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ABSTRACT

The strong variability of magnetic central engines of AGN and GRBs may result in
highly intermittent strongly magnetized relativistic outflows. We find a new magnetic
acceleration mechanism for such impulsive flows that can be much more effective than
the acceleration of steady-state flows. This impulsive acceleration results in kinetic-
energy-dominated flows that are conducive to efficient dissipation at internal MHD
shocks on astrophysically relevant distances from the central source. For a spherical
flow, a discrete shell ejected from the source over a time t0 with Lorentz factor Γ ∼ 1
and initial magnetization σ0 = B2

0
/4πρ0c

2 ≫ 1 quickly reaches a typical Lorentz

factor Γ ∼ σ
1/3
0

and magnetization σ ∼ σ
2/3
0

at the distance R0 ≈ ct0. At this point
the magnetized shell of width ∆ ∼ R0 in the lab frame loses causal contact with the
source and continues to accelerate by spreading significantly in its own rest frame. The
expansion is driven by the magnetic pressure gradient and leads to relativistic relative
velocities between the front and back of the shell. While the expansion is roughly
symmetric in the center of momentum frame, in the lab frame most of the energy and
momentum remain in a region (or shell) of width ∆ ∼ R0 at the head of the flow. This

acceleration proceeds as Γ ∼ (σ0R/R0)
1/3 and σ ∼ σ

2/3
0

(R/R0)
−1/3 until reaching

a coasting radius Rc ∼ R0σ
2

0
where the kinetic energy becomes dominant: Γ ∼ σ0

and σ ∼ 1 at Rc. Then the shell starts coasting and spreading (radially), its width
growing as ∆ ∼ R0(R/Rc), causing its magnetization to drop as σ ∼ Rc/R at R > Rc.
Given the typical variability time-scales of AGN and GRBs, the magnetic acceleration
in these sources is a combination of the quasi-steady-state collimation acceleration
close to the source and the impulsive (conical or locally quasi-spherical) acceleration
further out. The interaction with the external medium, which can significantly affect
the dynamics, is briefly addressed in the discussion.

Key words: MHD — relativity — methods: analytical — gamma-rays: bursts —
ISM: jets and outflows — galaxies: jets

1 INTRODUCTION

The first questions raised by the discovery of astrophysi-
cal jets are how they are powered, collimated, and acceler-
ated. Most of them – jets from young stars, Active Galac-
tic Nuclei (AGN), Galactic X-ray Binaries, and Gamma
Ray Bursts (GRBs), are associated with disk accretion1,

⋆ j.granot@herts.ac.uk
† serguei@maths.leeds.ac.uk
‡ anatoly@astro.princeton.edu
1 The only exceptions are the jets of Pulsar Wind Nebulae as
there are no indications of accretion disks around their pulsars.

and this suggests that accretion disks are essential for jet
production. The astrophysical jets seem to be highly su-
personic as many of their features are nicely explained by
internal shocks. In the laboratory, highly collimated super-
sonic jets are normally produced when a high pressure (and
temperature) gas escapes from a chamber via a finely de-
signed nozzle. However, it seems highly unlikely that such
refined “devices” are formed naturally in astrophysical sys-

These jets are most likely not produced directly by the pulsars
but instead form downstream of the termination shock of pulsar
winds (Lyubarsky 2002; Komissarov & Lyubarsky 2004).
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2 Granot et al.

tems. They would require cold and dense gas to form the
walls of the chamber with a massive compact object in
the center (Blandford & Rees 1974), but such configurations
are highly unstable (Norman et al. 1981; Smith et al. 1983).
This has lead to the idea that the collimation of astrophys-
ical jets may have a completely different mechanism involv-
ing a strong magnetic field. Although this magnetic field still
needs to be confined within a channel, the conditions on its
geometry are less restrictive. If this field is anchored to a
rotating object, such as an accretion disk, then it naturally
develops an azimuthal component. The hoop stress associ-
ated with this magnetic field component creates additional
collimation of the flow within the channel. Moreover, this
leads to a magnetic torque being applied to the rotating ob-
ject and thus a natural way of powering outflows by tapping
the rotational energy of the central object.

In order to produce a relativistic flow this way, the mag-
netic energy per particle must exceed its rest energy. Thus,
the jet plasma must be highly rarefied. Such rarefied plasma
is naturally produced only in the magnetospheres of black
holes and neutron stars. Moreover, the strong magnetic field
shields these magnetospheres and prevents them from be-
ing contaminated by the much denser surrounding plasma.
In contrast, young stars can eject a lot of mass from their
surface and this seems to explain why their jets are not rel-
ativistic. Magnetospheres of accretion disks are likely to be
heavily mass-loaded and are not able to produce relativistic
jets for the same reason.

It has to be stressed that magnetic flows must still
be collimated externally until they become super-fast-
magnetosonic. The magnetic hoop stress can result in self-
collimation of the inner core but cannot prevent sideways
expansion of the outer sheath. However, when the flow be-
comes super-fast-magnetosonic, the speed of this lateral ex-
pansion becomes smaller than the flow speed along the jet di-
rection, and the jet remains collimated. For non-relativistic
jets the condition of passing through the fast-magnetosonic
surface also implies almost completed acceleration of the
flow (50% conversion of magnetic energy into kinetic en-
ergy). In contrast, the relativistic jets still remain Poynting-
flux dominated at this point and the acceleration process
may continue well into the super-fast-magnetosonic regime.

The issue of the efficiency of energy conversion (from
magnetic to kinetic form) is related to the issue of subse-
quent energy dissipation, which is required in order to ex-
plain the observed electromagnetic emission from both the
jets and the structures they create when they collide with
the external medium. Traditionally, one of the most favorite
channels of dissipating the energy of supersonic flows has
been the formation of shock waves. However, in the case of
relativistic flows this mechanism can be much less efficient
if the flow is Poynting-flux dominated. First of all, it is the
kinetic energy of the flow that is dissipated2, and if only a
small fraction of the total energy is in the kinetic form then
this already severely limits the efficiency of dissipation. Sec-
ondly, the compression ratio and hence the fraction of kinetic

2 This applies to fast magnetosonic shocks. At a slow magne-
tosonic shock, the magnetic energy dissipates as well and the ki-
netic energy can actually increase. However, slow shocks are much
less robust and harder to generate compared to the fast ones.

energy that dissipates also decrease with increasing magne-
tization. Thus, in order to dissipate a significant fraction of
the available energy the flow should not only become super-
fast-magnetosonic, but it should also become dominated by
kinetic energy before it is shocked (Leismann et al. 2005;
Mimica, Giannios & Aloy 2009; Mimica & Aloy 2010).

The magnetic acceleration of relativistic flows has been
the subject of theoretical research for decades. The main
focus of this research has been on the models of steady-
state axisymmetric dissipation-free flows (the “standard
model”). The main reason behind this is simplicity. Only
in this case was there a hope of building a rigorous the-
ory. Yet, even this idealized model is rather complex, and
solutions could be found only if an additional symme-
try, e.g. self-similarity, or other simplifying condition was
introduced (e.g. Begelman & Li 1992; Vlahakis & Königl
2003; Beskin & Nokhrina 2006). More recently the problem
was approached using numerical methods (Komissarov et al.
2007, 2009a).

There are a number of problems with the standard
model, which are most severe in the case of a spherical wind.
In this case the theory predicts an asymptotic Lorentz fac-
tor of Γ ∼ σ

1/3
0 , where σ0 = B2

0/4πρ0c
2 ≫ 1 is the initial

magnetization parameter, which determines the maximum
possible Lorentz factor corresponding to a total conversion
of the Poynting flux into the bulk motion kinetic energy in a
steady-state flow (e.g., Goldreich & Julian 1970). This is in
conflict with the observations of many astrophysical sources.
In particular, the high observed values of Γ in many sources
would require an extremely large initial magnetization σ0

that would in turn imply a very high asymptotic magne-
tization, σ ∼ σ

2/3
0 ≫ 1, making it impossible to achieve

efficient shock dissipation within the outflow.

A potential way to overcome this problem is by resort-
ing to collimated outflows. This can increase the asymptotic
value of Γ and reduce that of σ by up to a factor of ∼ θ

−2/3
jet ,

where θjet is the asymptotic half-opening angle of the jet.
The collimation has to be strong enough to preserve causal
connectivity across the flow (in the lateral direction). The
faster the flow and the higher its fast-magnetosonic Mach
number becomes, the smaller its opening angle should be.
By the time one half of the Poynting flux is converted into ki-
netic energy (σ ∼ 1), the jet half-opening angle θjet should
not exceed θmax = 1/Γ, where Γ ∼ σ0 is the jet Lorentz
factor at that time. Observations of AGN jets do indeed
show that θjet < 1/Γ (Pushkarev et al. 2009). However, for
GRB jets with Γ ≃ 400 (or 102 <∼Γ<∼ 103.5) this constraint
gives θmax ≃ 0.14◦ (or 0.018◦ <∼ θmax <∼ 0.57◦), which is much
smaller compared to generally accepted values of the half-
opening angle, 2◦ <∼ θjet <∼ 30◦ (Frail, Waxman & Kulkarni
2000; Panaitescu & Kumar 2001).

In addition, the standard theory of GRB afterglow emis-
sion can explain the jet-break in their light curves only if
θjetΓ ≫ 1 (Rhoads 1999; Sari, Piran & Halpern 1999). Al-
though the Swift observations show that clear jet breaks
are not as common as we used to think (e.g., Liang et al.
2008), this might be at least partly due to observational se-
lection effects (Swift GRBs are dimmer on average as Swift
is more sensitive than previous missions), and there are still
some clear cases for jet breaks in the Swift era. Finally,
late time radio afterglow observations, when the flow be-
comes sub-relativistic, provide fairly robust (no longer sus-
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ceptible to strong relativistic beaming) lower limits (e.g.,
Eichler & Waxman 2005) on the true energy that remains
in the afterglow blast wave at that time, of a few to several
times 1051 ergs (Berger, Kulkarni & Frail 2004; Frail et al.
2005). Such a large true energy, together with the inferred
energy per solid angle in the prompt gamma-ray emission
and in the afterglow shock at early times imply that the
initial jet half-opening angle cannot be too small (typically
not much less than a few degrees).

It turns out that a transition from laterally confined
to ballistic flow is accompanied by a relatively short phase
of acceleration of a different kind (Komissarov et al. 2009b;
Tchekhovskoy et al. 2009). Such a transition may occur in
the collapsar model at the stellar surface. A sudden loss of
lateral pressure support causes a sideways expansion of the
jet. If the jet is highly relativistic at the stellar surface the
corresponding increase in the jet opening angle is negligi-
ble. However, a rarefaction wave propagates into the jet and
brings it out of lateral balance. The magnetic pressure force
accelerates the flow in the lateral direction, which results in
a significant increase of the jet Lorentz factor, particularly in
the outer layers of the jet. This may alleviate the θjetΓ ≃ 1
problem of the magnetic model. However, as soon as the
rarefaction crosses the jet it is well in the ballistic regime
and the acceleration is over.3 Moreover, it does not ensure
full conversion of electromagnetic to kinetic energy. Should,
it happen a bit too soon and the jet remains Poynting-
dominated. Even under the best of circumstances the re-
sultant jet magnetization is still close to σ ≃ 1, which is too
high for effective shock dissipation (Leismann et al. 2005;
Mimica, Giannios & Aloy 2009; Mimica & Aloy 2010).

Given the problems with this basic case, other ideas
have been put forward. The most radical idea is to as-
sume that relativistic astrophysical jets do not become ki-
netic energy dominated but remain Poynting dominated on
all scales and that the observed emission comes not from
shocks but from magnetic dissipation cites (Blandford 2002;
Lyutikov 2006). In the context of the present work this
may potentially serve as an alternative to internal shocks
in cases where for some reason the magnetization remains
high at large distances from the source. Others propose var-
ious ways of increasing the efficiency of magnetic accelera-
tion compared to the basic model, e.g., via allowing non-
axisymmetric instabilities and randomization of magnetic
field (Heinz & Begelman 2000). In fact, the magnetic dis-
sipation may also help the transition from Poynting domi-
nated to kinetic energy dominated states (Drenkhahn 2002;
Drenkhahn & Spruit 2002).

In this work we focus on the acceleration of an im-
pulsive (strongly time-dependent) highly magnetized rela-
tivistic outflow, which has received relatively little atten-
tion so far. Contopoulos (1995) was first to consider the
non-relativistic case of impulsive magnetic acceleration and
dubbed it an “astrophysical plasma gun”. The relativistic
version presents a number of qualitatively different prop-
erties. In § 2 we present a detailed study of a simplified

3 This is in contrast with the highly robust mechanism of thermal
acceleration, where for an adiabatic index of γ = 4/3 the jet
Lorentz factor grows linearly with the jet radius, Γ ∝ R, even in
the ballistic regime.

test case featuring a cold and initially highly magnetized
(σ0 ≫ 1) one dimensional finite shell (of initial width l0)
initially at rest (at t = 0), whose back end leans against
a “wall” and with vacuum in front of it. The initial evolu-
tion (§ 2.1 and Appendix A) is described by a self-similar
rarefaction wave traveling toward the wall and accelerat-
ing the Poynting-dominated flow away from the wall. At
the end of this phase, at time t0 ≈ l0/c when the rar-
efaction wave reaches the wall, the mean Lorentz factor
of the flow is 〈Γ〉 ∼ σ

1/3
0 . Soon after t0 the shell sepa-

rates from the wall and moves away from it (§ 2.2). The
shell continues to accelerate and keeps an almost constant
width of ∼ 2l0. Using both numerical (§ 2.3) and analytical
(§ 2.2, § 3.2 and Appendixes C3, F2) methods, we find that
during the second phase the mean Lorentz factor grows as
〈Γ〉 ∼ (σ0t/t0)

1/3 ∝ t1/3. This phase ends at time tc = t0σ
2
0 ,

when the acceleration slows down and the shell starts coast-
ing. At this point 〈Γ〉 ∼ σ0 and σ ∼ 1. In § 3 we present crude
but simple derivations of the main results of § 2 that allow
us to understand the underlying physics and show that the
results are robust – not very sensitive to the exact initial con-
figuration. The analysis of the coasting phase (§ 3.3) shows
that at t > tc the shell width increases as ∆ ∼ 2l0t/tc ∝ t
while its magnetization decreases as σ ∼ tc/t ∝ t−1, result-
ing in a kinetic energy-dominated flow.

In § 4 we address the apparent paradox of self-
acceleration – how can the shell keep accelerating after it
separates from the wall? We analyze a variation of our sim-
ple test case in which the wall is removed when the rarefac-
tion wave reaches it (at t0). At subsequent times there are
no external forces on the system, implying that the center
of momentum (CM) velocity or Lorentz factor (ΓCM) re-
main constant and there is no global acceleration at t > t0
in this strict sense. Nevertheless, even though we find that
ΓCM ∼ σ

1/2
0 remains constant, the more relevant astro-

physical quantity is the mean value of Γ weighted over the
energy in the lab frame, 〈Γ〉E , and it indeed increases as
〈Γ〉E ∼ (σ0t/t0)

1/3 at t0 < t < tc. In § 5 we discuss the con-
nection between our test case and relativistic astrophysical
flows and study the possible implications of our impulsive
acceleration mechanism for the dynamics of GRB and AGN
jets. We also briefly address the interaction of the magne-
tized flow with the external medium for GRBs. Our main
results and conclusions are presented in § 6.

Soon after the first version of our paper had appeared on
the electronic archive (http://arxiv.org/archive/astro-ph/),
an independent study of impulsive magnetic accelera-
tion was published there as well (Lyutikov 2010a,b;
Lyutikov & Lister 2010), indicating growing interest in this
mechanism. Where the covered topics overlap, the results
of both studies agree very well. As to the differences, their
study focuses on the initial phase of fast acceleration (at
t < t0) and shock formation (when instead of pure vacuum
the shell expands into a rarefied plasma), whereas the main
subject of our paper is the operation of the impulsive accel-
eration mechanism after the shell separates from the “wall”
(at t > t0).

c© 0000 RAS, MNRAS 000, 000–000
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4 Granot et al.

2 TEST CASE: EXPANSION OF A

MAGNETIZED SHELL INTO VACUUM

A good way of demonstrating the basic dynamics of the
acceleration of a highly magnetized impulsive flow is to start
with a simple example that can be analyzed analytically or
using simple one-dimensional simulations. To this aim we
consider for our initial conditions a uniform shell of width l0
with high initial magnetization, σ0 = B2

0/4πρ0c
2 ≫ 1, where

B0 is the initial magnetic field and ρ0 is the initial rest mass
density. We choose Cartesian coordinates in which the plane
of the shell is perpendicular to the x-axis and the magnetic
field is aligned with the y-axis. The right boundary of the
shell is at x = 0 and the left one is at x = −l0. To the left
of the shell is a solid conducting wall and to the right is
vacuum.

2.1 Self-similar rarefaction phase

At time t = 0 we let the shell expand into vacuum. This
is a well known problem that describes a simple rarefaction
wave propagating into the shell towards the wall. The self-
similar simple wave solution to the general case with non-
vanishing thermal pressure is described in Appendix A. Here
we focus only on the cold limit (with no thermal pressure;
the equations describing this case reduce to those of the pure
gas case with an adiabatic index γ = 2).

Using units where c = 1, the local wave speed is

λ =
v − cms

1− vcms
, (1)

where cms is the fast magnetosonic speed as measured in the
fluid frame.4 In our (cold) limit

c2ms =
σ

1 + σ
, (2)

where

σ =
B′ 2

4πρ
=

(B/Γ)2

4πρ

is the local magnetization parameter, while B′ = B/Γ and ρ
are the magnetic field and the rest mass density, respectively,
as measured in the fluid rest frame. The equations of one-
dimensional motion yield

B′

ρ
=

B

Γρ
= const , (3)

(see Appendix A) and thus

σ = σ0
ρ

ρ0
. (4)

The backward characteristics of the simple wave (where
the wave moves in the direction opposite to that of the flow)
are straight lines described by

ξ = λ =
v − cms

1− vcms
, (5)

where ξ = x/t is the self-similar variable. Integration of the
self-similar flow equation gives (see Eq. [A26] for γ = 2 or
Eqs. [A29] and [A24] for a0 = 0),

4 This is simply the Lorentz transformation of a velocity compo-
nent parallel to the relative velocity of two inertial frames.

Figure 1. The self-similar rarefaction wave solution at t = 1,

using units of l0 = 1, ρ0 = 1 and c = 1. The initial conditions
are a uniform state with parameters σ0 = 30 and v0 = 0 at
−1 < x < 0 and vacuum for x > 0. Shown are the magnetic
field By (top left panel), the Lorentz factor Γ (as measured in the
wall frame; top right panel), the local magnetization parameter,
σ = (B′)2/4πρ (middle left panel), the flow velocity vx (middle

right panel), the magnetic pressure pm = (B′)2/8π (bottom left

panel) and the density of total energy (solid line), magnetic en-
ergy (dashed line), and kinetic energy (dash-dotted line) as mea-
sured in the wall frame (bottom right panel).

1 + v

1− v

(

1 + cms

1− cms

)2

= J+ , (6)

where

J+ =

(

1 + cms,0

1− cms,0

)2

=
(√

σ0 +
√
σ0 + 1

)4 ≈ 16σ2
0 ,

where the last equality holds for σ0 ≫ 1. This equation, in
combination with Eqs. (2) and (4), allows to find ρ = ρ(v)
and then Eq. (3) gives B = B(v). Finally, Eq. (5) allows us
to find the dependence of all flow variables on ξ.

Figure 1 shows the self-similar solution for σ0 = 30, in
units where ρ0 = l0 = c = 1, at time t = 1 (when the left
front of the rarefaction wave is about to reach the wall). One
can see that both the left and the right fronts of the wave
propagate at very close to the speed of light. The magnetic
field and the total energy density distributions in the ex-
panding shell are almost uniform (except for the thin bound-
ary layers). This is expected as the plasma inertia is very low
and the electromagnetic part of the solution must be close to
the corresponding solution of the Maxwell equations. Near

c© 0000 RAS, MNRAS 000, 000–000
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the right front the distributions of most flow parameters ex-
hibit large gradients. In the plots of the Lorentz factor and
total kinetic energy density we see narrow spikes. The max-
imum value of the Lorentz factor can be found from Eq. (6)
by setting cms = 0. For σ0 ≫ 1 we find

Γmax ≈ 2σ0 . (7)

This is already a very high speed. However, only a very small
fraction of the flow energy is associated with this spike and
the mean Lorentz factor is much lower. Figure 1 suggests
that the mean Lorentz factor must be close to that of the
sonic point, ξ = 0, for which Eq. (6) gives (for σ0 ≫ 1)

Γ(ξ = 0) ≈
(

σ0

2

)1/3

. (8)

More sophisticated averaging procedures (such as the
weighted averages over the energy or rest mass) described in
Appendix B give values which are only slightly higher (see
right panel of Fig. B1) and show that

〈Γ〉 ≃ σ
1/3
0 (9)

is a very good estimate.

2.2 Evolution after separation from the wall

At the time t = t0 = l0/cms(v = 0) ≈ l0 (where we still
use units of c = 1) the left front of the rarefaction wave
reaches the wall, and then the evolution of the shell changes.
A secondary rarefaction wave is launched from the wall and
propagates to the right, trying to catch up with right front
of the original wave. However, both fronts propagate with
speeds very close to the speed of light, and the spatial sepa-
rations separation between them changes only very slowly –
to the first approximation it is ≈ 2l0. At t < t0 the original
rarefaction wave does not “know” about the existence of the
wall, and therefore behaves according to the self-similar so-
lution for a semi-infinite shell. At t > t0, however, this is true
only ahead of the reflected rarefaction wave, at x > x∗(t) or
ξ > ξ∗(t) = x∗(t)/t, where x∗(t) is the location of the front
of the secondary rarefaction, (x∗(t0) = −l0). At x > x∗(t)
the fluid continues to be accelerated by the pressure gradient
created during the initial expansion.

At x < x∗(t), however, inside the secondary wave, the
density and pressure drop very rapidly and the fluid is de-
celerated by the strong magnetic pressure gradient that de-
velops just behind the head of this wave. Moreover, the total
rest mass in this region is very small and one can describe
the shell evolution as a separation from the wall. This is
in contrast with the non-relativistic version of this problem
considered by Contopoulos (1995), where there is no such
separation and the flow pressure and density peak at the
wall.5 The Lorentz factor and kinetic energy, as measured
in the lab frame, drop strongly behind the front of this wave
and only the part of the initial flow that is not yet affected by
the right rarefaction wave significantly contributes to the to-
tal energetics (see Fig. 2). Therefore, the “typical” or mean

5 Thus, the relativistic dynamics of magnetized shell is even
closer to the “plasma gun” action and also brings to mind the
hypothetical “phasers”, all too familiar to the fans of the science-
fiction series “Star Trek”.

Figure 2. Propagation of a highly magnetized cold shell of

plasma. The plots describe the numerical solution at time t = 20
for the same initial data as in Fig. 1 and use the same units.
The top panels show the magnetic field By (top left panel), the
Lorentz factor Γ, (as measured in the wall frame; top right panel),
the local magnetization parameter, σ = (B′)2/4πρ (middle left

panel), the flow velocity vx (middle right panel), the magnetic
pressure pm = (B′)2/8π (bottom left panel), and the density of
total energy (solid line), magnetic energy (dashed line), and ki-
netic energy (dash-dotted line) as measured in the wall frame (bot-
tom right panel). The front of secondary rarefaction is located at
x ≃ 18.

(as averaged over the energy in the lab frame) Lorentz fac-
tor of the shell should behave as the fluid Lorentz factor
Γ(ξ∗) at the front of the right rarefaction wave (or the back
boundary of the shell).

In the fluid frame the front of secondary rarefaction
moves with the local magnetosonic speed. In the lab frame
this corresponds to

β∗ ≡ dx∗
dt

=
v(ξ∗) + cms(ξ∗)

1 + v(ξ∗)cms(ξ∗)
. (10)

In the ultra-relativistic accelerating regime, where v ≃ 1 and
cms ≃ 1 (where the latter requirement insures that there
is still plenty of magnetic energy to drive the acceleration:
〈σ〉 ∼ σ(ξ∗) ≫ 1), it is more convenient to work with the
corresponding Lorentz factors, Γ = (1− v2)−1/2 and Γms =
(1− c2ms)

−1/2, using the approximation

v ≈ 1− 1

2Γ2
, cms ≈ 1− 1

2Γ2
ms

. (11)

Substituting these into Eq. (6) and Eq. (5) yields

c© 0000 RAS, MNRAS 000, 000–000



6 Granot et al.

Γ2
ms ≈

σ0

2Γ
. (12)

and

ξ ≈ (Γ/Γms)
2 − 1

(Γ/Γms)2 + 1
. (13)

Combining Eq. (12) with Eq. (13) we then obtain

Γ3 ≈ σ0

2

(

1 + ξ

1− ξ

)

. (14)

The final step is to find ξ∗ = ξ∗(t) and substitute the result
into Eq. (14). In fact, in the ultra-relativistic regime Eq. (10)
yields

β∗ =
dx∗
dt

≈ 1− 1

8Γ2(ξ∗)Γ2
ms(ξ∗)

≈ 1− 1

4σ0Γ(ξ∗)
. (15)

When Γ ≪ σ0 this can be simply approximated as β∗ =
dx∗/dt ≈ 1, which gives us

x∗ ≈ t− 2l0 , ξ∗ =
x∗
t

≈ 1− 2t0
t

, (16)

(see Appendix C). Substituting this result in Eq. (14) we
finally obtain

Γ(ξ∗) =

(√J+ t

8t0

)1/3

≈
(

σ0 t

2t0

)1/3

∝ t1/3 . (17)

As a self-consistency check we note that since Γ∗ = (1 −
β2
∗)

−1/2 ≫ 1, then β∗ ≈ 1 − 1/2Γ2
∗ and equations (15) and

(17) imply

β∗ ≈ 1−
(

32σ4
0t

t0

)−1/3

, Γ∗ ≈
(

4σ4
0t

t0

)1/6

, (18)

which upon integration of β∗ yields

ξ∗ ≈ 1− 2t0
t

[

1 +
3

211/3

(

t

σ2
0t0

)2/3
]

≈ 1− 2t0
t

, (19)

thus confirming the validity of Eq. (16) for t ≪ σ2
0t0.

Therefore, in this regime the mean Lorentz factor of the
shell follows the law 〈Γ〉 ∝ t1/3. Moreover, for t = t0 Eq. (17)

gives Γ(ξ∗) ∼ σ
1/3
0 in agreement with the results obtained

in § 2.1. Thus, we may conclude that

〈Γ〉 ≈
(

σ0 t

t0

)1/3

. (20)

This regime continues until the magnetic and kinetic en-
ergies become comparable (and Γms ≃ 1), which implies
〈σ〉 ≃ 1 and 〈Γ〉 ≃ σ0. This occurs at the time

tc = t0σ
2
0 , (21)

after which the shell starts coasting at a constant Lorentz
factor 〈Γ〉 ≃ σ0 (as described in § 3.3).

In Appendix C we provide an alternative derivation of
Eq. (17), based on the explicit solution of the self-similar
rarefaction wave. Furthermore, analytic expressions are de-
rived for the rest mass M∗, kinetic energy Ekin, electromag-
netic energy EEM, and total energy (excluding rest energy)
E∗, in the region between the head of the secondary rar-
efaction wave and the vacuum interface: ξ∗(t) < ξ < ξh =
2[σ0(1 + σ0)]

1/2/(1 + 2σ0), as a function of ξ∗(t). Together
with equation (C8) for t(ξ∗) these quantities can be para-
metrically expressed as a function of the time t, and are
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Figure 3. Evolution of the shell, corresponding to the region
between the front of secondary rarefaction wave (ξ∗) and vac-
uum interface (ξh), for three different values of the initial mag-
netization: σ0 = 102 (green lines), σ0 = 103 (red lines), and
σ0 = 104 (blue lines). The top panel shows the width of this
region, ∆∗, and the rest mass M∗ within it, both normalized
by their initial values at t = t0 (when the original rarefaction
wave is secondary by the wall), as a function of t/t0. The mag-
netic flux,

∫

Bdx, has exactly the same evolution as the total
rest mass. The inset shows these quantities as well as the total
energy (kinetic+magnetic) E∗ within this region, normalized by
its initial value at t = t0, E∗0 = EEM,0 = (σ0/2)M0c2, as a func-
tion of t/tc (where tc = σ2

0t0); σ0 = 102, 103, 104 are plotted
with dotted, dashed, and solid lines, respectively. The curves for
M∗/M0 and ∆∗/∆∗0 are practically on top of each other, while
those for E∗/E∗0 are slightly offset, indicating a slower conver-
gence in the limit σ0 → ∞. The middle panel shows the evolution
of E∗/E∗0 (thick solid lines), and its decomposition into kinetic
(dashed lines) and electromagnetic (dashed-dotted lines) energies.
The bottom panel shows for σ0 = 103 the evolution of the aver-
age values (weighted by energy -Eq. [B1]) of Γ (〈Γ〉) and σ (〈σ〉)
within this region (thick lines), as well as their values at the head
of the secondary rarefaction wave (ξ∗; thin lines).
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Impulsive Magnetic Relativistic Acceleration 7

Figure 4. Numerical and self-similar solutions for shell’s “tail”.
The left panel shows the velocity and the right panel the magnetic
field B. The numerical solution is represented by solid lines and
the self-similar solution (Eq. 22) by dashed lines. The problem
parameters and units are the same as in Fig. 1. The time is t = 40
and the numerical solution is shifted along the x axis so that the
wall is now located at x = 0.

presented in Fig. 3 for σ0 = 102, 103, 104 (presumably cov-
ering the range of values most relevant for GRBs). Similarly,
we also derive the average values (weighted over the energy,
according to Eq. [B1]) of Γ (〈Γ〉∗) and σ (〈σ〉∗) within this
region, which are shown in the bottom panel of Fig. 3 for
σ0 = 103, along with Γ(ξ∗) and σ(ξ∗).

One can see that up to the time t ∼ tc = σ2
0t0 the shell

width, ∆∗, and total energy E∗ remain almost unchanged,
with ∆∗ ≈ 2l0 and E∗ being equal to the total (excluding
rest energy) energy in the initial solution, E∗0 = EEM,0 =
(σ0/2)M0c

2. At the same time, the shell’s total mass (and
magnetic flux) slowly decrease due to the gradual advance
of the secondary rarefaction into the shell. At t ≪ tc, 〈Γ〉∗
is slightly larger than Γ(ξ∗) (with the same scaling ∝ t1/3),
as expected, while 〈σ〉∗ is slightly lower than σ(ξ∗) even for
t ≫ tc.

The shell’s magnetic energy is gradually converted into
its kinetic energy: Ekin ∼ 〈Γ〉M0c

2 ∼ E0(t/tc)
1/3 at t ≪

tc = σ2
0t0), as 〈Γ〉 ≈ (σ0t/t0)

1/3 in this regime. At t ≃ 0.03tc,
when these energies become comparable, while σ(ξ∗) and
〈σ〉∗ drop below unity at t/tc ≈ 0.086 and 0.0037, respec-
tively. At t > tc the shell begins to experience significant
spreading (∆∗/∆∗0 ≈ 2−7/33(t/tc)

1/3 at t ≫ tc). Its total
mass and energy significantly decrease, indicating that the
region between vacuum and the secondary rarefaction no
longer represents the shell evolution.

The numerical solution presented in Fig. 2 suggests self-
similar evolution with characteristic linear profile for the
flow velocity, v ≃ x/t, for the region between the wall and
the shell (we will refer to this region as the shell’s tail). This
is expected in the limit where the separation between the
shell and the wall becomes much larger compared to l0, the
only characteristic length scale of the problem. As shown in
Appendix E, such similarity solution does exist,

v = ξ , ρ =
1

t

C1
√

1− ξ2
, B =

1

t

C2

1− ξ2
, (22)

where ξ = x/t < 1, and Ci are constants. Figure 4 com-
pares the similarity solution with the numerical solution at
t = 40 (σ0 = 103). One can see that there is a reasonably
good agreement between them. The first equality in Eq. (22)
shows that each fluid element moves with constant speed.
This implies that the kinetic energy for any section [ξ1, ξ2]

of the solution is conserved. However, the magnetic energy
of such a section decreases as ∝ t−1. This indicates that the
magnetic energy is transferred along the solution towards
ξ = 1, where this solution is no longer applicable (as ξ = 1
implies Γ = ∞). In order to confirm this conclusion consider
a conserved Q that satisfies equation

∂Q

∂t
+

∂F

∂x
= 0.

Next consider a fluid element bounded by x1 = ξ1t and
x2 = ξ2t. The amount of Q held by this element,

Q(ξ1, ξ2, t) =

ξ2t
∫

ξ1t

Q(x, t)dx,

satisfies the equation

d

dt
Q(ξ1, ξ2, t) = F̄ (ξ1, t)− F̄ (ξ2, t)

where

F̄ = F − ξQ

is the flux of Q through the boundary moving with speed ξ.
For the energy,

F̄e =
b2

2
v =

(B/Γ)2

8π
v =

C2
2

8πt2
ξ

1− ξ2
,

which represents the work per unit area and time done by
the fluid behind ξ on the fluid ahead of ξ (the force per unit
area is simply the magnetic pressure, f = b2/2, and thus
dW = fdx = (b2/2)vdt). This is positive and monotonically
increasing function of ξ, which implies transport of energy
through the tail towards the shell (ξ = 1), in the direction
of motion of the flow. Clearly this is due to the work done
by the magnetic pressure during the tail’s spreading. In the
tail’s head this energy is presumably converted into the ki-
netic energy.

At late times after most of the magnetic energy is trans-
formed into kinetic energy, this solution may still reasonably
describe the tail of the flow, corresponding to ballistic mo-
tion at Γ ≪ σ0. It implies that in the tail there is approxi-
mately equal rest mass per decade in Γ: dM/d ln Γ = C1/β,
dM/d ln u = C1β and

M(< β) =
C1

2
ln

(

1 + β

1− β

)

= C1 ln [Γ(1 + β)] ,

and equal energy per unit 4-velocity, dE/du = C1 or E(<
u) = dE/d ln u = C1u ∝ u, so that most of the energy is
carried by the fastest material. That is, deep in the tail there
is a good part of the total rest mass but a very small fraction
of the total energy.

2.3 Numerical simulations

In order to test the validity of our conclusions we have car-
ried out numerical simulations for the evolution of a cold
finite shell, initially highly magnetized and at rest, as it ex-
pands into vacuum. We numerically integrate the relativistic
magneto-hydro-dynamic (RMHD) Eqs. (A1-A2) in the cold
limit, where the gas pressure is set to zero. As shown in
Appendix D, the equations in spherical coordinates can be
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Figure 5. Snapshots of physical quantities from the numerical simulation of the evolution of a highly magnetized shell. Top row:
density; middle row: magnetic field; bottom row: Lorentz factor. Each column corresponds to different times. Density and magnetic field
are normalized by ρ0 and B0 such that B2

0/4πρ0c
2 = σ0. In the third and fourth columns, in order to follow the moving shell, the

x-coordinate is centered on the location xpeak of the peak of the density of the shell.

reduced to the planar case, so it suffices to find the solution
in the Cartesian one-dimensional geometry.

Short term evolution: first, in order to validate our ana-
lytic treatment in § 2.2 we used the exact same initial condi-
tions as in our analytic test case, namely a perfectly uniform,
cold and highly magnetized shell at rest. At t = 0 the shell
occupies the region −l0 < x < 0, where at x = −l0 it is
bounded by a solid wall and in the region x > 0 there is
vacuum. The magnetic field is aligned with the y-direction.
We have used the initial magnetization of σ0 = 30.

In agreement with our analytic analysis the shell sep-
arates from the wall at dimensionless time t ≈ t0 when its
thickness in the lab frame is ∆ ≈ 2l0. After this time the
solution can be described as a shell of constant thickness
∆ ≈ 2l0 followed by a low energy tail (see Fig. 2, which
shows the solution at t = 20t0). In the tail of the flow, the
velocity vx grows linearly with x as predicted in the self-
similar solution (see Appendix E).

Long term evolution: next we set out to test the long
term evolution. We used slightly modified initial conditions:
a shell of width l0 with roughly constant density and mag-
netic field, corresponding to a constant magnetization of
σ0 = 30, whose back end touches a reflecting wall on the
left (at x = −l0) and is tapered off to vacuum with a hy-
perbolic tangent profile on the right over a thickness l0/10.
That is, at t = 0 and x > −l0 we have ρ/ρ0 = (B/B0)

2 =
[1− tanh(10x/l0)]/2 and σ = B2/4πρc2 = B2

0/4πρ0c
2 = σ0.

We use a simple second-order accurate Harten, Lax, and van
Leer (HLL) scheme with Runge-Kutta third-order time in-
tegration for the numerical algorithm. The resolution is 100
cells per l0, and the Courant number is 0.25. To follow the
evolution of the relativistically moving shell for long times
without enlarging the grid, we implemented a “moving win-
dow” algorithm, where all quantities are shifted to the left

by c∆tshift cells every ∆tshift = 200 time steps. Thus, the
simulation frame effectively flies to the right at the speed of
light, and the left wall becomes causally disconnected from
the main domain. The moving window algorithm turns on
after the shell moves away from the reflecting wall by about
70l0. The size of the moving window domain is 104 cells
corresponding to 100l0.

Fig. 5 shows the profiles of density, magnetic field and
Lorentz factor at several times during the simulation, while
Fig. 6 shows the evolution of the energy-weighted aver-
age Lorentz factor (defined in Eq. B1), 〈Γ〉, with time. We
measure time and space in units of the shell crossing time
t0 = l0/c and initial shell widths l0, respectively. As ex-
pected, the evolution has several distinct phases. First, the
rarefaction wave propagates towards the reflecting wall, as
seen in the first two columns of Fig. 5. The right end of the
shell accelerates, and 〈Γ〉 reaches σ1/3

0 when the rarefaction
wave crosses the shell at t = t0. At this point the shell decou-
ples from the wall. As seen in Fig. 6, at t = t0 the evolution of
〈Γ〉 changes to the accelerating stage which takes it beyond

σ
1/3
0 , increasing as t1/3. In this regime, the shell remains

thin (∼ 2l0, third column in Fig. 5), leaving a low-density
tail behind. This is the “impulsive” stage, where the right
part of the shell accelerates at the expense of the magnetic
“exhaust” on the left. The dotted line in Fig. 6 shows the an-
alytical expectation during this stage, 〈Γ〉 = σ

1/3
0 (t/t0)

1/3,
for the parameters of the simulation. The agreement during
the accelerating stage is very good.

In the saturation (or coasting) stage, which starts
around t/t0 >∼ σ2

0 , the shell starts to spread significantly in
the lab frame (last column in Fig. 5). The evolution of 〈Γ〉
deviates from the earlier t1/3 power-law and begins to ap-
proach the asymptotic value 〈Γ〉 = σ0 (dash-dotted line in
Fig. 6), corresponding to the complete conversion of mag-
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Figure 6. Time evolution of the energy-weighted average Lorentz
factor of the shell, showing the rarefaction wave, magnetic accel-
eration and saturation stages.

netic to kinetic energy in the shell.6 In the far asymptotic
regime, the moving window of the simulation which flies at
the speed of light begins to outrun the shell, which moves
with finite Lorentz factor. Thus, the last points in the evo-
lution in Fig. 6 can be affected by the fact that a signifi-
cant fraction of the shell material is left outside the moving
window. However, the trend for saturation is clear. Overall,
our simulations support very well the analytical arguments
about the rarefaction wave, impulsive acceleration and the
saturation (or coasting) stages of the evolution of an impul-
sive flow. We have also experimented with larger values of
σ0 = 100, 1000 of the shell. We find that the t1/3 evolution
is robust and is seen in both of these cases; however, we
did not run the simulations long enough to see the ultimate
saturation, as the saturation time is much longer, scaling as
σ2
0 . We also checked that the evolution is not sensitive to

the exact shape of the initial shell.

3 “BACK OF THE ENVELOPE”

DERIVATIONS

In this section we re-derive the key results of previous sec-
tions using crude but simple calculations which help to clar-
ify its physics. They also show that this phenomenon is
rather generic and not very sensitive to exact initial con-
figuration.

3.1 Initial acceleration

As the shell expands and the flow develops, the electromag-
netic part of the solution closely follows that of vacuum

6 In this asymptotic limit, 〈Γ〉M → 1 + σ0/2 for the mass-
weighted average defined in Eq. (B3), while the exact asymptotic
value for the energy-weighted average 〈Γ〉E defined in Eq. (B1)
depends on the asymptotic distribution of dM/dΓ, which in turn
depends on the exact initial conditions. It is nonetheless always
∼ σ0.

electrodynamics. The shell (electromagnetic pulse) thick-
ness increases by a factor of two, from l0 to l1 ≈ 2l0 and
the magnetic field decreases by a factor of two, from B0 to
B ≈ B0/2. At the same time, an electric field E ≈ B is gen-
erated. Since the flow is still highly magnetically dominated
the energy conservation implies

B2
0 l0 ∼ (E2 +B2)l1 ∼ 2B2l1 .

On the other hand the mass conservation reads

ρ0l0 ∼ ρΓl1 ,

where ρ and Γ are the characteristic (“mean”) density and
Lorentz factor. From this we find that

B2

4πρΓ
∼ σ0

2
.

Since the fluid frame magnetic field B′ = B/Γ this gives

Γσ ∼ σ0

2
.

From the MHD viewpoint the shell separates from the wall
(i.e. looses causal contact with it) when its Lorentz factor
just exceeds that of the fast magnetosonic speed, given by
equation (2), which corresponds to a 4-velocity ums = σ1/2.
For σ ≫ 1 this reads

Γ ≈ σ1/2 .

Combining the last two equations we find the anticipated
results that at t0 when the shell separates from the wall,

〈Γ〉 ∼ σ
1/3
0 and 〈σ〉 ∼ σ

2/3
0 .

It is easy to see that these calculations are not sensitive to
geometry and apply equally well to planar, spherical and
cylindrical shells with a tangential magnetic field.

3.2 Acceleration after the separation

After the separation from the wall the total momentum of
the shell no longer increases and it is mainly in electromag-
netic form. However, the shell plasma (corresponding to the
front of the flow) continues to be accelerated by the magnetic
pressure gradient that has developed during the first phase.
(Although, in the laboratory frame the magnetic field is al-
most uniform the magnetic pressure is given by the strength
of magnetic field in the comoving frame B′ = B/Γ, which
is non-uniform.) Similarly, the plasma at the back of the
flow (inside the secondary rarefaction wave that develops
and propagates into the back of the shell) in decelerated by
the magnetic pressure gradient there.

Magnetic flux conservation implies that Bl ≈ const,
where l is the shell width. Therefore, the electromagnetic
energy scales as

EEM ∝ B2l ∝ l−1 ,

and thus it decreases significantly when the l increases sig-
nificantly, say doubles its initial value of l(t0) = l1 ≈ 2l0.
Since the part of the shell carrying most of the energy has
a spread in the Lorentz factor of the order of ∆Γ(t) ∼ Γ(t)
around its typical value, Γ(t), it spreads such that its width
grows as

l ∼ l1 +
t− t0
Γ2(t)

∼ l1 +
t

Γ2(t)
, (23)
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10 Granot et al.

where we use units of c = 1 and the last approximate equal-
ity holds for t ≫ t0 (factors of order unity are dropped for
simplicity). Now, l increases significantly at the time tc when
the two terms on the r.h.s of the above equation become
comparable,

tc
Γ2(tc)

∼ l1 ∼ t0 .

Since tc is also the time when the electromagnetic energy
decreases significantly, we know that at tc we must have
σ(tc) ∼ 1 and Γ(tc) ∼ σ0, regardless of the value of tc,
which we want to derive here. Thus, we find that

tc ∼ t0Γ
2(tc) ∼ t0σ

2
0 .

We have already derived in the previous subsection that
Γ(t0) ∼ σ

1/3
0 and therefore if indeed Γ increases as a power-

law with time t between t0 and tc (which is the only viable
option) then the power law index must be

d log Γ

d log t
=

log[Γ(tc)/Γ(t0)]

log(tc/t0)
=

log(σ
2/3
0 )

log(σ2
0)

=
1

3
.

Thus we obtain the anticipated scaling Γ ∝ t1/3 at t0 < t <
tc. Since Γ(t0) ∼ σ

1/3
0 this implies

Γ(t0 < t < tc) ∼
(

σ0t

t0

)1/3

.

An alternative derivation is provided in Appendix F2. Thus,
the scalings obtained for the test case of initially uniform
shell are in fact rather generic.

3.3 Coasting phase and summary of main results

At t > tc the flow essentially becomes unmagnetized (i.e.
with a low magnetization, σ < 1), its internal (magnetic)
pressure becomes unimportant dynamically, and each fluid
element within the shell coasts at a constant speed (ballistic
motion). The shell coasts at a typical Lorentz factor of Γ ∼
σ0, where the expansion of the shell during its acceleration
stage results in a dispersion ∆Γ ∼ Γ in its Lorentz factor
(i.e. that of the part of the shell carrying most of the energy)
around this value. This causes an increase in the shell width
in the lab frame, according to Eq. (23), where at t > tc the
second term on the r.h.s becomes dominant, resulting in

l

l1
≈ l

2l0
∼
{

1 ζc < 1 ,

ζc ζc > 1 ,
(24)

where ζc = t/tc ≈ R/Rc, while tc = t0σ
2
0 and Rc ≈ tc are

the coasting time and radius, respectively. Since EEM ∝ l−1

and at t > tc Ekin ≈ E = const, then σ = EEM/Ekin ∝
l−1 ∝ t−1. One can summarize this result in terms of the
lab frame time or the distance x ≈ ct of the shell from the
wall (or source), either in terms of ζc,

〈Γ〉 ∼
{

σ0ζ
1/3
c σ−2

0 < ζc < 1 ,

σ0 ζc > 1 ,

(25)

〈σ〉 ∼
{

ζ
−1/3
c σ−2

0 < ζc < 1 ,

ζ−1
c ζc > 1 ,

(26)

or in terms of ζ0 = t/t0 ≈ R/R0,

〈Γ〉 ∼
{

(σ0ζ0)
1/3 1 < ζ0 < σ2

0 ,

σ0 ζ0 > σ2
0 ,

(27)

〈σ〉 ∼
{

σ
2/3
0 ζ

−1/3
0 1 < ζ0 < σ2

0 ,

σ2
0 ζ

−1
0 ζ0 > σ2

0 .

(28)

4 SELF-ACCELERATION: A PARADOX?

The apparent self-acceleration of the plasma shell, which was
described in §§ 2 and 3, is rather unusual and even somewhat
perplexing. This self-acceleration reminds of the outrageous
tall tales of Baron Munchausen, particularly the one where
he escapes from a swamp by pulling himself up by his own
hair (or bootstraps). In this section we try to resolve this ap-
parent paradox, and clarify how the shell keeps significantly
accelerating after losing causal contact with the wall.

At the heart of the apparent paradox lies the well known
fact that for a closed system with no external forces the
center of momentum (CM) velocity, ~βCM, remains constant.
This is valid not only in the Newtonian regime, but also in
special relativity, where ~βCM is the velocity of an inertial
frame, SCM, where the total momentum of the system van-
ishes, P ′ = 0, as measured simultaneously in that frame.7 If
we denote the energy and momentum as measured in SCM

by E′ and P ′ = 0, then in an inertial frame S in which SCM

moves at a velocity ~βCM = βCMx̂, and the total energy and
momentum are E and P , a simple Lorentz transformation
implies Pz = P ′

z = 0, Py = P ′
y = 0, and

P = Px = ΓCM(P ′
x + βCME′) = ΓCMβCME′ ,

E = ΓCM(E′ + βCMP ′
x) = ΓCME′ , =⇒ βCM =

P

E
. (29)

Since in the absence of external forces P and E remain con-
stant, as measured in frame S, so does βCM.

Now, for simplicity let us consider a slight variation on
our simple test case from § 2, where at the moment the
original rarefaction wave reaches the wall (i.e., at t = t0
in the lab frame, which is identified with frame S here), the
wall is removed (and replaced by vacuum). This modification
should not have any effect on the propagation speed and
location of the head of the secondary rarefaction wave, β∗ =
dx∗(t)/dt and ξ∗(t) = x∗(t)/t, or on the flow ahead of it,
at ξ > ξ∗(t). It would affect only the region behind the
head of the secondary rarefaction wave. Therefore, it should
not affect the local dynamics of the “shell” (where the shell
refers to ξ∗(t) < ξ < ξh = βmax). However, in this case, at
t > t0 there is immediately no external force exerted on the
flow, and therefore its total momentum and energy are fixed
to their values at t = t0 (for the energy this was true also
before t0 since the wall was static in the lab frame):

P (t ≥ t0) = P (t0) =

∫ t0

0

Fdt =
B2

0

8π
t0 = M0

√

σ0(1 + σ0)

2
,

7 When viewed from this frame, it is obvious that in the absence
of any external force the total momentum P ′ = 0 remains un-
changed, so this frame remains the CM frame, and its velocity
~βCM as measured in any other inertial frame remains constant.

c© 0000 RAS, MNRAS 000, 000–000



Impulsive Magnetic Relativistic Acceleration 11

E(t ≥ 0) = M0
2 + σ0

2
, =⇒ βCM =

√

σ0(1 + σ0)

2 + σ0
. (30)

where M0 = ρ0l0 is the total rest mass (which like P , E and
F , is measured per unit area, given the 1D planar geometry).
In terms of the Lorentz factor,

ΓCM ≡
(

1− β2
CM

)−1/2
=

2 + σ0√
4 + 3σ0

≈ σ
1/2
0√
3

≪ σ0 , (31)

(the last two approximations hold for σ0 ≫ 1). In Appendix
G we derive the same result for βCM and ΓCM by calculating
the total momentum in a general rest frame (simultaneously
in that frame), and then requiring that it vanishes.

In the CM frame, SCM, the total energy is

E′ =
E

ΓCM
=

√
4 + 3σ0

2
M0 ≈

√
3

2
σ
1/2
0 M0 , (32)

i.e., a factor of ∼ σ
1/2
0 ≫ 1 larger than the rest energy.

Therefore, at late times when all of the magnetic energy is
converted into kinetic energy, the typical Lorentz factor of
fluid in this frame must be ∼ σ

1/2
0 , and in particular

〈Γ′〉M =
E′

M0
=

√
4 + 3σ0

2
≈

√
3

2
σ
1/2
0 . (33)

However, since P ′ = 0 this implies that comparable frac-
tions (of the order of one half) of the rest mass would be

moving at u′ ∼ σ
1/2
0 and at u′ ∼ −σ

1/2
0 , corresponding to

Γ ∼ σ0 and Γ ∼ 1, respectively, in the lab frame. This pic-
ture is supported by a direct calculations in the CM frame
(for details see Appendix G and in particular the discussion
around Fig. G2).

This bares a lot of resemblance to the simple mechanical
analogy that is described in Appendix F1, of two masses,
m, initially moving together with a Lorentz factor Γ in the
lab frame, and connected by a compressed ideal massless
spring with potential energy E′

pot in their initial rest frame.
The spring is then released and fully converts its potential
energy into kinetic energy of the two masses. In our case
we can take m = M0/2 and E′

pot = E′ − M0 so that the
final Lorentz factor of each mass is Γ∗ = E′/M0 in their
original rest frame. Their velocities are parallel and anti-
parallel to their original direction of motion relative to the
lab frame, denoted by subscripts ‘+’ and ‘−’, respectively.
If we choose Γ = ΓCM then Γ∗ =

√
4 + 3σ0/2 is slightly

larger than ΓCM resulting in Γ+ ≈ σ0 and β− ≈ −5/13.
Alternatively, we could choose Γ = Γ∗ 6= ΓCM so that the
mass at the back would be at rest in the lab frame: Γ− =
1 and Γ+ = Γ2(1 + β2) ≈ 2Γ2

∗ ≈ (3/2)σ0 ∼ σ0 (in this
case E is somewhat larger than in the original case since
we fixed E′ and slightly increased Γ). In either case the
mass at the front ends up with Γ+ ∼ σ0 and carries all (or
almost all) of the momentum and kinetic energy in the lab
frame, while the mass at the back has Γ− ∼ 1 and carries
a negligible fraction of the total energy and momentum. In
the CM frame, however, the two masses have equal energy
and momenta of equal magnitude in opposite directions.

Thus, the “Baron Munchausen paradox” described at
the beginning of this section is resolved as follows. First,
while in the lab frame the typical Lorentz factor at the time
t0 when the original rarefaction wave reaches the wall is
〈Γ(t0)〉 ∼ σ

1/3
0 , the center of momentum Lorentz factor is

significantly higher, ΓCM ∼ σ
1/2
0 . This difference may be

attributed to a simultaneity effect: the Lorentz factor of a
rest frame where the total momentum vanishes as measured
simultaneously in the lab frame at t0 is indeed ∼ σ

1/3
0 . How-

ever, the more physically meaningful definition of the CM
frame8 requires that the momentum be calculated simulta-
neously in that frame, and this accounts for the difference.
Second, even though ΓCM remains constant, in accord with
our Newtonian intuition, we argue that the more astrophys-
ically relevant quantity is 〈Γ〉E – the energy weighted mean
value of Γ (in the lab frame), and 〈Γ〉E does increase with
time, approaching ∼ σ0 at late times (t > tc). This is justi-
fied below (and in the discussion around Fig. G2).

It is by now clear that βCM and ΓCM remain constant
at t ≥ t0, while 〈Γ〉E grows with time and approaches ∼ σ0

at late times. At such late times, t ≫ tc = t0σ
2
0 , when all of

the magnetic energy is converted into kinetic energy,

〈β〉E ≡
∫

dEβ
∫

dE
−→

∫

dMΓβ

dMΓ
=

P

E
= βCM . (34)

One might therefore ask, why is it more relevant to take the
energy weighted average of Γ, 〈Γ〉E , rather than that of β,
〈β〉E, and then derive from it the corresponding value of Γ,
(1 − 〈β〉2E)−1/2, which approaches ΓCM at late times. The
answer is that 〈Γ〉E is more representative of the Lorentz
factor of the material that carries most of the energy in the
lab frame, which is the frame where all of our observations
are made and the external medium is at rest. This can be
seen by using the simple mechanical analogy outlined above
of two equal masses m = M0/2 that end up with Γ− = 1
and Γ+ ∼ σ0. In this case E± = Γ±m, and

〈Γ〉E =
Γ2
+ + 1

Γ+ + 1
≈ Γ+ ∼ σ0 , 〈β〉E =

Γ+β+

Γ+ + 1
,

(

1− 〈β〉2E
)−1/2

=

√

Γ+ + 1

2
= ΓCM ∼ σ

1/2
0 , (35)

so that using 〈β〉E results in ΓCM ∼ (Γ+Γ−)
1/2, which gives

too much weight to the mass that ends up at rest (Γ− = 1),
even though it carries only a very small fraction of the energy
in the lab frame, (Γ++1)−1 ∼ σ−1

0 ≪ 1. On the other hand,
〈Γ〉E is very close to Γ+, the Lorentz factor of the mass that
carries almost all of the energy in the lab frame.

The situation where part of a closed system with no
external forces is accelerated to large positive velocities at
the expense of another part of that system, which attains
large negative velocities, is analogous to a rocket. If the
rocket+fuel start at rest with no external forces, then the
total momentum remains zero all along. The body of the
rocket is accelerated to positive velocities while the burnt
fuel is thrown back with large negative velocities. That is
why we had originally dubbed the impulsive acceleration
of a shell the “magnetic rocket” effect. The analogy is not
perfect, however, as rocket acceleration implies a causal con-
nection between the body of the rocket and the exhaust. In
the case of the magnetized shell, the decelerated material
behind the secondary rarefaction wave is causally discon-
nected from the forward material. In the self-similar solu-

8 For example, with the former hybrid definition the velocity of
that frame changes with time and approaches the constant veloc-
ity of the proper CM frame only at asymptotically late times.
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tion each fluid element is accelerated by the magnetic pres-
sure gradient towards the asymptotic value of Γ ≃ 2σ0. The
secondary rarefaction, however limits the duration of such
forward acceleration. As soon as it reaches this fluid element
its forward acceleration is terminated and replaced by the
deceleration forced by the opposite pressure gradient behind
this rarefaction. Thus, while the head of the shell continues
to accelerate, the center of momentum speed for the whole
flow remains unchanged, apart from the slow increase due
to the wall effect.

5 DISCUSSION

5.1 General points

5.1.1 Impulsive versus steady-state acceleration

The main shortcoming of the steady-state magnetic accel-
eration which can be successfully overcome in the impul-
sive regime is best illustrated in the case of an uncon-
fined spherical outflow. In the steady state regime such
a flow accelerates effectively only up to the fast magne-
tosonic point, where Γ ∼ σ

1/3
0 and σ ∼ σ

2/3
0 . After this

point the acceleration becomes very slow, with Γ increas-
ing only logarithmically with distance (Tomimatsu 1994;
Beskin, Kuznetsova & Rafikov 1998), resulting in Poynting-
dominated flows on length scales of astrophysical interest.
In contrast, the impulsive magnetic acceleration allows ef-
fective conversion of electromagnetic energy, which leads rel-
atively quickly to a kinetic energy-dominated flow. During
the main phase of acceleration, after the separation from the
wall in our test case, the magnetization parameter decreases
with distance as σ ∝ R−1/3 (Γ ∝ R1/3) and then during the
coasting phase as σ ∝ R−1 (Γ ≈ constant).

The steady-state magnetic acceleration of collimated
flows (jets) is generally more effective, leading to higher
asymptotic Lorentz factors and lower magnetization com-
pared to the case of unconfined flow. However, it still leads
to the asymptotic values of magnetization parameter σ ≥ 1
(Komissarov et al. 2009a; Lyubarsky 2009, 2010). When the
pressure distribution of confining medium is a power law
pext ∝ R−α, with α > 2 the external confinement is in fact
still rather insufficient. In such conditions, jets quickly de-
velop conical streamlines and do not accelerate efficiently
afterwards as the magnetic hoop stress, magnetic pressure,
and electric force finely balance each other. The asymptotic
value of the Lorentz factor is Γ ≈ min(σ

1/3
0 θ

−2/3
j , σ0/2),

where θj is the asymptotic half-opening angle of the jet,
and the corresponding magnetization parameter is σ ≈
max( 1

2
σ
2/3
0 θ

2/3
j , 1).

When α < 2, the shape of a steady-state flow is
parabolic, rj ∝ Rα/4 (where rj is the cylindrical radius),
and its Lorentz factor grows as Γ ∝ rj ∝ Rα/4 until reach-
ing Γ ≈ σ0/2 (σ ≈ 1) after which the acceleration becomes
ineffective again (Komissarov et al. 2009a; Lyubarsky 2009,
2010). Additional acceleration mechanisms, such as the im-
pulsive acceleration mechanism discussed in this paper, are
needed to produce kinetic-energy dominated flows (As we
have already mentioned in § 1, σ ∼ 1 is still too high for effec-
tive shock dissipation.) On the other hand, for 2 > α > 4/3
the steady-state acceleration is faster compared to the im-
pulsive one. However, even if magnetic acceleration initially

occurs in a steady-state fashion and then continues in an im-
pulsive fashion, the kinetic energy-dominated regime would
still be reached at the same distance from the source. As
we shall see later, such a cooperation of two mechanisms is
natural in astrophysical context.

A related issue is the level of variability at which the
impulsive mechanism becomes significant. The best case sce-
nario is when short bursts of activity are separated by rather
long quiet periods, so that the length of almost empty space
between shells exceeds by an order of magnitude (or more)
the shell width. Then one can expect that the collisions
between shells effectively occur only in the coasting phase
where practically all of the shell energy is in the kinetic
form (see § 3.3). The issue of interaction between multi-
ple shells is best addressed numerically and this is left to a
future work. More generally, the maximum fraction of mag-
netic energy that can eventually be dissipated at standard
MHD shocks in a variable flow, generated via the impul-
sive plasma acceleration mechanism, can be estimated as
fB = (〈B2〉 − 〈|B|〉2)/〈B2〉. Essentially, this accounts for
the decrease in magnetic energy during the transition to
uniform magnetic field9 This shows that in weakly variable
flows the impulsive mechanism becomes insignificant. How-
ever, the observations of AGN and micro-quasar jets indi-
cate that violent bursts rather than smooth variability can
be more characteristic of their central engines and a similar
conclusion can be made regarding the GRB jets from the of-
ten violent variability of their gamma-ray emission. An addi-
tional shock dissipation may occur if within a single shell the
magnetic field rapidly alternates, like in the striped winds
of pulsars. In such a case, the typical gyration radius down-
stream of the shocks caused by collisions between shells may
exceed the stripes separation, leading to fast dissipation of
the alternating component of the magnetic field (Lyubarsky
2003b).

Finally, let us address the efficiency of dissipation in the
internal shocks. If the source activity duration is tv and the
duration of the quiet phase between successive shell ejections
is tgap >∼ tv then the maximum fraction of the initial mag-
netic energy that can be converted to other forms (namely
kinetic or internal) is fB = (1 + tv/tgap)

−1. If we define the
mean value of σ as the ratio of the total magnetic to non-
magnetic energies then this implies that 〈σ〉 ≥ tv/tgap when
the different sub-shells collide.10 However, internal energy is
needed in order to power the observed variable emission in
GRBs, AGN or micro-quasars. The fraction of the kinetic
energy that is converted into internal energy at the internal
shocks depends on the local value of σ at the shocks (de-
creasing with increasing σ, especially at low Mach number
shocks). Internal shocks between different sub-shells occur
at RIS ∼ Rctgap/tv >∼ Rc where the mean magnetization
of the shell is 〈σ(RIS)〉 ∼ tv/tgap, i.e. close to the above
lower limit. This suggests that the efficiency of internal en-
ergy generation in internal shocks may significantly increase

9 A similar issue arises in the theory of striped pulsar winds,
where smooth fast magnetosonic waves from an oblique rotator
eventually steepen into multiple fast shocks and the same estimate
can be used to estimate their efficiency (Lyubarsky 2003a).
10 And before the overall radial extent of the flow increases ap-
preciably, so that the expression fB = (〈B2〉 − 〈|B|〉2)/〈B2〉 that
is based on a constant total volume still holds.
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with tgap/tv . However, it could already be quite reasonable
even for tgap ∼ tv for which fB ∼ 0.5 and even though
〈σ(RIS)〉 ∼ 1, the magnetization at the head of each sub-
shell is below average (which may improve the efficiency).

5.1.2 Effects of geometry

While our test case problem deals with flows with planar
symmetry, the effects of geometry are relatively minor. It is
easy to verify that the results of “back of the envelope” cal-
culations of § 3 remain unchanged for flows with cylindrical
and spherical geometry. Appendix D shows the mathemati-
cal reason for this – a suitable variable substitution reduces
the equations with spherical symmetry to those with the
planar symmetry. From the physical point of view this rel-
ative lack of sensitivity to geometry is based on the fact
that the key factor in the impulsive acceleration is the flow
expansion in the direction parallel to the direction of mo-
tion, whereas the symmetry of the flow mainly regulates the
rate of expansion in the transverse direction. Due to the
transverse expansion of jets the transverse magnetic field,
which we assume to be dominating, decreases as B⊥ ∝ r−1

j

whereas the specific volume increases as V ∝ r2j , where rj is
the transverse length scale. The specific electromagnetic en-
ergy remains unchanged, EEM ∝ B2

⊥V ∝ r0j , and hence the
transverse expansion does not lead to magnetic acceleration.

5.1.3 Test case and astrophysical flows

The initial configuration of our test case problem can be rel-
evant for eruptive astrophysical phenomena involving fast
magnetic reconnection and restructuring of magnetic field
configuration, like the magnetar bursts (Lyutikov 2003). In
many other cases, an astrophysical central engine may op-
erate rather steadily on relatively long time scales. These
scales have to be compared with the time scale required for
the flow, which is powered by the central engine, to reach the
fast magnetosonic point of the steady-state solution. Once
the jet propagates beyond this point, its inner part becomes
much less effected by the waves which are generated at the
jet head. In particular, if the jet expands into a relatively
empty channel, then the rarefaction wave, which propagates
in the comoving jet frame only with the fast magnetosonic
speed, will be confined to the jet head and unable to prop-
agate upstream. Therefore the fraction of the jet affected
by this wave will rapidly decrease in time. For such cases,
a shell moving with super-fast-magnetosonic speed will be
a more suitable initial configuration compared to the static
shell next to a wall of our test problem.

After the shell of our test problem had separated from
the wall, the plasma acceleration was driven by the mag-
netic pressure gradient, that had been developed in the shell
prior to its separation. Thus, it is reasonable to investigate
whether a similar pressure distribution can develop in the
case where there is no wall but the shell is initially moving
with a super-fast-magnetosonic speed. In this case two rar-
efaction waves will be moving into the shell, one from its
head and another from its tail. However, due to the proper-
ties of relativistic velocity addition the head rarefaction will
be moving across the shell much faster compared to the tail

rarefaction which will almost “freeze” at the shell tail. In-
deed, in the laboratory frame the tail rarefaction propagates
with the speed

βt =
β + βms

1 + ββms
≃ 1− 1

8Γ2Γ2
ms

, (36)

where the last equality holds for Γ, Γms ≫ 1. The length of
the jet affected by this wave grows at the rate

∆βt = βt − β ≃ 1

2Γ2
. (37)

The head rarefaction propagates with the speed

βh =
β − βms

1− ββms
≃ Γ2 − Γ2

ms

Γ2 + Γ2
ms

(38)

and the length of the jet affected by this wave grows at the
rate

∆βh = β − βh ≃ 2Γ2
ms

Γ2 + Γ2
ms

≫ ∆βt . (39)

Thus, the head rarefaction crosses the shell first and creates
the magnetic pressure gradient which accelerates the shell
in the direction of the head, just like in our test case after
separation from the wall.

Moreover, in the rest frame of the shell the head rarefac-
tion starts propagating much earlier than the tail rarefaction
(due to simultaneity effects, since they start more or less si-
multaneously in the lab frame), and this is the reason why
the tail rarefaction covers only a very small fraction of the
shell even though in this frame the two rarefaction waves
propagate at the same speed (βms) in opposite directions.
In this frame, at the time the two rarefaction waves meet
(very close to the back end of the flow), the configuration is
very close to that of our modified test case, where the wall
is removed when the head rarefaction wave reaches it. This
fact is used later on, in the derivation leading to Eqs. (56)
and (57).

Another, important issue is whether the space between
different ejecta in astrophysical jets can be considered as
empty. Indeed, if the jet production is completely inter-
rupted from time to time then the external gas may rush
into the gaps between different ejecta. The speed of such a
lateral flow is obviously limited by the speed of light, and
this sets the lower limit on the length scale at which the
gaps can be considered as empty,

Rmin = ctvθ
−1
j ,

where tv is the variability time-scale of the central engine
and θj is the jet half-opening angle. (At this distance from
the central source the shell’s cylindrical radius is comparable
to the length of the gaps between shells.) For GRB jets with
tv >∼ 4 ms and θj ∼ 0.1 this gives us Rmin

>∼ 1.2 × 109cm,
and for AGN jets with tv ∼ 10 days and θj ∼ 1◦ this gives
us Rmin ∼ 1.5× 1018 cm. The sound speed of the surround-
ing gas at such distances can be much lower than the speed
of light and one may expect the empty gaps to appear at
smaller distances than Rmin (Lyutikov & Lister 2010). How-
ever, the ejecta will most certainly drive shock waves into the
surrounding gas, heating it to higher temperatures near the
jet channel. On the other hand, the increased buoyancy of
this gas will result in an outflow, which may become a super-
sonic wind. This will effectively reduce the speed with which
this gas expands into the jet openings. In fact, if θj > 1/Mw ,
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where Mw is the wind Mach number, then the wind gas will
be unable to reach the jet axis.

Moreover, the jet may have this kind of protection from
the beginning if the accretion disk produces its own super-
sonic wind (we assume here that the relativistic jet is driven
by a Kerr black hole). Close to the source, where Mw ≤ 1,
the disk wind may still try to fill the polar region, thus cre-
ating an obstruction for the re-born jet. However, it could
be pushed aside by the jet on the time scale required for
the jet to overtake the wind, ∼ tvvw/(c − vw), where vw
is the wind speed. Using the cited variability scales and
vw ∼ 0.1c we then find that empty gaps may appear al-
ready beginning from the distance of ∼ 107 cm for GRB
jets and ∼ 3× 1015 cm for AGN jets.

An impulsive operation of the central engine may well
results in trapping of some amount of weakly magnetized
and dense external gas in the gaps of intermittent highly
magnetized jet. This gas will then be accelerated by the
jet, leading to development of Rayleigh-Taylor instability,
turbulence and mixing. Clearly, this important issue requires
further investigation.

5.2 Application to GRB jets

We start by considering the propagation of a single shell
produced during an active phase of central engine of dura-
tion tv. This time may correspond to the whole duration of
gamma ray burst or to the duration of one of many shells
produced during the active phase of its central engine. The
exact nature of the jet variability is not known. In the col-
lapsar model for long GRBs and the binary merger models
for short GRBs, this may be related to advection of mag-
netic field with different polarity onto the black hole, sim-
ilar to what has been seen in recent numerical simulations
(Barkov & Baushev 2009). In any case, the shortest variabil-
ity time scale in GRBs is probably given by the “viscous”
time of the inner disk. For neutrino cooled disks this is

tv,min ≈ 4
(

α

0.1

)−6/5
(

M

M⊙

)6/5

ms , (40)

where M is the black hole mass and α is the parameter of the
α-disk model (Popham et al. 1999). In the alternative model
of GRB central engine, which replace a super-accreting black
hole with a millisecond magnetar, the nature of variability
has to be different. It could be driven by a violent restructur-
ing of magnetar magnetosphere, e.g. rising buoyant magnetic
loops and magnetic reconnection. A relatively mild case of
such restructuring, with the characteristic timescale of order
of ∼ 20 ms, has been seen in recent numerical simulations
of magnetar driven GRB jets (Komissarov & Barkov 2007).
This time scale gives us one of the characteristic length scale
of this problem, the shell width

l = ctv = 3× 108
(

tv
10ms

)

cm .

(We use the name shell rather loosely here to describe the
ejecta, which can be rather elongated and better described
as a jet close to the central engine.) There are many other
important scales in this problem.

As we have already commented on, the initial accelera-
tion of the flow can proceed in a steady state fashion. This
brings into consideration the radius of the light cylinder,

rlc, the distance to the fast magnetosonic surface, Rms, the
distance up to which the steady-state acceleration mecha-
nism remains effective, Rs, the distance at which the im-
pulsive acceleration mechanism kicks in, Rcr,t, the coast-
ing distance Rc, and finally the distance where the shell
begins to decelerate due to the interaction with the inter-
stellar medium or stellar wind gas, Rdec. There are many
unknowns in this problem. In particular, it is difficult to say
what is the exact nature of the collimating medium. The
jet is unlikely to be in direct contact with the collapsing
star. The hot jet cocoon and the wind from accretion disk
are more likely candidates. Let us suppose that the external
pressure scales as pext ∝ R−2, the most favourable case for
the steady-state collimation acceleration mechanism. Then
the steady-state jet is parabolic, R ∝ r2 (where r is the
cylindrical and R is the spherical radius), and beyond the
light cylinder, rlc = c/Ω, its Lorentz factor increases as
Γ ∼ (r/rlc) ≈ (R/rlc)

1/2 (e.g. Komissarov et al. 2009a). At

the fast-magnetosonic surface Γ ≈ σ
1/3
0 and thus this surface

is located at

Rms ∼ rlcσ
2/3
0 . (41)

If the jet is powered by a rapidly rotating black hole (a =
0.9) then rlc ≈ 4Rg, where Rg = GM/c2 is the gravitational
radius of the black hole. For the typical parameters of GRBs
this gives us

rlc = 6× 105
(

M

M⊙

)

cm , (42)

and

Rms = 6× 107
(

σ0

103

)2/3
(

M

M⊙

)

cm . (43)

Thus, for the time scale of the central source variability

tv >
Rms

c
≈ 2

(

σ0

103

)2/3
(

M

M⊙

)

ms , (44)

the source will be able to produce a steady-state super-
fast-magnetosonic flow. Since ∼ 2 ms is about the shortest
timescale for the variability of the central engine (see the end
of § 5.1.3) this must be always the case and the effects of
steady-state collimation acceleration have to be taken into
account.

As the jet propagates into an almost empty channel
cleared by the previous ejections, there will be a rarefaction
wave in its heads, making its way into the jet. However, it
will occupying only a small fraction of the jet length. In-
deed, in the source frame the speed of this rarefaction is
given by Eq. (38), which for Γ2 ≫ Γ2

ms implies βh ≃ 1, and
thus the jet length grows much faster than the width of the
rarefaction wave in its head.

The collimation acceleration becomes ineffective when
the jet half-opening angle, θj , exceeds the Mach angle, θM,
which is given by

sin θM =
1

Mms
=

Γmsβms

Γβ
, (45)

where Mms is the relativistic fast-magnetosonic Mach num-
ber. For Γ ≫ Γms ≫ 1 and thus θM ≪ 1 this reduces to
θM ≈ Γms/Γ so that the critical half-opening angle is given
by
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θj ∼ θM ∼ Γms

Γ
, (46)

where Γms ∼ σ1/2 ∼ σ
1/2
0 Γ−1/2. At this point the Lorentz

factor and magnetization parameter of the jet are

Γs ≈ σ
1/3
0 θ

−2/3
j ≈ 46

(

σ0

103

)1/3 ( θj
0.1

)−2/3

, (47)

and

σs ≈ (σ0θj)
2/3 ≈ 22

(

σ0

103

)2/3 ( θj
0.1

)2/3

, (48)

respectively. (The analysis of flows collimated by an ex-
ternal medium with a power-law pressure distribution by
Lyubarsky (2009) leads to a result that differs from this one
only by a factor of order unity.) In principle, both σ0 and θj
can be estimated from observations of GRBs and their af-
terglows. In particular, σ0 can be determined using the mea-
surements of Lorentz factor via Γ ≤ σ0, where the equality
corresponds to full conversion of the electromagnetic energy
into the bulk motion kinetic energy. The actual location of
the point where the jet Mach angle reaches its critical value
and the jet enters the freely expanding regime is less cer-
tain as it depends on the exact pressure distribution of the
confining medium. For pext ∝ R−2 we have

Rs ∼ rlcΓ
2
s ∼ rlcσ

2/3
0 θ

−4/3
j ∼ Rmsθ

−4/3
j . (49)

For the parameters typical for GRBs this gives us

Rs ≈ 1.3× 109
(

M

M⊙

)

(

σ0

103

)2/3 ( θj
0.1

)−4/3

cm . (50)

This is significantly lower compared to the radius of long
GRB progenitors, which is believed to be of the order on the
Solar radius, R⊙ ≈ 7× 1010 cm. Beyond Rs the collimation
acceleration is no longer effective.

In order to find the scale at which the impulsive accel-
eration comes into play we first need to estimate how long it
takes for the head rarefaction to cross the shell. The length
of the section of the shell which is affected by the rarefac-
tion grows with time at the rate ∆βh given by Eq. (39),
corresponding to a crossing time

tcr,h ≈ tv
∆βh

≈ tv
2

[

(

Γ

Γms

)2

+ 1

]

≈ tv
2

(

Γ

Γms

)2

, (51)

where the last equality assumes a super-fast-magnetosonic
regime. By this time the shell will propagate the distance

Rcr,h ∼ ctcr,h ∼ ctv
2

(

Γs

Γms

)2

∼ ctv
Γ2
s

σs
∼ ctvθ

−2
j . (52)

For the typical GRB parameters this gives us

Rcr,h ∼ 3× 1010
(

tv
10ms

)(

θj
0.1

)−2

. (53)

In the frame moving at a Lorentz factor Γs, at the time
the two rarefaction waves meet (very close to the back end
of the shell), the configuration is very close to that of our
modified test case at the time when the head rarefaction
wave reaches the wall and the wall is removed. The main
difference is that the initial magnetization parameter is σs

and the initial shell width is Γsctv. Thus, after the passage
of the head rarefaction wave the typical shell Lorentz factor
in this frame is

Γ∗ ∼ σ1/3
s = (σ0θj)

2/9 , (54)

and the typical value of the magnetization parameter is
σcr,h ∼ σ

2/3
s ∼ (σ0θj)

4/9. Therefore, the shell Lorentz factor
in the lab frame is

Γcr,h ∼ Γ∗Γs ∼ σ
5/9
0 θ

−4/9
j ≈ 130

(

σ0

103

)5/9 ( θj
0.1

)−4/9

. (55)

This Lorentz factor is only one order of magnitude below
the maximum value given by σ0. In fact, this may still be
only a conservative estimate as we have not taken into ac-
count the acceleration related to the transverse expansion of
the jet when it crosses the stellar surface (Komissarov et al.
2009a; Tchekhovskoy et al. 2009). This additional accelera-
tion may well increase the mean Lorentz factor by a factor of
few (in what follows we denote this factor of κ). This brings
the Lorentz factor up to Γcr,t = κΓcr,h and the magnetiza-
tion parameter down to σcr,t = σcr,h/κ. However, even after
this the jet magnetization is still too high for effective shock
dissipation.

For simplicity we assume that the stellar radius R∗
where Γ increases by a factor of κ is Rcr,h ≤ R∗ ≪ Rcr,t,
where Rcr,t is the radius where the tail rarefaction crosses
half of the original shell. We now use the similarity between
our modified test case at t0 and the shell in its rest frame
prior to the crossing of the head rarefaction (referred to as
the shell’s “initial” rest frame) at the time when the head
and tail rarefaction waves meet, as discussed below Eq. (39).
Here the shell’s “initial” rest frame would be moving with
a Lorentz factor Γf ∼ κ3/2Γs relative to the lab frame,
rather than Γs. This can be understood from the fact that
we require that after the passage of the head rarefaction
σ ∼ σ

2/3
f ∼ κ−1σcr,h ∼ κ−1σ

2/3
s so that σf ∼ κ−3/2σs and

Γf ∼ σ0/σf ∼ κ3/2(σ0/σs) ∼ κ3/2Γs.
Now, recall that in our test case significant additional

acceleration after the shell separates from the wall (i.e. at t >
t0) starts only when the head of the secondary rarefaction
wave – identified here with the tail rarefaction wave after it
meets the head rarefaction – reaches fluid with Γ ∼ σ

1/3
0 ,

i.e. Γ(ξ∗) ∼ σ
1/3
0 . This corresponds to ξ∗ ∼ 0 i.e. ξ′∗ ∼ 0

in the frame moving at Lorentz factor Γf (referred to as
the comoving frame), corresponding to the middle of the
shell after the passage of the head rarefaction wave. In our
original test case this corresponded to a single dynamical
time (≈ t0, i.e. between t = t0 and t ≈ 2t0), so we did not
pay attention to this. The comoving shell width at the time
when the two rarefaction waves meet is 2Γf ctv and therefore
in our present case it takes the tail rarefaction wave a time
t′cr,t ∼ Γf tv to reach ξ′∗ ∼ 0 in the comoving frame, which
corresponds to a time tcr,t ∼ Γ2

f tv in the lab frame. This
result can also be obtained using Eq. (37) with Γ = Γf ,
tcr,t ≈ tv/∆βt ∼ Γ2tv → Γ2

f tv. This corresponds to a radius

Rcr,t ∼ Γ2
f ctv ∼ κ3σ

2/3
0 θ

−4/3
j ctv (56)

≈ 6.5× 1011κ3
(

σ0

103

)2/3 ( θj
0.1

)−4/3 ( tv
10ms

)

cm ,

where the impulsive acceleration with Γ ∝ R1/3 begins,

Γ ∼ σ0

σ
∼ σ0

(

R

Rc

)1/3

∼ Γcr,t

(

R

Rcr,t

)1/3

, (57)

for Rcr,t < R < Rc. As a consistency check we verify that
this gives Rc ∼ Rcr,t(σ0/Γcr,t)

3 ∼ Rcr,tσ
3
cr,t ∼ σ2

0ctv, as it
should from the general considerations outlined in § 3.2.
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We find that Rcr,t ≫ Rs, which suggests that the
steady-state collimation acceleration and the impulsive ac-
celeration are scale separated. At R = Rcr,t the ratio of the
shell’s cylindrical radius, rj = θjR, to its width, lj = ctv, is

rj
lj

≈ κ3σ
2/3
0 θ

−1/3
j = 215κ3

(

σ0

103

)2/3 ( θj
0.1

)−1/3

. (58)

Thus, “shell” is indeed a suitable name for the flow at the
stage of impulsive acceleration. The coasting radius is given
by For the typical parameters of GRBs this gives us

Rc ∼ σ2
0ctv ≈ 3× 1014

(

σ0

103

)2 ( tv
10ms

)

cm , (59)

and at R > Rc the shell coasts at Γ ∼ σ0 while its magneti-
zation rapidly decreases as σ ∼ Rc/R.

Within this model, prompt gamma-ray emission due to
dissipation in internal shocks between different shells within
the highly variable outflow naturally occurs in the region
R ∼ (1–10)Rc. On the one hand, the mean plasma magneti-
zation is σ ∼ 1 at R = Rc and then it decreases linearly with
the distance. Thus, one of the conditions for effective shock
dissipation, σ ≪ 1, is satisfied in this region. On the other
hand, the width of individual shells begins to grow linearly
with the distance, allowing their collisions. (For R < Rc the
shells keep an almost constant width.) Moreover, the vari-
ation of the flow Lorentz factor in the coasting regime is
rather large, ∆Γ ∼ Γ, which may potentially help increase
the efficiency of shock dissipation up to ∼ 10% (Beloborodov
2000) or even higher (Kobayashi & Sari 2001).

In order to test the viability of our impulsive magnetic
acceleration mechanism, the coasting radius, Rc, has to be
compared with the deceleration radius, Rdec, at which most
of the energy is transferred to the swept-up shocked external
medium. In the “thin” shell regime (see below) where Rc <
Rdec and Γ(Rdec) ∼ σ0, Rdec is given by (e.g., Granot 2005),

Rdec =

[

(3− k)Eiso

4πAc2σ2
0

]1/(3−k)

(60)

=

{

2.5× 1016n
−1/3
0 E

1/3
iso,53σ

−2/3
0,3 cm k = 0 ,

1.8× 1013A−1
∗ Eiso,53σ

−2
0,3 cm k = 2 ,

for a spherical external rest mass density profile ρext =
AR−k, where σ0,3 = σ0/10

3, Eiso = 1053Eiso,53 is the
isotropic equivalent energy in the flow, n = n0 cm−3 is
the external number density for a uniform external medium
(k = 0) and A = 5 × 1011A∗ g cm−1 for a stellar wind en-
vironment (k = 2). In some GRBs the afterglow onset time
is observed, which is identified with the observed decelera-
tion time, tdec ∼ Rdec/2cΓ

2(Rdec), and may be used to infer
the values of Γ(Rdec) and Rdec, typically giving values of
Γ(Rdec) of a few hundred and Rdec ∼ 1017 cm (Sari & Piran
1999; Liang et al. 2010),

Rdec =

[

(3− k)Eisotdec
2πAc(1 + z)

]1/(4−k)

(61)

=

{

1.0× 1017n
−1/4
0 E

1/4
iso,53t

1/4
dec,2 cm k = 0 ,

1.8× 1016A
−1/2
∗ E

1/2
iso,53t

1/2
dec,2 cm k = 2 ,

where tdec/(1 + z) = 100tdec,2 s. Note, however, that this
method has an observational bias towards low values of
Γ(Rdec) and large values of Rdec that correspond to large tdec

values, since small tdec values are hard to measure as optical
or X-ray follow-up observations usually start at least tens of
seconds after the start of the prompt gamma-ray emission.
Nevertheless, even though Γ(Rdec) is the Lorentz factor of
the shocked external medium and it is close to that of the
original ejecta only for a Newtonian or mildly relativistic
reverse shock (the “think shell” case, where tdec > TGRB,
TGRB being the observed duration of the gamma-ray emis-
sion from the GRB), even for the “thick shell” case (where
tdec ∼ TGRB) this method gives Γ(Rdec) ∼ Γcr and Rdec ∼
Rcr, which is the correct deceleration radius in this regime
(the critical values of the Lorentz factor, Γcr, and radius,
Rcr, are provided below). In both regimes tdec >∼ TGRB, so
using TGRB instead of tdec in Eq. (61) gives Rcr, which is a
lower limit on the value of Rdec.

Only when Rc
<∼ 0.1Rdec the internal shock mechanism

can be sufficiently effective to explain the prompt gamma-
ray emission. Equations (61), (59) and (40) show that this is
satisfied only when the characteristic variability time scale
of the central engine is not much longer than the viscous
time scale of the inner disk (tv ∼ 10−2 s), even though
for Rdec ∼ 1017 cm, Rc

<∼ 1016 cm requires tv <∼ 0.3 s or

an observed variability time <∼ 1 s for a typical redshift
of z ∼ 2. For long GRBs, with the mean duration in the
source frame of about ∼ 10 s, this implies between a few
tens to about one thousand of individual shells. For short
GRBs, with the mean duration in the source frame of about
∼ 0.3 s, this number can be reduced down to between about
a few to a few tens. Moreover, it is generally easier to obtain
Rc < Rdec for a uniform external medium than for a stellar
wind environment, since Rdec is typically much smaller for
a stellar wind.

Now we briefly discuss the interaction with the exter-
nal medium, and when it strongly affects the flow (a more
detailed analysis will be presented in a separate work). For
simplicity, we shall consider a single shell and discard fac-
tors of order unity. Let us consider a spherical outflow of
duration t0, radial width R0 ≈ ct0, energy E, and lumi-
nosity L ≈ E/t0, propagating into a spherical external
rest mass density profile ρext = AR−k (with k < 10/3).
The regime where the Rc < Rcr < Rdec (i.e., where at
Rc only a small fraction of the total energy is transferred
to the shocked swept-up external medium), corresponds to
the well-known “thin shell” (or initially Newtonian reverse
shock) case for the deceleration of a coasting unmagnetized
(σ < 1) shell (Sari & Piran 1995; Sari 1997), which has been
investigated in the context of GRBs. Due to the spreading
of the shell at R > Rc (because of a spread ∆Γ ∼ Γ in its
Lorentz factor), the reverse shock gradually strengthens and
becomes mildly relativistic at Rdec (which in this regime is
given by Eq. [60]) where it finishes crossing the shell, and
may produce a bright emission that peaks at an observed
time tdec ∼ (1+z)Rdec/cσ

2
0 ∼ (Rdec/Rc)TGRB > TGRB (i.e.,

after the the end of the prompt GRB emission).

For the other ordering of the critical radii, Rdec = Rcr <
Rc (which may occur for large values of t0 or a stellar wind
external medium), the outflow generally never reaches a
coasting phase (so Rc loses its physical meaning as a coasting
radius), since the magnetized shell starts being significantly
affected by the swept-up shocked external medium when the
latter still has only a small fraction of the total energy. The
impulsive acceleration, Γ ∼ (σ0R/R0)

1/3, proceeds from R0
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up to a radius Ru ∼ Rcr(σ0/Γcr)
−4/(10−3k), where Γcr ∼

(ER0/Ac2)1/2(4−k) and Rcr ∼ R0Γ
2
cr ∼ (ER0/Ac2)1/(4−k).

Then, at Ru < R < Rcr the typical Lorentz factor of the
magnetized shell becomes similar to that of the swept-up ex-
ternal medium, Γ ∼ (L/Ac3)1/4R(k−2)/4, and is determined
by the pressure balance at the contact discontinuity that
separates these two regions. This is a phase of either a mod-
est deceleration (for k < 2) or a reduced acceleration (for
2 < k < 10/3) that occurs while the outflow is still highly
magnetized (σ ≫ 1 for Rdec ≪ Rc). Therefore, there might
not be a reverse shock going into the original magnetized
outflow, and even if such a shock develops, then it would be
very weak and could dissipate only a very small fraction of
the total energy. Finally, at Rcr where Γ ∼ Γcr, most of the
energy is transferred to the shocked external medium (so
that in this regime Rdec = Rcr). Therefore, at R > Rcr the
flow approaches the Blandford & McKee (1976) self-similar
solution for a spherical constant energy relativistic blast-
wave going into an unmagnetized external medium.11 At
Rcr the magnetization is still high, σ(Rcr) ∼ σ0/Γcr, where
this generalized “thick shell” regime (Rdec = Rcr < Rc)
corresponds to σ0 > Γcr, while the “thick shell” regime
(Rc < Rcr < Rdec) corresponds to σ0 < Γcr.

Altogether, the acceleration of an initially highly mag-
netized (σ0 ≫ 1) impulsive outflow via the impulsive ef-
fect and its deceleration due to the interaction with the
external medium are tightly coupled and cannot be fully
treated in isolation. That is, the magnetic acceleration nat-
urally sets the initial conditions for the interaction with
the external medium, and realistically one cannot simply
assume any arbitrary initial configuration of the magne-
tized outflow near the deceleration radius. Moreover, in the
highly magnetized “thick shell” regime there is an interme-
diate phase (Ru < R < Rcr = Rdec), where the magnetic
acceleration and the deceleration because of the external
medium balance each other, resulting either in a reduced
acceleration or in a relatively modest deceleration (as out-
lined above). If the outflow starts highly magnetized, then
it can decelerate either in the unmagnetized “thin shell”
regime (with σ(Rdec) ∼ Rc/Rdec < 1 for σ0 < Γcr) or in
the highly magnetized analog of the “thick shell” regime
(with σ(Rdec) ∼ σ0/Γcr > 1 for σ0 > Γcr). There is no high
magnetization “thin shell” regime, and in order to be in the
low magnetization “thick shell” regime, a single-shell flow
cannot start highly magnetized (σ0 ≫ 1).12

5.3 Application to AGN jets

We can apply the results obtained in the previous section to
AGN jets simply via appropriate rescaling. First, the char-

11 The previous regime, Ru < R < Rcr corresponds to another
variant of that solution, with energy injection into the shocked
external medium by a relativistic wind from the central source.
12 This might still be possible, under favourable conditions, for
a highly variable flow with a large number of high contrast sub-
shells that accelerate independently, and then quickly collide and
merge into a wider shell via internal shocks, soon after reaching
their coasting radius and σ < 1. This would amount to quasi-
continuous energy injection by subsequent sub-shells just after
the deceleration radius of the first sub-shell, thus increasing the
deceleration radius of the whole flow.

acteristic masses of black holes are higher, ∼ 107 – 109M⊙.
They are radiation cooled and the corresponding shortest
variability time scale is

tv,min ≈ 10

(

α δ2

10−3

)−1(

M

108M⊙

)

days , (62)

where δ = Hd/Rd is the ratio of the disk height to its radius
(Shakura & Sunyaev 1973).

Second, the Lorentz factors of AGN jets can be mea-
sured directly via observation of proper motion of their
knots. Such observations (mainly VLBI radio observations)
indicate relatively low Lorentz factors, of the order of a few
for weak radio sources (FR-I type) and 〈Γ〉 ∼ 10 with a
tail extending up to Γ ∼ 50 for blazars (Lister et al. 2009).
The rapid variability of gamma-ray emission from some
AGN suggests the possibility of even higher Lorentz factors
(Γ > 50, Aharonian et al. 2007). Assuming, that the mag-
netic acceleration is efficient in these sources, and hence the
observed Γ is close to σ0, we obtain a characteristic value of
σ0 ∼ 10, which is much lower compared to GRBs. In prin-
ciple, the value of σ0 can be higher near the black hole and
then decrease downstream, e.g. as a result of some mass-
loading process. However, at present we have no concrete
evidence for this. Finally, the observed half-opening angles
of blazar jets are smaller, ∼ 1◦−3◦ (Pushkarev et al. 2009).

The corresponding rescaling of the results for GRB jets
yields the light cylinder radius

rlc = 6× 1013
(

M

108M⊙

)

cm , (63)

the distance to the fast magnetosonic surface

Rms = 2.7× 1014
(

σ0

10

)2/3
(

M

108M⊙

)

cm , (64)

and the shortest variability time scale required for establish-
ing a steady-state super-fast-magnetosonic flow

tv > 2.5
(

σ0

10

)2/3
(

M

108M⊙

)

hr. (65)

Since the timescale of strong central engine variability is
unlikely to be shorter than the viscous timescale of inner
accretion disk,

tvis ∼ 100Rg/c
3 ∼ 1.0

(

M

108M⊙

)

days ,

we conclude that, just like in the case of GRBs, the initial
acceleration of AGN jets up to super-magnetosonic speeds
is provided in a steady-state fashion. Moreover, the recent
observations of AGN jets (Pushkarev et al. 2009) clearly
indicate that they satisfy the Γθj < 1 condition of effec-
tive steady-state collimation acceleration (Komissarov et al.
2009a). The observed decrease of half-opening angle with
distance in M87 jet also supports the theory of collimation
acceleration (Biretta et al. 2002; Gracia 2005).

The distance at which one half of the electromagnetic
energy is converted in the energy of bulk motion is now

Rs ≈ 0.02

(

M

108M⊙

)

(

σ0

10

)2/3 ( θj
1◦

)−4/3

pc (66)

(see also Komissarov et al. 2007). This scale is unresolved
with modern VLBI systems. The recent numerical simula-
tions show that the collimation acceleration may continue a
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bit beyond this point, reducing the magnetization down to
σ ∼ 0.4 within another decade of distance from the source
(Komissarov et al. 2007). This is still a relatively high mag-
netization leading to relatively low efficiency of MHD shock
dissipation. Additional impulsive accelerative can improve
this. This time, however, when the impulsive mechanism
switches on this is already the coasting regime. Indeed,
the fast magnetosonic speed corresponding to σ = 0.4 is
βms ∼ 0.5. Then instead of Eq.(38) the speed of the head
rarefaction is given by

βh ∼ 2Γ2 − 2

2Γ2 + 1
(67)

and the length of the section of the shell affected by the
rarefaction grows with time at the rate

∆βh = β − βh ≃ 2Γ2
ms

Γ2
ms + Γ2

. (68)

The scale of transition to impulsive regime is now

Rcr,h =
tv

∆βh
∼ ctvΓ

2. (69)

For the typical parameters of AGN jets this reads

Rcr,h ∼ 1
(

tv
10d

)(

σ0

10

)2

pc. (70)

Basically, since βms is mildly relativistic we have Rcr,h ∼
Rcr,t, and since Γ ∼ σ0 there, the two distances are also of
the order of Rc ≈ σ2

0ctv. Thus, the theory predicts effective
dissipation at internal shocks on the scales of ∼ 1 – 10 pc,
exactly the region where VLBI observations reveal bright
super-luminal knots of AGN jets. This is the AGN counter-
part of the prompt emission region of GRBs.

6 SUMMARY AND CONCLUSIONS

In this paper we investigated the properties of magnetic ac-
celeration of relativistic impulsive flows. As a first step, we
focused on a relatively simple test case where a uniform
cold and highly magnetized (σ0 ≫ 1) shell of initial width
l0, whose back end leans against a conducting “wall” and
whose head faces vacuum. The evolution of the flow that
develops in this test case splits into three distinct phases.

The first phase can be described as a formation of a
plasma pulse (or a moving shell). During this phase, which
lasts for the time ∼ t0 ≡ l0/cms,0 ≈ l0/c, a self-similar rar-
efaction wave develops at the interface with vacuum and
travels towards the wall. At the end of this phase, the mean
Lorentz factor of the outflow is only 〈Γ〉 ∼ σ

1/3
0 and, apart

from the very thin layer at the vacuum interface, the shell
of plasma is still highly magnetized, with a mean magneti-
zation parameter of 〈σ〉 ∼ σ

2/3
0 .

The first phase ends when the rarefaction wave reaches
the wall. At this point a secondary rarefaction wave forms
that propagates from the wall into the back of the shell and
decelerates the material that passes through it so that the
shell quickly separates from the wall and moves away from it.
During this second phase, the center of momentum Lorentz
factor of the shell remains fairly constant (ΓCM ∼ σ

1/2
0 ).

However, the leading part of the plasma shell, ahead of the
secondary rarefaction, continues to accelerate at the same

rate as in the self-similar solution. It contains most of the
shell energy and its mean Lorentz factor grows as 〈Γ〉 ∝ t1/3.

At the end of the second phase, which lasts up to
∼ tc ≡ σ2

0t0, the magnetization of the shell drops down to
σ ∼ 1, one half of the electromagnetic energy is converted
into the bulk motion kinetic energy of the plasma, and the
growth of the mean Lorentz factor begins to saturate at
〈Γ〉 ∼ σ0. Thus, the flow enters a phase of coasting. During
the coasting phase the pulse width grows faster, approach-
ing l ∝ t. The decrease of the magnetization parameter also
accelerates, approaching σ ∝ t−1, and the pulse soon be-
comes kinetic-energy dominated. This property of impulsive
magnetic acceleration is most valuable in astrophysical con-
text as the efficiency of relativistic MHD shock dissipation
decreases dramatically with magnetization. In contrast to
an impulsive flow, a steady-state magnetized jet either re-
mains highly magnetized (σ ≫ 1) all the way, or approaches
σ ≈ 1, depending on the efficiency of external collimation.
This implies at best only modest shock dissipation efficiency.

In some cases of truly explosive phenomena, such as
magnetar flares, our impulsive magnetic acceleration mech-
anism can be solely responsible for the flow acceleration.
In most other cases, such as GRB and AGN jets, strong
variability of their central engines is not expected on time
scales below the viscous time-scale of the inner accretion
disc around a black hole, which powers relativistic outflow.
This gives plenty of time to establish a quasi-steady super-
fast-magnetosonic flow near the source where it is acceler-
ated via the collimation mechanism. The observed strong
collimation of these jets supports our conclusion that the
collimation mechanism plays a part in their acceleration.
The impulsive acceleration mechanism comes in force fur-
ther out, where an individual ejecta element starts being
accelerated after the head rarefaction crosses it and creates
conditions similar to those of our test case flow in phases
two and three. The mean Lorentz factor of the shell, how-
ever, starts increasing significantly above the value achieved
by the quasi-steady collimation acceleration only when the
tail rarefaction wave crosses about half of the shell. Provided
the central engine variability is sufficiently strong, so that
the flow can be described as individual ejecta shells sepa-
rated by long gaps, the impulsive acceleration mechanism
can complete the acceleration process and produce kinetic
energy dominated relativistic flows on astrophysically rele-
vant distances from the central engine. For short GRBs this
may still work well even if the ejecta effectively form a single
uniform shell.

Our analysis of GRBs show that a combination of the
collimation and impulsive mechanisms can accelerate GRB
jets up to Γ >∼ 103, as has been inferred recently for several
bright GRBs detected by the Fermi Large Area Telescope,
for both long (Abdo et al. 2009a,b) and short (Abdo et al.
2010) duration GRBs.13 Moreover, their jets can become
kinetic energy dominated before the interaction with the

13 We do note, however, that these lower limits on Γ from
pair opacity are somewhat model dependent and a fully self
consistent calculation appropriate for an internal shock ori-

gin of the gamma-ray emission gives limits that are a factor
of ∼ 3 lower (Granot, Cohen-Tanugi & do Couto e Silva 2008;

Ackermann et al. 2010), Γ >
∼ 102.5, which are significantly easier

to satisfy.
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interstellar or stellar wind gas begin to decelerate the
ejecta at Rdec ∼ 1016 − 1017 cm. The dissipation at in-
ternal shocks can become efficient on scales R >∼ Rc ≈
1013(σ0/300)

2(tv/4ms) cm. The large variation of Lorentz
factor at the coasting phase, ∆Γ ∼ Γ, insures that the in-
ternal shock will be strong and can dissipate and radiate of
the order of ∼ 10% or so of the flow kinetic energy, leading
to a possibility of strong prompt emission.

The AGN jets are likely to be accelerated up to their
observed Lorentz factors already during the collimation ac-
celeration phase. However, the impulsive acceleration phase
remains important, providing effective conversion of remain-
ing electromagnetic energy and producing kinetic energy
dominated flows. Our estimates show that efficient shock
dissipation region, analogous to the prompt emission region
of GRBs, is located around ∼ 1− 10 pc, where VLBI obser-
vations reveal the presence of super-luminal “blobs”.
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APPENDIX A: SELF-SIMILAR RAREFACTION WAVE IN PLANAR SYMMETRY

The equations of relativistic MHD can be written as

∂µT
µν = 0 , ∂µF

∗µν = 0 , ∂µ(ρu
µ) = 0 , (A1)

(see Komisarov 1999, and references therein), where

T µν = (ρhg + b2)uµuν +

(

pg +
b2

2

)

gµν − bµbν , (A2)

is the energy-momentum tensor. Here ρ, wg = ρhg, pg, and uµ = (u0, ~u) = Γ(1, ~v) are the fluid proper rest mass density,
enthalpy density, pressure, and four-velocity, where Γ = (1 − v2)−1/2 is its Lorentz factor, gµν is the metric tensor, and we
use units where c = 1 for convenience. Furthermore,

F ∗µν = bµuν − bνuµ (A3)

is the dual tensor of the electromagnetic field, and bµ = (b0,~b) where

b0 = ~B · ~u = Γ ~B · ~v , ~b =
~B + b0~u

u0
=

~B

Γ
+ Γ(~v · ~B)~v , (A4)

is the four-vector of the magnetic field, which is defined as

bα =
1

2
ηαβγδu

βF γδ , (A5)

where F γδ is the electromagnetic tensor and ηαβγδ is the Levi-Civita alternating tensor. In the fluid rest frame bµ = (0, ~B)
where ~B is the usual three-vector magnetic field, divided by

√
4π, so that wm = 2pm = b2. In general, ~B is measured in the

lab frame. The three-vectors of the magnetic and electric fields in an arbitrary frame are given by

~B = F ∗i0 = ~bu0 − ~ub0 , ~E = ~b× ~u . (A6)

Similar to classical MHD, the electric current is given by the second Maxwell equation,

Jν = ∂µF
µν , (A7)

where it also includes the displacement current (time derivatives of the electric field). Finally, ∇ · ~B = ∂iF
∗i0 = 0, uµb

µ = 0,
uµu

µ = −1.
The RMHD equations simplify considerably under the assumption of a flat space-time, gµν = ηµν = diag(−1, 1, 1, 1),

and planar symmetry, i.e. that all quantities depend only on x and t in a Cartesian coordinate system (see, e.g.,
Giacomazzo & Rezzolla 2006),

∂

∂t

















ρΓ
ρhΓ2 − p− ρΓ− b0b0

ρhΓ2vx − b0bx

ρhΓ2vy − b0by

ρhΓ2vz − b0bz

By

Bz

















+
∂

∂x

















ρΓvx

ρhΓ2vx − b0bx − ρΓvx

ρhΓ2vxvx + p− bxbx

ρhΓ2vyvx − bxby

ρhΓ2vyvz − bxbz

Byvx −Bxvy

Bzvx −Bxvz

















= 0 . (A8)

Here we consider the even simpler case where vy = vz = 0 and Bx = Bz = 0 so that ~v = vx̂ and ~B = Bŷ, i.e. uµ = Γ(1, v, 0, 0)
and bµ = (0, 0, B/Γ, 0). Under these conditions, the RMHD equations further simplify to

∂

∂t







ρΓ
ρhΓ2 − p− ρΓ

ρhΓ2v
B






+

∂

∂x







ρΓv
ρhΓ2v − ρΓv
ρhΓ2v2 + p

Bv






= 0 , (A9)

and the the magnetic field in the fluid rest frame is given by B′ = B/Γ, so that the equations for the evolution of ρΓ and
B = B′Γ are the same and B/ρΓ = B′/ρ = const. Thus, we are left with three equations for three variables (e.g., ρ, Γ, and
pg), where we also need to assume an equation of state. In our notation

h = hg +
b2

ρ
, hg = 1 + ǫ+

pg
ρ

= 1 +
γ

γ − 1

pg
ρ

, (A10)

where ǫ = eint/ρ and eint = ǫρ = wg − pg − ρ is the proper internal energy density of the fluid, while γ is the adiabatic index
of the fluid. The total pressure is given by p = pg + pm = pg + b2/2.

We are looking for rarefaction wave solutions, which are self similar, i.e. all quantities depend of x and t only through
their ratio, which is defined as the self-similar variable: ξ ≡ x/t. In rarefaction waves the specific entropy, s, of every fluid
element is conserved, and therefore 0 = ds/dt = ∂s/∂t+v∂s/∂x. Since ∂/∂x = (1/t)d/dξ and ∂/∂t = −(ξ/t)d/dξ, this implies
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(v− ξ)s′ = 0 where a prime denotes a derivative with respect to ξ (s′ ≡ ds/dξ), and therefore s′ = 0 and s = const (in general
v 6= ξ). Therefore, the flow is isentropic, and we may simply relate the pressure to its value ahead of the rarefaction wave,

b2 =

(

B0

ρ0

)2

ρ2 = ρ0σ0ρ̃
2 , (A11)

pg = pg,0

(

ρ

ρ0

)γ

= ρ0a0ρ̃
γ , (A12)

p = pg,0

(

ρ

ρ0

)γ

+
1

2

(

B0

ρ0

)2

ρ2 = ρ0

(

a0ρ̃
γ +

σ0

2
ρ̃ 2
)

, (A13)

ρh = ρ+
γ

γ − 1
pg,0

(

ρ

ρ0

)γ

+B2
0

(

ρ

ρ0

)2

= ρ0

(

ρ̃+
γ

γ − 1
a0ρ̃

γ + σ0ρ̃
2

)

, (A14)

where ρ̃ ≡ ρ/ρ0, a0 ≡ pg,0/ρ0, and σ0 ≡ B2
0/ρ0 is the magnetization parameter of the fluid ahead of the rarefaction wave

(which is assumed to be at rest in the lab frame: Γ0 = 1).
equation A9 can be expressed in terms of the self-similar variable ξ as

0 = (v − ξ)(ρ′ + ρΓ2vv′) + ρv′ , (A15)

0 = (v − ξ)(ρhΓ2)′ + ξp′ + ρhΓ2v′ , (A16)

0 = (1− vξ)p′ + (v − ξ)ρhΓ2v′ . (A17)

Let cs, cA, and cms denote the sound speed, the Alfv́en speed, and the fast magnetosonic speed, respectively. We have
c2s = (1/hg)(∂pg/∂ρ)s and c2A = b2/ρh, so that hg/h = 1− c2A and

c2ms =
1

h

(

∂p

∂ρ

)

s

= c2A + c2s(1− c2A) , (A18)

which implies p′ = c2mshρ
′. Therefore, Eq. (A17) can be rewritten as

0 = (1− vξ)c2msρ
′ + (v − ξ)ρΓ2v′ . (A19)

equation. A15 and A19 imply c2ms = [(v − ξ)/(1− vξ)]2 and therefore

cms = ± v − ξ

1− vξ
, (A20)

where the plus and minus signs correspond to rarefaction waves propagating to the left and right, respectively. This also
implies

ξ =
v ∓ cms

1∓ vcms
. (A21)

The velocities of the tail (where v = 0) and of the head (where cms = 0) of the rarefaction wave are given by

ξt = ∓cms , ξh = ±vmax , (A22)

where vmax = max |v| is obtained at the head of the rarefaction wave. As expected, the tail of the rarefaction wave propagates
into the fluid at rest at the fast magnetosonic speed.

equation. A19 and A20 imply

Γ2dv ± cms

ρ
dρ = 0 =⇒ J± =

1

2
ln
(

1 + v

1− v

)

±
∫ ρ̃

0

cms(ρ̃
′)

ρ̃ ′ dρ̃ ′ = const . (A23)

Under our assumptions,

cms(ρ̃) =

√

γa0ρ̃ γ−1 + σ0ρ̃

1 + γ
γ−1

a0ρ̃ γ−1 + σ0ρ̃
, (A24)

so that the integral in Eq. (A23) can be calculated analytically in the simple cases where σ0 = 0 (B0 = 0), or a0 = 0 (pg,0 = 0).
In the first limit (σ0 = 0, i.e. no magnetic field),

J± =
1

2
ln
(

1 + v

1− v

)

± 1√
γ − 1

ln

(√
γ − 1 + cs√
γ − 1− cs

)

= const , (A25)

(Marti & Múller 1994) so that

(

1 + v

1− v

)

(√
γ − 1 + cs√
γ − 1− cs

)± 2√
γ−1

= const , (A26)
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and in the limit a0 ≫ 1 and γ = 4/3 this implies Γmax ≫ 1 which is approximately given by,

Γmax ≈ 1

2

[

4γa0

(γ − 1)

](γ−1)−1/2

=

{

24
√

3−1a
√
3

0 (γ = 4/3) ,

4a0 = 4pg,0/ρ0 (γ = 2) .

(A27)

In the second limit (a0 = 0) we find

J± =
1

2
ln
(

1 + v

1− v

)

± 2ArcSinh
(

√

σ0ρ̃
)

=
1

2
ln
(

1 + v

1− v

)

± 2 ln
(

√

σ0ρ̃+
√

σ0ρ̃+ 1
)

= const , (A28)

so that
(

1 + v

1− v

)(

√

σ0ρ̃+
√

σ0ρ̃+ 1
)±4

= const , (A29)

and in the limit σ0 ≫ 1 we have

Γmax ≈ 2σ0 . (A30)

It can be seen that the purely magnetic case, a0 = 0, is equivalent to the pure hydrodynamic case, σ0 = 0, for γ = 2 and
a0 → σ0/2. In the more general case,

J± =
1

2
ln
(

1 + v

1− v

)

± I(ρ̃) = ±I(1) = const , (A31)

where

I(ρ̃) =

∫ ρ̃

0

dρ̃

ρ̃

√

γa0ρ̃γ−1 + σ0ρ̃

1 + γ
γ−1

a0ρ̃γ−1 + σ0ρ̃
, (A32)

so that

vmax =
exp[2I(1)]− 1

exp[2I(1)] + 1
, Γmax =

exp[I(1)]

1 + vmax
=

exp[2I(1)] + 1

2 exp[I(1)]
(A33)

and

v = ± exp[2Ĩ(ρ̃)]− 1

exp[2Ĩ(ρ̃)] + 1
, Γ =

exp[2Ĩ(ρ̃)] + 1

2 exp[Ĩ(ρ̃)]
, (A34)

where

Ĩ(ρ̃) = I(1)− I(ρ̃) =

∫ 1

ρ̃

dρ̃

ρ̃

√

γa0ρ̃γ−1 + σ0ρ̃

1 + γ
γ−1

a0ρ̃γ−1 + σ0ρ̃
. (A35)

APPENDIX B: THE AVERAGE LORENTZ FACTOR

The maximal Lorentz factor Γmax is only asymptotically reached at the very head of the rarefaction wave, and only a small
amount of material which carries a small fraction of the total energy has Γ ∼ Γmax. Therefore, it makes sense to calculate
some average value of the Lorentz factor, which would reflect better the Lorentz factor of the material that carries most of
the energy. A natural definition is the weighted average over the energy,

〈Γ〉E ≡
∫

ΓdE
∫

dE
=

∫

dxT 00 Γ
∫

dxT 00
=

∫ ξh

ξt
dξ T 00 Γ

∫ ξh

ξt
dξ T 00

, (B1)

where

T 00 = ρ0

[

Γ2

(

ρ̃+
γ

γ − 1
a0ρ̃

γ + σ0ρ̃
2

)

− a0ρ̃
γ − σ0

2
ρ̃2
]

. (B2)

Another possible definition is the weighted average over the rest mass,

〈Γ〉M ≡
∫

ΓdM
∫

dM
=

∫

dxΓ2ρ
∫

dxΓρ
=

∫ ξh

ξt
dξ Γ2ρ

∫ ξh

ξt
dξ Γρ

. (B3)

We note that for a cold magnetized shell, at late times when almost all of the energy is in kinetic form and the magnetic
energy becomes negligible, the enumerator approaches E/c2, and since the denominator is simply the rest mass M , then 〈Γ〉M
approaches E/Mc2 = 1 + σ0/2. Alternative options to define a “typical” Lorentz factor are its average over space
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Figure B1. Right panel: four different estimates for the “typical” Lorenz factor, 〈Γ〉, within a rarefaction wave for the pure hydrody-
namic case (σ0 = 0) and for an adiabatic index of γ = 4/3, as a function of a0 = p0/ρ0c2. Various symbols show different weightings of
Γ. Left panel: the same four estimates of the “typical” Lorenz factor within the rarefaction wave for the pure magnetic case (a0 = 0),

as a function of σ0. The red solid line corresponding to 〈Γ〉 = σ
1/3
0 has been added for reference.

〈Γ〉x ≡
∫

dxΓ
∫

dx
=

∫ ξh

ξt
dξ Γ

∫ ξh

ξt
dξ

, (B4)

or its value at the point where there are equal energies on either side within the rarefaction wave in the lab frame (i.e. the
“energy median” value),

〈Γ〉E,med ≡
{

Γ(x1/2)

∣

∣

∣

∣

∣

∫ x1/2

xmin

dx T 00 =

∫ xmax

x1/2

dxT 00

}

=

{

Γ(ξ1/2)

∣

∣

∣

∣

∣

∫ ξ1/2

ξt

dξ T 00 =

∫ ξh

ξ1/2

dξ T 00

}

, (B5)

where xmin = tξt and xmax = tξh (see Eq. A22).
Figure B1 shows these three estimates for the typical Lorentz factor within the rarefaction wave, for the pure hydrodynamic

case (σ0 = 0; left panel) and for the pure magnetic case (a0 = 0; right panel). In the pure hydrodynamics case the typical
Lorentz factor of the material in the rarefaction wave is only mildly relativistic even in the limit of a0 ≫ 1, where it approaches
a constant value, while Γmax rapidly increases with a0 (see Eq. A27). In the purely magnetic case, we find that the typical

value of the Lorentz factor within the rarefaction wave is 〈Γ〉 ≈ σ
1/3
0 , while its maximal value at the head of the rarefaction

wave is Γmax ≈ 2σ0.

APPENDIX C: ANALYTIC DERIVATIONS FOR THE RAREFACTION WAVES

C1 Explicit solution for the original self-similar rarefaction wave

Equation (5) can be written as

δ2ξ = δ2vδ
−2
cms

, (C1)

and Eq. (6) as

δ2vδ
4
cms

= δ4cms,0
= J+ =

(√
σ0 +

√
σ0 + 1

)4
, (C2)

where δX is defined via

δ2X =
1 +X

1−X
, X =

δ2X − 1

δ2X + 1
.

This allows us to find all flow variables as explicit functions of ξ:

δv = (δcms,0δξ)
2/3 , v =

(δcms,0δξ)
4/3 − 1

(δcms,0δξ)
4/3 + 1

, Γ =
(δcms,0δξ)

4/3 + 1

2(δcms,0δξ)
2/3

, u = Γv =
(δcms,0δξ)

4/3 − 1

2(δcms,0δξ)
2/3

, (C3)

δcms
=

δ
2/3
cms,0

δ
1/3
ξ

, c2ms =
σ

1 + σ
=

[

δ
4/3
cms,0δ

−2/3
ξ − 1

δ
4/3
cms,0δ

−2/3
ξ + 1

]2

, (C4)

σ

σ0
=

ρ

ρ0
=

B′

B0
=

B

ΓB0
=

1

4σ0

(

δ
2/3
cms,0

δ
1/3
ξ

−
δ
1/3
ξ

δ
2/3
cms,0

)2

, (C5)
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(this result is due to Lyutikov 2010a, with a small correction in Eq. (C5)). The extent of the rarefaction wave is given by the
conditions δcms

= 1 for the right front and δv = 1 for the left front. They yield δ−1
cms,0

≤ δξ ≤ δ2cms,0
.

C2 Motion of the head of the secondary rarefaction wave

The overall impression created by Fig. 2 is that of an effective separation of the shell from the wall. The region between
x = 18l0 and x = 20l0 contains most of the total mass and energy of the initial solution. This somewhat surprising result can
be verified in a different way. In the fluid frame the front of secondary rarefaction moves with the local magnetosonic speed.
In the lab frame this corresponds to

β∗ ≡ dx∗
dt

=
v(ξ∗) + cms(ξ∗)

1 + v(ξ∗)cms(ξ∗)
=

δ
8/3
cms,0δ

2/3
ξ∗

− 1

δ
8/3
cms,0δ

2/3
ξ∗

+ 1
, (C6)

where v(ξ) and cms(ξ) describe the self-similar solution for the initial rarefaction (Eqs. [C3], [C4]). Noting that dξ∗/dt =
[(dx∗/dt)− ξ∗]/t, and dδ2ξ∗/dt = (dδ2ξ∗/dξ∗)(dξ∗/dt) = (dξ∗/dt)(δ

2
ξ∗ + 1)2/2, equation (C6) can be rewritten as

dδ2ξ∗
d ln t

= δ2ξ∗ + 1− (δ2ξ∗ + 1)2

δ
8/3
cms,0(δ

2
ξ∗
)1/3 + 1

, (C7)

which has the solution (Lyutikov 2010a)

t

t0,∗
= (δ2ξ∗ + 1)

[

1−
(

δ2ξ∗
δ4cms,0

)2/3
]−3/2

, (C8)

where δξ∗ < δ2cms,0
and

t0,∗
t0

=
(δ4cms,0

− 1)3/2

δ4cms,0(δ
2
cms,0 + 1)

=
4σ

3/4
0 (1 + σ0)

1/4

(√
1 + σ0 +

√
σ0

)2
. (C9)

For σ0 ≫ 1 we find that t0,∗ ≈ t0 so that at t ≫ t0 we have δ2ξ∗ ≈ 2/(1− ξ∗) ≫ 1 and

t

t0
≈ 2

1− ξ∗

[

1− 1

4σ
4/3
0 (1− ξ∗)2/3

]−3/2

, 1− ξ∗ ≈ 1

8σ2
0

[

1 +

(

t

16σ2
0t0

)−2/3
]3/2

≈
{

2t0/t t ≪ 16σ2
0t0 ,

1/8σ2
0 t ≫ 16σ2

0t0 ,
(C10)

For σ0 ≫ 1 we also have δ2cms,0
≈ 4σ0, so that for t0 ≪ t ≪ 16σ2

0t0, where δ2ξ∗ ≈ t/t0, equations (C3) and (10) imply

Γ(ξ∗) ≈
(

σ0t

2t0

)1/3

, Γ∗ = (1− β2
∗)

−1/2 ≈
(

4σ4
0t

t0

)1/6

. (C11)

Note that Γ∗ is the Lorentz factor of the motion of the head of the secondary rarefaction wave, while Γ(ξ∗) is the Lorentz
factor of the fluid at that location.

C3 Analytic calculation of physical quantities at ξ > ξ∗(t)

It is instructive to calculate the values of relevant physical quantities in the region between the head of the secondary
rarefaction wave and the vacuum interface, which corresponds to ξ∗(t) < ξ < βmax. In particular, it can help verify that this
region contains most of the energy and rest mass in the flow during the magnetic rocket acceleration phase (at t ≪ tc = σ2

0t0).
Using equations (C3) and (C5), at a given time t we have dx = tdξ so that the rest mass per unit area at ξ > ξ∗ is given by

M [> ξ∗(t)] =

∫ xvac(t)

x∗(t)

dxΓ(x)ρ(x) =
ρ0t

8σ0

∫ βmax

ξ∗(t)

dξ

(

δ2/3cms,0
δ
2/3
ξ +

1

δ
2/3
cms,0δ

2/3
ξ

)(

δ
2/3
cms,0

δ
1/3
ξ

−
δ
1/3
ξ

δ
2/3
cms,0

)2

, (C12)

where

βmax =
2
√

σ0(1 + σ0)

1 + 2σ0
, (C13)

is the maximal fluid velocity, which is obtained at the vacuum interface, while ξ∗(t) is given implicitly by equation (C8). One

can change variables of integration to δ2ξ and then to y = δ
2/3
ξ , using the relations

dξ =
2dδ2ξ

(δ2ξ + 1)2
=

6y2dy

(y3 + 1)2
, (C14)

and use the simple expression for the initial mass, M0 = ρ0l0 = ρ0t0[σ0/(1 + σ0)]
1/2, to obtain the following expression for

the fraction of the initial rest mass at ξ > ξ∗(t),
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M [> ξ∗(t)]

M0
=

3
√
1 + σ0

4σ
3/2
0

(

t

t0

)

∫ a2

ymin(t)

dy
y2

(y3 + 1)2

(

ay +
1

ay

)(

a2

y
− 2 +

y

a2

)

=

√
1 + σ0

4σ
3/2
0

(

t

t0

)

(a2 − ymin)
3

a3(y3
min + 1)

, (C15)

where ymin(t) = δ
2/3

ξ∗(t)
and a = δ

2/3
cms,0 . This result can be written more explicitly and simplified using Eqs. (C8) and (C9),

M [> ξ∗(t)]

M0
=

4(1 + σ0)
(√

1 + σ0 +
√
σ0

)2

[

1 +

(

δ2ξ∗(t)

δ4cms,0

)1/3
]−3

(

δ2ξ∗(t) + 1
)

(

t0
t

)

≈
{

1 t ≪ σ2
0t0 ,

2σ2
0t0/t t ≫ σ2

0t0 ,
(C16)

where the last asymptotic values are valid for σ0 ≫ 1.
Using Eq. (C10), one can calculate the fractional change in the width of the region between the secondary rarefaction

wave and the vacuum rarefaction, ∆∗(t) = t[ξh − ξ∗(t)], where ξh = βmax,

∆∗(t)

∆∗(t0)
=

t[ξh − ξ∗(t)]

t0[ξh − ξt]
≈
[

1 +

(

t

16σ2
0t0

)2/3
]3/2

− t

16σ2
0t0

≈
{

1 + (3/2)(t/16σ2
0 t0)

2/3 t ≪ 16σ2
0t0 ,

(3/2)(t/16σ2
0 t0)

1/3 t ≫ 16σ2
0t0 ,

(C17)

where ξt = −cms,0 = −[σ0/(1 + σ0)]
1/2, ∆∗(t0) = t0cms,0

3+4σ0

1+2σ0
≈ 2t0, and the asymptotic values are valid for σ0 ≫ 1.

The kinetic energy, Ekin =
∫

dxΓ(Γ− 1)ρ, is given by

Ekin[> ξ∗(t)]

M0
=

3
√
1 + σ0

8σ
3/2
0

(

t

t0

)

∫ a2

ymin(t)

dy
y2

(y3 + 1)2

(

ay +
1

ay

)(

ay +
1

ay
− 2

)(

a2

y
− 2 +

y

a2

)

=

√
1 + σ0

8σ
3/2
0

(

t

t0

)

[

f(a2)− f(ymin(t))
]

, (C18)

f(y) =
2a+ 6a4 + 2a7 − (4a2 + 6a5 + a8)y + (1 + 6a3 + 4a6)y2

a4(1 + y3)

+
1− 2a2 − 2a6 + a8

√
3 a4

arctan

(

2y − 1√
3

)

+ 3 ln(y) +
(a2 + 1)3(a2 − 1)

3a4
ln

(

1 + y
√

1 + y2 − y

)

. (C19)

The electromagnetic energy, EEM =
∫

dxρ0σ0(Γ
2 − 1

2
)(ρ/ρ0)

2, can be calculated in a similar way,

EEM[> ξ∗(t)]

EEM,0
=

2

σ0

EEM[> ξ∗(t)]

M0
=

3
√
1 + σ0

16σ
5/2
0

(

t

t0

)

∫ a2

ymin(t)

dy
y2

(y3 + 1)2

(

a2y2 +
1

a2y2

)(

a2

y
− 2 +

y

a2

)2

=
3
√
1 + σ0

16σ
5/2
0

(

t

t0

)

[

g(a2)− g(ymin(t))
]

, (C20)

g(y) =
y

a2
− a2

y
− 1 + 8a6 + a12 − 7a4y − 4a10y + 4a2y2 + 7a8y2

3a6(1 + y3)

−4(1− 2a2 − 2a6 + a8)

33/2 a4
arctan

(

2y − 1√
3

)

− 4 ln(y)− 4(a2 + 1)3(a2 − 1)

9a4
ln

(

1 + y
√

1 + y2 − y

)

. (C21)

The total energy (including rest energy) is simply
∫

T 00dx = M +Ekin +EEM. This can be used for the normalization when
calculating the average values of quantities weighed by

T 00(y, a) =
ρ0

64σ0

[

4

(

ay +
1

ay

)2(

a2

y
− 2 +

y

a2

)

+

(

a2y2 +
1

a2y2

)(

a2

y
− 2 +

y

a2

)2
]

. (C22)

We find that

E[> ξ∗(t)]

E0
=

2E[> ξ∗(t)]

(2 + σ0)M0
=

√
1 + σ0

16(2 + σ0)σ
3/2
0

(

t

t0

) (a2 − ymin)
3
[

ymin(1 + a6) + 3a2(1 + a2y2
min)

]

a6ymin(y3
min + 1)

, (C23)

and the same holds for the energy above some ξ > ξ∗(t) where ymin(t) = δ
2/3

ξ∗(t)
is replaced by y(t) = δ

2/3
ξ . In order to calculate

the mean Lorentz Γ factor or magnetization σ at ξ > ξ∗ (denoted by 〈Γ〉∗ and 〈σ〉∗, respectively) one needs to calculate the
following integrals:

1

M0

∫ xvac(t)

x∗(t)

dx T 00 Γ =

√
1 + σ0

σ
3/2
0

(

t

t0

)

[

fΓ(a
2)− fΓ(ymin(t))

]

, (C24)

fΓ(y) = −3(a2 − y4)

128ay2
− 9a4(1 + a6) + a2(1− 25a6 + a12)y − (1− 25a6 + a12)y2

64a7(1 + y3)
− 3(a6 − 1)

64a3
ln(1 + y3) +

3(a6 − 2)

64a3
ln(y)
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+
(1 + a2)(1− 7a6 + a12)

64
√
3 a7

arctan

(

2y − 1√
3

)

+
(a2 − 1)(1− 7a6 + a12)

192a7
ln

(

1 + y
√

1 + y2 − y

)

. (C25)

1

M0

∫ xvac(t)

x∗(t)

dxT 00σ =

√
1 + σ0

σ
3/2
0

(

t

t0

)

[

fσ(a
2)− fσ(ymin(t))

]

, (C26)

fσ(y) = −3(a8 − 4a6y + 4a2y3 − y4)

256a4y2
+

2a2(1− 25a6 + a12)− (1− 34a6 − 8a12)y − a4(8 + 34a6 − a12)y2

128a8(1 + y3)
− 3

128
ln(y)

+
1 + 10a4 − 16a6 − 16a10 + 10a12 + a16

128
√
3 a8

arctan

(

2y − 1√
3

)

+
(a2 + 1)5(1− 5a2 + 5a4 − a6)

384a8
ln

(

1 + y
√

1 + y2 − y

)

. (C27)

APPENDIX D: GENERALIZING TO A SPHERICAL FLOW

Here we consider the case of cold (pg = 0) radial flow. We assume that the flow is one-dimensional and the magnetic field is
perpendicular to the radial direction. Obviously, this is not fully self-consistent, but this is a reasonable approximation for an
equatorial wedge. More accurate two dimensional treatments are saved for future works.

The basic equations for a one dimensional flow in spherical symmetry are

∂t(ρΓ) +
1

r2
∂r(r

2ρΓv) = 0 (continuity) , (D1)

∂t(bΓ) +
1

r
∂r(rbΓv) = 0 (magnetic field) , (D2)

∂t

[

(ρ+ b2)Γ2 − b2

2

]

+
1

r2
∂r

[

r2(ρ+ b2)Γ2v
]

= 0 (energy) , (D3)

∂t

[

(ρ+ b2)Γ2v
]

+
1

r2
∂r

[

r2
(

(ρ+ b2)Γ2v2 +
b2

2

)]

= 0 (momentum) , (D4)

where v is the velocity, b = B/
√
4π Γ, and B is the (azimuthal) magnetic field as measured in the source frame.

One can introduce new variables, b̄, ρ̄ and x as follows

ρ = r−2ρ̄ , b = r−1b̄ , x = r , (D5)

which upon substitution into Eqs. (D1-D3) yield

∂t(ρ̄Γ) + ∂x(ρ̄Γv) = 0 , (D6)

∂t(b̄Γ) + ∂x(b̄Γv) = 0 , (D7)

∂t

[

(ρ̄+ b̄2)Γ2 − b̄2

2

]

+ ∂x

[

(ρ̄+ b̄2)Γ2v
]

= 0 , (D8)

∂t

[

(ρ̄+ b̄2)Γ2v
]

+ ∂x

[(

(ρ̄+ b̄2)Γ2v2 +
b̄2

2

)]

= 0 . (D9)

These equations are identical to those of plane cold (pg = 0) flow. Therefore, all the results obtained for the planar case,
including the self-similar solution, can be utilized in the spherical case.

After the substitution p̄ → b̄2/2, Eqs. (D6) ,(D8), and (D9) also become identical to those of unmagnetized plasma. From
Eqs. (D6) and (D7) it follows that b̄/ρ̄ = const, and p̄ ∝ ρ̄2. Thus, the ratio of specific heats for this plasma is γ = 2.

APPENDIX E: SELF-SIMILAR SOLUTION FOR THE SHELL’S TAIL.

Our starting point is Eqs. (D6)-(D9), which are valid for both the planar and spherical (after the substitution (D5)) cases.
Equations (D6) and (D7) imply

d

dt

(

b̄

ρ̄

)

= 0 , (E1)

that is b̄/ρ̄ remains constant for each fluid element, and is determined by the initial conditions.
Just like in Appendix A we introduce the self-similar variable ξ = x/t, but this time we seek solutions of the form

v = V (ξ) , ρ̄ = tαF (ξ) , b̄ = tαG(ξ) (E2)

(Since b̄/ρ̄ remains constant for each fluid element, b̄ and ρ̄ must have the same temporal scaling.). Using Eqs. (D6) and (D7),
Eq. (D9) can be reduced to
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ρ̄Γ
(

∂Γv

∂t
+ v

∂Γv

∂x

)

+ b̄2Γ2 ∂v

∂t
+

1

2

∂b2

∂x
= 0. (E3)

Substituting the expressions (E2) into this equation we obtain

tαFΓ(V − ξ)(ΓV )′ + t2α(GG′ −G2Γ2ξV ′) = 0. (E4)

This equation is satisfied for any t only in the following two cases. First, if α = 0 – this is the case of simple rarefaction wave
analyzed in Appendix A. Second, if

V = ξ , (E5)

and

GG′ −G2Γ2ξV ′ = 0 . (E6)

Integrating the last equation (after substitution of equation [E5] into it) we find that

G(ξ) =
A

√

1− ξ2
= AΓ(ξ) . (E7)

Substitution of expressions (E2) into Eqs. (D6) and (D7) leads to

(1 + α)F = 0 , (1 + α)G = 0 , (E8)

which are satisfied when α = −1. Function F (ξ), however, remains undefined.
If the initial solution is uniform, as in the planar case considered in § 2, with ρ0 and b0 being the initial rest mass density

and magnetic field respectively, then from Eq. (E1) we obtain

ρ̄ =
ρ̄0

b̄0
b̄ , (E9)

and thus,

F (ξ) =
ρ̄0

b̄0
G(ξ) =

ρ̄0

b̄0

A
√

1− ξ2
. (E10)

Thus, a self-similar solution of the required form does exist. In planar geometry, this is

v = ξ , b =
1

t

A

(1− ξ2)1/2
, ρ =

F (ξ)

t
, (E11)

and in the spherical geometry

v = ξ , b =
1

t2
A

ξ(1− ξ2)1/2
, ρ =

1

t3
F (ξ)

ξ2
. (E12)

In both cases the magnetization parameter of fluid elements decreases linearly with time:

σ =
b2

ρ
=

b̄2

ρ̄
∝ t−1 . (E13)

Clearly, this solution is only applicable for ξ < 1. Moreover, it cannot be simply truncated at some large ξ and continued
with vacuum. Instead, it should terminate at a shock or smoothly transform into a non-self-similar flow. For our simple test
problem, this solution cannot become asymptotically valid up to ξ = βmax given by Eq. (C13) at very late times (t ≫ tc),
since it cannot simultaneously satisfy the global conservation of energy and rest mass for an initially uniform shell. This
implies a limited region of applicability, in the tail of the flow but not at its head.14 General considerations, however, show
that some similar scalings still apply at the head of the flow at late times: σ ∝ t−1 while ρ ∝ t−1 (t−3) in planar (spherical)
geometry. Moreover, v = ξ at asymptotic late times when the magnetic pressure becomes dynamically unimportant and each
fluid element moves ballistically.

Finally, we calculate the scalings of the total kinetic Ekin(t, ξ1, ξ2) and magnetic EB(t, ξ1, ξ2) energy of a fluid element
bounded by x1 = ξ1t and x2 = ξ2t. Both in planar geometry, where dV ∝ dx = tdξ, and in spherical geometry, where
dV ∝ r2dr = t3ξ2dξ, we obtain

Ekin(t, ξ1, ξ2) =

∫

dV ρΓ(Γ− 1) ∝ t0 , (E14)

EB(t, ξ1, ξ2) =

∫

dV b2
(

Γ2 − 1

2

)

∝ t−1 (E15)

14 Likely, once σ(ξ∗) drops below unity the flow can no longer efficiently rearrange itself from the original self-similar structure (described
in Appendix A) to the new one (described here), as the secondary rarefaction wave becomes weak).
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APPENDIX F: ACCELERATION AFTER THE SEPARATION FROM THE WALL

F1 Mechanical analogy: two masses and a spring

At t < t0 the acceleration of the shell as a whole occurs mainly because the back end of the shell is pushing against the wall,
and therefore this mode of acceleration can remain effective only as long as the shell remains in causal contact with the wall.
Therefore, the initial shell crossing by the rarefaction wave accelerates the shell up to 〈Γ〉 ∼ σ

1/3
0 , and soon after t0 the shell

can no longer effectively push against the wall, as the magnetic pressure at the wall drops dramatically, and the subsequent
change in the total momentum P of the shell due to the force F exerted on it by the wall (dP = Fdt) becomes negligible.

It is a somewhat surprising result that after the shell separates from the wall its mean Lorentz factor continues to increase
with time despite the apparent lack of any external force. This can be understood as follows. The total energy and momentum
of the shell are indeed conserved in the lack of an external force (or energy losses or gains). However, the shell expands
under its own pressure, and develops a considerable relative velocity between its leading and trailing edges. In its center of
mass frame the energy and momentum of the front and back ends of the shell are comparable. However, if the expansion is
relativistic in the center of mass (or comoving) frame then in the lab frame the energy and momentum of the leading part
are much larger than those of the trailing part, and thus the leading part dominates the total energy and the Lorentz factor
when averaged over the energy in the lab frame.

This may be illustrated by the following simple example. Consider two identical masses m moving together with a
compressed ideal massless spring between them, with potential energy Epot in its own rest frame (S∗, which is also the
rest frame of the two masses, hereafter the comoving frame). The energy of the system in its own (comoving) rest frame
is E′ = 2mc2 + Epot, and in a frame where this system is moving at a Lorentz factor Γ = (1 − β2)−1/2 in the positive
x-direction (hereafter, the lab frame), its energy is E = ΓE′ = Γ(2mc2 + Epot) and its momentum is Px = ΓβE′/c =
Γβ(2mc2 +Epot)/c = βE/c in the x-direction (while Py = Pz = 0). Then the spring is released and all of its potential energy
is converted to kinetic energy of the two masses, which in the comoving frame now move at a Lorentz factor Γ∗ = (1−β2

∗)
−1/2

such that Epot = 2(Γ∗ − 1)mc2 and Γ∗ = E′/2mc2, in the positive and negative x’-directions, respectively (the two masses
are thus denoted by subscripts ‘+’ and ‘−’ accordingly). In the comoving frame their energy-momentum 4-vectors read
u′ µ
± = Γ∗(1,±β∗, 0, 0), and a simple Lorentz transformation shows that in the lab frame

uµ
± = [ΓΓ∗(1± ββ∗),ΓΓ∗(β ± β∗), 0, 0] , (F1)

which indeed satisfies E = E+ +E− = mc2(u0
+ + u0

−) = 2ΓΓ∗mc2 = ΓE′ and Px = mc(u1
+ + u1

−) = βE/c (and Py = Pz = 0),
as it should, while Γ± = E±/mc2 = ΓΓ∗(1± ββ∗). Thus, the ratios of the energy and momentum of the two masses, and the
fractions of the total energy and momentum that each mass holds are given by

E+

E−
=

Γ+

Γ−
=

1 + ββ∗
1− ββ∗

,
Px+

Px−
=

Γ+β+

Γ−β−
=

β + β∗
β − β∗

,
E±
E

=
1± ββ∗

2
,

Px±
Px

=
β ± β∗
2β

. (F2)

For Γ, Γ∗ ≫ 1 we have

E−
E+

≈ 1

4

(

1

Γ2
+

1

Γ2
∗

)

≪ 1 ,
Γ+

Γ
≈ 2Γ∗ ≫ 1 . (F3)

Therefore, almost all of the energy in the lab frame is in the leading mass (or leading part of the shell), which has greatly
increased its Lorentz factor. For Γ∗ = Γ the only energy left in the trailing mass (or trailing part of the shell) is its rest mass
energy and all of the potential energy is converted into the kinetic energy of the leading mass, which in this case also carries
all of the momentum. Thus we can see that the leading mass, which constitutes one half of original rest mass, ends up with
almost all of the energy and with a much higher Lorentz factor than what it started with. Going back to our magnetized shell,
the potential energy in a “spring” is the analog of the magnetic energy in the shell, and similarly to the mechanical analog
eventually most of the energy ends up in a good fraction of the original rest mass, that can reach a very high Lorentz factor
(much larger than the initial Lorentz factor of the shell).

F2 Evolution of 〈Γ〉 after the separation: an alternative derivation of the scaling 〈Γ〉 ∝ t1/3

Here we follow the mean shell parameters but drop ‘〈〉’ in the notation, for simplicity. Let us consider a planar15 shell initially
(at lab frame time t = 0) at rest in some rest frame S0, which we refer to as the lab frame, in which it has a width l0, magnetic
field B0, rest-mass density ρ0, magnetization σ0 = B2

0/4πρ0c
2 ≫ 1, energy E0, and no (or negligible) thermal pressure (for

simplicity). This shell can either be leaning against a wall to one end (at x = −l0), or be half of an unbounded shell (initially
occupying −2l0 ≤ x ≤ 0). We have shown that initially the shell expands due to the passage of a self-similar rarefaction wave,

which crosses the shell over a time t0 ≈ l0/c, and is accelerated to a typical Lorentz factor of Γ1 ∼ σ
1/3
0 .

Now, even though the shell is no longer perfectly uniform as in our initial configuration, we consider the part of the shell
that carries most of its energy (as measured in S0), which is expected to be roughly uniform (the relevant physical quantities
not changing by more than factors of order unity within that region), and make the analogy between it in its own rest frame,

S1 (which moves at a Lorentz factor ∼ Γ1,0 ∼ σ
1/3
0 relative to S0), and our original configuration (that was quantified in S0).

15 The same same reasoning essentially also holds for a spherical geometry, as demonstrated in Appendix D.
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Even though this analogy is not perfect, we still expect a similar qualitative behavior, and a similar quantitative behavior up
to factors of order unity (which we discard here, as we are interested only in the relevant scaling laws).

One difference, however, is that for reasonably smooth initial conditions we no longer have a strong rarefaction wave
crossing the shell, which eventually splits it in two (as for a perfectly uniform shell with sharp edges surrounded by vacuum
on both sides, where the two rarefaction waves from both sides meet and are secondary – our “wall” for a one-sided shell).
Thus, the shell is basically the smooth peak of the lab frame energy density (which scales as B2 when σ ≫ 1; see the profile
of B at t = 70t0 in Fig. [5]). The shell still significantly expands in its own rest frame, reaching speeds of order of its fast
magnetosonic speed on its fast magnetosonic (or light) crossing time. However, this spreading is smooth and continuous, and
the shell does not split in two, but instead it remains a smooth peak of the lab frame energy density. Material ahead of the
peak in the pressure (at the front of the shell) is accelerated, while material behind this peak (at the back of the shell) is
decelerated (by the pressure gradient, in both cases).

Nonetheless, it is instructive to divide this process into discrete steps or phases. The approximate initial conditions of the
“second phase” in the evolution of the shell, as expressed in frame S1 (using a subscript “1” for all the relevant quantities,
when measured in this frame) are

l1 ∼ σ
1/3
0 l0 , B1 ∼ B0

σ
1/3
0

, ρ1 ∼ ρ0

σ
1/3
0

, σ1 ∼ σ
2/3
0 , E1 ∼ E0

σ
1/3
0

.

In frame S1, the two sides of the shell are expected to accelerate in opposite directions, and develop velocities of the order of
the shell’s magnetosonic speed, Γ2,1 ∼ σ

1/3
1 ∼ σ

2/9
0 , on the shell’s magnetosonic (or light) crossing time, t1 ∼ l1/c ∼ σ

1/3
0 t0

(as measured in frame S1). The same scalings as before should approximately hold here as well,

l2 ∼ σ
1/3
1 l1 ∼ σ

5/9
0 l0 , B2 ∼ B1

σ
1/3
1

∼ B0

σ
5/9
0

, ρ2 ∼ ρ1

σ
1/3
1

∼ ρ0

σ
5/9
0

, σ2 ∼ σ
2/3
1 ∼ σ

4/9
0 , E2 ∼ E1

σ
1/3
1

∼ E0

σ
5/9
0

.

We note that in frame S0 (i.e. in the lab frame) almost all of the energy ends up in the front part of the shell (which was

accelerated in the direction of motion of S1 relative to S0), whose rest frame S2 moves at a Lorentz factor Γ2,0 ∼ Γ1,0Γ2,1 ∼ σ
5/9
0

relative to S0, and has an energy of E2,0 ∼ Γ2,0E2 ∼ E0 as measured in S0. The back part of the shell has a Lorentz factor

of ∼ Γ1,0/Γ2,1 ∼ σ
1/9
0 in frame S0, while its energy in frame S0 is ∼ σ

1/9
0 E2 ∼ E0/σ

4/9
0 , i.e. a factor of ∼ σ

4/9
0 ≫ 1 smaller

than that of the forward half of the shell, so it can be safely discarded as we are interested in the part of the shell that carries
most of the energy in frame S0. In frame S0, the the second phase of acceleration takes a time t1,0 ∼ Γ1,0t1 ∼ σ

2/3
0 t0. During

this time Γ increased from Γ1,0 ∼ σ
1/3
0 to Γ2,0 ∼ σ

5/9
0 , i.e. by a factor of ∼ σ

2/9
0 , implying

Γ2,0

Γ1,0
∼ σ

2/9
0 ∼

(

t1,0
t0

)1/3

=⇒ Γ ∝ t1/3 . (F4)

Similarly, recursively repeating the same procedure n times, it can be shown that

~Un ∼ σ
1/3
n−1

~Un−1 ∼ σ
1−(2/3)n

0
~U0,

where ~Un = (ln, tn, Γn,0, B
−1
n , ρ−1

n , σ−1
n , E−1

n ) and Γ0,0 = 1. Noting that tn,0 ∼ Γn,0tn ∼ t2n/t0, this implies that

log σn

log σ0
∼
(

2

3

)n

,
log Γn,0

log σ0
∼
[

1−
(

2

3

)n]

,
log
( tn−1,0

t0

)

log σ0
∼ 2

[

1−
(

2

3

)n−1
]

,
log
(

Γn,0

Γ1,0

)

log σ0
∼ 2

3

[

1−
(

2

3

)n−1
]

,

and

log(Γn,0/Γ1,0)

log(tn−1,0/t0)
=

1

3
=⇒ Γ ∝ t1/3 . (F5)

It can also be seen that in the limit16 of n ≫ 1, Γn,0 → σ0, i.e. the Lorentz factor approaches its asymptotic value that
is achieved when σ ∼ 1 at tc ∼ σ2

0t0. This implies a transition radius to the coasting phase of Rc ∼ σ2
0l0 ∼ Γ2

cl0, where
Γc = Γ(Rc) ∼ σ0. Up until this time the shell width in the lab frame (S0) remains approximately constant, ln,0 ∼ ln/Γn,0 ∼ l0.

This derivation relies on the fact that the shell, which represents the leading part of the flow, carries most of the total
energy and rest mass during the impulsive acceleration phase, so that its energy and rest mass are practically constant. As
we have seen in § 2.2 this condition is satisfied for at least as long as the shell remains highly magnetized, σ>∼ 1.

APPENDIX G: THE CENTER OF MOMENTUM FRAME AND CALCULATIONS IN DIFFERENT

FRAMES OF REFERENCE

Let us consider a frame of reference S1 moving at a dimensionless velocity β1 in the positive x-direction relative to the lab
frame , and let us denote quantities measured in this frame with a prime. Also, let (ta, xa) = (t′a, x

′
a) = (0, 0) correspond

16 In practice the approximation that σ ≫ 1 breaks down at σ = σmin ∼ a few, after ≈ log(log σmin/ log σ0)/ log(2/3) steps, or ∼ 4− 6
for σ0 ∼ 103 and σmin ∼ 1.8− 3.9, so even for σ0 ≫ 1 the shell becomes kinetic-energy dominated within a rather small number of steps.
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the event ‘a’ of exposing the original front of the magnetized shell at rest to the vacuum, i.e. the onset of motion of the shell
material. It is easy to show that the event ‘b’ of the original rarefaction wave hitting the wall corresponds to (tb, xb) = (t0,−l0),
where t0 = l0/cms,0 = l0[(1 + σ0)/σ0]

1/2, and (t′b, x
′
b) = t0Γ1(1 + β1cms,0, −β1 − cms,0, ). Initially (at t′ = 0) the shell width,

density and rest-mass are l′0 = l0/Γ1, ρ
′
0 = Γ1ρ0 and M0 = ρ0l0 = ρ′0l

′
0, respectively, so that

T ′,0x = −ρ0(1 + σ0)Γ1u1 , P ′
0 = l′0T

′,0x = −M0(1 + σ0)u1 . (G1)

Now, between t′ = 0 and t′ = t′b = Γ1(1+β1cms,0)l0[(1+σ0)/σ0]
1/2 the momentum increases due to the external force exerted

by the wall, dP ′/dt′ = ρ0σ0/2 so that at t′ = t′b when the rarefaction wave reaches the wall and the wall is removed (so that
from that point on there are no external forces and the total momentum P ′ and energy E′ remain constant) we have

P ′(t′ ≥ t′b) = P ′
0 + t′b

ρ0σ0

2
= −M0(1 + σ0)u1 +M0Γ1

σ0

2

[
√

1 + σ0

σ0
+ β1

]

. (G2)

We are interested in the center of momentum frame in which by definition P ′ = 0. Note that here, in contrast to the previous
subsection, we evaluate the total momentum simultaneously in this frame, rather than in the lab frame. According to Eq. (G2),
this corresponds to

βCM =

√

σ0(1 + σ0)

2 + σ0
, ΓCM =

2 + σ0√
4 + 3σ0

. (G3)

At the CM frame (which moves at β1 = βCM relative to the lab frame), P ′(t′ ≥ t′b) = 0, so that the total momentum remains
zero from the time when the shell separates from the wall. In this sense, the shell as a whole simply does not accelerate in
the CM frame at t′ ≥ t′b. Moreover, the energies of the front part and the back part are comparable in this frame. The total
energy at t′ = 0 is

T ′,00 = ρ0

[

Γ2
1(1 + σ0)− σ0

2

]

, E′
0 = l′0T

′,00 = M0

[

Γ1(1 + σ0)− σ0

2Γ1

]

, (G4)

and between t′ = 0 and t′ = t′b it decreases due to the negative work performed on it by the receding wall at its back,
dE′/dt′ = ~F · ~v = −β1ρ0σ0/2, so that

E′(t′ ≥ t′b) = E′
0−t′bβ1

ρ0σ0

2
= M0

[

Γ1(1 + σ0)− σ0

2Γ1

]

−M0
σ0

2
u1

[
√

1 + σ0

σ0
+ β1

]

= M0Γ1

[

1 +
σ0 − β1

√

σ0(1 + σ0)

2

]

.(G5)

For β1 = β1,CM given by Eq. (G3) this reduces to

E′
CM(t′ ≥ t′b) =

√
4 + 3σ0

2
M0 =

E0

Γ1,CM
. (G6)

The self-similar solution describing the original rarefaction wave can be expressed in a rest frame S′ moving at a velocity
βw in the negative x-direction relative to the lab frame (where the wall is at rest), so that in this frame the wall is moving at
a speed βw in the positive x′-direction. This implies

ξ′ =
x′

t′
=

ξ + βw

1 + βwξ
, ξ =

x

t
=

ξ′ − βw

1− βwξ′
=⇒ δξ =

δξ′

δw
, δv =

δv′

δw
, (G7)

δv′ = δ2/3cms,0
δ1/3w δ

2/3

ξ′
, v′ =

δ
4/3
cms,0δ

2/3
w δ

4/3

ξ′
− 1

δ
4/3
cms,0δ

2/3
w δ

4/3

ξ′
+ 1

, Γ′ =
δ
4/3
cms,0δ

2/3
w δ

4/3

ξ′
+ 1

2δ
2/3
cms,0δ

1/3
w δ

2/3

ξ′

, u′ = Γ′v′ =
δ
4/3
cms,0δ

2/3
w δ

4/3

ξ′
− 1

2δ
2/3
cms,0δ

1/3
w δ

2/3

ξ′

, (G8)

δcms
=

δ
2/3
cms,0δ

1/3
w

δ
1/3

ξ′

, c2ms =
σ

1 + σ
=

[

δ
4/3
cms,0δ

2/3
w δ

−2/3

ξ′
− 1

δ
4/3
cms,0δ

2/3
w δ

−2/3

ξ′
+ 1

]2

, (G9)

σ

σ0
=

ρ

ρ0
=

1

4σ0

(

δ
2/3
cms,0δ

1/3
w

δ
1/3

ξ′

−
δ
1/3

ξ′

δ
2/3
cms,0δ

1/3
w

)2

, (G10)

Using this result one can rewrite the integrals in § C3 in terms of quantities in frame S′. In particular, they retain the same
form up to the following simple substitutions:

t → t′ , y → y′ = δ
2/3

ξ′
, a → a′ = δ2/3cms,0

δ1/3w ymin(t) → y′
min(t

′) = δ
2/3

ξ′
∗
(t′)

. (G11)

Finally, ξ′∗(t
′) can either be computed either using the solution for ξ∗(t) and the relation ξ′∗(t

′) = [ξ∗(t) + βw]/[1 + βwξ∗(t)],
or by directly generalizing the derivation from § C2, as follows:

β′
∗ ≡ dx′

∗
dt′

=
v′(ξ′∗) + cms(ξ

′
∗)

1 + v′(ξ′∗)cms(ξ′∗)
=

δ
8/3
cms,0δ

4/3
w δ

2/3

ξ′
∗

− 1

δ
8/3
cms,0δ

4/3
w δ

2/3

ξ′
∗

+ 1
, =⇒

dδ2ξ′
∗

d ln t′
= δ2ξ′

∗

+ 1−
(δ2ξ′

∗

+ 1)2

δ
8/3
cms,0δ

4/3
w (δ2

ξ′
∗

)1/3 + 1
, (G12)
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Figure G1. Left panel: The ratio of electromagnetic to kinetic energy in a frame moving at βw in the negative x-direction relative to
the lab frame (i.e. the rest frame of the initial shell and the wall) at the time t′0 when the rarefaction wave reaches the wall, as a function

of δw, for σ0 = 102, 103, 104. Indicated by vertical lines are the lab frame and the CM frame, where this ratio is ∼ σ
2/3
0 and ∼ σ

1/3
0 ,

respectively (indicated by short horizontal lines). Middle panel: the same for the CM frame as a function of σ0, using Eq. (G18); this

ratio approaches σ
1/3
0 (dashed red line) for σ0 ≫ 1. Right panel: the evolution of the same ratio as a function of t′/t′0 in the CM frame.

which has the solution

t′

t′0,∗
= (δ2ξ′

∗

+ 1)



1−
(

δ2ξ′
∗

δ4cms,0δ
2
w

)2/3




−3/2

, (G13)

where δwδ
−1
cms,0

≤ δξ′
∗

< δwδ
2
cms,0

and

t′0,∗
t′0

=
(δ4cms,0

− 1)3/2

δ4cms,0(δ
2
cms,0 + δ2w)

,
t′0,∗
t0

=
t0,∗
δwt0

=
(δ4cms,0

− 1)3/2

δwδ4cms,0(δ
2
cms,0 + 1)

=
4σ

3/4
0 (1 + σ0)

1/4

δw
(√

1 + σ0 +
√
σ0

)2
, (G14)

where we use the notation t′0 = t′b and the relation

t′0
t0

= Γw(1− βwcms,0) =
(δ2cms,0

+ δ2w)

δw(δ2cms,0 + 1)
. (G15)

For σ0 ≫ 1 (and δw ≪ (δcms,0) we find that t′0,∗ ≈ t′0 so that at t′ ≫ t′0 we have δ2ξ′
∗

≈ 2/(1− ξ′∗) ≫ 1 and

t′

t′0
≈ 2

1− ξ′∗

[

1− 1

4σ
4/3
0 δ

4/3
w (1− ξ′∗)2/3

]−3/2

, 1− ξ′∗ ≈











2t′0/t
′ t′ ≪ 16σ2

0δ
2
wt

′
0 ,

1
8σ2

0
δ2w

[

1 + 3
2

(

t′

16σ2

0
δ2wt′

0

)−2/3
]

t′ ≫ 16σ2
0δ

2
wt

′
0 ,

(G16)

so that t′c/t
′
0 ∼ σ2

0δ
2
w or t′c/t

′
0 ∼ σ0 for δw = δw,CM ∼ σ

−1/2
0 . Since t′0 ≈ t0/δw this implies t′c ≈ σ2

0δwtc.
It is useful to calculate the ratio of magnetic to kinetic energies,

E′
EM[> ξ′∗(t

′)]

E′
kin[> ξ′∗(t′)]

=
3

4

(

g[(a′)2]− g[y′
min(t

′)]

f [(a′)2]− f [y′
min(t

′)]

)

, =⇒ E′
EM(t′0)

E′
kin(t

′
0)

=
3

4

[

g(δ
2/3
w δ

4/3
cms,0)− g(δ

2/3
w δ

−2/3
cms,0)

f(δ
2/3
w δ

4/3
cms,0)− f(δ

2/3
w δ

−2/3
cms,0)

]

. (G17)

For the CM frame we have

βw,CM = −βCM = −
√

σ0(1 + σ0)

2 + σ0
, δ2w,CM =

2 + σ0 −
√

σ0(1 + σ0)

2 + σ0 +
√

σ0(1 + σ0)
≈ 3

4σ0
≈ (2ΓCM)−2 ≈ 3δ−2

cms,0
. (G18)

We also generalize the result for the total energy in the flow,

E′[> ξ′∗(t
′)]

E′(t′0)
=

√
1 + σ0

16(2 + σ0)σ
3/2
0

(

t′

t′0

)

1− βw

√

σ0

1+σ0

1 + βw

√
σ0(1+σ0)

2+σ0

(a′ 2 − y′
min)

3
[

y′
min(1 + a′ 6) + 3a′ 2(1 + a′ 2y′ 2

min)
]

a′ 6y′
min(y

′ 3
min + 1)

, (G19)

and the same holds for the energy above some ξ′ > ξ′∗(t
′) where y′

min(t
′) = δ

2/3

ξ′
∗
(t′)

is replaced by y′(t′) = δ
2/3

ξ′
. One can verify

that this ratio is indeed 1 at t′ = t′0 when y′
min = (δw/δcms,0)

2/3 = δw/a
′.

Figure G1 shows E′
EM/E′

kin first at t′0 as a function of the velocity of the primed frame of reference (left panel), then at
t′0 for the CM frame as a function of σ0 (middle panel), and finally for the CM frame as a function of time t′/t′0 (right panel).

Figure G2 shows various estimates for the typical Lorentz factor in the lab frame as a function of time (left panel), along
with the cumulative distribution of energy as a function of the flow Lorentz factor (or velocity) at different times, both in the
lab frame (middle panel) and in the CM frame (right panel). The first two panels help to quantitatively address an important
point that has been raised in § 4 in the discussion around Eqs. (34) and (35). Taking the energy weighted average over Γ,
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Figure G2. Left panel: various estimates for the Lorentz factor as a function of time for σ0 = 103; Γf denotes the Lorentz factor
below which there is a fraction f of the total energy. For example, Γ0.5 = 〈Γ〉E,med is the value for which there is equal energy in faster

and slower material. Also shown for reference are Γ(ξ∗) and 〈Γ〉∗ (which is 〈Γ〉E calculated over the region ξ > ξ∗(t)). Note that Γf can
be calculated analytically only as long as Γf ≥ Γ(ξ∗), since otherwise we must include in the calculation the region ξ < ξ∗(t), which is
not described by the self-similar solution. Middle panel: the corresponding cumulative distribution of the fraction of energy in the flow
as a function of Γ for log10(t/t0) = 0, 0.5, 1, ..., 8 (red lines). The lower-right boundary (thin solid black curve) corresponds to Γ(ξ∗).
The horizontal blue line corresponds to Γ0.5 = 〈Γ〉E,med, and the vertical blue line shows the value of Γ where it meets with the curve for
Γ(ξ∗): Γ0.5 = Γ(ξ∗) ≈ σ0. Right panel: the corresponding cumulative distribution calculated in the center of momentum (CM) frame
at log10(t

′/t′0) = 0, 0.25, 0.5, ..., 4.5 (red lines). The bottom branch for Γ′(ξ′∗) (thick solid black line) and t′ = t′0 corresponds to material
with a negative velocity in the CM frame, which initially carries almost half of the total energy in this frame.

〈Γ〉E, is not a unique choice, and averaging over the 4-velocity u, 〈u〉E, would give a similar result. However, as shown in § 4

using 〈β〉E would give a very different result, where at late times 〈β〉E → βCM corresponding to ΓCM = (1− β2
CM)−1/2 ∼ σ

1/2
0

while 〈Γ〉E ∼ 〈u〉E ∼ σ0. Fortunately, we can also estimate the typical value of Γ of the material that carries most of the
energy in the lab frame without having to perform any averaging, thus avoiding the need to choose a specific function of the
flow velocity to average over. The left panel of Fig. G2 shows the median value of Γ, 〈Γ〉E,med = Γ0.5 (thick solid blue line)
according to Eq. (B5), as well as the values of Γ below which there is a fraction 0.2 (Γ0.2; green line) or 0.8 (Γ0.8; cyan line)
of the total energy. The middle panel shows the corresponding cumulative distribution of the fraction of the energy in the
flow as a function of Γ at different times. Most of the energy in the flow is within a narrow range in Γ, of less than a factor
of 2, around 〈Γ〉E,med. Note that 〈Γ〉E,med is also very close to 〈Γ〉∗, which is 〈Γ〉E calculated over the region ξ > ξ∗, and is
close to 〈Γ〉E calculated over the whole flow at t < tc = t0σ

2
0 . It can be seen that at the time when 〈Γ〉E,med = Γ(ξ∗) (after

which we can no longer calculate 〈Γ〉E,med semi-analytically), we have 〈Γ〉E,med = Γ(ξ∗) ≈ σ0, and the Lorentz factor of the
plasma in the region ξ > ξ∗ is between ≈ σ0 and ≈ 2σ0. Since at that stage most of the magnetic energy is already converted
into kinetic energy, as σ(ξ∗) ∼ 0.1 (see Fig. 3), then this should be close to the asymptotic value of 〈Γ〉E,med at late times.
Therefore, we can see that all along, from early to late times, 〈Γ〉E,med is very close to 〈Γ〉E. This supports the choice of 〈Γ〉E
as being representative of the typical Lorentz factor of the material carrying most of the energy in the lab frame.

The right panel of Fig. G2 shows a calculation in the CM frame of the cumulative energy (E′) in the flow as a function
of its velocity (β′) or Lorentz factor (Γ′), and supports the picture described in § 4 below Eq. (33). The evolution of the
part of the flow ahead of the secondary rarefaction wave (ξ′ > ξ′∗), which is described by an analytic self-similar solution,
is followed from the time t′0 when the original rarefaction wave reaches the wall, and the wall is replaced by vacuum. At
t′ = t′0 this region covers the whole flow, and it is easy to see that in the CM frame almost half of the total energy (E′

0)
is carried by material with a negative velocity (β′ < 0). This is expected, since by definition the total momentum vanishes
in the CM frame (P ′ = 0), and remains so at later times as well, when a good part of the total energy is at ξ′ < ξ′∗. In

the CM frame we have 〈σ′(t′ = t′0)〉 ∼ σ
1/3
0 , since in the bulk of the flow t′0 corresponds to t ∼ t0σ0 in the lab frame and

〈σ(t = t0σ0)〉 ∼ σ
1/3
0 . This means that the flow is still highly magnetized at t′0, and subsequently its front part accelerates

while its back side decelerates, as the magnetic energy is transformed into kinetic energy. At t′0 < t′ < t′c ∼ t′0σ0 we have
〈Γ′〉〈σ′〉 ∼ E′

0/M0 = E0/ΓCMM0 ∼ σ
1/2
0 so that the magnetization drops as 〈σ′〉 ∼ σ

1/3
0 (t′/t′0)

−1/3 while the typical Lorentz

factor increases as 〈Γ′〉 ∼ σ
1/6
0 (t′/t0)

1/3. At t′ = t′c the combined acceleration at the front and deceleration at the back
saturates as the magnetic and kinetic energies become comparable, 〈σ′〉 ∼ 1, and the typical Lorentz factor approaches its

asymptotic value, 〈Γ′〉 ∼ σ
1/2
0 . Similar to the lab frame, at t′ > t′c there is also a coasting phase in the CM frame, where

〈Γ′〉 ∼ σ
1/2
0 while the magnetization continues to drop as 〈σ′〉 ∼ t′0/t

′. However, in the CM frame there is comparable mass

and energy in material with Γ′ ∼ σ
1/2
0 moving in the positive and negative x′-directions, so that the total momentum adds

up to zero.
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