementations of these abstractions in executable Lisp code.

An OBJ specification consists of a series of “modules” and “views”. A mod-
ule can either be an “object” (with optional parameters, but always containing
executable code) or a “theory” (which contains non-executable logical assertions).
Views are used to relate theories to modules. This provides for a framework un-
der which both executable and non-executable statements can be modularised and
closely linked. “Requirement theories” are used to specify the syntax and axioms
for a module’s interface - only those objects which satisfy the criteria defined by

l4Equations in some high-level, executable languages (such as OBJ and Prolog) can be viewed
as “rewrite rules”. That is, an equation V X.t = t' can be viewed as a rewrite rule of the form
t = t' (or ¢/ = t). This means that any substitution instance of ¢ in an expression can be
replaced by the corresponding substitution instance of t. When no further pattern matches or
substitutions are possible, the resulting expression is said to be in “normal form”. This process
of rewriting can, under certain conditions, be used to compute the value of an expression. For
example, the “conditions” that an equation must satisfy in order to qualify as a valid rewrite rule
might include the requisite that it is Church-Rosser compliant and that the rewriting process will
always terminate in a unique result [SAN93].

31

these axioms are admissible. The following example shows a requirement theory for
a module, “SORTING,” which sorts lists over an ordered set X.

th POSET 1s

protecting BOOL .

sort Blt .

op - < - Elt Elt — Bool .

vars & B E” : Elt .

eq: E < E = false .

ceq: E < E” = true

f(E<E and B < E").

endth

Futatsugi, Goguen, Jouannaud, and Meseguer [FUT85].

Objects are typically used to introduce new sorts of data and new operations
which may manipulate that data. An object comprises three parts: a header (con-
taining the object’s name, its parameters, its interface requirements and a list of its
imported modules), a signature (containing new sort declarations, subsort relation-
ships and operations), and a body (containing code which is built from equations
and constraints on sorts). The following example shows a parameterised sorting
object - the type of value passed to this routine determines the type of element that
the routine may sort.

obj SORTING /ELT :: POSET/ is
extending LIST/ELT/ .
op sorted : List — Bool .
op sort : List — .
vars E E’ : Elt .
var L L’ L” : List .
eq : sorted(nil) = true .
eq : sorted(E) = true .
eq : sorted(E E' L) =
(E==FEor E < E’) and sorted(E’' L) .
ceg: sort(LEL E' L) =
sort(LEELEL”) f B <E.
ceq : sort(L) = L if sorted(L) .
jbo

Futatsugi, Goguen, Jouannaud, and Meseguer [FUT85].

In order to instantiate a parameterised object, one must provide actual objects
satisfying each of its requirement theories. Views provide these actual objects by
binding the required sorts and operations to those specified. For example, the
following view can be used to provide the necessary bindings to the previously
defined SORT object in order to sort integers into descending order.

view INT-DESC of INT as POSET is
sort Elt to Int .
vars X Y : Elt .
op: X<Yto:Y<X.

endview

Futatsugi, Goguen and Jouannaud [FUT85].

OBJ, like most other algebraic formalisms, allows designers to specify only a
limited amount of detail with regard to data types - i.e. names may be given, but
very few structural details. Similarly, no precise algorithms may be specified for

32

operations; only the various equational interrelations with other operations. This
effectively leads to minimal implementation bias. One definite advantage of employ-
ing the OBJ formalism is that its specifications can be machine checked for syntactic
correctness, compiled, then subsequently animated. Thus, certain sources of error
may be automatically detected after only a short time of having initially created
a specification. So, to some extent, OBJ may be regarded as a non-procedural,
applicative programming language but with little concern for system performance.
Users may employ the Lisp programming language to append additional functions
or objects to OBJ and then annotate these with OBJ constructs and equations.
This is the conventional method used to provide OBJ with its built-in objects for
describing commonly used data types (Booleans and arrays, for example) and num-
ber systems (such as natural or real numbers). This method effectively combines
the efficiency of a compiled pregramming language with a mathematical description
of what the function or object does - the latter can be useful for theorem proving.

The OBJ environment provides extensive testing facilities for: verifying the cor-
rectness of objects in isolation, testing the interconnections between objects, and
checking the use of error conditions. It is supported by additional tools such as
the 20BJ theorem prover'® which provides facilities for checking that equations are
Church-Rosser compliant and will terminate following rewriting, and for checking
that actual parameter objects satisfy their corresponding requirement theories. Al-
though most previous applications of OBJ have been limited mainly to academic
use (such as the teaching of software design, rapid prototyping and theorem proving
techniques), it has been successfully applied in industry for verifying the correctness
of various hardware components.

The OBJ language has undergone numerous modifications since its first release.
It was originally conceived in the form of OBJ-0 by Tardo and Goguen in 1977 and
was later implemented in the form of OBJ-T [GOGT79]. This early work was influ-
enced by Goguen’s work on the Clear notation which appeared at around the same
time. In fact, OBJ ic often regarded as an implemented, executable subset of Clear.
Improvements were subsequently made to OBJ’s rule-rewriting capabilities and its
interactive dialogue, and these were incorporated into Plaisted’s implementation of
OBJ-1.16 Further work by Goguen and his colleagues at Stanford University during
the early 1980s culminated in the OBJ-2 language [FUT85]. OBJ-3, the current
version of the language, builds on the facilities provided by its predecessors, and
provides additional support for error handling, multiple inheritance, overloading,
and user-definable execution strategies. As it stands, the OBJ-3 notation incorpor-
ates the results of over twenty years’ research in algebraic semantics.

3.16 PVS

PVS (Prototype Verification System) was developed at SRI International during
the late 1980s. It integrates a highly expressive specification notation (based on
higher-order logic) with an interactive theorem prover and various supporting tools
(such as a parser, type checker and pretty printer). SRI entitled these development
tools the “Prototype Verification System” because they were built primarily in
order to experiment with state-of-the-art verification technology for the company’s
main verification system, EHDM (Enhanced Hierarchical Development Method!").
The general aims of the language’s designers were to create a system which supports

15 A Stevens, 20BJ. Programming Research Group Technical Report Number TR-2-94, Oxford
University, 1994.

"6J.A. Goguen, J. Mescguer, and D. Plaisted, Programmaing with parameterised abstract clhjects
in OBJ. In D. Ferrari, M. Bolognani, and J. Goguen (Eds.), Theory and Practice of Software
Technology, pp. 163-193, North-Holland, 1983.

17p M. Melliar-Smith and J. Rushby, The Enhanced HDM system for specification and verific-
ation. In ACM Software Engineering Notes, 10 (4), August 1985.

33

clear and abstract specifications, and provides an overall framework for constructing
readable and correct proofs of complex theorems.

A PVS specification consists of a series of theories, each comprising a sequence of
declarations which provide names for types, constants, variables, axioms and formu-
las. A number of primitive theories are built into the system; these are collectively
referred to as the PVS “prelude”. By allowing for theories to be parameterised,
this effectively provides support for specification modularity and reuse. Owre et
al. [OWR92] state that the design of the PVS notation was influenced by a vari-
ety of formal notations including: Affirm, Gypsy, OBJ, RAISE, VDM and Z. Yet,
a strongly typed, higher-order logic underlies the notation. Crow et al. [CRO95]
claim that higher-order logic encourages the writing of “compact and perspicuous”
specifications. A conscious decision of PVS’s designers had been to mechanise the
- verification process as far as possible and, .at the same time, complement the highly
expressive nature of its underlying logic. Indeed, the notation’s foundations in
higher-order logic make for a highly expressive, abstract, specification language.
The following PVS specification shows a description of the requirements for an
electronic phone book system.

phone : THEORY
BEGIN

N: TYPE % names

P: TYPE % phone numbers
B: TYPE = [N -> setof[P]] % phone books
nm, x: VAR N

pn: VAR P

bk: VAR B

emptybook(nm): setof[P] = emptyset[P]

FindPhone(bk, nm): setof[P] = bk(nm)

AddPhone(bk, nm, pn): B = bk WITH [(nm) := add(pn, bk(nm))]

DelPhone(bk, nm): B = bk WITH [(nm) := emptyset[P]]

DelPhoneNum(bk, nm, pn): B = bk WITH [(nm) := remove(pn, bk(nm))]

FindAdd: CONJECTURE member(pn, FindPhone(AddPhone(bk, nm, pn), nm))

DelAdd: CONJECTURE DelPhoneNum(AddPhone(bk, nm, pn), nm, pn) =
DelPhoneNum(bk, nm, pn)

END phone

Adapted from Crow, Owre, Rushby, Shankar, and Srivas [CRO95].

PVS contains a sophisticated type system; its predefined data types include:
number systems, enumerations, records, tuples, arrays, functions, sets, sequences,
lists and trees. By using such type constructs, the notation’s designers were forced
to compromise the degree to which its specifications can be mechanically checked,;
PVS’s rich and flexible type system effectively makes mechanical type checking of
its specifications algorithmically undecidable. Its type checker does, however, com-
pensate by generating appropriate proof obligations for the PVS theorem prover.
PVS includes a number of features designed to promote program correctness. These
include strong type checking, consistency preserving mechanisms and a theorem
prover. The theorem prover, a central PVS component, supports top-down proof
exploration and construction. It implements a set of primitive inference rules, a
means for applying these to proof strategies, a mechanism for performing proofs,
and a facility for checking that all secondary proof obligations have been discharged.
The activities involved in proving a specification correct conform to a general life
cycle of the form outlined below:

34

1. Ezploratory phase. The initial concern is for checking a specification and its putative
theorems, and testing the key ideas in the proof.

2. Development phase. Next, details of the proof are considered and an overall proof
strategy begins to evolve.

3. Presentation phase. The proof is polished for presentation and others’ scrutinisation.

4. Generalisation phase. The finished proof is analysed and its assumptions are weakened
or generalised, making it easier to carry out similar verifications in future.

[ea

. Maintenance. Here, a verification may require slight changes following a change to
assumptions or requirements.

Adapted from Owre et al. [OWR92].

Despite initially being developed for the purpose of prototyping new verification
technologies, PVS has been adopted by companies world-wide and used successfully
to verify various types of application. These range from complex algorithms for fault
tolerant systems to microcode for driving various hardware devices.

3.17 RAISE

RAISE is an acronym for Rigorous Approach to Industrial Software Engineering.
It was initially used as the name for an industrial research and development project
carried out as part of the ESPRIT programme during the late 1980s. However, the
name has become used to refer to a specification language, a design method and a
set of proof tools developed by the RAISE Language Group. RAISE is aimed spe-
cifically at facilitating the practical application of formal methods in industry. The
RAISE development method provides a general framework and a set of guidelines
for a range of software engineering activities, such as capturing requirements and
project management. It is presented in a sufficiently flexible manner to be adapt-
able to a wide range of software development projects and allows a user to choose
the level of formality appropriate to the particular circumstances. It is based on the
“Stepwise Refinement” development methodology, whereby software is constructed
through a series of steps and each step represents a refinement of its predecessor.
The style of refinement supported by RAISE is known as “theory extension”. Ac-
cording to this principle, in simple terms, a theory T'2 is an extension of another
T1 providing T2 contains more entities and, possibly, more properties than T'1.

Development of the Raise Specification Language (RSL) was motivated by model-
oriented notations (VDM, in particular, for its specification structuring mechan-
isms), algebraic notations (such as Larch for its abstract, axiomatic descriptions
of system properties), and process algebras (such as CCS and CSP for expressing
concurrency). The foundations for the notation therefore lie in a number of diverse
areas including the predicate calculus, set theory and equational algebra. So, des-
pite its syntactic and semantic similarities with a range of other formalisms, RSL
is not confined to the specification of one particular type of system - such as purely
sequential or purely concurrent systems. RSL claims to support a wide variety of
specification types, including the following:

e Model-oriented specifications, as used in Z and VDM. Under this style, any data
available to a specification is ‘modelled’ - for example a stack may be modelled as a
sequence of values. Operations are described by how they affect the data model.

o Algebruic specifications, as used in Larch and OBJ. This is a more abstract method
of specification than the model-oriented approach. Under this approach, data is
described using axioms which specify its various properties. For example, a stack
may be defined by saying that pop(push(z,s)) = s for all stacks s and elements
z. This allows for a wide range of possible models to satisfy the axioms. Within

35

the RAISE method, an algebraic specification is generally developed into a model-
oriented one as more concrete data structures are added.

e Applicative specifications, similar to the style used in applicative programming lan-
guages such as Lisp, Miranda and Haskell. Using this style, there is no concept of
a global execution history, machine state or variable definitions. The result of the
application of any function to its parameters is merely a function of the parameters
to the function. So, every application of a function to the same parameters will have
the same result.

e Imperative specifications, similar to the style used in imperative programming lan-
guages such as C, Modula-2 and Pascal. With this style, a system’s execution history
and global state are prominent. Variables can be defined and changed and, thus,
the order in which procedures and functions are applied has an important effect on
the results.

e Concurrent specifications, as used in CSP. Concurrent processes can be defined
which communicate with each other via synchronous channels.

e Implicit definitions, using pre-conditions and post-conditions.

o Furplicit definitions, describing internal functionality.
Adapted from Hellinger [HEL95].

RSL specifications are organised into a series of modules, each of which is ba-
sically a named collection of declarations or “class expressions”. A class expression
represents a class of models, where each model associates an entity (such as a value,
type, variable, channel or module) with each identifier defined within the class ex-
pression. Hence, RSL class expressions share a number of semantic similarities to
conventional theory presentation constructs (i.e. signatures and axioms) in algeb-
raic specification notations. Through modularisation, RSL’s language designers aim
to promote the comprehensibility and reusability of specifications. RSL supports
two kinds of module: objects and schemes.. An object is a named model chosen
from a class of models and is represented by a class expression. Whereas, a scheme
is simply a named class expression [RAI92, pages 204-212]. By naming class ex-
pressions, this allows designers to manipulate them more easily through the use
of RSL’s in-built operations - such as extending, renaming or hiding. The class
expression construct and the RSL notation itself is illustrated in the following RSL
specification of a parameterised ordered list.

scheme
PARAM_ORDERED_LIST(T : PARTIAL_ORDER) =
class

variable
list : T.Elem*

value
empty : Unit — write list Unit,
is_empty : Unit — read list Bool,
add : T.Elem — write list Unit,
head : Unit = read list T.Elem,
tail : Unit = write list Unit

axiom forall e : T.Elem o
empty() = list := <>,
is_empty() = list = <>,
add(e) = list := <e> " list,
head() = hd list
pre ~is_empty(),
tail() = list := tI list
pre ~is_empty()

value

36

is_ordered : Unit — read list Bool
axiom
is.ordered() =
(V idx1,idxs : Nat e
{idx1,idx2} C inds list A idx; < idx; =
T leq(list(idx1),list(idx2)))
object
TEXT :
class
type
Elem = Text
value
eq : Text x Text — Bool,
leq : Text x Text — Bool
axiom forall t1,t2 : Text e
eq(tl,tg) = t1 = tg,
leg(ti,62) = (3t : Text e t1 ~ t = t3)
end
object TEXT.LIST : PARAM_ORDERED_LIST(TEXT)

The RAISE Language Group [RAI92, pages 224-225].

Both the RAISE method and its notation are supported by an integrated tool
set, which provides facilities for: editing, verifying designs or specifications, gener-
ating code and system documentation. Although RAISE provides automated tool
support for the verification process, a designer may elect to perform the verification
manually, using rigorous argument, instead. LaCoS (Large scale Correct, Systems),
the successor to the ESPRIT RAISE project, has concentrated on applying RAISE
to industry based projects. Its aim is to demonstrate that RAISE is a commer-
cially viable technique and is well suited to the production of large scale, reliably
correct software systems. RAISE has already been successfully employed in the
development of such diverse applications as: a process monitoring system, a train
management system and an image processing system. Its only potential weakness,
according to Hellinger, is that it is generally not suited to the specification of systems
involving non-functional requirements, such as temporal or spatial constraints.

3.18 The Refinement Calculus

Morgan’s Refinement Calculus [MOR90] combines the predicate calculus with the
works of Back, Dijkstra, Hoare, Floyd and Morris. Its foundations lie in Dijkstra’s
weakest pre-condition method and language of “Guarded Commands”, however,
there are a number of notable extensions. The calculus was developed during the
late 1980s at Oxford University and, despite having received considerable attention
from software theorists in academia, Morgan’s calculus has generated limited in-
terest from engineers in industry and has yet to be fully applied to a large scale soft-
ware development project. Morgan regards a specification as “a contract between
a programmer and his client” and imimediately discards any potentially confusing
distinctions between abstract specifications, subspecifications, and executable pro-
grams by viewing every item in the development hierarchy as a “program” [MOR90,
page 1]. The following illustrates the form of a top level program specification ex-
pressed in the calculus:

w [pre, post]

Where pre is the program’s pre-condition, post is the post-
condition, and w is the frame - i.e. a list of variables that
may change during the course of the operation.

37

The general aim of the refinement calculus is to take a top level program spe-
cification S and, by applying Morgan’s rules for refinement at a number of interme-
diate stages, gradually refine it to executable code C in some target programming
language. According to Morgan, each refinement introduces either “a little more
executability or a little more efficiency”. This results in a systematic program de-
rivation sequence, illustrated as follows:

SI;MOEMIE"'EMn—l EMN.EO

For instance, the following example shows the initial, top level specification
for a factorial program and the resulting executable code obtained after applying
Morgan’s rules of refinement.*®

Fr0<n,f=nl

procedure Fact =
ifn=0—>f:=1
[n>0—
Fact[value n: N\ n © 1];
f=fxn
fi

Adapted from Morgan [MOR90, pages 122-123].

Owing to its reliance upon the standard predicate calculus and typed set the-
ory, Morgan’s calculus presents a suitable paradigm for refinement in state based
notations such as Z and VDM. Morgan argues that the predicate calculus is useful
to computer scientists, but only where long formal proofs are not required. Hence,
when devising the Refinement Calculus, Morgan set out to: minimise the number
of proof obligations required at each refinement step, use sophisticated mecinods
for logical argument which have already been proven by others (such as proof by
contradiction), and leave it to the discretion of the designer as to which parts of
a specification to prove formally and which ones to leave as “intuitively obvious”.
Thus, he does not advocate any particular method of formal logical reasoning with
the predicate calculus - such as natural deductive, axiomatic or tableaux. Rather,
Morgan’s use of the predicate calculus in reasoning about specifications is evident
in his laws for refinement which express equalities between formulae and may be
used to simplify complex formulae [MOR90, pages 15-16).

3.19 VDM

Having originally been developed at IBM’s Vienna Research Laboratories in the
early 1970s, the Vienna Development Method (VDM) is one of the longest estab-
lished formal methods. VDM provides a specification notation (calted “VDM-SL”)
and a set of procedures which cater for the whole software development process,
including a proof theory which can be used to verify properties of VDM specific-
ations. By allowing designers to use abstraction at the highest level of a system’s
description, VDM effectively encourages top-down development. A VDM specifica-
tion consists of two major parts. The first part contains a set of abstract data type
and variable definitions which represent the internal data within a system model.
This is termed the “system state”. The second part comprises definitions of the
operations and functions which manipulate the variables in order to achieve the

8 For details of the intermediate stages, see Morgan [MOR90, page 122].

38

i)
]

requirements of the customer. These are specified using predicate calculus expres-
sions and concepts from set theory. The following example shows the requirements
for a marriage bureau’s database system:

State UNMARRIED :Person-set
MARRIED :Person-set
Person = /* some suitable representation */

inv-State = unmarried N married = {}

REGISTER. (P: Person)

ext UNMARRIED : wr Person-set
MARRIED : rd Person-set

pre p ¢ unmarried A p ¢ married

post unmarried’ = unmarried U {p}

MARRY (M: Person, W: Person)

ext UNMARRIED : wr Person-set

MARRIED 1 wr Person-set
pre m € unmarried A w € unmarried
post let couple = {m, w} in

married’ = married U couple A
unmarried’ = unmarried - couple

INIT()

ext UNMARRIED : wr Person-set
MARRIED : wr Person-set

post unmarried’ = {} A married’ = {}

Adapted from Cohen [COH86, pages 56-58].

The system state is represented using two abstract data structures, “UNMAR-
RIED” and “MARRIED”. As can be seen from the definition of “Person”, designers
are free to delay the precise definition of a data type’s structure until a later stage,
perhaps when the customer’s exact requirements have been determined. The re-
mainder of the system state specification describes the externally visible operations
which may be invoked by the marriage bureau system’s users. Each operational
specification contains the following elements:

1. The operation’s name and any input or output parameters.

2. An “ext” clause which indicates those parts of the state that the operation needs
to access and the read/write access permissions for each state component accessed.

3. The pre-condition, indicating the conditions for which the operation is designed to
have an effect.

4. The post-condition, showing how the values of the state’s variables are affected by
the operation and how the values of the output parameters are to be generated.

The general method for developing programs from a VDM specification is to
proceed through various levels of design, progressively adding more implementa-
tion detail at each stage. As abstract data structures are refined into forms more
closely resembling programming language concepts (such as sets into trees, or trees
into arrays) new versions of the specification’s operations must be formulated in
terms of the new data structures to correspond with those at the more abstract
level. Eventually, data structures will become specified at a sufficiently low level for
program code to be easily derivable. At each point of refinement, “retrieve func-
tions” are formulated in order to verify that every value of the abstract type can

39

be represented in the converted structure - this notion is called “adequacy”. These
functions also make it possible to verify that the refined operations correctly model
the effects of the abstract operations that they are intended to mimic. Following
the final refinement step, standard program proving techniques can be employed to
check that the code produced correctly fulfils the least abstract specification.
VDM can be classified as a state based technique because it represents systems as
abstract models which pass through various states. A model contains data objects
representing inputs, outputs, the system’s internal state, operations and functions
that manipulate the data. Unlike Z, with which it shares numerous similarities,
VDM provides little support for modularity - this is provided in Z by the schema
facility. Furthermore, VDM specifications are not easily accessible to novice users
and, according to Hull and O’Donaghue, tend to lack concision [HUL93]. Since its
initial development, VDM has been important in influencing the development of
many other formalisms and has been used extensively in industry and academia,
especially in the area of programming language definition. It has also undergone
numerous developments which have transformed it into a general purpose software
development method, making it sufficiently flexible to be applied to a variety of
applications, such as databases and operating systems. At the time of writing,
VDM-SL is undergoing further enhancements which aim to provide features for
describing concurrency. The notation is currently being reviewed for standardisa-
tion by ISO and there also plans to provide VDM specifications with an execution
environment in which executable subsets of the language may be animated.

3.20 Z

Origins of the Z notation can be traced back to Abriel’s preparatory work during the
late 1970s [ABR&0], however, this was later developed at Oxford University by Hayes
[HAY87] and Spivey [SPI92]. Additional work culminated in a base standard for
the Z notation [BRI92], which also provides a deductive proof system for reasoning
about Z specifications. The foundations for the Z notation lie in the propositional
and predicate calculi, as well as typed set theory, although there are a nurmber of
notable extensions in the form of a well defined “mathematical toolkit”. This toolkit
provides a variety of formally defined constructs including: functions, relations,
schemas, sequences and bags. These allow program data types to be described at an
abstract level. Z also includes various operators for manipulating these constructs.

The format of a Z specification generally comprises a several formal sections,
some of which are optional, with complementary interspersions of informal, explan-
atory text. Firstly, a number of basic types are declared, which represent those sets
whose existence is assumed - these serve to abstract away from the precise struc-
tures of a program’s data types. Secondly, a series of axiomatic descriptions are
given in order to declare those constants that are global to the whole specification.
Next, a number of user-defined sets are given. Following this, the system’s state
space is specified, which details the invariant properties of a system, along with a
description of the initial system state. Finally, a series of operations are defined,
which describe the valid state transitions that may occur in the system.

The Z “schema” structuring facility provides a means for creating modular and
reusable specifications. Each of the logically distinct sections of mathematical text
can be placed in a separate schema and, thus, clearly distinguished from a docu-
ment’s natural language background. A schema contains two optional parts: a de-
claration part and a predicate part. A new schema can be constructed by including
the names of previously defined schemas in the former’s declaration section. Z spe-
cifications therefore tend to exhibit a form of hierarchical schema structure. Aside
from inclusion, additional schema operators are available for extension, restriction
and composition. There are three possible kinds of Z schema: state space schemas,

40

initial state schemas and operational schemas. State space schemas are used to spe-
cify the invariant properties of a system. The following example delineates the state
space of of a vending machine system, showing the various interrelations between
each of the system’s main conceptual units.

___ VMStockDatabase

Itemcodes : CODE »~ ITEM
Stocklevels : ITEM + LEVEL
Itemprices : ITEM — PRICE

ran Itemcodes = dom Stocklevels = dom Itemprices

An initial state schema specifies the conditions that must hold before a system
begins executing. The following example states that all item codes, stock levels

and item prices should not be defined prior to the commencement of the vending
machine’s operation.

___Initialise
StockDatabase’
UserCoins'

ran Itemcodes’ = dom Stocklevels’ = dom Itemprices’' = @
Usercredit’ =<>

The following example shows a Z operational schema for the item dispensing
operation of the vending machine system. Inputs to the operation are signified
with a “?” suffix, whilst output variables are indicated by a “” suffix. References

to predefined schemas are indicated by the inclusion symbol “A” in the schema’s
declaration section.

—Dispenseltem
A StockDatabase

A UserCoins

Inputcode? : CODE

Stockitem, Outputitem! : ITEM

(Inputcode? w Stockitem € Itemcodes A

Usercredit > Itemprices Stockitem A

Stocklevels Stockitem > 1)

Stocklevels' = Stocklevels & {Stockitem + (Stocklevels Stockitem — 1)}
Usercredit’ = Usercredit — Itemprices Stockitem

Outputitem! = Stockitem

A pre-condition may be specified for each operational schema in order to define
the conditions under which each one becomes applicable - a pre-condition of “true”,
for example, states that an operation is applicable under all circumstances. Al-
though the 7Z and VDM notations appear to differ widely, their underlying spe-
cification methods are relatively similar. Both provide for implicit specification of
operations using pre- and post-conditions, and state invariants. Furthermore, both
methods’ observable inputs and outputs are represented using standard mathemat-
ical constructs such as sets, functions, and sequences. Since a Z specification builds
an explicit model representation of a desired system and, owing to its reliance upon
local and global state changes, state variant and invariant properties, Z is classifiable
under the model-oriented approach to specification.

41

One of the principle aims of the Z notation’s designers was to provide its users
with a language for creating precise and easily understandable program specifica-
tions and yet, interestingly, Z provides very little graphical or diagrammatic sup-
port - in comparison with, say, Petri net based notations. In fact, the schema’s
two-dimensional box notation is the only element of graphical notation supported.
Perhaps in compensation for Z's relatively obscure symbology, the language’s stand-
ard definition allows users to include informal natural language descriptions within
specifications. Overall, Diller [DIL94, page 6%] believes that a Z specification should
generally comprise more English prose than formal mathematics and that, accom-
panying each section of Z, there should be a paragraph of English narrative which
elaborates on its formal counterpart and relates it to the real world - that is, it does
not simply translate the formal Z to an equivalent form in English. One further
aim of its designers was to enable designers to build system models at two differ-
ent levels of abstraction. Firstly, “representational abstraction” can be expressed
using Z’s high-level mathematical constructs (such as sets, relations, functions and
sequences) to model program data types, without giving any consideration to the
way in which these will eventually be constructed in an implementation. Secondly,
it is possible to achieve “procedural abstraction” by specifying operations in terms
of their input and output behaviour only, without giving any consideration to the
efficiency of the algorithms underlying those operations.

4 A Summary of the Review

Established
Formal
Notations

l

Model-Oriented Algebraic Process Algebras
| . |

OBJ
[vou] Vs [Gos]

B-Method I Clear
| Refinement Calculus I Affirm

.| Extended-ML

The diagram gives an overview of the various notations reviewed and shows their
respective categorisations under the classes of model-oriented, algebraic and process
algebra techniques. It should be noted that two particular classifications are based
on subjective assessment. Firstly, Gypsy is classified here under the model-oriented
approach because its PDL notation allows properties of programs to be described
in terms of valid states that are to be maintained at various stages during a pro-
gram’s execution. However, it is also potentially capable of describing properties

42

of programs via abstract, axiomatic statements. Gypsy therefore has strong algeb-
raic roots and is equally classifiable under the algebraic division. Secondly, whiist
RAISE’s RSL notation contains elements of all three classes of specification tech-
nique, it is the author’s belief that RSL’s theoretical foundations and grammatical
constructs coincide mainly with those underlying the class of algebraic languages.

Whilst the present review might appear exhaustive with regard to the three
main classes of specification notation, its scope is relatively narrow in the context
of formal methods overall; a large number of other methods exist and new ones are
continually evolving as a result of ongoing academic research. Specifically, some of
the more popular notations excluded from the review include the following:

1. Functional programming languages (such as the Lambda Calculus'® and Miranda?°).
2. Petri net or graph based notations (such as SARA?! and Galileo®?).

3. Rewrite rule based or logic programming languages (such as Prolog®® and Gdédel®*).
4.

Experimental notations based on modal, temporal or interval constraint logics.

To justify the exclusion of such notations from the present survey, in the light of
the Human Cognition and Formal Methods project’s specific research aims, three
forms of justification are given. Firstly, with a few exceptions, many of these tech-
niques are either still in their infancy or else have not gained the same degree of pop-
ular academic or industrial acceptance exhibited by those techniques falling under
the aforementioned trichotomy of approaches. Secondly, the commercial viability
of many of these formalisms has yet to be proven and, hence, their current degree
of usage in industry is extremely limited - this is especially true with regard to
functional languages and the new breed of languages based on modal logic. Finally,
the kind of symbology exhibited by a number of these languages is not generally
representative of the full range of notations - take, for example, the diagrammatic
graph style exhibited by Petri net based notations.

5 Comments on the Review

One of the main intellectual problems facing the designers of a formal specification
language concerns how to define the notation’s semantics so that they are suffi-
ciently powerful to define the semantics of software systems in specifications, or
possibly even the semantics of further specification languages. This is known as the
“metacircularity problem” and is described by Monahan and Shaw [MON91]. If the
underlying semantics of a notation’s denotational constructs are either inconsistent
or ill-defined, then it is highly likely that the ideal degree of metacircularity will not
be achieved; because one could never guarantee that every well-formed specification
has a corresponding logical interpretation. The crux of the problem is concerned
with delimiting the class of entities that may populate the denotation of a spe-
cification. According to Monahan and Shaw, this “presents a similar mathematical
challenge to that which arises in giving a mathematical definition of the foundations
of mathematics itself” [MON91].

19M.C. Henson, Elements of Functional Languages. Blackwell Scientific Publications, 1987.

201, Holyer, Functional Programming With Miranda. Pitman, 1991.

211 M. Campos and G. Estrin, Concurrent software system design supported by SARA at the age
of one. In Proceedings of the Third International Conference on Software Engineering. Atlanta,
Georgia, 1978.

22p. Vidondo, 1. Lopez, and J.J. Girod, Galileo system design method. In Electrical Commu-
nications, 55 (4), 1980.

231. Bratko, Prolog Programming for Artificial intelligence. Second Edition, International Corn-
puter Science Series, Addison-Wesley, 1990.

24p.M. Hill and J.W. Lloyd, The Gédel Programming Language. MIT Press, 1994.

43

“It is no accident that the basic data types used in model-based specifications
of software are useful in describing computer-oriented systems. These data
types were carefully and deliberately chosen by the specification language
designer as appropriate abstractions of familiar computer-oriented concepts
which commonly arise in practice.”

Monahan and Shaw [MON91].

Language designers aim to represent the denotational constructs of specification
languages with simple mathematical constructs for a number of reasons. Firstly,
the “basic data types” to which Monahan and Shaw refer tend to include basic
mathematical concepts such as sets, Cartesian products and relations, which are
taught normally during childhood education. Thus, it is assumed that a reader’s
increased familiarity with denotational constructs will be more likely to result in
their interpretation of a formal specification coinciding with that of its logically
correct meaning. At first sight, the symbology of some formal notations can appear
quite daunting to some readers. However, upon closer inspection, readers are gener-
ally able to recognise that formal specifications are built entirely from simple, well
understood primitives. This is perhaps one of the main obstacles that the readers
of formal specifications face, but it is often this recognition which helps readers to
overcome their initial apprehensions and encourages them to piece together each
primitive’s meaning in order to derive a specification’s overall meaning. Secondly,
elementary mathematical data types are used because their syntax tends to be con-
cise and their underlying semantics are rigorously defined. This promotes the pro-
duction of succinct specifications which are open to precise, unique interpretations.
Thirdly, the use of simple mathematical data types enables the computer-oriented
concepts under specification to be represented at a sufficiently high level of abstrac-
tion. This is often highly desirable because a specification should ultimately leave
a design team free to consider a range of possible implementations, rather than
constraining them unduly.

During the course of the review, it was observed that many formal notations are
based around the same or similar types of logic system to those underlying other
notations. The RAISE RSL notation, for example, exhibits striking similarities to
VDM and Larch; not only do these notations share the same underlying calculi,
but they share many of the same grammatical constructs. In fact, in a majority of
the cases observed, it was found that formal notations are rarely developed from
first principles. Typically, the design theories, logical calculi, semantical rules and
syntactical components comprising a new notation are either truncated or extended
versions of those belonging to other languages. This trait is perhaps most evid-
ent in the case of “primitive” formal languages used as a basis for the definition
of more “enhanced” versions. For instance, consider Object-Z?® and Real-Time
CSP.2% These represent enhanced versions of the more primitive Z [SPI92] and CSP
[HOAS85] languages, respectively, and inherit the full expressive power of their prim-
itive counterparts. Despite some notable differences in the languages’ syntactical
constructs, the formal logics underlying each are actually quite similar; Object-Z
and 7, for instance, are both based upon the predicate calculus and set theory, and
both adopt a model-oriented approach to design specification. The Z notation and
the B-Method’s AMN notation also possess similar logical foundations - both being
based on the predicate calculus and set theory - and yet their symbology differs
dramatically. Compare, for instance, the two languages’ specification structuring
mechanisms (Z’s schema versus AMN's abstract state machine) and the differences

25R. Duke, P. King, G. Rose and G. Smith, The Object-Z Specification Language: Version 1.
Department of Computer Science, University of Queensland, Technical Report 91.1, April 1991.

28], Davies and S. Schneider, Real-time CSP: Processes and Properties. Department of Com-
puter Science, University of Reading, Reading. RG6 2AH. November, 1993.

44

in their grammatical constructs (Z’s complex mathematical symbols versus AMN’s
ASCII compliant character set).

One further conclusion drawn from the review is that there exists a strong
correlation between the design theories underlying formal notations and the logical
systems on which they are based. For instance, most model-oriented notations
tend to have firm foundations in the predicate calculus, often with set-theoretic and
mathematical extensions, whilst process algebras tend to be based on purpose-built,
strictly behaviour oriented logical systems - such as Milner’s synchronous calculus
- also with set-theoretic and mathematical extensions. This raises the question
of whether specific types of logical system are more amenable to the description
of certain types of program behaviour. Intuitively, the predicate calculus would
appear better suited to the description of state-based program behaviour than, say,
the synchronous calculus, which would be more suited to expressing concurrent
or communicating behaviour. This might explain why, in practice, certain formal
notations are used exclusively for specifying certain types of target application.
For example, it is well known that CCS and CSP have been used successfully in
modelling protocols of communication across networked computer systems, whilst
other formalisms, such as Z and VDM, have proved more useful in modelling the
kind of behaviour exhibited by the likes of information processing systems.

Acknowledgements

The author would like to thank the following reviewers for their many helpful com-
ments regarding this report: Ben Potter, Martin Loomes and Jane Simpson. The
author would also like to thank all of those authors cited during the course of this
report whose work formed the basis of the review. The Human Cognition and
Formal Methods research project is supported by Grant No. J00429434043 from
the Economic and Social Research Council.

References

[ABR80] J.R. Abriel, The specification language Z: basic library, Programming Research
Group, Oxford University Computing Laboratory, 11 Keble Road, Oxford. OX1
3QD, 1980.

[AMB77] A.L. Ambler, D.I. Good, J.C. Browne, W.F. Burger, R.M. Cohen, C.G. Hoch,
and R.E. Wells, Gypsy: A language for specification and implementation of
verifiable programs, ACM SIGPLAN Notices, 12 (3), March 1977.

[BCO95a] B-Core (UK) Limited, The B-Technologies. B-Core (UK) Ltd, Magdalen
Centre, The Oxford Science Park, Oxford. OX4 4GA. March, 1995.

[BCO95b] B-Core (UK) Limited, The B-Technologies: A system for computer aided pro-
gramming. B-Core (UK) Ltd, Magdalen Centre, The Oxford Science Park,
Oxford. OX4 4GA. May, 1995.

[BRI92] S.M. Brien et al., Z Base Standard. Version 1.0, Programming Research Group,
Oxford University Computing Laboratory, 11 Keble Road, Oxford. OX1 3QD.
November, 1992.

[BUR77] R.M. Burstall and J. Goguen, Putting theories together to make specifications.
In Proceedings of the Fifth International Joint Conference on Artificial Intelli-
gence, pp. 1045-1058, Cambridge MASS, 1977.

[BURS81] R.M. Burstall and J. Goguen, An informal introduction to specifications us-
ing Clear. In R.S. Boyer and J.S. Moore (Eds.), The Correctness Problem in
Computer Science, Academic Press, 1981.

45

[COHS6]

[CROYS)

[FEI94a]

[FEI94b)

[FUTS5)

[GOGTY]

[GUTT8]

[GUTS854)

[GUTS85b)]

[HAYS7)

[HOA85)

[HUL93]

[KIE94]

[LAV94]

[LISTY]

[LOGY0a]

B. Cohen, W.T. Harwood and M.I. Jackson, The Specification of Complex
Systems, Addison-Wesley, 1986.

J. Crow, S. Owre, J. Rushby, N. Shankar, M. Srivas, A Tutorial Introduction
to PVS. Presented at WIFT’95: Workshop on Industrial-Strength Formal Spe-
cification Techniques, Boca Raton, Florida. April, 1995.

L.M.G. Feijs, An overview of the development of COLD. In D.J. Andrews, J.F.
Groote, and C.A. Middleburg (Eds.), Semantics of Specification Languages
(SoSL). Proceedings of the International Workshop on Semantics of Specific-
ation Languages, Utrecht, The Netherlands, 25-27 October 1993, pp. 15-22,
Workshops in Computing Series, Springer-Verlag, 1993.

L.M.G. Feijs, HB.M. Jonkers, and C.A. Middleburg, Notations for Software
Destgn. Springer-Verlag, 1994.

K. Futatsugi, J.A. Goguen, J.P. Jouannaud and J. Meseguer, Principles of
OBJ2. In Proceedings of the 12th ACM on Principles of Programming Lan-
guages, pp. 52-66, ACM Press, 1985.

J.A. Goguen and J.J. Tardo, An introduction to OBJ: a language for writing
and testing formal algebraic program specifications. In IEEE Proceedings on
Specifications of Reliable Software, pp. 170-189. IEEE Press, 1979.

J.V. Guttag and J.J. Horning, The algebraic specification of abstract data types.
In Acta Informatica, 10, pp. 27-52, 1978.

J.V. Guttag, J.J. Horning and J.M. Wing, Larch in Five Easy Pieces. Digital
Equipment Corporation, 1985.

J.V. Guttag, J.J. Horning and J.M. Wing, The Larch family of specification
languages. In IEEE Software, 2 (5), pp. 24-36, 1985.

1.J. Hayes (Ed.), Specification Case Studies. Prentice-Hall International Series
in Computer Science, 1987.

C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall Interna-
tional Series in Computer Science, 1985.

M.E.C. Hull and P.G. O’Donoghue, Family relationships between requirements
and design specification methods. Department of Computer Science, University
of Ulster, Newtownabbey, County Antrim, BY37 0QB, Northern Ireland, UK.
In The Computer Journal, 36 (2), 1993.

R.B. Kieburtz and J. Lewis, Algebraic Design Language (Preliminary Defini-
tion). Pacific Software Research Centre, Oregon Graduate Institute of Science
and Technology, P.O. Box 91000, Portland, Oregon, OR 97291-1000, USA.
January, 1994.

G.R.R. de Lavalette, The static part of the design language COLD-K. In D.J.
Andrews, J.F. Groote, and C.A. Middleburg (Eds.), Semantics of Specification
Languages (SoSL). Proceedings of the International Workshop on Semantics
of Specification Languages, Utrecht, The Netherlands, 25-27 October 1993, pp.
51-82, Workshops in Computing Series, Springer-Verlag, 1993.

B. Liskov and V. Berzins, An Appraisal of Program Specifications. In P. Wegner
(Ed.), Research Directions in Software Technology, Cambridge, Mass: MIT
Press, pp. 276-301, 1979.

L. Logrippo, T. Melanchuck, and R.J. DuWors, The Algebraic Specification
Language LOTOS: An Industrial Ezperience. In M. Moriconi (Ed.), Proceedings
of the ACM SIGSOFT International Workshop on Formal Methods in Software
Development, pp. 59-66, Napa, 1990.

46

[LOG90b] L. Logrippo, M. Faci, and M. Haj-Hussein, An Introduction to LOTOS: Learn-

[LUCY0)

[MIL85]

[MIL89]
[MONO1]
[MOR90]
[OU90]

[OWR92]
[SAN91]
[SAN93]
[SPI92]

[SUNB82|

[WOO88)
[YOUS8Y)

[YUAS5)|

ing by Ezamples. University of Ottowa, Protocols Research Group, Ottowa,
Ontario, 1990.

D. Luckham, Programming With Specifications. An Introduction to ANNA, A
Language for Specifying Ada Programs. Springer-Verlag, 1990.

G.J. Milne, CIRCAL and the Representation of Communication, Concurrency

and Time. In ACM Transactions on Programming Languages and Systems, 7
(2): pp. 270-298. April, 1985.

R. Milner, Communicating and Concurrent Systems. Prentice-Hall Interna-
tional Series in Computer Science, 1989.

B. Monahan and R.. Shaw, Model-Based Specifications. In J.A. McDermid (Ed.),
Software Engineer’s Reference Book, Butterworth-Heinemann, 1991.

C.C. Morgan, Programming From Specifications. Prentice-Hall International
Series in Computer Science, 1990.

The Open University, CSP Specification. Topics in Software Engineering Series,
Open University, 1990.

S. Owre, J.M. Rushby and N. Shankar, PVS: A prototype verification system.
In D. Kapur (Ed.), Automated Deduction - CADE-11, Springer-Verlag, LNAI
607, pp. 748-752, 1992.

D. Sannella, Formal program development in Eztended ML for the working
programmer. In Proceedings of the Third BCS/FACS Workshop on Refinement,
Workshops in Computing Series, pp. 99-130, Springer-Verlag, 1991.

D. Sannella, A survey of formal software development methods. In A. Mc-
Gettrick and R. Thayer (Eds.), Software Engineering: A European Prospective,
pp. 281-297, IEEE Computer Society Press, 1993.

J.M. Spivey, The Z Notation: A Reference Manual. Second Edition, Interna-
tional Series in Computer Series, Prentice-Hall, 1992.

C.A. Sunshine, D.H. Thompson, R.W. Erickson, S.L. Gerhart, and D. Schwabe,
Specification and verification of communication protocols in AFFIRM using
state transition models. In IEEE Transactions on Software Engineering, SE-8
(5). September, 1982.

J. Woodcock and M. Loomes, Software Engineering Mathematics. Addison-
Wesley, 1988.

W.D. Young, Comparing Specifications Paradigms: Gypsy and Z, Technical Re-
port 45, Computational Logic Incorporated, Austin, Texas 78703. June, 1989.

T. Yuasa and R. Nakajima, IOTA: A modulaer programming system. In IEEE
Transactions on Software Engineering, SE-11 (2): pp. 179-187. February, 1985.

47

