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Abstract 

 

Microcurrent therapy (MCT) involves the application of sub-sensory electric current 

and can promote tissue repair, possibly by mimicking endogenous electrical cues for 

healing. It has been used successfully to treat recalcitrant bone fractures and skin 

ulcers, but its effects on other forms of tissue have received little attention. This study 

aimed to investigate the potential of MCT to promote healing and alleviate symptoms 

in a selected soft connective tissue disorder. 

A systematic review of human studies involving MCT for soft connective tissue damage 

was conducted.  A survey of 93 musculoskeletal physiotherapists was used to help 

select a common, recalcitrant disorder to treat with microcurrent in a clinical trial. 

Novel sonographic scales to quantify tendon structural abnormality and tissue healing 

were developed, and their measurement properties evaluated along with several 

clinical and patient-rated outcome measures. Two preliminary clinical trials, involving 

62 people with the selected disorder – chronic tennis elbow - were conducted, 

comparing four different types of microcurrent applied daily for 3 weeks. 

The review found fair quality evidence that certain forms of MCT can relieve 

symptoms, and low quality evidence that they can promote healing, in several soft 

connective tissue disorders, including those affecting tendons. Optimal treatment 

parameters are unknown.  In the survey, clinicians identified frozen shoulder, plantar 

fasciitis and tennis elbow as particularly problematic, and tennis elbow was selected 

for treatment in the trials. The sonographic scales of hyperaemia had fair-to-good 

inter-rater and test-retest reliability. Minimum Detectable Change values are calculated 

for the sonographic scales and for pain-free grip strength measurements. 

The trials suggest that monophasic microcurrent of peak amplitude 50 µA applied for 

35 hours was most effective in symptom alleviation, with a 93% treatment success rate 

three  months after treatment. By final assessment, pain-free grip strength increased by 

31% (95%CI:5,57%), pain measured on a multiple-item questionnaire reduced by 

27% (95%CI:16,38%) and patient-rated functional disability by 26% (95%CI:14,28%). 

MCT with a current amplitude of 500 µA was significantly less effective, and varying 

the waveform appeared less important in determining outcomes. Differences between 

groups were non-significant on several measurs, though there was a risk of type II 

error in the tests used. No significant differences between any groups were seen in 

sonographic assessments, although consistent patterns in bloodflow chage suggested 

that MCT may modulate hyperaemia levels. Higher baseline hyperaemia was associated 

with sustained falls in hyperaemia levels after treatment, and with improved clinical 

outcome.  MCT’s analgesic effect does not rely on sensory stimulation, and further 

investigation of its influence on tendinous blood flow and vascularity, or on the local 

biochemical milieu, may help elucidate its mechanism of action. On the basis of this 

investigation, a fully-powered controlled clinical trial is justified. A protocol, combining 

MCT with an exercise programme, is proposed. 
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Chapter 1 
Introduction 

 

lectricity plays an essential role in life. Many physiological processes in living 

organisms involve the flow of charge and the maintenance of potential 

differences across cell walls and tissue boundaries. Bioelectricity is the name 

given to these endogenous currents and voltages, which have been found to 

modulate growth, adaptation and repair in a variety of species, including humans. The 

role of bioelectricity in tissue growth and repair has been recognised and - to some 

extent - elucidated over the last century. This has provided a rationale for the 

application of externally generated currents to the body, particularly where natural 

healing is dysfunctional. Microcurrent therapy (MCT) is one example of this. Its 

defining feature is that in size (and sometimes in other characteristics) it resembles the 

internally generated currents that are thought to be one of the drivers of tissue healing. 

MCT – under a variety of names and specifications – has been employed clinically for 

some decades, and has proved effective when used to promote repair in damaged skin 

and bone tissue. Numerous studies have suggested that healing in non-uniting 

fractures, spinal fusions, venous ulcers and skin grafts can be enhanced by MCT. 

Clinically-oriented research to date has focussed primarily on these applications. Much 

less attention has been paid to its potential with soft connective tissues such as 

ligaments, tendons and fascia. This is an area ripe for research since slow or 

dysfunctional healing in these tissues is seen in a range of connective tissue disorders, 

such as repetitive strain injuries, that are painful and debilitating and respond poorly 

to existing conservative treatments. 

Current understanding of MCT is deficient in several regards, theoretical and empirical. 

Although several models have been proposed to explain its action, none has gained 

general acceptance, and so the modality lacks a firm theoretical foundation. Also, 

systematic reviews of electrotherapeutic applications tend not to distinguish MCT from 

other modalities, so its particular character and effects are rarely considered 

separately. In consequence, there is much uncertainty about whether some forms of 

microcurrent are more potent than others. Until these issues are addressed, there is 

scant justification for clinicians to employ MCT in their practice. 
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This context provided the rationale for the present investigation. Its central thesis is 

that: 

microcurrent therapy can promote healing and resolution of 

symptoms  

following soft connective tissue damage. 

The investigation addressed this thesis through two activities: (i) a review of existing 

evidence regarding the use of microcurrent to promote tissue healing, and (ii) an 

experimental evaluation of microcurrent’s capacity to promote healing and resolve 

symptoms in a selected  soft connective tissue disorder. These activities involved 

several studies, each with its own aims, but linked together in sequence to provide a 

response to the thesis. Three themes guided the work as a whole: 

A. MCT as a distinct therapeutic entity. Many forms of electrotherapy bring 

about physiological change but their effects and mechanisms of action may 

differ radically.  The study focus was kept exclusively on MCT to determine if it 

has a particular therapeutic value. 

B. Tissue healing and symptomatic relief. Microcurrent appears to have 

particular value in promoting tissue healing, thereby addressing the causes as 

well as the symptoms of a disorder. Its effects both at the tissue level and on 

clinical manifestations such as pain and function were therefore considered.  

C. Clinical significance. Although there is a continuing need for development of 

the basic science behind MCT, the primary focus of this investigation is its 

clinical potential.  

The structure and process of the work undertaken is  illustrated in Figure 1.1. Chapter 

2 introduces the concept of “the body electric”, the science of bioelectricity that 

supplies part of the rationale for the use of MCT. It provides an overview of 

experimental work on the role of endogenous electricity in normal physiology and in  

the healing process, and the ways in which applied electricity can influence the 

physiology of healing. Chapter 3 comprises two literature reviews focussing on the 

therapeutic application of microcurrent. The first is a narrative review of the broad 

literature concerning the influence of microcurrent on cells and tissues in laboratory 

studies, and on different forms of tissue damage in animal and human studies. The 
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second is a systematic review of human clinical trials of MCT applied particularly to 

soft connective tissues. To maximise relevant data from a relatively small empirical 

database, all forms of experimental design were included, and the quality and strength 

of the evidence were evaluated in each case. This comprehensive review approach is 

uncommon and an evaluation tool was specifically developed for the purpose. 

Together, these reviews assess the evidence regarding the therapeutic value of 

microcurrent. They conclude that, although there is strong evidence in favour of MCT 

for a variety of bone and skin lesions, studies involving other forms of tissue are less 

common, provide a lower standard of evidence, and leave important questions 

unanswered. These include the optimum treatment parameters, whether these vary 

between tissue type and form of damage, and whether MCT brings about tissue change 

as well as symptom alleviation in all applications.  

The rest of the investigation was devoted to generating and analysing original 

experimental data on the clinical potential of MCT, and the remaining chapters describe 

this work. A clinical trial was planned, but several preliminary issues had to be 

addressed before it was undertaken. These were (1) what population and disorder is 

most likely to benefit from MCT, (2) how should treatment effectiveness be measured, 

and (3) what form of MCT should be used?  A number of studies were conducted to 

address these questions. Chapter 4 focuses on the first of them – choosing a population 

and a disorder. It draws on evidence from various sources. To maintain a clinical focus, 

a survey of practising physiotherapists was used to investigate which common and 

disabling soft tissue disorders they rated as particularly recalcitrant to treatment, and 

hence in need of new treatment options. The literature concerned with the top three 

disorders identified by the survey was then consulted to obtain additional information 

on prevalence, impact and the effectiveness of existing treatment strategies. The 

feasibility of using each of these disorders in the planned trial was also considered. As a 

result, chronic tennis elbow was selected as the disorder to be treated in the trial. 

Experimental design issues are considered in Chapter 5. These include the generation 

of an operational definition of tennis elbow, the choice of a trial methodology and the 

selection of appropriate outcome measures. The tennis elbow trial literature was 

consulted for these purposes. A provisional set of outcome variables and measurement 

instruments was identified on the basis of their capacity to address tissue healing, their 

clinical relevance, and their measurement properties. Various proprietary devices are 

available to deliver MCT, and these were evaluated for suitability. This included 
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laboratory testing, and resulted in three devices being judged suitable for use in the 

trial. 

Chapter 6 is concerned with the experimental evaluation of several of the outcome 

measures identified in the previous chapter. The reliable use of three measurement 

processes - sonography, dynamometry and algometry – was deemed particularly 

dependent on the operator, and so training was undertaken and experience gained to 

improve the investigator’s skills using them. Sonographic scales to quantify tissue 

abnormality and blood flow were developed during this work. This was followed by 

studies to evaluate their reliability with both healthy individuals and those with tennis 

elbow. A choice of measures for inclusion in the trial protocol was made on the basis of 

this work. 

Equipped with the accumulated evidence, the investigation proceeded to trial MCT 

with chronic tennis elbow, and this work is described in the next two chapters. Because 

the existing literature leaves considerable uncertainty about the most appropriate 

treatment parameters, it was decided that the trial should focus on this question by 

comparing different forms of MCT. Chapter 7 begins by drawing up a full protocol for 

this purpose, drawing upon the findings of previous chapters. A trial comparing the 

effects of two different microcurrent intensities is then described. This involved 31 

participants allocated to two treatment groups, receiving treatment for 3 weeks and 

followed up for three months after treatment. It provides limited evidence that MCT 

has an effect on blood flow levels within the tendon, and can improve clinical 

outcomes; it also concludes that one form of MCT, with lower current intensity, is more 

effective than the other. A second trial, using a similar protocol and sample size to 

compare two other forms of MCT, is described in Chapter 8. It provides additional 

support for the contention that MCT can influence processes involved in tissue healing,  

and can alleviate symptoms. It also suggests that waveform may not be critical to the 

effectiveness of the treatment. A pooled analysis of data from the two trials finds that 

the forms of treatment evaluated are safe, suitable for patient-controlled home-based 

use, and may promote good patient adherence to the protocol. Also that there is some 

evidence that MCT may regulate blood flow in damaged tendons, and that baseline 

blood flow levels are predictive of treatment success. However, changes over time and 

differences between group averages on some variables were small, and the studies 

were underpowered to detect statistically significant differences in some cases. These 

studies provide evidence suggesting that a full clinical trial of MCT with particular 
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parameters, used for the treatment of chronic tennis elbow, is warranted, and sample 

sizes for the trial are calculated.  

In the final chapter, the implications of the investigation are discussed in terms of two 

of the broad investigative themes: MCT as a distinct therapy, and is capacity to 

influence both tissue healing and clinical outcomes. The original contributions of the 

various studies making up the investigation are identified, and their limitations are 

discussed. The implications of the work for the research and clinical communities are 

considered, and a protocol for a full randomised controlled trial is proposed. 

The balance of material in this report reflects a particular concern with methodological 

issues. This was a response to a growing awareness that attention to methodological 

rigour is essential both to provide a credible response to the thesis and to enhance the 

investigator’s development as a researcher. Thus, the chapters concerned with 

experimental design issues and with the development and reliability-testing of 

outcome measures are seen as key to the overall process of the investigation, not 

merely as ancillary to the clinical trials they preceded.  For the same reason, 

considerable regard is given to methodological issues in discussing the findings, 

contributions and limitations of this investigation. 

 

 

--- 

Note: a superscript-based system of referencing is used in this report to aid its 

legibility. In the references section, citations are listed in the order in which they 

appear in the text. A bibliography section – with papers listed by topic and author - has 

also been provided, indicating those publications the investigator regards as key 

sources for this work. 
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Figure 1.1: Outline of investigation structure and process 
 



 

 

Chapter 2 
Bioelectricity and tissue healing 

 

“Life is a set of electromagnetic events performed in an aqueous medium”1 

 

2.1  INTRODUCTION 

he application of electricity to reduce symptoms of tissue damage and aid tissue 

healing long predates any understanding of how it might bring about these 

effects. Shocks delivered by electric fish were being recommended to treat gout 

pain more than 2000 years ago2, and electric current was applied to assist bone 

healing in the early 19th century3. An appreciation of how electricity might be involved 

only began to emerge in the last century and much is still unknown about its mechanisms 

of action. It is not unusual for the implementation of a therapy to precede an 

understanding of how it works: there is still debate about the mechanisms of action of 

therapeutic exercises, manual techniques and drug therapies commonly used in the 

management of musculoskeletal disorders4-6.  Adequate and robust clinical trial evidence 

in favour of a treatment, rather than a comprehensive understanding of the biology 

underpinning it, is the essential  precondition for its use. Nevertheless, some scientific 

rationale for the therapeutic application of electricity is desirable, particularly because of 

the quackery that characterised much of it in the 19th and early 20th centuries4. This has 

contributed to a healthy scepticism of novel electrotherapies that lingers to this day5. An 

appreciation of the effects of electricity within the body may also inform decisions about 

which tissues and types of damage may respond to which forms of electrical treatment, 

and so aid formulation of clinical trial protocols and treatment guidelines. 

Microcurrent therapy (MCT) is the application of a particular form of electricity for 

therapeutic effect. It has been prescribed for a wide variety of disorders, from depression 

and fibromyalgia to skin ulcers and non-uniting bone fractures. This chapter aims to 

provide a physiological account that might justify the application of microcurrent 

specifically to promote tissue healing. It begins with a brief account of the science of 

bioelectricity. Broader reviews of the subject are available4, 6-10, and the intention here is 
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to provide an overview of those aspects that are particularly pertinent to tissue healing. 

Evidence for a link between endogenous currents and tissue changes is presented. The 

possibility that bioelectricity may drive some aspects of tissue healing is then considered, 

drawing upon studies of the effects on cells and tissues of applying electric fields and 

currents similar to those generated within the body. This provides a biological rationale 

for the therapeutic application of microcurrent to stimulate healing, which may be 

appropriate if endogenous processes have become dysfunctional. 

 

2.2  BIOELECTRICITY 

Like non-organic substances, body tissue possesses passive electrical properties such as 

resistance and capacitance. These stem from the presence of ions and electrically 

polarised molecules in the tissue. Ions, such as such as potassium (K+)  and hydrogen 

carbonate (HCO3-) are atoms or molecules that have lost or gained electrons when they 

are dissolved in body fluids. Polar molecules, such as water and lipids,  are electrically 

neutral but their electron configurations give different charges to different parts of their 

structures. The behaviour of these charged particles determines the electrical properties 

of tissue. Because of the complex composition and physiology of many body components, 

these properties are neither constant nor simple to predict. For instance, the conductivity 

of blood depends on the number density of red blood cells within it, and on its flow rate11; 

skeletal muscle conducts electricity seven times more easily parallel to its fibres than 

across them12; and the capacitance of the skin changes on sweating13. 

Living tissues may also demonstrate active electrical behaviour. In fact, all cells in the 

body expend a significant proportion of their energy generating electric fields across their 

membranes7, 14. These are maintained by channels that continuously transport ions 

through the membrane against their concentration gradients15. This results in a steady 

potential difference (p.d.) of about 70 – 100 mV between the cell cytoplasm and the 

extracellular environment. The magnitude of the p.d. varies according to the cell type, 

though the cell interior is always negative with respect to the exterior*. In this sense cells 

                                                             
* By convention, a reference point (in this case the extra-cellular space) is ascribed 

electrical neutrality (0 V), so the term “potential” (inside the cell) rather than “potential 

difference” (between cell interior and exterior) is often used in the literature. The term 
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act as miniature batteries, converting chemical energy generated by their mitochondria 

into stored electrical energy. When conducting paths are available, these cellular p.d.s  can 

drive currents in the microamp (μA) range across their membranes or through the tissue 

containing them7. 

The combined electrical activity of cells results in potential differences being established 

across a variety of tissue layers within the body7, 14, 16-20. The gross electrical character of 

intact human skin was first mapped by Foulds and Barker. In 1983 they reported a study 

in which the potential difference between the dermis and the skin surface was measured 

at various points on the bodies of 17 human subjects18. It varied considerably with 

position on the body surface, from about -15 mV on the thigh to -58 mV on the palm, with 

a body average of -26 mV (the stratum corneum being negative with respect to the 

underlying dermis). These potentials are generated by cell-mediated transport of sodium 

and potassium ions through the epidermis21. As elsewhere in the body, channels pump 

these ions to maintain higher concentrations of potassium and lower concentrations of 

sodium within the cells. In the epidermis there are additional channels on the apical 

(outward-facing) surfaces of the cell membranes that draw sodium ions into the cell, and 

on the basolateral surfaces that push potassium ions out in these directions. This results 

in continuous transport of these positive ions to deeper levels the of epidermis, making 

them positive with respect to the surface - hence the observed transcutaneous potential. 

The excess ions leach back towards the surface along the narrow gaps between cells, and 

so energy is required by the cells to maintain the potential. The sodium ions that are 

drawn into the apical cell surfaces are thought to originate from sweat secreted by nearby 

glands, because the transcutaneous potential is lower in areas of skin that do not posses 

these glands22. The key role of sodium transport in the generation of the transcutaneous 

p.d. is demonstrated by application of amiloride – a sodium channel blocker – to the skin, 

which results in the abolition of the transcutaneous potential22.  

Potential differences have also been recorded along and across the cortices of animal 

bones. Friedenberg and colleagues measured p.d.s of less than 10 mV along the 

periosteum and the stripped cortical surface of live rabbit tibiae.17 Borgens recorded 

currents of density 0.5 – 12 μA/cm2 entering the surfaces of intact mouse metatarsal 

explants (whole bone samples recently excised and kept alive in vitro). This suggests that 

                                                                                                                                                                                  
“voltage” is used synonymously. They all indicate the same thing: the electrical energy 

stored when charges accumulate or are separated. 
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a p.d. is maintained between bone interior and exterior. By selective removal of different 

ions from the bathing medium, Borgens concluded that transport of the chlorine ions (Cl-) 

was primarily responsible for establishing this p.d., since the current was significantly 

reduced in its absence, although transport of sodium and other ions was also thought to 

contribute.  Trumbore and colleagues19, working with embryonic chick skull bones, 

concluded that a steady voltage of 4 mV is maintained across the periosteum and 

suggested that this is established by the active transport of sodium ions into the bone 

interior. However, Borgens questioned the methodology of this study and claimed that the 

endosteum or cortex itself was the battery generating the p.d. Becker suggested that 

neural activity was responsible for the p.d.23 but Friedenberg and colleagues found that 

surface potentials varied little following severance of the nerve supplying the area, but 

dropped significantly when bone cell death was induced chemically14. This appeared to 

confirm its cellular origin. Later experimental work by others24 suggested that osteocytes, 

far from being quiescent cells in bone tissue, are intimately involved in the ion transport 

that results in this voltage. 

Steady endogenous potential differences have been have been measured in numerous 

other tissues, including muscle, corneas, kidney tubules, intestinal and respiratory tracts, 

and blood vessel walls7, 20, 25-27. The p.d.s exist across tissue boundaries, but in bone and 

skin they are also present between points along the surface. Normally, tissue resistance 

prevents ion flows under the influence of these p.d.s but, when a conducting path is 

available, they give rise to currents of density 1 – 60 μA/cm2. 

Transient and regularly varying bioelectric phenomena also occur, particularly when 

tissues are subject to mechanical stress. Such behaviour was first observed in bone: in 

1953 Yasuda reported that applying a bending stress to an ex-vivo rabbit tibia changed 

the potential along the cortical surface28. The area under maximum compression became 

negative with respect to the unstressed epiphysis, whilst the area under tension became 

positive. Basset and Becker confirmed this observation, and also found that the size of the 

generated p.d. was dependent upon the rate and magnitude of bony deformation29. Such 

strain-generated potentials (SGPs) went on to be observed in muscle, skin, blood vessel 

walls, tendons and other collagen-based tissues30-32. In bone, potentials of about 40 mV are 

generated across each centimetre of tissue32(p67), and these produce transient currents of 

up to 30 μA32. In tendons, SGPs caused by stretching the structure can drive currents of  

density 1 – 10 μA/cm2 along their length33. As in bone, these potentials and their resultant 

currents increase with loading frequency34. Tonic activity in muscles has been found to 

generate varying biocurrents of frequency 5 – 20 Hz in the bones to which they are 
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attached; walking produces variations of < 10 Hz35 (cited in 36). Hence endogenous fields and 

currents can occur as brief or low frequency repeated pulses in response to applied 

stresses. 

Initially these potentials were thought to be a result of the piezoelectric effect, in which 

mechanical deformation of crystalline structures within the extra-cellular matrix resulted 

in the generation of a p.d. However, subsequent experimental and theoretical work 

showed that brief movements of tissue fluid following the deformation were responsible33, 

37. The p.d.s set up by this process are known as streaming potentials38. By a similar 

mechanism, the flow of blood through vessels generates a p.d. between the bloodstream 

and the vessel wall, measured as 5 – 10 mV in a live rabbit aorta39. 

 

2.3 THE ROLE OF BIOELECTRICITY  

Bioelectricity is observed in every living cell and tissue that has been studied – it appears 

integral to the physiology of most basic life processes. Yet endogenous p.d.s and currents 

might be mere epiphenomena − by-products of ion transport mechanisms that are 

required for normal metabolism. However, there is evidence to suggest that they can 

modulate – or even drive – processes of change within living organisms. Avian and 

amphibian experiments have confirmed the existence of endogenous electric fields of 

typical strength 1 – 200 mV/mm and currents of density up to 105 μA/cm2 in the embryos 

of these developing animals8. Artificial perturbation of these fields and currents causes 

mal-development of the organism, suggesting that they influence normal morphogenesis8. 

The SGPs measured in many tissues may play a part in adaptation. When Yasuda observed 

SGPs in bone, he speculated that the separation of oppositely charged ions within bone 

might drive the adaptive formation and resorption of tissue28. Osteogenesis occurs 

naturally in areas of bone compression, as an adaptive response to applied stresses, and 

his study demonstrated that these areas become negatively charged during loading. He 

applied a 1 μA current to a rabbit femur via implanted electrodes, and observed 

osteogenesis at both electrodes, but more at the (negatively charged) cathode, confirming 

that such a current could indeed promote bone growth. This provides circumstantial 

evidence of an association between bone biocurrent and osteogenesis, but does not prove 

causality. It has since been demonstrated that osteocytes can respond directly to 

mechanical forces without the necessity of an electric current40, and this would provide an 
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alternative model of the adaptive driver. Friedenberg and colleagues found that areas of 

bone growth (that occur during development or repair) are electronegative even in the 

absence of applied forces17. So, if bioelectricity has a role in osteogenesis, SGPs cannot be 

the only mechanism; steady state p.d.s may also be involved. Patterns of potential on 

unstressed growing bone surfaces map onto areas with different bone growth rates, 

suggesting an association between the two41. 

More comprehensive accounts of such studies are available, and they conclude that 

bioelectricity plays a significant role in growth and adaptation6-8, 40, 42, 43. Its significance in 

tissue repair is particularly pertinent to this investigation, and this is now considered in 

greater detail. 

 

2.4  BIOCURRENTS AND TISSUE REPAIR 

In the mid-19th century, Dubois-Reymond detected an electric current of about 1 μA in a 

small cut in his finger44. In 1910, Herlitzka confirmed the existence of this current and 

found that it diminished as the wound healed. He proposed that this current might initiate 

the cell division necessary for wound healing44. Cunliffe-Barnes later measured a changing 

voltage between a healing skin abrasion and intact skin elsewhere on the human body, 

and suggested that it could be used as a measure of healing rate45. These papers have been 

seminal in the development of an electrophysiological account of healing. The term 

“current of injury” was used in the 1920s to depict the flow of ions generated by damage 

to plant tissue46, and it has been adopted to describe similar phenomena observed in other 

living organisms, including humans47-49. Changes in tissue potentials, the establishment of 

currents of injury, and the reduction in those currents as healing progresses have been 

observed in many tissue types, including bone, skin, nerves and tendons16, 33, 43, 50-55. 

Currents of injury also occur when individual cells membranes are punctured and then 

diminish as repair progresses56.  

Evidence that these bioelectric phenomena may be at least partly responsible for driving 

healing is derived from studies in which blocking biocurrent interferes with healing. If a 

skin wound is allowed to dry out its conductivity falls and the current of injury drops 

towards zero. Concomitantly the healing process slows or halts50. Manipulation of 

endogenous wound potentials by pharmacological modulation of membrane channels has 

been found to slow or accelerate multiple aspects of healing after rat corneal damage57. In 
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this study, the channel blockers  were selected for their different mechanisms of action 

and inertness in the biochemistry of healing. However, alternative interpretations are 

possible: many biochemical reactions require an aqueous medium and so wound-drying 

may interfere with this; blocking membrane channels is also likely to interfere with 

normal cell metabolism. More compelling evidence is provided by studies showing that 

application of a p.d. in opposition to the current of injury can slow, abolish or even reverse 

healing in epithelial tissue21, 58. In one study, for example, newts were given small skin 

wounds and fields were applied either to enhance the current of injury or reduce it to 

zero59. Wounds with zero currents still healed, but more slowly than those with enhanced 

currents. Such studies appear to demonstrate that the current itself is a prerequisite for 

normal healing. 

 

2.4.1 Mechanisms by which bioelectricity may promote healing  

Tissue response to damage is complex and involves the actions of, and interactions 

between, multiple components, including biochemicals, cells, the extracellular matrix and 

the environment60-62. If bioelectricity affects healing, it may do so by influencing one or 

more of these components. The mechanisms by which it may do so have been investigated 

through cellular and tissue studies, and an account of these follows. First, a brief 

description of the process of healing is provided. This varies between tissue types and 

depends on the nature and extent of the damage, but several features are common. An 

initial insult precipitates an inflammatory response, initiated by the release of chemicals 

from damaged cells. These activate several biochemical cascades that draw in a variety of 

local and distant cells, particularly macrophages, which attack any foreign organisms 

present and ingest necrotic tissue and debris. These cells have a long life span and mediate 

much of the repair process that follows through their release of a variety of chemicals. 

Inflammation also involves changes to the local vasculature, including release of many 

biochemicals, and dilation and enhanced permeability to allow cells in the bloodstream to 

enter the damaged tissue. 

Both inflammation and the repair processes that follow it involve the migration, 

proliferation and increased activity of a variety of cells. Not only macrophages, but also 

cells that can synthesise new tissue. These include endothelial cells in the blood vessel 

walls and cells specific to the tissue that has been damaged: osteoblasts in bone, 

keratinocyes in the epidermis, and fibroblasts in tendons, ligaments and other collagen-
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based tissues. The reproduction and activities of these cells is dependent on a range of 

complex biochemicals, such as growth factors, and simple ions, such as calcium (Ca2+), that 

act as messengers to up-regulate or down-regulate cellular activity. A complex interplay 

between these components results in neovascularisation of the damaged tissue and – in 

the case of connective tissue - synthesis of the extracellular matrix that gives the new 

tissue structural integrity. This initially weak and immature material is gradually 

strengthened by replacement with stronger components bound more firmly in place. 

Remodelling into a mature and more organised form occurs over subsequent weeks and 

months, guided in large part by the external forces acting upon the tissue. 

Electric fields and currents similar to those occurring naturally in damaged tissue are 

capable of modulating many of these components of healing. They can increase 

proliferation and protein synthesis by the constituent cells of skin, tendons, cartilage and 

bone54, 63-72. Applied fields can increase expression of growth factors that promote 

osteogenesis and collagen  synthesis72, 73. Microcurrent boosts the number of organelles 

responsible for these activities, and can substantially increase concentrations of ATP, the 

cellular currency of energy36, 74. Ion channels in cell membranes may migrate under the 

influence of an applied field, resulting in cytoskeletal modifications, including creation of 

membrane projections that cause cell movement36, 75. Cells may also change shape and 

align themselves with an applied field36.  

Directed movement of cells within an electric  field – known as galvanotaxis – has been 

observed with many cell types. These include macrophages and a variety of cells involved 

in new tissue formation, such as keratinocytes, corneal cells, vascular endothelial cells, 

osteoblasts, osteoclasts, chondrocytes, neurones and fibroblasts36, 54, 75-77. The speed of 

migration is dependent on the strength of the applied field36, and different cell types have 

been found to move in opposite directions within a field; reversing the field direction 

reverses their migration36, 78. The direction of macrophage migration may vary according 

to the stage of healing79.  

At the tissue level, unidirectional fields and direct currents (DC) in the microamp range 

can promote vascular permeability79 angiogenesis80 and neural sprouting53, 81 as well as 

formation and maturation of new skin, bone, cartilage and soft tissue formation 67, 82-87. 

The alignment of newly-formed collagen in healing ligaments and osteons in bones is 

parallel to the applied current54, 88.  
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Thus, the currents that are established immediately after damage and decline as healing 

progresses are capable of driving multiple components throughout the whole process of 

healing. This is a key concept in the electrophysiology of tissue repair. It provides grounds 

for arguing that bioelectricity is integral to the process, and may be as important as 

biochemistry in its co-ordination. Other forms of bioelectricity may be involved in specific 

stages. For instance, streaming potentials set up by blood flow within vessels can assist 

clotting when the vessel walls are breached89, and promote angiogenesis in the early 

stages of tissue synthesis80. SGPs in connective tissue could provide the impetus for 

differential tissue formation and adaptation to everyday stresses that occur later, during 

the remodelling phase. 

The applied fields and currents in many of these studies are similar to those generated 

naturally within tissue. Applying currents at other levels can have deleterious effects. In 

one study, current above 1000 μA reduced ATP levels and protein synthesis in rat skin 

cells74; in others, current densities or frequencies above certain levels reduced cell 

proliferation or caused cell death64, 90, 91. However, studies have produced apparently 

conflicting findings. In one, the effects of various microcurrent parameters on bovine 

fibroblasts in a collagen matrix were investigated70. Stimulation with currents above 

1 μA/cm2 reduced collagen synthesis by cells in the matrix by 30% compared to 

unstimulated control samples. The effect was most marked at 1 Hz, less at 10 Hz and 

absent at frequencies above 100Hz. Bone resorption has been observed with applied 

currents of 30 – 50 µA38. These parameters are similar to those occurring endogenously 

during normal healing but are producing different effects. 

In fact, healing can be promoted using applied fields and currents with a variety of 

parameters, including high voltage pulses and high frequency waveforms, that have not 

been observed in living tissue36, 75, 92. One reviewer concluded that almost any form of 

electrical stimulation can result in osteogenesis38. A number of explanations may help 

reconcile these findings: (i) the effects of currents on cells are likely to depend on their 

environment and on the stage of repair, so applying the same parameters in different 

contexts may produce very different outcomes; (ii) healing processes may be the product 

of a dynamic synergy between bioelectricity and biochemistry75 for which in-vitro models 

provide a poor analogue; and (iii) applying artificially-generated currents – whether 

similar to endogenous ones or not – may activate physiological pathways quite different 

from those that occur naturally after tissue damage. 
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2.5  CONCLUSIONS 

Empirical evidence has established that cells within living organisms, including humans, 

generate electricity, producing steady and varying voltages in tissues throughout the 

body. These drive currents of injury whenever tissue is damaged. Endogenous voltages 

and currents are capable of driving multiple components of the healing process. It may be 

that the current of injury is a homeostatic trigger93 that initiates a physiological response 

once normal metabolism has been unbalanced by tissue injury. Certainly, several reviews 

have concluded that bioelectricity is essential to healing6, 21, 94. This evidence is 

circumstantial, however, and not always consistent. The association  between 

bioelectricity and healing may not be causal. Whilst bioelectricity can influence healing, it 

may not necessarily do so. If it does, it may not be the only - or even the main - driver. 

Nevertheless, the data are consistent with biolectric involvement in the process, and so 

provide a biological rationale for the application of currents with similar parameters. If 

these can activate or promote endogenous healing, particularly when the natural process 

has become dysfunctional, they surely merit further consideration. This is the focus of the 

next chapter. 



 

 

Chapter 3 
Microcurrent therapy 

 

‘After the limb was electrized …  

the man was able to  walk and left the hospital cured.’95 (p204) 

 

3.1  INTRODUCTION 

he previous chapter argued that the behaviour of living tissue can be described in 

terms of bioelectricity as well as biochemistry.  An appreciation of the role of 

chemical interactions in physiology has underpinned the development of many 

pharmaceutical interventions. In the same way, a more complete understanding of 

electrophysiology  may result in the emergence of new electrotherapeutic technologies. The 

evidence cited in the previous chapter suggests that the application of microcurrent can 

influence healing; it is also consistent with at least some forms of microcurrent achieving this 

by mimicking the biocurrents that are generated during tissue damage and repair. Hence, 

microcurrent therapy may be regarded as a distinct form of electrotherapy with particular 

mechanisms of action. However, reviews sometimes fail to make this distinction, and draw 

generic conclusions about electrical stimulation based on evidence from trials using quite 

different modalities96, 97. These may differ not only in their influence on physiology but also in 

their therapeutic value for a particular disorder. Separate evaluation of each modality is more 

likely to produce valid conclusions about their individual effects and effectiveness. A review 

of experimental studies focusing specifically on the effects of microcurrent  is therefore 

desirable, but none has been published to date. Hence, one was conducted as part of this 

investigation. 

The literature contains much evidence relating specifically to the action of microcurrent, 

involving cell cultures, tissue samples, live animals and humans, and relates to a variety of 

tissue types. Caution must be exercised in interpreting the data from such a broad-based 

literature. Ex-vivo tissue samples and in-vivo animal tissue lesions provide imperfect 

analogues for human pathology, and do not necessarily predict human response to 

treatment. Also, the majority of published human clinical trials involve bone and skin, muscle 

T 
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and nerve, which differ significantly in structure, pathological features and repair processes 

from soft connective tissues, such as tendons, ligaments and fascia. These have a collagen-

based matrix manufactured by phenotypes of the fibroblast cell,  and they heal by laying 

down poorly organised scar rather than regeneration of identical tissue98. Whilst findings 

from these studies may enhance confidence in the potential of MCT generally, a separate 

analysis of human clinical trials of the modality specifically applied to damaged soft 

connective tissues is required.  

The purpose of this chapter is to review the literature relevant to MCT. It begins by 

constructing a working definition of microcurrent therapy, which is used to define the scope 

of the work that follows. A narrative review follows, addressing in-vitro and animal studies 

relating to all tissue types, and then human clinical trials that do not involve connective 

tissues.  Clinical trial evidence relating specifically to the soft connective tissues is then 

addressed through a systematic review, in which the breadth and quality of existing data is 

more fully appraised. The chapter ends with conclusions about the strength of available 

evidence regarding microcurrent therapy, and identification of issues that require further 

research. These are used to inform the experimental work that forms the rest of this 

investigation. 

 

3.2  DEFINING  MICROCURRENT  THERAPY 

Microcurrent therapy is one of a number of terms used in the literature to describe electrical 

stimulation that involves delivery of very small currents. These include microcurrent 

electrical therapy99, microcurrent stimulation5, low intensity direct current100, low-voltage 

microamperage stimulation101, micro-amperage neural stimulation102, microampere 

transcutaneous electric nerve stimulation103,  electroionotherapy104 and horizontal 

therapy105. In some cases, a generic term such as direct current106 or bioelectric 

stimulation107 is used. The common feature of these forms of therapy is the application of 

electric current in the microampere range, delivered to the tissue via contact electrodes. They 

may differ in several other respects, particularly in the waveform of the current: it may be 

constant and unidirectional (also known as direct current, or DC), monophasic (varying in 

magnitude but unidirectional) or biphasic (varying in magnitude and direction); if varying, 

the waveform may be sinusoidal (known as alternating current, or AC), rectangular or 

another shape, and of fixed or modulated frequency and amplitude; it may also be pulsed. 

Clearly, this can produce an almost limitless variety of parameter combinations.  
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The physiological rationale used in this investigation for the application of microcurrent is its 

similarity to the endogenous currents seen during tissue healing. These natural currents are 

constant or slowly varying, so many of the therapies described in the literature do not mimic 

bioelectricity, despite claims or implicit assumptions that they do so82, 85, 108. In some cases, it 

may be that the current is pulsed or reversed to reduce the accumulation of potentially 

harmful electrolytes at the electrode/tissue interface82; in others, current modulation may be 

intended to activate neurones in the area, although this is unlikely at currents of less than 

100 μA109. In any case, the waveforms used in studies are seldom justified, and comparisons 

of their effectiveness are rare. It may be that variables such as frequency, pulse rates and 

wave shapes have no bearing on the healing effect. They might influence other clinically 

significant outcomes, however, such as side effects and pain levels.  A narrow definition of 

microcurrent therapy, based entirely on its similarity to endogenous electricity, would 

exclude consideration of many clinical studies that use sub-milliamp currents but vary them 

“unnaturally”. If the size of the applied current is the most important factor in its 

effectiveness as a promoter of healing, this exclusion is unwarranted. Indeed, including such 

studies in the analysis may help elucidate the issue of parameter dependence. Therefore, for 

the purposes of this investigation, microcurrent therapy  is defined as 

therapeutic application of electric current of intensity in the microamp range. 

While this definition is simple and identifies the primary characteristic of MCT, it is not 

entirely satisfactory. There are modalities that have been applied to promote tissue healing 

and which may produce currents in the microamp range, such as High Voltage Pulsed 

Current110 (HVPC) and Radio-frequency Stimulation111. However, their parameters are 

typically expressed in terms of voltage applied or energy delivered rather than current 

produced. In the case of radio-frequency stimulation, the induced current is very difficult to 

measure but likely to be above the microamp range32. Typically, HVPC  generates very brief 

pulses of current that constitute less than 2% of the waveform -  for the rest of the time, the 

current is zero 112 (Ch 5). Hence, even if these pulses have microamp amplitudes,  it was judged 

inappropriate to class HVPC as a form of MCT. These modalities are excluded from the 

discussion that follows.  

The definition says nothing about the electric field produced in the tissue by the modality. 

This might be interpreted as inferring that electric currents rather than fields modulate the 

healing process. In fact, the two are intimately related since, during healing, fields drive 

currents and ion movements set up fields. However, current intensity rather than field 

strength are mostly commonly reported in clinical studies and so this variable is adopted 
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pragmatically for the definition. In fact, it may be that current density (current per unit 

surface area, usually measured in μA/cm2) is more significant than current intensity in 

determining the bioeffects of microcurrent.  This possibility is considered later. However, 

unless the electrodes delivering the current are in direct contact with the target tissue, 

neither the intensity nor the density of current at the site of damage is known. So once again, 

current intensity is the pragmatic choice for the definition, although if the electrode 

dimensions are known, current density at its interface with tissue can be calculated. 

  

3.3  TISSUE  AND ANIMAL STUDIES 

This section considers evidence gathered from experiments in which microcurrent is applied 

to in-vitro tissue samples and live animals. Such studies can facilitate control of conditions 

whilst providing an approximation of normal anatomy and metabolism in the tissue. Live 

animal studies can provide analogues for some forms of human tissue damage, such as bone 

fractures and surgically-induced wounds, but are less capable of simulating some of the 

common soft tissue pathologies such as repetitive strain injuries and natural ruptures113, 114.   

 

3.3.1 Bone 

The capacity of MCT to promote bone healing has been explored in many mammalian studies 

from the 1960s onward. Typically, these compared real MCT and sham-MCT, the latter 

comprising identical apparatus and electrode placement but no current delivery. Surgical 

osteotomies have been used to model fractures and spinal fusion surgery, and radiological 

evidence of osteogenesis, callus formation and union have been used as indicators of healing. 

Resistance to bending stress has also been measured. Studies have consistently shown that 

direct or pulsed monophasic currents of amplitude 10 – 20 µA, delivered via a wire cathode 

of 1 – 2 cm length placed into the lesion and an anode sited nearby, applied for several hours 

each day for several weeks, accelerates bone healing compared to controls groups72, 87, 115, 116.  

Current intensities well below these values have no effect and those well above it cause 

resorption or osteonecrosis84, 117, 118. One study compared the effects of various combinations 

of current intensity, frequency and waveform on healing of surgically-induced osteotomies in 

rabbit skulls119. Intensities between 3 and 1400 μA, and DC, square waves or sinusoidal AC of 

1 or 60 Hz were used. The investigators concluded that current intensity (or density) was the 
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key parameter and that varying the waveform, frequency and pulse rates did not materially 

influence healing. 

There have been suggestions that electrolytic products at the electrode interface or 

movement of the implanted electrode, rather than the microcurrent itself,  may drive 

osteogenesis120, 121. However, the current intensity-dependence of osteogenesis suggests that 

electrode movement cannot be solely responsible for healing. Reviews considering MCT 

(amongst other electrotherapies) for animal bone healing have concluded that there is 

convincing evidence that it can accelerate healing after osteotomies and fusion surgery in 

mammals when appropriate parameters are employed72, 87, 122.  The studies reviewed have all 

involved fresh lesions; the effects of MCT on dysfunctional healing - for example in non-

uniting fractures – have not been explored in animals, possibly because of the difficulty in 

creating animal models123. 

 

3.3.2 Skin 

Since 1968, when Assimacopoulos used microcurrent to treat surgical scars on rabbit ears124, 

many studies have investigated the effects of MCT on animal skin wound healing. Lesions 

caused by incision, scalding or burns, and skin grafting have been treated with DC and pulsed 

monophasic current, applied via a conductive dressing applied to the wound and another 

adherent  electrode sited nearby125-131. Wound closure times, exudate levels, tissue strength, 

bacterial load, levels of cellular proliferation and neovascularity have all been  used as 

indicators of the healing process82, 93. Compared to bone, a wider range of microcurrent 

parameters have proved efficacious. Current intensities between 1 µA and several hundred 

µA promote healing more effectively than sham MCT used with control groups. Electrode 

surface areas appear to vary substantially between studies, however, and effective current 

densities probably fall in a narrower range. Some authors suggest that initial cathodal 

stimulation followed by polarity reversal a few days later may improve effectiveness132, 133, 

but others do not support this contention129, 134. Some controlled trials have failed to show 

benefit using MCT within the suggested therapeutic window for current intensity. In one case 

this might have been due to the lack of an applied dressing and the formation of a scab whose 

high resistance may have reduced the current reaching the wound67. The authors of the other 

study128 suggest several possible factors that could have accounted for the ineffectiveness of 

the treatment, but their findings demonstrate that the evidence for MCT is not consistent. 

Nevertheless, more comprehensive reviews of controlled animal studies have concluded that 
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MCT can promote healing in surgically induced wounds82, 135. There is also limited evidence 

using a rabbit model that it may be effective with ischaemic wounds136. 

 

3.3.3 Other tissues 

There is some animal study evidence to suggest that very low intensity currents may 

promote healing following peripheral nerve damage. In one study81, artificial crush injuries 

were created in sciatic nerves of rats, and electrodes implanted either side of the injury 

delivered a nominal 1 µA direct current continuously for three weeks. Functional 

performance of the limb served by the nerve improved more rapidly in those given MCT 

compared to sham-MCT controls, and at 3 weeks there was significantly greater nerve fibre 

density and neovessel formation in the stimulated nerves than in controls. Several other in 

vivo studies have also confirmed that DC microcurrent can stimulate regeneration after 

peripheral nerve injury in rats137, 138.  A review of early studies concluded that DC current 

intensities of approximately 1.4 µA were most effective in promoting regeneration without 

adverse effects139. 

MCT has also been observed to promote healing in damaged cartilaginous tissue. DC of 

amplitude 2 µA and pulsed at 100 Hz, started 48 hours after surgery and applied 

continuously over four days, increased chondrocyte proliferation compared to controls in 

surgically damaged rabbit femoral condyles140. Normal growth of cartilage in young rabbit 

hips has also been enhanced by continuous application of 8 µA DC for 3 – 5 weeks86.  

 

3.3.4 Soft connective tissues 

A number of studies have examined the effects of MCT on soft connective tissues, particularly 

tendons. In one, explants of transected and repaired rabbit flexor tendons were given either 

7 µA DC or sham MCT for 42 days, via electrodes sutured onto the tendon with the cathode in 

the lesion and the anode about 4 cm away141. Histology revealed evidence of repair in all 

explants, but the stimulated samples had substantially more collagen fibres visible by day 7. 

Fibres bridged the lesion in the epitenon of stimulated samples, but in none of the tendon 

bodies. The authors speculated that healing was inhibited in the immediate vicinity of the 

cathode, since collagen deposition occurred some distance from it and there was evidence of 

necrosis immediately adjacent to it at 42 days.  
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Parameter-dependence has been investigated in several studies. Application to cultured 

equine tenocytes of monophasic current pulsed at 150 Hz and with several intensities 

between 50 and 1500 μA, demonstrated increased cell proliferation and protein synthesis in 

all cases but maximal at 100 μA64. Apoptosis was observed in all samples but increased with 

number of treatments and current intensity. Microcurrent stimulation of tissue growth was 

examined using explants of flexor digitorum tendons from  chickens, exposed to pulsed 

monophasic current or sham treatment69. Fibroblast proliferation was greater in the MCT 

group, with the maximal effect using a 1 Hz, 1 ms pulse duration waveform, and with current 

densities of 0.4 – 0.8μA/cm2. Above 24 μA/cm2 difference became negligible. Collagen 

synthesis maximised at 0.7 μA/cm2 and fell above 10 μA/cm2. Applying current along the 

explant caused increased proliferation and synthesis, but perpendicular current produced no 

detectable effect. So the direction of charge flow appeared a significant determinant of 

treatment effect. In another study65, explants of rabbit flexor tendons and their synovial 

sheaths were exposed to constant DC of 0.5, 1 and 6 μA, applied longitudinally for one or two 

weeks. Investigation of the cut surfaces revealed evidence of cell proliferation and collagen 

deposition in both treated and control samples, with adhesions forming in the epitenon-

sheath as a result. Cells in the stimulated explants showed increased numbers of organelles. 

Above 1 μA there was evidence of tissue degeneration and cell death; at 0.5 μA proliferation 

continued in the tendon substance but was significantly reduced in the sheath.  The latter 

observation is particularly significant because it suggests that microcurrent selectively 

inhibited proliferation that would lead to counterproductive adhesion formation during 

sheathed-tendon healing. In other words, the therapy did not merely promote particular 

elements of the healing cascade, but facilitated a broader process of adaptive healing. This 

remarkable finding has not been replicated by other groups. 

In-vivo animal studies have also been conducted. Norrie surgically injured forelimb 

superficial flexor tendons bilaterally in six ponies, and for up to 6 weeks treated one side 

with current generated by a bimetallic strip via a platinum cathode implanted at the injury 

site and a silver anode 3 cm distal142. Tendons segments were removed at 4, 5 and 6 weeks 

post-injury and subject to visual and microscopic inspection. No significant differences were 

observed between treated and control tendons, although the current was not monitored and 

was thought to be less than 1 μA, so it may have been below the therapeutic window.  

In a later study, Stanish and colleagues surgically divided right patellar tendons of nine 

dogs143. The legs were then either immobilised in plaster casts (group 1), dressed with 

compression bandaging for 48 hours and were then free to move (group 2), or given constant 

20 μA DC delivered to the tendon using a cathode wire wrapped around it, with the anode 
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implanted subcutaneously (group 3). After six weeks the dogs were killed and tendons with 

their bone attachments removed bilaterally, the contralateral tendon as a control. The mean 

breaking strengths as percentages of the contralateral limb for the groups were 47%, 50% 

and 92% respectively. Later work by numerous groups using rats, rabbits and dogs 

suggested that monophasic or unbalanced† biphasic microcurrent in the amplitude range 

10 - 100 µA, applied via wire electrodes placed in or near surgically induced lesions, resulted 

in greater breaking strengths in treated tendons compared to sham treated controls85, 144-146. 

Total treatment times were of the order of hours, spread over several weeks; frequencies 

were usually less than 100 Hz, but in the kHz range in some cases. The use of breaking 

strength as an outcome measure is problematic because it could be a product of tissue 

hardening caused by chemical reactions near the electrode, rather than of cell-mediated 

tissue healing. One study also used histological examination and found that more collagen 

was laid down in treated tendons in later weeks of treatment, with a significantly higher 

proportion of type I (mature) collagen deposited, compared to control tendons146.  

The effects of MCT on damaged ligaments and joint capsules have also been investigated. 

Sham or real microcurrent was applied to bilaterally divided and sutured medial collateral 

rat ligaments in two studies 147, 148, using either DC or low frequency AC waveforms. Both 

suggested that treatment increased stiffness and breaking strength, but histological 

examination was not conducted. Rat knee joint contracture, caused by temporary suturing in 

flexion, was treated by DC or 1 Hz AC and compared with sham MCT controls in two 

studies149, 150. After 2 or 3 weeks treatment, range of movement in the treatment groups were 

significantly better than in controls, and mechanical testing in one study suggested that this 

was due to decreased stiffness of the supporting ligaments150. The authors speculated that 

the treatment may have promoted tissue adaptation that would normally result from 

mechanical stimulation. 

 

3.3.5 Clinical significance 

Many of these studies were controlled with sham-MCT. In most of the connective tissue 

studies, contralateral lesions provided well-matched control groups. These features enable a 

cause-effect relationship to be established between treatment and outcome. However, 

                                                             
†
 Biphasic currents involve periodic reversals in charge flow direction. With unbalanced currents, the flows 

are not equal in magnitude so there is a net current in one direction. The term “asymmetrical” is also 
employed: this signifies a biphasic current whose negative and positive phases have different waveforms, 
and which may or may not be balanced. 
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evidence is limited by a number of shortcomings. Histological analysis of treated soft 

connective tissue has been surprisingly rare, and so information about the effects of MCT on 

tissue anatomy and physiology is scant. Radiology has been used to confirm healing in bone; 

visual inspection and surface measurement has provided evidence of healing in skin wounds; 

but outcomes directly related to tissue healing have rarely been measured in soft connective 

tissue animal studies. The use of an untreated contralateral limb as a control is also 

potentially problematic, since damage to one limb may produce compensatory changes in the 

other, resulting in structural and histological changes that would not have occurred 

otherwise. Hence, the control limb may be affected by conditions of the study.  

In most cases, tissue damage was caused surgically and treatment applied in the acute and 

sub-acute stage of healing. Animal models of chronic lesions resulting from disease, hypoxia, 

degeneration, cumulative microtrauma and dysfunctional healing are in the early stages of 

development114, 151-153, and little data on the effects of MCT on such lesions is available from 

animal studies. Long term outcomes for the soft connective tissues have not been measured, 

even though the latter stages of healing may continue for many months. Thus, the potential 

effects of MCT on the remodeling process remains unexplored in animal studies. 

Parameter-dependence remains a contentious issue. Whilst there is consensus that current 

intensities within the microamp range can promote healing in a variety of tissues, the 

effective values appear to be significantly lower in bone and tendons than in skin. This 

discrepancy diminishes (but is still present) if current density is considered, since the 

implanted wire electrodes used with bone and tendon lesions are usually of much smaller 

surface area than the conductive dressings applied to skin wounds. Where electrodes are 

applied to the body surface, the current reaching the damaged tissue is, in any case, virtually 

impossible to measure or calculate for deeper lesions. Such is the heterogeneity of treatment 

protocols, it is also impossible confidently to draw conclusions about the influence of 

waveform. However, the majority of reviewed studies demonstrating the effectiveness of 

microcurrent use DC, monophasic or unbalanced biphasic currents with frequencies less than 

100 Hz. Arguments have been proposed for the use of total charge or energy delivered as key 

parameters84, 154 but these have not gained currency. Similar total charge or energy delivery 

could be achieved more quickly than MCT by using greater current intensities but, as has 

been seen, these may lead to cell death and tissue damage. Therefore these parameters must 

be subsidiary to current intensity in determining effects.  
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Thus, the evidence from tissue and animal trials, whilst strongly suggestive of therapeutic 

potential, can only provide measured support for its investigation in human trials, and broad 

guidelines for which parameters should be employed. 

 

3.4  HUMAN STUDIES 

In this section, human trials involving bone, skin, muscle and nerve are considered. Trials 

specific to the soft connective tissues, which may respond differently to MCT,  are dealt with 

by a systematic review later. 

3.4.1 Bone 

In 1812 the surgeon John Birch – who ran an electrotherapy department in a London hospital 

– used percutaneous electrodes to pass electric current through a 13-month old non-uniting 

tibial fracture‡. After 6 weeks of treatment the bone was deemed healed155. Although the size 

of the current was not reported, this may be the first record of MCT for healing human bone.  

Other clinicians of the time recorded similar successes3, but the treatment then fell into 

disuse until the late-20th century.  In 1971 case report appeared of a malleolar fracture, non-

united for more than a year, but treated successfully with 10 μA DC via a cathode placed in 

the fracture site156. Since then, many trials have been reported, though few have employed 

separate control groups87. Patients have been assumed to be their own controls since 

spontaneous healing is rare in the cases typically treated, with no radiographic or clinical 

evidence of healing for at least 3 months. In a typical study, 57 lower and upper limb non-

unions were treated with 10 – 20 μA, delivered to the site by 2 − 4 cathodes for 12 weeks, 

followed by 12 weeks further immobilisation157. The authors found that the lower intensity 

current was inadequate to promote osteogenesis in larger diameter bones and conducted a 

subgroup analysis of the 46 cases receiving “adequate current”. Of these, 39 (85%) achieved 

solid bony union. Side effects of such treatment are reported as rare, although in some cases 

they are serious: in one multicentre study with 178 non-unions, there were 21 cases of skin 

                                                             
‡
 An observer described the case: ‘One of these patients, whom I often visited during his illness, entered St. 

Thomas’ Hospital in the month of January, 1812, with an unconsolidated fracture of the tibia below the 
middle of thirteen months’ standing. The leg below the fracture could be easily moved in any direction and 
without exciting much pain. Shocks of electric fluid were daily passed through the space between the ends 
of the bones, both in the direction of the length of the limb and that of its thickness. The man, being 
somewhat weak, used bark and porter at the same time. After the limb was electrized, the ordinary 
apparatus for fractures of the leg was applied. At the expiration of two weeks the limb had evidently 
become less flexible in the situation of the fracture; and after a continuance of the same treatment for six 
weeks, the man was able to  walk and left the hospital cured.’ 

95
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irritation, probably caused by mechanical friction between the wire insert and overlying cast, 

7 cases of irritation under the surface-mounted anode and three of cathode dislodgement158. 

Occasional cases of severe irritation under the surface anode, or of implant wound infection, 

have been reported157. A 10-year follow-up study traced 38 of 81 cases treated with 

microcurrent and found continued union, normal remodelling and no adverse effects in any 

of them159. 

In a study involving a mixed caseload of 61 non-unions following fractures, congenital 

pseudarthroses, osteotomies and leg-lengthening procedures, DC current pulsed at 20 Hz 

with a pulse amplitude of 20 – 25 μA and duration of 30 ms, was applied via a cathode 

wrapped around or threaded through the fracture site and with the anode implanted in the 

medulla160. Treatment times varied according to case until union or failed union was 

observed radiographically, and were between 2 and 12 months. The overall success rate was 

87%, although adjunctive treatments and patient characteristics varied considerably. An 

experienced research group concluded that constant DC always produced superior outcomes 

to pulsing with non-unions, but presented no data in support of this claim157. An example of 

the equipment and effects used in one study is provided in Figure 3.1. 

The lack of more recent studies may reflect the greater popularity of less invasive 

electrotherapeutic modalities161, although MCT gives superior results in selected cases. A 

comparison with capacitative and inductive coupling (which generate high frequency electric 

or electromagnetic fields in the tissue) after bone graft treatment of tibial non-unions found 

that microcurrent was more effective with high risk cases such as those with atrophic non-

unions or previous graft failure162. Where there were no identified risk factors, none of the 

electrotherapies was superior to graft alone. MCT produces superior outcomes in selected 

cases of lumbar spinal fusions, and continues to be the adjunctive electrotherapy of choice for 

this application.  Direct current, typically of 20 μA applied by a single or multiple cathodes to 

the fusion site for 5-6 months, has been evaluated in several controlled trials163-165. Typically, 

patients receiving MCT in addition to standard treatment had successful fusion rates of 81 –

 96%, compared to 54 – 81% for those on standard treatment alone, as assessed by 

radiographic and clinical criteria. Results for methodologically sound controlled trials 

consistently indicate statistically significant outcomes in favour of  DC MCT compared with 

control groups166. It is particularly effective when used in high risk cases such as those with 

previous failed fusions, multiple level surgery, smokers and those with co-morbidities such 

as diabetes and obesity72, 96, 167. An economic evaluation of the therapy as an adjunct in spinal 

fusion surgery168 also found that it provided significant cost savings and shorter in-patient 

stays.   
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Sequence of radiographs of tibial non-union treated with microcurrent for 12 weeks.  

The third image is immediately post-treatment and the fourth image is 12 weeks later.  

Figure 3.1: Microcurrent treatment of non-uniting fractures158 

 

Despite encouraging results of some animal studies, few human studies have investigated the 

potential of MCT for accelerating healing after normal fractures. Two, using 20 – 40 µA DC, 

found in favour of the modality169, 170. However, although these trials were controlled,  

randomisation or matching of participants was not attempted, and they are poorly described. 

Reviews rarely focus specifically on this application, but at least one has concluded that fresh 

fractures do not respond to DC microcurrent171. 

Systematic reviews of trials have concluded that the best evidence for promotion of bone 

healing by application of small electric currents is in cases of non-uniting lower limb 
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fractures, osteotomies and spinal fusions87, 96, 166, 172-178. Stimulation on non-unions is reported 

to be particularly effective when other forms of therapy have not helped repair87. However, 

meta-analyses have been weakened by pooling data from trials using heterogeneous groups 

and treatment parameters, and even different forms of electrotherapy166, 174. Many studies 

are criticised as poorly conducted or reported, and for drawing conclusions based on 

statistical rather than clinical significance38. 

3.4.2 Skin 

Several authors have erroneously identified the seventeenth century use of charged gold leaf 

for resolution of smallpox lesions as the first example of electrotherapy for skin healing82, 111, 

179. In fact there is no mention of electric charge in the cited source180 §. Charged gold leaf was 

used successfully in the 1960s to assist healing in surgical vascular wounds and cutaneous 

ulcers181, 182, but charging was considered an aid to adherence of the leaf rather than an agent 

of healing in itself. Nevertheless, reviews of more recent studies have consistently concluded 

that electrical stimulation, including MCT, can successfully promote healing in various types 

of skin wounds, particularly ulcers82, 183, 184.  

The first modern account of MCT for skin wounds described the treatment of recalcitrant leg 

ulcers in three patients185: an 18-year old man with a history of diabetic leg ulcers, and two 

elderly people with venous ulcers. Previous conservative treatment had been unsuccessful. 

All were treated initially with antibiotics and then by direct current between 50 and 100 μA, 

delivered continuously via mesh electrodes. The cathode was soaked in saline and placed on 

a moist dressing on the wound, and the anode was affixed to the thigh or abdominal wall. One 

wound healed in seven days, and the others within 6 weeks. Histological assessment of tissue 

taken from one of the healed diabetic wounds 18 months later indicated well-healed dense 

connective tissue. No side effects of treatment were reported.  

Evidence from trials with larger samples and control groups accumulated in subsequent 

years. Outcomes observed included exudate production, bacterial load, neovascularisation, 

rates of re-epithelialisation, time to wound closure, and pain. Typically, successful treatments 

used DC of 100 − 800 µA applied directly to a non-healing wound via a conductive dressing, 

applied for several hours daily for several weeks, sometimes months100, 186-188. A trial using 

                                                             
§
 In an early example of a n=1 controlled trial, the English royal physician Kenelm Digby reported that, 

having applied gold leaf to the face of a young woman scarred by smallpox, “half her face where the Gold 
lay was clear from any Pocks at all, and [the] other half, where they laid no Gold, was deform’d with Scars” 
(Shuttleton, D.E., Smallpox and the Literary Imagination: 1660-1820. 2007, Cambridge: Cambridge 
University Press, p117). 
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300 µA amplitude monophasic current pulsed at 128 Hz, applied to chronic venous ulcers for 

several months, showed no benefit of real over sham MCT, however189. Some studies have 

suggested that swapping the polarity of the electrodes periodically can improve outcomes, 

but the evidence is inconsistent82, 186, and the rationale unclear.  

 

 

 

 

 

 

 

 

Figure 3.2: An adherent wound dressing with a built in microcurrent generator190 

 

MCT has also been found more effective than conventional treatment in promoting skin graft 

healing following thermal injury191; and case series and controlled trials have suggested that 

low frequency (<1 Hz) 600 µA biphasic microcurrent is capable of stimulating healing in 

recalcitrant pressure ulcers192, 193. Reviews of electrical stimulation for skin wound healing 

have consistently concluded that the weight of evidence is in its favour when it is used as 

adjunctive treatment with other conservative management strategies82, 135, 166, 179, 183, 194-196. 

Where MCT studies are considered alone, the range of protocols employed means that 

optimum parameters cannot yet be identified. Both continuous and pulsed, monophasic and 

biphasic, anodal and cathodal stimulation appear capable of promoting healing, although the 

low methodological or reporting quality of many studies leaves them open to bias and 

reduces confidence in their findings171, 179, 196. Reviews are usually unable to draw firm 

conclusions about which parameters are most effective183, 195. Those supported by a majority 

of studies are current intensity (in the hundreds of microamps)197, treatment time (typically 

several weeks, for hours rather than minutes each day)5, 112 and application directly to the 

wound bed. This is typically via normal dressings with mesh electrodes attached and a 

separate power supply, but several more recent pilot studies have used a dressing with an in-

built circuit and power supply184 – see Figure 3.2 for an example. Monophasic or unbalanced 

currents are more common in the studies indicating MCT effectiveness82, 197, 198, although 

steady DC is rarely used in practice82, 171.  
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3.4.3 Other tissues 

Trials of MCT for delayed-onset muscle soreness (DOMS), due to microtrauma in muscle 

tissue following intense exercise, generally do not support its use for this application101, 199-

203. Treatment times are much shorter than in the bone and skin studies, and pain intensity is 

the most common outcome measure. One study evaluated a skin-mounted charged dielectric 

pad, providing an average 20μA over 96 hours202. Serum creatine kinase (CK) levels, which 

elevate following muscle damage, were found to be lower in DOMS-induced muscles after 

MCT than in an untreated control group. The authors speculated that the therapy might have 

a prophylactic effect, reducing the degradative biochemical process that lead to 

microstructural damage in DOMS.  A small number of trials provide very limited evidence 

that MCT may be of benefit in other disorders where tissue damage is a factor, such as 

osteoarthritis204, 205 and macular degeneration206-208. None of these studies used any measure 

of tissue healing, however, and those concerned with macular degeneration had low 

methodological or reporting quality. It is rather surprising that the promising results of 

studies using MCT to promote nerve regeneration in animals appear not to have been 

followed up with clinical trials with humans. 

3.4.5 Parameter dependence 

Reviews of trials have consistently concluded that there is insufficient data available to be 

confident about which parameters combinations are optimal. Comparisons studies using 

different combinations have rarely been attempted with human subjects. However, a few 

such studies have been conducted in vitro or with live animals, and those cited earlier 

suggest that the size of the current and the total duration of treatment are key. This is 

consistent with the suggestion that total charge or energy delivered determines treatment 

success because these quantities are functions of current and time. The influence of 

waveform, polarity, and frequency of variation or pulsing is much less apparent. Indeed, if 

MCT’s effectiveness is dependent on its similarity to bioelectricity, the application of complex 

or high frequency waveforms would not be justified. Mimicking endogenous currents of 

injury would also require the applied current to reduce as healing progresses, but no studies 

attempting this could be found.  

Most clinical trials describe the current delivered in terms of intensity rather than density, 

although the latter measure may be the more significant. For a current of known intensity at 

the skin surface, the intensity (and density) at the site of the lesion will depend on the 

dimensions of the lesion and the electrodes, the distance between the lesion and the 
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electrodes, and the electrical characteristics of the intervening tissue. Modelling the effects of 

these factors for deep lesions is problematic but, where studies use electrodes in direct 

contact with the lesion and state electrode dimensions, it is possible to calculate approximate 

current density values. These are given for some exemplar studies in Table 3.1.  

Table 3.1: Effective current densities calculated from data generated in human trials of MCT 

Tissue - lesion Current density at electrode (μA/cm2)  

Bone – non-union162 15 – 25 

Bone – pseudarthrosis209, 210 6  – 12 

Bone – fresh fracture170 5  – 10 

Bone – spinal fusion211 8                            

Skin – ulcers (electrode on wound) 100, 186, 187 5  – 110 

Skin – ulcers (electrode on intact skin) 188, 212 20, 260 

Skin – graft191 0.1  – 0.2 

Muscle - DOMS202 20 

 

The data allows some narrowing of the therapeutic window for this parameter, but there is 

significant variation in effective densities, even for a particular form of tissue damage in some 

cases.  Nevertheless, there appears to be a pattern of lower densities being more effective for 

acute injuries (fresh fractures, fusions, skin grafts).  

3.4.6 Conclusions 

The accumulation of data from human trials suggests that MCT of certain parameters is 

capable of promoting healing in a range of tissues. It appears particularly suited as an adjunct 

treatment in cases where other forms of management have been unsuccessful. Whereas 

animal studies have focussed primarily on accelerating normal healing in acute lesions, the 

human trials have been more concerned with chronic lesions and dysfunctional healing. Once 

again there remains doubt about the parameters of the therapeutic window.   

Study protocols have been directed more towards testing proprietary devices rather than 

systematically evaluating the influence of each parameter. Whilst this approach is 

scientifically unsatisfying, it may have some justification. Since the possible combinations of 

microcurrent parameters are virtually limitless, it is unfeasible to compare them all. Also, 

particularly where the electrode is not in direct contact with the lesion, the relationship 

between the applied current and that reaching the damaged tissue is neither constant nor 

necessarily predictable. This is true for current intensity, density, charge and energy 

delivered, and waveform. So it more practical to develop treatment protocols in an 
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evolutionary fashion, adjusting parameters for each form of tissue damage in the light of all 

available trial data. For the soft connective tissues, the particular concern of this 

investigation, that data is now considered. 

 

 3.5  HUMAN TRIALS WITH SOFT CONNECTIVE  TISSUE 

It was clear from an initial search of the literature that there are few published clinical trials 

of MCT for soft connective tissue. Therefore an in-depth search was conducted to obtain as 

much relevant evidence as possible. This formed the initial stage of a systematic review, 

whose purpose was to consider whether there is a case for the application of microcurrent to 

damaged soft connective tissue, and to identify areas that require further investigation. The 

specific questions addressed were: 

A. What are the effects of microcurrent therapy on tissue healing and on clinical signs or 

symptoms following soft connective tissue damage? 

B. Are these effects dependent on the treatment parameters or method of application? 

C. Is microcurrent more effective when used in combination with other forms of 

treatment? 

D. Are there any adverse effects of MCT? 

E. What data is there regarding feasibility, cost, acceptability to patient and clinician of 

this treatment?  

These questions reflect the clinical focus of this investigation, and its concerns with 

effectiveness, safety and practicality. The review process was based on recommendations 

made in the literature for the conduct of reviews 213-215. Although well-conducted randomised 

controlled trials (RCTs) are thought to provide the best evidence for treatment 

effectiveness216, other study designs can supply useful information about effects, safety, 

appropriateness and feasibility217, 218. They may also provide indications of potential 

population subgroups with differential responses to treatment. These considerations are 

particularly important where a therapeutic application is novel and where few trials have yet 

been conducted. The standard of evidence provided by such studies may be lower than that 

of well-conducted trials, but not considering them risks ignoring potentially valuable data. 

This is particularly true of rehabilitation research where it may be very difficult to create a 

well-controlled trial that bears any resemblance to the clinical context in which a therapy 

may be employed219. In such situations, careful consideration and weighting of multiple lines 
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of evidence may be the most appropriate and productive approach. It entails a more complex 

form of data analysis and quality scoring system, but the potential benefits suggested that 

this inclusive approach should be employed. Hence the review included both studies that 

used an RCT design, and those employing other experimental or quasi-experimental 

approaches. 

3.5.1 Eligibility criteria 

Studies types included were human and experimental, such as randomised controlled trials 

(RCTs), non-randomised or quasi-randomised controlled trials, controlled before and after 

studies, interrupted time series, cross-over or parallel arm studies, and prospective or 

retrospective case series or case studies involving an intervention. 

The study intervention included some form of MCT as previously defined, applied to 

damaged soft connective tissue (comprising a primarily collagen-based matrix formed by cell 

phenotypes of the fibroblast). Any comparative trials using identical forms of MCT in all 

groups, as an adjunct to another treatment, were excluded because the design would not 

enable the effects of the microcurrent itself to be evaluated. 

Included studies employed outcomes relating to any of the following: tissue healing, signs or 

symptoms of possible tissue damage, adverse events, treatment costs and user acceptability. 

Only studies published in English were considered, unless a summary or abstract allowing 

the necessary data to be extracted was available. 

3.5.2 Search strategy and study selection 

Multiple sources were searched in order to cover not only peer-reviewed and published 

papers, but also the grey literature. These included core and subject specific databases 

recommended by authorities for conducting reviews of clinical effectiveness studies220, 221.  

The specific databases used were PubMed, EMBASE, AMED, Cinahl, ISI Web of Science, 

ChiroAccess, Google Scholar, OpenSIGLE (grey literature) and Theses.com, along with the 

following registers of trials: Cochrane Database, controlled-trials.com, Clinical Trials.gov,  

PEDro, DARE and Health Technology Assessments. The reference lists of included studies and 

those cited in publicity provided by manufacturers of commercial microcurrent devices were 

also searched, and the ISI Citation index was used to trace papers citing the studies included 

in the review. Grey literature, defined as “that which is produced on all levels of 

governmental, academics, business and industry in print and electronic formats, but which is 

not controlled by commercial publishers” cited in 222, was thought to be of a potential value both 
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for correcting publication bias and to supplement the scant evidence that was uncovered 

during preliminary searches of the conventionally-published literature. 

Because the terminology used to describe microcurrent is not used consistently in the 

literature, an iterative approach was adopted for the development of a search strategy. Three 

sets of search terms were used initially, identifying the therapy, the tissue or disorder, and 

the study design. Variants of the treatment terms failed to pick up several relevant papers, 

which used other phrases such as “electrical stimulation” or even “electromagnetic 

stimulation” as their key terms. Subsequent searches using these terms were very non-

specific, however, and produced large numbers of irrelevant publications. Attempts to filter 

by connective tissue type or disorder met with only limited success, failing to exclude 

numerous studies concerned with other tissue types. Hence, a broad search strategy was 

adopted. The study design terms were based on published guidance for the identification of 

RCTs and studies using other experimental designs within the PubMed database223, 224.  The 

searches employed with each database are detailed in Appendix 1. 

For conventionally published papers emerging from the search, title or abstracts were 

viewed to gauge whether the study was likely to meet the eligibility criteria. Screening of 

grey literature was based on viewing of any available information in the source. For both 

conventional and grey literature, if there was doubt about eligibility, attempts were made to 

obtain the full publication to screen for eligibility. 

3.5.3 Quality Assessment  

There are many assessment tools available for judging the quality of human studies, although 

few are supported by validity and reliability studies225, 226. In the absence of a gold standard, 

the choice of quality criteria for this review was based on applicability to different study 

designs, coverage of key quality domains (internal validity, external validity and reporting226, 

227), and ease of use. No single tool meets all these criteria225, 226, therefore several were 

drawn upon to create an evaluation instrument suitable for this review228-231. A systematic 

review of study quality scales used with physiotherapeutic interventions suggests that 

additional factors, not addressed by any of these sources, should be taken into account when 

assessing the quality of physiotherapeutic clinical trials225. These included standardisation 

and precise description of the intervention, patient adherence to the protocol, and 

psychometric properties of outcome measures used. Whilst the importance of these features 

in quality assessment has not been proven, they have face validity for the purpose, 

particularly where multimodal interventions and multiple outcome measures are used. 
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Although it has been suggested that the blinding of allocation to groups in RCTs should be 

given particular weight232, 233, no validated weighting systems are available for all the criteria 

included in this instrument, and so none was applied.  

Trials involving a single group and those comparing outcomes for more than one group use 

different methodologies are not necessarily seeking to answer the same questions. Thus it is 

not appropriate to assess their quality by the same criteria. For instance, whilst a case series 

cannot provide robust evidence of efficacy, it may nevertheless be well-conducted and give 

high quality and valuable data about safety and feasibility. Therefore, a novel scheme was 

developed to enable both types of study to be evaluated. This had a core set of 11 criteria that 

were applied to all studies, and an additional seven criteria specifically for application to 

comparative studies.   

The resulting quality criteria are presented in Table 3.2. A more detailed  version of the tool, 

which was used in the review, is given in Appendix 2. The validity of this instrument was not 

assessed, although rationales for the inclusion of each criterion are provided in the cited 

references.  

Table 3.2: Study quality assessment criteria 

Criteria for all studies 

1 Eligibility criteria 

specified230, 234-236 

2 = comprehensive statement of inclusion and exclusion criteria 

1 = partial information about relevant eligibility criteria 

0 = no information about eligibility criteria 

2 Treatment fully 

described234, 236 

2 = description allowing duplication of treatment provided 

1 = partial description 

0 = essential elements of description absent 

3 Treatment standardised225, 

236 

2 = clear statement of how standardisation was achieved 

1 = statement suggesting standardisation 

0 = not standardised / unclear / no evidence presented 

4 Key baseline characteristics 

stated226, 236 

2 = data presented for key characteristics that might affect outcome 

1 = data presented for some characteristics that might affect outcome 

0 = no relevant data 

5 Key outcome measures 

validated 225, 234 

2 = evidence given for valid use of key outcome measure for this 

application 

1 = key outcome measure has face validity for this application 

0 = no evidence of validity of application  

6 Key outcome measures 

reliable225, 234 

2 = evidence given for reliable use of key outcome measures for this 

application 

1 = partial evidence regarding relevant reliability data presented 

0 = reliability of application not established or unclear 

7 Drops outs and Intention to 2 = statement that all received intended treatment, or ITT analysis 
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treat analysis230, 231, 234-236 

 

1 = clear statement of withdrawal numbers and reasons 

0 = unclear or no information presented 

8 Appropriate statistical 

analysis230, 234, 236 

2 = apparently appropriate analysis used 

1 = incomplete analysis presented 

0 = inappropriate or no relevant analysis 

9 Point & variability 

estimates for at least one 

key outcome230, 235, 236 

2 = appropriate graphical or numerical data provided 

1 = partial presentation of data 

0 = inappropriate or no data 

10 Key outcomes measured 

for >85% of subjects in 

each group230 

2 = numbers allocated and measured stated, and criterion satisfied 

0 = cannot tell, or <85% in each group measured 

 

11 No competing  interests228 

 

 

2 =  clear statement of no competing interests 

0 =  potential conflict / no statement /  unclear 

Additional criteria for experimental studies involving comparison between groups 

12 Method of group 

assignment described226, 

228, 229, 236 

2 = full description allowing duplication 

1 = partial description 

0 = inadequate or no description 

13 Satisfactory method of 

randomisation230, 231, 235 

2 = clear evidence of satisfactory randomisation 

1 = partial evidence of randomisation 

0 = no evidence 

14 Groups balanced on key 

baseline characteristics226, 

229, 230, 234-236 

2 = no significant difference on all key baseline characteristics of 

completers, or adjustment in analysis 

1 = no significant difference on most key baseline characteristics of 

completers, 

0 = not stated or differences not dealt with  

15 Allocation concealment230, 

235, 236 

2 = clear evidence of satisfactory concealment 

1 = partial evidence of concealment 

0 = no evidence 

16 Subjects blinded to 

treatment230, 231, 235, 236 

2 = clear evidence of satisfactory concealment  

1 = partial evidence of concealment 

0 = no evidence 

17 Therapists blinded to 

treatment230, 235, 236 

2 = clear evidence of satisfactory concealment  

1 = partial evidence of concealment 

0 = no evidence 

18 Assessors blinded to 

treatment230, 231, 234-236 

2 = blinding clearly achieved 

1 = partial evidence of blinding  

0 = no evidence presented 

 

The marking system meant that different study types had different maximum attainable 

quality scores (22 for single group studies and 36 for comparative studies). No quality 

threshold was set for inclusion in the synthesis, but scores were used in assessments of the 

strength of evidence for each of the questions posed by the review. Scores were converted to 

percentages of the maximum possible for that study type, and interpreted as follows: 70% or 
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above = good, 50-69% = fair, below 50% = poor. These criteria are arbitrary, but the upper  

threshold is the same as that used in some other systematic reviews of tennis elbow trials237, 

238; the lower thesholds are rather more conservative. 

3.5.4 Data Extraction and analysis  

The following data was extracted from included studies: 

 Source: authors, year, title and publication for conventional literature; identifier, 

source and date obtained for other forms. 

 Subjects: numbers, inclusion and exclusion criteria 

 Methodology: basic design, group allocation method, blinding, intention to treat 

analysis, sample selection, baseline homogeneity (if applicable). 

 Intervention: all microcurrent parameters including current intensity (average or 

peak), waveform description, frequency, pulse duration and repetition rate where 

applicable, whether current or voltage regulated; electrode description (material, 

size, placement); duration of application (per single application, number of 

applications, inter-application interval, total treatment period) 

 Co-interventions and comparators: additional interventions, description of treatment 

given to other groups in study (if applicable) 

 Outcomes: all outcomes measured, adverse events, values, statistical test results, 

departures from study protocol, conclusions reached. 

 Conflicts of interest, funding 

 Comments: any additional information deemed relevant. 

Following this process, data was inspected and then synthesised or summarised so as to 

address each of the review questions in turn.  

The review included trials using a variety of designs, and was concerned not only with 

clinical effectiveness but also with appropriateness (from the patient’s point of view) and 

feasibility (of incorporation into clinical practice). Thus, a framework was required to judge 

the level of the evidence for these different issues. Such a framework has been proposed218: it 

ranks the evidence on different types of questions into four categories - excellent, good, fair 
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and poor – according to the type of question being addressed and the type of study providing 

the evidence. So, for example, whilst systematic reviews and multicentre studies are 

necessary to provide an excellent standard of evidence on any clinical question, a good level 

of evidence – that can be used to inform clinical practice - can be obtained from both RCTs 

and observational studies. This schema was used, along with the methodological quality 

criteria described above, to rank the level of evidence emerging from this review. 

 



 

  

40 Chapter 3: Microcurrent therapy 

3.5.5 Results 

Figure 3.3 illustrates the search and filtering process that produced 20 studies for inclusion 

in the review. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Search results and filtering process for systematic review of MCT trials   

 

A search for publications citing any of the 20 included studies was made with the ISI citation 

tracker, but produced no new eligible studies. Two potentially relevant studies could not be 

traced239, 240, and a third was unobtainable241. Of the 20 eligible studies, 11 were listed in 

PubMed or Cinahl, five were obtained via Google Scholar, three from manufacturers’ websites 

and one from reference lists of other publications. Two of them were grey literature: one was 

a conference abstract and one was a report based on a Masters thesis. A summary of 

extracted data and quality scoring for the included studies is presented in Table 3.3. More 

expansive descriptions of the studies, their quality scores, treatment parameters and 

outcomes are given in Tables 3.4, 3.5 and 3.6 respectively. 
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Table 3.3: Summary of characteristics of included studies 
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Description of studies 

Twenty studies met the eligibility criteria for inclusion in the review. Ten were RCTs, one was 

a non-randomised controlled trial and nine were case series. Table 3.4 provides descriptions 

of these studies. Tendons were the mostly common tissue type considered, being specifically 

investigated in four studies and possibly involved in one concerned with myotendinous 

contracture242. In all these cases, the tendinopathy was chronic, with minimum or average 

symptom durations of greater than three months. Ligaments, fascia and bursae were 

explicitly treated in one study each; the others involved body parts that may have involved 

several forms of connective tissue (e.g. deep surgical wounds243, 244, periarthritis104, region-

specific musculoskeletal pain245-249, and radiation-induced fibrosis250).  

The most frequently employed outcome measure was pain, assessed by either patient-rated 

scales, pressure algometry or use of analgesic medication. Other measures included muscle 

strength and fatigue rates, joint range of movement, quality of life scores and global change 

ratings. Tissue was evaluated by sonography in one study251 and histology in another143. 

Haematology was used in one study to measure levels of inflammatory mediators252. 

Treatment descriptions were inadequate in every case. In particular, microcurrent 

waveforms were rarely fully described, and detailed descriptions of co-interventions such as 

exercise programmes were not provided. Current intensities varied between 16 and 600 μA, 

although it was often impossible to tell whether these were average or peak values. DC was 

employed in one study only; monophasic or biphasic waveforms were more common, with 

fixed frequencies of 0.3, 3 or 30 Hz used in several cases 242, 253, 254, and frequency modulation 

up to 100 Hz in another250. The use of current control to compensate for varying circuit 

impedance was rarely mentioned.  Application of microcurrent was usually by adhesive pads 

or via probes that were held manually against the body surface  and often repositioned 

during each treatment. Metal impregnated garments, graphite gloves and bare wire wrapped 

around the damaged tissue were alternative methods of application, being used in a single 

study each. Treatment durations varied from 20 minutes/day for six days, to continuous 

application for a month or more. Rationales for these treatment parameters were rarely 

given and in most cases investigators used proprietary microcurrent devices, following the 

suppliers’ instructions. In some instances it was possible to obtain additional information 

from the manufacturers. Where this has been incorporated into the data table, it is remarked 

upon. 
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Table 3.4: Characteristics of included studies (M=MCT group, C=Control group, BC=baseline 
characteristics, BE=baseline equivalence, ns=not specified) 

Chapman-Jones, D. and D. Hill (2002). "Novel microcurrent treatment is more effective than conventional therapy for 

chronic Achilles tendinopathy: randomised comparative trial." 251 

Methods RCT, block randomisation 

Sample size at entry: M 24, C 24 

sonographic assessment blind to clinical findings, no other blinding 

Target Tendon - Chronic Achilles Tendinopathy 

Participants From hospitals (?Outpatients dept) 

Inc: TA pain, stiffness or ↓Function 

Exc: Treatment in previous month, Age < 18 years, tendon rupture, symptom duration < 3 months 

BC: 35 male, 29 bilateral, mean age 36/39 years 

BE: Similar age, sex and baseline severity 

Interventions MCT 

Co-intervention: Following treatment, progressive eccentric exercises (form and duration ns) 

Control: variable treatment depending on clinician but including progressive eccentric exercises 

Outcomes Clinician severity rating  

Sonography (0-9) 

ankle joint ROM 

patient-rating of pain, stiffness, function using bespoke ordinal scales 

 

Assessment at baseline, 3,6,8,12m 

18 & 11 subjects assessed at 1 year 

Notes complex and unvalidated scoring systems for all outcomes 

incomplete baseline description 

Incomplete outcome reporting (e.g. sonography, function, ROM) 

control group treatment not standardised 

outcome statistics not reported at 3,6,9m 

No ITT analysis – drop outs at 1st  follow-up  

  

Cho, M. S., R. J. Park, et al. (2007). "The Effect of Microcurrent-Inducing Shoes on Fatigue and Pain in Middle-Aged People 

with Plantar Fasciitis."  255   

Methods Case Series 

Target Fascia - Plantar fasciitis 

Participants N = 10 

Clinical Diagnosis 

BC: All over 50 years, 5 female 

Interventions MCT 

No vigorous exercise allowed 

Outcomes Post exercises fatigue using EMG activity after treadmill 

Pain (VAS) after 20’ on treadmill 

No follow up 

Notes Method of diagnosis ns 

Little baseline information 

Microcurrent parameters not measured or justified 

Not clear circuit for charge flow 

No link established between fatigue OM and plantar fasciitis 

Poor reporting 
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El-Husseini, T., S. El-Kawy, et al. (2007). "Microcurrent skin patches for postoperative pain control in total knee 

arthroplasty: a pilot study."  244  

Methods RCT  

Sample size at entry: M 12, C 12 

Target Pain - following Total Knee Replacement 

Participants BC: ns 

Interventions MCT 

Co-intervention: Analgesic medication (tramadol) 

Control: analgesic medication  

Outcomes Pain (NRS) 

use of medication (mg/day) 

clinician rating of wound healing (1-3) 

no follow-up 

Notes non-parametric tests used but mostly unidentified 

  

Ho, L. O., W. L. Kwong, et al. (2007). "Effectiveness of Microcurrent Therapy in the Management of Lateral Epicondylitis: 

A Pilot Study "  253   

Methods RCT, blinded random allocation 

Sample size at entry: M 8, C 8 

Target Tendon - Chronic Tennis elbow 

Participants Local Outpatients Dept 

Inc: Clinical diagnosis tennis elbow, symptom duration >3 months 

Exc: cervical spondylosis, elbow OA, Radial neuropathy, shoulder tendonitis, direct trauma to 

elbow, previous lateral elbow pain, previous steroid injection 

BC: 2 males, mean duration 6 months, mean Pain (VAS) = 6/10 

Interventions MCT 

Co-intervention; six weeks standardised exercise programme: stretch & strengthening. 

Instructions on pamphlet; diary of activity 

Control: exercise programme  

Outcomes Pressure pain threshold 

Pain-free grip strength (PFGS ) 

Maximum grip strength (MGS),   

Pain on MGS (VAS) 

Recorded at baseline and 1, 2, 3 and 6w (follow-up 3 weeks) 

Notes MCT parameters and methods of application idiosyncratic and given no justification 

Randomisation methods ns 

Length or type of exercise programme ns 

Drop outs ns 

Baseline equivalence 

  

Johannsen, F., A. Gam, et al. (1993). "Rebox: an adjunct in physical medicine” 256   

Methods RCT, cross-over 

Sample size at entry: M 7, C 9 

Control: sham MCT 

7 received MCT then placebo MCT; 9 received placebo MCT then MCT; one week washout between 

treatment periods 
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Target Tendon - Chronic tennis elbow 

Participants Local racquets clubs 

Inc: Clinical diagnosis of tennis elbow , Symptom duration>3m 

Exc: neck shoulder pain, neurological problems affecting arm, OA, reduced elbow ROM, steroid 

injection <3m 

BC: 10 males, median duration 6mo, mean Pain on lifting = 4-6/10 

Interventions MCT 

Co-intervention: maintain existing training load and avoid other treatment 

Control: sham MCT via dummy equipment 

Outcomes MGS 

Pain on MGS (VAS) 

Pain lifting lifting 2kg (VAS) 

Assessment before and after each treatment. 

Baseline equivalence on PVAS 

Notes Real sham MCT code held by manufacturer until after analysis so fully blinded 

Randomisation method ns 

  

Koopman, J. S., D. H. Vrinten, et al. (2009). "Efficacy of microcurrent therapy in the treatment of chronic nonspecific back 

pain: a pilot study."  247   

Methods RCT  - cross-over  

Sample size on entry M 5, C 5 

5 days treatment, 9 days washout, 5 days other treatment 

blind allocation 

Target Pain – chronic Low Back pain 

Participants Recruited from hospital OPD 

Inc: Non-specific LBP, symptom duration>3months, PainVAS>4, adults <65years 

Exc: receiving other treatment except escape medication, connective tissue or neurological disease 

BC:4 males, mean age 50 years, mean duration 107months 

Interventions MCT 

Co-intervention: ns 

Control: sham MCT 

Outcomes Pain (VAS) 

Use of analgesia 

SF McGill Pain Questionnaire 

EuroQOL-5D. 

Patient-rated global improvement 

Adverse events 

 

follow up at 10 weeks 

Notes No drop outs 

  

Kulkarni, A. D. and R. B. Smith (2001). "The use of microcurrent electrical therapy and cranial electrotherapy stimulation 

in pain control."  245   

Methods Case series 

Sample sized at entry: 15 

Target Pain – various musculoskeletal  

Participants Consecutive referrals to hospital pain clinic  
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Inc: chronic pain in any area inc upper limb, back, knee; non-specific or diagnosed e.g. arthritis. 

BC: 5 males, mean age 50 years, duration 4 months -10 years 

Interventions MCT 

Co-intervention: Patients with depressive symptoms (19/20) also given Cranial Electrostimulation 

Treatment  (5 in series  only received CET) 

No pain medication given, participants asked not to take analgesics 

Outcomes Pain (VAS) 

Side effects 

Assessment each week until end of treatment 

No follow up 

Notes Several disorders; heterogeneous group 

PVAS scale defined differently than usual 

States treatment duration 1 hour but seems unlikely probes would be applied manually for that 

period. 

Most received CET also, so unclear contribution of MCT 

Most early drops out – few received full 3 weeks, but in several cases due to reduced pain 

Unknown if no analgesics rule obeyed  

  

Lennox, A. J., J. P. Shafer, et al. (2002). "Pilot study of impedance-controlled microcurrent therapy for managing 

radiation-induced fibrosis in head-and-neck cancer patients”  250   

Methods Case series 

Sample sized at entry: 26 

Target Connective tissue – radiation-induced fibrosis in neck 

Participants Inc: Head and neck cancer, >6mo since completed radiotherapy, with tissue discomfort or 

limitation caused by fibrosis 

Exc: pacemaker, Ca channel blocker, pregnancy, life expectancy<6mo, receiving physio or anti-

inflammatory treatment 

BC : 14 males, mean ages in groups 52-63 years. Data also given for race, radiotherapy dose, time 

elapsed since radiotherapy 

Interventions MCT 

Co-intervention: none 

Outcomes Neck ROM using laser marker & scale, graded 0-3 by comparison with normal ROM for that age 

group, added for composite 0-9 score 

Questionnaire regarding symptoms patients thought due to radiotherapy (e.g. impaired speech, 

dry mouth) 

Adverse effects 

 

Assessment before, after & monthly for 3 month follow-up 

Notes Reliability of outcome measures (OMs) checked daily but method ns 

BC data tabulated for all patients 

Comprehensive treatment description, but MC waveforms not fully described  

No pre-assessment so unknown whether OMs were improving anyway. 

No testing of difference, only descriptive statistics 

Table showing subjective improvements does not allow for unchanged or worsening symptoms  

Not clear whether participants entered consecutively or selected 

Compliance during follow-up period ns 
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Lerner, F. N. and D. L. Kirsch (1981). "A double-blind comparative study of micro-stimulation and placebo effect in short 

term treatment of the chronic back pain patient."  248  

Methods Placebo controlled trial 

Sample size on entry M 20, C 20 

group allocation on basis of baseline pain charts to obtain equivalence. 

Real and placebo microcurrent  devices, assessors and patients blind to allocation 

Target Pain - Low Back Pain 

Participants Inc: chronic neuromusculoskeletal pain (>50h/wk), few if any remissions 

Exc: “significant complicating factors” 

BC:42% male, mean age 38 (19-63) years, 63% LBP, 37% neck & shoulder.  Average pain=1.3/5. 

Interventions MCT 

Control: sham MCT 

Co-intervention: ns 

Outcomes Pain (NRS 0-5)  

 

Assessment hourly for 2 weeks prior to treatment, waking hours; completed charts during 

treatments, and at 2 weeks and two months after treatment complete 

Notes Unclear selection process 

Low level average baseline pain 

No statistical analysis 

  

Maenpaa, H., R. Jaakkola, et al. (2004). "Does microcurrent stimulation increase the range of movement of ankle 

dorsiflexion in children with cerebral palsy?"  242   

Methods Case series 

Monitoring for 4 weeks, then 4 weeks treatment 

Sample size: 12 

Target Myotendinous contracture in cerebral palsy 

Participants All meeting criteria from referrals to hospital department over specified period. 

Inc: Children with Cerebral Palsy, >4y old, Dorsiflexion<00, symptom duration>3mo, no benefit 

from botox or surgery 

BC: 7 males, mean age 10 years 

BE: characteristics “somewhat uniform” 

Interventions MCT 

Co-intervention: none 

Outcomes Active & passive ankle ROM using fixed protocol 

One leg standing time 

One leg hops number. 

Acceptability to patients and parents 

 

Assessment 4 weeks pre treatment, pre and post treatment 

Notes Box plots but no numerical tabulation of mean changes 

Suggested MCT broke down collagen formation (improved balance with less muscle collagen – 

referenced) 

Unclear if changes are clinically significant 

Compliance not described 
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Maugeri, D., M. S. Russo, et al. (1999). "Electroionotherapy in acute arthrorheumatic pain” 104   

Methods Case series 

No blinding 

Sample size on entry: 19 

Target Pain – various musculoskeletal  

Participants Unclear how recruited 

Inc: arthrorheumatic pain inc cervical OA scapulo-humeral OA, periarthritis, torn muscle, bursitis, 

lumbar discopathy,  

Exc: other significant health problems, pacemaker 

BC: 7 males, mean age 58 years, mean pain 3.4/5 

Interventions MCT 

Co-intervention: ns 

Outcomes Pain (VAS) 

Function (VAS 0-5) 

Use of analgesics pre and post treatment 

 

No follow up 

Notes Poorly described device and parameters 

  

McMakin, C. R. (2004). "Microcurrent therapy: a novel treatment method for chronic low back myofascial pain."  246   

Methods Case series – retrospective review of case notes 

Target Pain - Chronic low back myofascial pain 

Participants N = 22 on entry 

Exc: facet or disc dysfunction, neuropathy, severe arthritic change. 

BC: most pain result of prior trauma or overuse, mean duration 8.8 years.. 

Interventions MCT 

Co-intervention: massage, manipulations as needed, other complementary therapies 

Outcomes Pain (VAS 0-10) 

Side effects 

 

128/137 completed treatment. 

Notes Not clear why only cited data for 22 chronic patients, not for larger group from which sample was 

selected 

Uncontrolled co-interventions 

Poor BC descriptions 

  

McMakin, C. R., W. M. Gregory, et al. (2005). "Cytokine changes with microcurrent treatment of fibromyalgia associated 

with cervical spine trauma."  252  

Methods Case series - retrospective analysis of data 

Sample size: 54 

Target Pain - Fibromyalgia associated with cervical spine trauma 

Participants Inc: Initial testing for pain reduction by treatment, meeting American College of Rheumatologists 

diagnosis criteria for fibromyalgia 

BC: mean age 44 years, mean duration 9.5 years, mean PVAS 7.3/10 

Interventions MCT 

Co-intervention: ns 
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Outcomes Pain (VAS 0-10) 

Cytokine & peptide levels in 6 patients (no SS difference from others in age or duration). Compared 

blood results with a single control, a person with regional myofascial pain syndrome not meeting 

ACR diagnosis criteria for fibromyalgia (control was also treated); Presence of taut bands and 

active Trigger Points 

Adverse events 

Notes 13 non-completers 

  

Noto, K. and P. Grant. (2009). "Comparative study of micro-amperage neural stimulation and conventional physical 

therapy modalities." 102   

Methods RCT 

Random assignment by referring physician 

Sample size on entry M 60, C 60 

Target Pain – location not specified 

Participants Patients from one clinic 

Inc: seeking treatment for pain 

BC: ns 

Interventions MCT 

Control : treated with a range of electrophysical modalities including ultrasound, hot packs – all 

provided by same physiotherapist 

Co-intervention: none 

Outcomes Questionnaire covering type of pain, intensity pre- and post-treatment 

Number of treatment sessions to achieve pain relief 

Side effects 

total cost 

patient rating of overall effectiveness. 

Notes Brief report of Masters thesis 

No data on patient characteristics 

?Use of inappropriate statistical test 

  

Rolle, W. C., G. Alon, et al. (1994). "Comparison of subliminal and placebo stimulation in the management of elbow 

tendinitis."  254   

Methods Placebo RCT 

Patient, therapist and assessor blinded to allocation and treatment 

Sample size on entry: M 16, C 15 

Target Tendon - Chronic Tennis elbow 

Participants Recruitment ns 

Inc: clinical diagnosis of tennis elbow by physician  

BC: 19 males, mean age 40/46 years, mean symptom duration 7 (0.75-25) months (pain ns) 

Interventions MCT 

Control: sham MCT 

Co-intervention: Daily exercises program 10-15min + icing 

Outcomes MGS 

Pain at rest and on several provocation tests – average (VAS) 

7 point “general pain scale” 

 

Assessment: Pre & post 3 treatments, 6 treatments, 1 & 6 weeks later 
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Notes Method of blinding described and adequate  

BC equivalence 

Reliability of MGS testing assessed with healthy volunteers 

Incomplete data at 6 weeks so not analysed, no ITT. Reasons given for missing data. 

Incomplete waveform description 

Appropriate statistical analysis 

Suggested long phase duration may result in high impedance  and affect current (unclear if current 

controlled) 

Minimal eligibility criteria  

Co-intervention not controlled 

Conclusions only for short term 

  

Sizer, P., S. Sawyer, et al. (2000). The effect of microcurrent stimulation on postoperative pain after patellar tendon-bone 

anterior cruciate ligament reconstruction. 243   

Methods Placebo RCT 

Blind and random allocation – method ns 

Sample size on entry: M 25, C 16 

Target Ligament – Anterior cruciate ligament repair 

Participants BC: mean age 21 years, 54% male 

Interventions MCT 

Control: Sham MCT 

Co-intervention: Standard physiotherapy rehabilitation programme 

Outcomes Pain medication intake 

Pain (NRS) 

Notes Conference abstract 

Potentially well-conducted but insufficient data in abstract. 

Patient-completed log book of frequency of use 

  

Smith, R. B. (2001). "Is microcurrent stimulation effective in pain management? An additional perspective."  257   

Methods Case series 

Retrospective analysis of warranty cards sent to manufacturer of MCT device, with optional 

medical data 

Sample size: 978 out of 2500 records inspected, sub-grouped musculoskeletal cases by region. 

Target Pain – various musculoskeletal  

Participants Inc: musculoskeletal pain, MCT use for at least 3 weeks 

BC of 1949 pts with pain as primary diagnosis:28% male, mean age 50 (15-92) years 

Interventions MCT 

Co-intervention: ns 

Outcomes Patient-rated symptom improvement scale (slight / fair / moderate / marked) 

Notes Baseline pain ns 

OM does not provide for no improvement / worse 

Unknown how many used cranial electrostimulation rather than MCT 

Writer is an employee of device manufacturer 
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Stanish, W. (1985). "The use of electricity in ligament and tendon repair “ 143   

Methods Case series with comparison group  

Sample size >100 

Target Patellar Tendon & cruciate ligament – post-surgery 

Participants Inc: cruciate Ligament or Achilles tendon repair 

BC: ns 

Interventions MCT 

Comparison group: surgery but no MCT 

Co-intervention: compression bandage & slab 10-14 days, then Range of movement & 

strengthening exercises 

Outcomes Time return to full weight-bearing and function 

Histological analysis of 45 reconstructed ligaments  

Side effects 

 

Assessment: ns, but histology 9 months after surgery  

Notes little numerical data is provided for scrutiny. 

No statistics, no blinding 

MCT adherence guaranteed as implanted, exercises adherence unknown 

  

Tan, G., T. Monga, et al. (2000). "Efficacy of microcurrent electrical stimulation on pain severity, psychological distress, 

and disability."  258 

Methods RCT: cross-over, randomised 

2 month washout period  

Sample size on entry: 14+14 

Assessors blinded to treatment 

Target Pain – various musculoskeletal 

Participants Hospital OPD, mostly army veterans 

Inc: Primarily musculoskeletal pain, >6mo duration,  

Exc: other treatments other than  analgesia, pregnancy, fibromyalgia, pacemaker, inaccessible 

surgical scar, chronic psychiatric problem as main complaint 

BC: 91% male, age 56 years, mean duration 15 (4-45) years, 64% multiple pain sites, back pain 

most common, PVAS (real 2.6/5; sham 3.2/5)  - data for completers only 

BE: not addressed 

Interventions MCT 

Co-intervention: standard treatment protocols but not described 

Control: sham MCT Analgesia medication +  Cranial ElectroStimulation for 20 minutes each 

treatment (attached to ear lobes) 

Outcomes Pain in 3 worst sites (VAS 0-5) 

Multidimensional pain inventory (MPI) including psychological distress and subscales; Sickness 

impact profile Roland Scale (SIPR) including disability 

 

Assessment: pre+post 1st treatment, 2 months after 1st Rx, post 2nd treatment and 2 months after 

2nd treatment. 

Notes MCT parameters incomplete 

Random assignment - method ns 

Large loss to follow-up. No ITT 

SIPR & MPI scales: cited validity and reliability evidence 

No monitoring/reporting  of medication 

Incomplete description of pain sites 
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Zimmerman, S. I. and F. N. Lerner (1989). "Biofeedback and electromedicine: Reduce the cycle of pain-spasm-pain in 

low-back patients." 249   

Methods RCT 

3 groups: MCT (13), Biofeedback (BF) (14), MCT+BF  (15) 

Random assignment (method ns) 

Target Pain - Low Back  

Participants Recruited from posters in several medical centres 

Inc: Physician referral for LBP & spasm 

Exc: pregnancy, heart disease, psychosis, diabetes, epilepsy, substance addiction, other treatment 

at time of study inc analgesic medication 

BC: 62% male, mean age 41 years; pain approx 4.2/10 

BE: similar demographics but baseline pain ns; SS differences in age between two groups 

Interventions MCT group: 30mins, x2/week (3 days apart) for 10weeks  

MCT+BF: as for MCT but x1/week each modality 

BF: as for MCT. Audio feedback on paraspinal muscle activity. 

Co-intervention: none 

Outcomes Subjective Units of Disturbance Scale (anxiety) 

Daily Pain (NRS 0-10) 

Trunk mobility 

Subjective Q&A 

 

Assessment at 5th,10th,15th, 20th sessions (10 weeks in total) 

Notes Trunk mobility OM not clearly described 

No variability estimates 

1 biofeedback & 2 MCT failed to complete – reasons not given 

 

 

 

Study quality 

Table 3.5 presents the quality assessment scores given to each study. Methodological and 

reporting quality were generally low, even for the single group studies which were assessed 

against less stringent criteria. Three of the RCTs had good methodological and reporting 

scores247, 254, 256; two of these were concerned with tennis elbow, the other with non-specific 

back pain. The other RCTs scored poorly, as did the single non-randomised comparative 

study. Three of the case series were of moderate quality242, 245, 250, the others were judged 

poor. Low scores were often a result of incomplete reporting, particularly regarding 

treatment parameters and standardisation, validity and reliability of outcome measures, 

blinding and randomisation procedures, and missing data.  
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Table 3.5: Methodological and reporting quality scores of included studies 

Study  
quality criterion score 

Total score Rating 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

251  2 1 0 1 1 0 0 1 2 0 0 1 2 1 0 0 0 1 13/36 (36%) Poor 

255  1 0 0 0 1 0 0 0 2 0 0        4/22 (18%) Poor 

244  1 1 1 0 1 0 0 2 2 0 0 1 1 0 0 0 0 0 10/36 (28%) Poor 

253  2 1 1 2 1 0 0 2 2 0 0 1 0 2 0 0 0 0 14/36 (39%) Poor 

256  2 1 1 2 1 0 1 2 2 2 2 1 1 1 2 2 2 2 27/36 (75%) Good 

247  2 1 2 2 2 1 2 2 2 2 0 1 1 2 2 2 2 2 28/36 (78%) Good 

245  1 1 1 1 1 0 1 1 2 2 0        11/22 (50%) Fair 

250 1 1 1 2 1 1 2 0 2 2 0        13/22 (59%) Fair 

248  1 0 1 1 1 0 0 0 0 0 0 1 0 0 2 2 2 1 12/36 (33% ) Poor 

242  2 1 0 1 1 0 1 1 2 2 0        11/22 (50%) Fair 

104   1 0 1 1 1 0 1 1 1 2 0        9/22 (41%) Poor 

246   1 1 0 1 1 0 0 1 1 2 0        8/22 (37%) Poor 

252   1 0 0 0 1 1 0 2 1 0 0        7/22 (30%) Poor 

102   1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2/36 (6%) Poor 

254   1 1 2 2 1 0 1 2 1 0 0 2 2 2 2 2 2 2 25/36 (70%) Good 

243  1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 12/36 (33%) Poor 

257 1 0 0 1 1 0 0 1 1 0 0        5/22 (23%) Poor 

143  1 1 0 0 1 0 0 0 0 0 0        3/22 (14%) Poor 

258 2 0 1 2 2 1 1 2 2 0 0 1 1 0 1 2 2 2 22/36 (61%) Fair 

249  2 1 1 1 1 0 1 2 1 2 0 1 1 0 0 0 0 0 14/36 (39%) Poor 

 

 

Findings 

Although several studies used or appeared to use the same device to deliver MCT, treatment 

parameters were never the same and so  no meta-analysis of data was attempted. Table 3.6 

summarises the treatment parameters and outcomes obtained in each study. This provides 

data relating to review questions (a) and (b) concerning treatment effects and parameter 

dependence. 
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Table 3.6: Summary of MCT parameters and outcomes in included studies (CR=current 
regulated, ns=not specified; SS= statistically significant) 

Parameters Outcomes 

251  

Face & body protector 

CR 40μA, 10Hz, modified monophasic square wave 

2 surface carbon fibre electrodes, placed  medial  

lateral to lesion + gel 

30 minutes/day for 14 days. 

Non parametric tests: SS greater improvement in pain, 

stiffness and clinician assessment at 1 year 

No results presented for earlier assessments 

Sonographic evidence of tissue change “in agreement” 

with other measures at 1 year 

255  

G-man 

60-160μA 

Piezoelectric pulsed by footfall so ~1Hz 

From shoe heel to sole via conducting sock 

Wear shoes >4 hours/day for 6weeks 

SS reductions in pain & Tibialis Anterior fatigue 

No SS reduction in  soleus fatigue 

244  

Painmaster patch 

Parameters ns but manufacturer literature states either 

DC 10μA or varying 10-937μA 

0.5-500Hz 

SS lower pain  

SS and clinically significant reductions in use of 

analgesic medication in treatment group on each day 

Wound healing better in treatment group at end of 

period 

No follow-up 

253  

Precision micro (precision electronics, usa) 

40 μA or 300 μA 

0.3, 3 and 30Hz 

Biphasic square wave (50% duty cycle) 

Apparently CR 

Via probes contacting the skin at various points on the 

elbow and forearm 

Several minutes 10 times in three weeks. 

All participants improved but no significant differences 

between groups recorded on any of the outcome 

measures. 

 

256  

Rebox 

 0-300μA 

200-5000Hz Modulation ns 

Biphasic 

Waveform ns 

Pin electrodes, method of application unspecified 

Several minutes 10 sessions over 3 weeks 

SS but clinically insignificant improvements in MGS, 

PVAS on MGS trial and when lifting 2kg, after MCT 

compared sham MCT 

247  

Pain away patch 

25μA, 3V 

Paper states 71.5kHz but manufacturer states f=0.5Hz 

Surface patches on either side of spine at level of pain 

Continuous 5 days 

MCT produced greater improvements in Pain, use of 

analgesia, SF mcgill Pain Questionnaire, euroqol-5D 

and Patient-rated global improvement, compared to 

control period, but difference were not SS. 

 

No adverse events reported 
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Parameters Outcomes 

245  

Alphastim 100 

600µA  

Probes either side of painful area, repositioned every 

10s after bleep from device; or adhesive electrodes 

1 hour, 5/week for 3 weeks or until no pain  

Substantial reductions in pain for most patients: mean 

52% for CET + patches (n=7), 85% CET + probes (n=7), 

 

250  

Electromyopulse  75F  

Current at highest tolerable, typically 600μA, AC 0.5-

100Hz 

Then electroacuscope 80L  

 600 µA, 10Hz 

CR, “rapid rise time” 

Via conductive gel-covered roller Calculated ρ = 

16μA/cm2; 

First 20 mins used Myoscope and Fixed electrode taped 

to shoulder blade  

Then 10mins using Acuscope and hands on 2 fixed 

electrode plates. Followed by 1 min with named after-

treatment cream rather than gel  on roller 

x2/day for 5 days (4-5 hour intervals) 

Improvements in ROM, best for more severely effected 

(49-65%), sustained in longer term 

Improvements in radiotherapy side effects especially 

stiffness discomfort 

All patients completed 

 

248  

Prototype of Alphastim 

Biphasic current 

“variable subsensory microcurrent” 

Maximum available current, lowest frequency (0.5 Hz) 

Use of probes to locate areas of low conductivity 

Stimulation with probes at 8 pairs of sites either side of 

spine. 2 x 6 seconds, x3/week for 2 weeks (total 72 

seconds). 

Initial pain reductions in each group, gradual return to 

baseline level in placebo group, but sustained reduction 

in real MCT group (from 1.3/5 to 0.5/5) 

% of people in each group with different treatment 

effects: >50% real MCT achieved “good” at each time 

point; 90% failure in placebo group at follow-up 

242  

Micro 100 dual channel 

300µA constant slope-wave current, 30Hz.  

Adhesive electrodes, 2 anodes on gastrocnemius 

bellies, cathodes either side of achilles tendon 

At least 5 hours/week 

Treatment at home, provided by parents 

 

Average number of treatments =22 

SS improvements in most ROM measures and one leg 

standing time but not in active dorsiflexion with knee 

extended or in number of hops.  

 

104  

Bio-ejt be101 

States produces ion discharge in air and about 30µA 

current in tissue via high voltage electrode 

2 transducers 

20 minutes every 2 days – 6 treatments 

SS improvement in pain and functional measures, but 

mean change values not reported 

Reduction in analgesia use (but low at baseline) 

 

246  

Device ns 

100µA pulsed DC modified to alternating ramped 

square wave  

Graphite conductive gloves placed on skin either side of 

SS and clinically significant reductions in pain for 22 

chronic cases (6.5-1.7/10) after mean 5.6 treatments 

over 6 weeks. 
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Parameters Outcomes 

torso 

2-40 minutes up to x2/week reduced as pain reduced, 

halted when no pain for 4 weeks. 

1 patient could not tolerate and discontinued after 4 

weeks; other effects: muscle spasm, hyperaesthesia 

 

252  

Device ns 

2-channel square wave 

10 and 40Hz (determined empirically) 

Patients given pocket-sized unit with “polarised” 

microcurrent 

2 adhesive electrodes either side of neck, 2 on soles of 

feet. 

Instructed to use at home to keep P<3/10. 

Initial testing by graphite gloves for 90 minutes; more 

than one treatment in clinic but number ns.  

Duration ns, but text suggests several months 

SS and clinically significant reduction in Pain (7.3 to 

1.3/10) 

SS reduction in serum cytokine levels compared to 

control 

 

51 relapse, 13 non-completers 

 

 

102  

Electroacuscope 80 

Parameters ns.  

Parameter information from manufacturer and other 

publications: 600µa, 10Hz, CR; probes or pad 

electrodes; treatment duration 15-20 minutes 

Fewer treatment sessions, lower cost, fewer side effects 

and higher patient rating of effectiveness in MCT group 

 

Use Chi square test but not clear how this supports the 

conclusion of statistically significant differences 

between group outcomes. 

254  

Myomatic stimulator 

Monophasic “sloped”, 0.3-30Hz, 40-100μA, 1.67-

16.7ms phase duration, polarity reversal every 2.5s 

10 minutes with probes, 20 minutes with pads 

Initially applied with probes various sited around 

painful area, then 4.5cm square polymer pads over 

lateral and medial epicondyles 

Apparently daily treatment over 6 days 

Improvements in both groups on all outcome measures 

but no SS difference between groups 

 

 

243  

Alphastim 100 

100μA, 0.5Hz, 50% duty cycle 

“subsensory” 

Use as needed for 1 hour, minimum 30 minutes 

between treatments for 10 days 

SS lower pain levels each day in real MCT group 

compared to placebo 

Other oms not reported 

257 

Alphastim 

Parameters ns  

For whole study group, mean period of use 14.7 weeks 

(3 weeks -5 years) 

No other data given: may have used probes, patches or 

ear clips 

% In each category of improvement given for 

back/neck/limbs. All improved – 75% moderate or 

marked in each category. No statistical tests. 

143  

Osteostim hs12 (telectronics) 

20μA DC current controlled  

Assuming wire diameter 1mm, ρ = 2.5μA/cm2 DC 

unreported time, presumably several weeks 

Accelerated recovery compared to non-MCT patients: 

“most” returned to full function in 6 months compared 

to typical 18 months for conventional treatment. 

Histology showed tissue revascularised with mature 
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Parameters Outcomes 

Cathode 25cm titanium wire wrapped around 

structure; battery is anode taped outside body 

Timings ns 

and well organised collagen at 6 months. 

 

No statistical tests 

 

258 

Alphastim 100 

10-600μA 

0.5 Hz 

Probes applied to scar tissue if present (time ns), 

followed by application to all pain sites (time ns) 

12 sessions in total (6 real 6 sham) 

No SS differences in any variable within and between 

sham and real MCT groups 

 

11/28 completed. Losses due to length of study, 

scheduling conflicts, use of other treatments. 

 

249  

Alphastim 350 

Initially 200μA, then 500μA 

0.5Hz 

Via adhesive pads, either side of spine at L3-5 on 

erector spinae 

30 minutes, 2/week for 10 weeks 

SS trunk mobility gains in all groups: BF/MCT group 

best, MCT better than BF at mid-point but not SS at end. 

SS decreases in pain in groups, clinically significant in 

BF/MCT and MCT groups by end of study  

Improvements in psycho-emotional scales in all groups, 

best in BF/MCT. 

 

1 biofeedback & 2 MCT failed to complete – reasons not 

given 

 

Having extracted the data and assessed the quality of the evidence from the selected trials, it 

was possible to provide responses to the questions set out by the review: 

 (a)  What are the effects of microcurrent therapy on tissue healing and on clinical signs 

or symptoms following soft connective tissue damage? 

The three good quality RCTs employed different microcurrent devices and treatment 

protocols. Two were concerned with chronic tennis elbow and gave limited evidence of 

benefit in the short term. In one254, pain levels decreased in the MCT groups more than in the 

placebo MCT groups, although gains were not statistically significant. The study was small 

and likely to be underpowered, therefore risking type II error. In the second (larger) study, 

grip-strength, pain on gripping and lifting and daily impairment improved more with real 

than placebo MCT, but the differences were regarded as clinically insignificant256.  The third 

(small) trial concerned chronic low back pain247. There was significantly less use of 

analgesics, and non-significant trends to improved pain, quality of life and global assessments 

in the MCT group compared to the placebo MCT group. The longest follow-up period in these 

trials was 10 weeks247, so no good evidence is available regarding long term-effectiveness on 

any outcome measure. 
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One fair quality RCT found no significant differences in pain and disability between real and 

sham MCT groups of patients with chronic musculoskeletal (mostly lumbar) pain258. This trial 

had greater than 50% loss of participants by final assessment and there may have been 

significant differences in baseline pain scores between the groups – this was not tested or 

commented upon by the authors. Another fair quality pilot RCT found that MCT produced 

significant improvements in cervical range of movement, previously limited by radiation-

induced fibrosis250. It is not clear whether this was secondary to pain reduction or tissue 

changes.  

The remaining controlled trials and all of the case series investigations concluded that MCT 

was capable of improving outcomes, which mostly related to pain or function. Two studies 

measuring outcomes directly related to tissue status – sonography251 and histology143 - 

concluded that MCT could accelerate tendon healing, but both had low quality scores and so 

may be biased. Another poor quality uncontrolled study found substantial reductions in 

serum inflammatory cytokine levels252 following MCT for fibromyalgia caused by cervical 

spine trauma. These correlated with local pain reduction, but connective tissue damage may 

not have been the source of pain. 

In summary, there is good but limited evidence that some forms of MCT can provide marginal 

clinical benefits in tennis elbow and low back pain, but the evidence regarding its effects on 

soft connective tissue healing  is poor. 

(b) Are these effects dependent on the treatment parameters or method of application? 

No single study compared different forms of microcurrent with the same population and, 

because of the heterogeneity of the study protocols, it is not possible to consider the relative 

effectiveness of different microcurrent parameter combinations. The good quality trials used 

both monophasic and biphasic currents with fixed or varying frequencies between 0.3 and 

5000 Hz, a variety of waveforms, and current intensities between 25 and 300 μA, and total 

treatment times between a few minutes and 5 days. Across the range of studies, where tissue 

healing was being monitored in some way, treatments judged to be effective were applied for 

longer period of time, often tens of hours in total. Where shorter application times were 

deemed effective, this was generally in terms of short-term pain reductions.  Where the 

necessary data was provided, the current density of possibly effective forms of MCT were 

calculated, and are presented in Table 3.7. These are of the same order of magnitude as those 

that were found effective for other forms of tissue (see the earlier Table 3.1).  It is interesting 

to note that, in contrast to the data for skin and bone injuries, a higher current density was 
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effective for the acute injury (surgically repaired tendon or ligament143) than the chronic 

tendinopathy251. However, both studies from which this data is drawn had low quality scores. 

Table 3.7: Current density values calculated from trials suggesting MCT effectiveness 

Tissue - lesion Current density at electrode (μA/cm2)  

Tendon – surface electrodes251 1.6  

Fibrosis – surface roller electrode250 16  

Myocontracture242 6 

Tendon/Ligament – wire electrode wrap143 2.5  

 

Therefore it is concluded that there is fair evidence that treatment parameters can influence 

the effectiveness of treatment, but insufficient evidence to prefer one set of parameters over 

another. 

(c)  Is microcurrent more effective when used in combination with other forms of 

treatment? 

Where MCT was applied to musculo-tendinous structures, it was normally accompanied or 

followed by a programme of exercise, including stretching and/or strengthening, but none 

was described in any detail. In two case where microcurrent was used to treat pain, analgesic 

medication was also provided244, 258. One study also provided manual therapy and various 

forms of complementary therapy246. No study compared the same form of MCT with and 

without a co-intervention,  so as yet there is no evidence regarding the issue of whether MCT  

is more effective when used in combination with another treatment.  

(d) Are there any adverse effects of MCT? 

Side effects or adverse events were addressed in seven studies and were generally rare. In 

one246, muscle spasm was observed in 2/22 subjects during or after treatment, and 

numbness and hyperaesthesia when applied to the neck of one person with a history of 

spinal cord injury. In another242, 6/12 subjects reported warmth in the treated area after 

treatment. In the only investigation using constant 20 μA continuously for several weeks143, 

delivered via a surface and an implanted electrode, skin ulceration was reported in less than 

4% of subjects. Where only surface electrodes were used, so such effect was reported. 

Standard contraindications to electrostimulation – including pregnancy and presence of 

cardiac pacemakers – were applied in some cases, though these appear to be precautionary 

rather than evidence-based in the case of MCT. Thus, there is a good standard of evidence 
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that, when applied via surface (rather than implanted) electrodes, MCT is safe and has few 

and minor side effects. 

 (e) What data is there regarding feasibility, cost, acceptability to patient and clinician of 

this treatment?  

One poorly-rated RCT102 reported that MCT required significantly fewer treatment sessions 

and lower cost than a combination of other electrophysical modalities. In another, involving 

parents treating children at home242, both reported that the treatment was simple and 

convenient to deliver. Microcurrent devices varied considerably in design and included 

adhesive patches containing all necessary circuitry, portable battery-powered devices 

connected to the tissue via adhesive electrodes, and non-portable generators delivering 

current through hand-held probes or conductive gloves worn by the therapist. Some allowed 

the patient to treat themselves whilst engaged in daily activities, whereas others required 

regular treatment visits to a clinician. Hence there is limited and poor-to-fair evidence that 

some forms of MCT are both feasible and appropriate forms of treatment 

3.5.6 Discussion 

The majority of these studies reached positive conclusions regarding the efficacy of MCT, 

either in reducing short term pain in certain musculoskeletal disorders, or promoting tendon 

and ligament healing and return to function in the medium to longer term. However, the 

available evidence is limited and generally of low quality, so it is not possible to be confident 

in these conclusions or about the most effective parameter combination. Most of the studies 

involved treatment of a condition or body part encompassing several tissue types. However, 

tendon lesions were the specific focus of several. Those concluding that MCT can be 

beneficial used current intensities between 40µA and 300μA and DC or monophasic 

waveforms with frequencies below 100 Hz in most cases, but higher in some. Application was 

generally by surface electrodes, which is advantageous because it avoids the risks of trauma 

and infection associated with implanted electrodes. Total treatment times in these studies 

varied, but were rarely longer than about 10 hours. The two tendon studies that showed no 

benefit of MCT for tendinopathy used much shorter treatment times and biphasic or polarity-

reversing currents. Although these data provide some hints of what type of microcurrent 

might be more effective, in truth the evidence is not robust enough to rule in or out any 

particular combination evaluated. This unsatisfactory situation may only be remedied by the 

conduct of further and higher quality trials. 
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The analgesic effect of microcurrent was the outcome most commonly measured. Signs of 

tissue healing were assessed in only two studies, using sonography or histology. Pain and 

function, whilst not necessarily indicators of healing, are clinically significant outcomes and a 

range of instruments were used to measure them. The rarity and mildness of adverse events 

associated with the use of MCT with surface-mounted electrodes is encouraging; likewise the 

findings of several studies that the treatment was acceptable to patients and of lower cost 

than some other forms of treatment. The inclusion of a wider range of study methodologies 

than is common in systematic reviews provided useful data in these regards. 

Although three studies102, 143, 255 had quality scores lower than 20%, and cannot be regarded 

as providing credible evidence regarding treatment efficacy, their inclusion in the review is 

justified on other grounds. They illustrate the range of delivery systems that are available 

(including a shoe-mounted piezo-electric device255). Two considered side-effects102, 143, and 

one represented the only attempt amongst all the studies to address cost-effectiveness by 

comparison with conventional treatment102. These are important considerations in the 

evaluation of MCT and, in spite of their low quality, these studies provide information that 

can be used in the planning of a more robust trial. 

The review methodology adopted has a number of limitations that may impact on its 

findings. The application of eligibility and quality criteria was carried out by a single 

investigator; ideally another rater would have used the same process to establish and 

improve the reliability of assessment. The quality criteria checklist, although based on 

existing validated instruments, was not independently validated and its reliability has not 

been established. Application of some items was problematic, for instance rating treatment 

standardisation: if MCT was applied for as long as it took to obtain a satisfactory outcome in 

each case, does this constitute standardisation? Also, key prognostic indicators are not 

always obvious for a given disorder, so the comparability of key baseline characteristics 

could not be guaranteed. Low methodological scores often resulted from poor reporting; the 

methodology used may have been better than these scores suggest in some cases, and the 

conclusions more robust than they appear. Some studies with low methodological scores 

may have been optimal for their design – for instance, blinding may have been impossible to 

achieve in some cases. The limitations of word-counts in journals may also have prevented 

comprehensive reporting of significant methodological features. These issues relate to items 

that appear in other commonly-used quality checklists, and so would have been present 

whichever one was employed. Finally, assessment of the potential impact of publication bias 

on findings of systematic reviews has been recommended214, 259, but in this case the 

heterogeneity of the studies means that formal analysis, for example using a funnel plot, was 
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inappropriate260. The broad search strategy uncovered several items of grey literature 

meeting the eligibility criteria, and these may have helped reduce publication bias261, 

although their low scores lessen the value of their data. 

 

3.6  CONCLUSIONS 

The narrative review of evidence from cell, tissue and animal studies, and from human trials 

involving bone and skin, suggested that microcurrent has the capacity to promote and 

enhance the healing process in a range of tissue types. The systematic review demonstrated 

that the case for its application to damaged soft connective tissues is much less clear. The 

quality of clinical trial evidence is generally poor, and the few good quality studies use 

different treatment parameters, so are not amenable to a meta-analysis that might enhance 

their power. However, poor reporting and small sample sizes may mask potentially 

significant findings. Trends to better outcomes have been observed in several good and fair 

quality trials; side effects of treatment are few and usually minor, and some forms of MCT 

permit patient-controlled, home-based treatment. If effective, they might offer substantial 

costs savings over other resource-intensive therapies. These considerations suggest that 

further, higher quality clinical studies are justified. 

Many areas of uncertainty remain, and require investigation. Although tendons are the form 

of tissue most commonly examined, other collagen-based tissue have similar healing 

pathways262, 263 and so might also be expected to respond to MCT. Trials of MCT with these 

types of tissue are warranted. Most of the studies reviewed were concerned with chronic 

musculoskeletal disorders rather than acute injuries or the acceleration of normal healing, so 

little is known about the potential of MCT in these contexts. Pain and function were the most-

commonly measured outcome variables. The trials that considered outcomes directly related 

to tissue healing were of poor quality, and so it is not clear whether MCT can influence 

healing in these cases. If the potential of MCT to promote healing in soft connective tissues is 

to be investigated, suitable outcome variables must be included in the protocol. Finally, the 

uncertainty over the relative benefits of different types of microcurrent and treatment 

parameters suggests that these require more systematic examination for each potential 

application. 

Given these issues, proceeding directly to a clinical trial would be problematic. A number of 

preliminary questions require responses first:  
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 which soft connective tissue disorders are most likely to respond to MCT? Tendons 

are the specific tissues for which most supportive evidence is available, but there are 

many types of tendon disorder, some of which may already have effective 

management strategies. Other types of soft connective tissue may present a greater 

challenge to the affected individual and the clinician. Therefore, some consideration 

of clinical priority is appropriate. 

 What combination of treatment parameters is most likely to be effective? None of the 

reviewed trials formally compared the effects of different types of microcurrent, even 

though the therapeutic window remains obscure. Some preliminary comparison of 

those parameters supported by existing evidence could help clarify this issue, 

establish an effect size, and so provide a firmer basis for using a particular type of 

MCT in an adequately-powered trial.  

 What outcome measures will provide the most useful information about tissue 

healing and be clinically relevant? A combination of measures is likely to be 

necessary, and those selected should be of proven validity, reliability and 

responsiveness, so as to provide a comprehensive and credible data set. 

Further literature reviews and original experimental work were conducted to address these 

questions, and these are reported in subsequent chapters. 



 

 

Chapter 4 
Selecting a disorder to treat 

 

4.1  INTRODUCTION 

he preceding chapters have suggested that MCT may assist healing and reduce 

symptoms in a range of musculoskeletal disorders, particularly where other forms 

of treatment have been unsuccessful. However, the effects of treatment appear to 

vary with the type of damage. For instance, fresh fractures may not respond as 

successfully to DC MCT as chronic ones171, and different forms of skin ulcer may respond best 

to different types of MCT82, 194. The same may be true of the soft connective tissues, so that 

effectiveness with one form of tissue damage does not necessarily imply effectiveness with 

others. Therefore, for the purposes of this investigation, it was necessary to focus on a 

particular disorder and measure the effects of a specific type of MCT on it. Although any 

conclusions would apply to that application alone, they might have implications for the 

treatment of other disorders. This chapter describes the work done to select a soft connective 

tissue disorder for use in a clinical trial of MCT. 

The chapter begins by identifying the criteria that were used to govern the choice. This is 

followed by a description of a survey of practising musculoskeletal physiotherapists, which 

was used to prioritise a range of possible disorders. The three disorders assigned the highest 

priority by the survey are then compared using additional information taken from the 

literature. The chapter ends with a discussion of the data collected, leading to the choice of a 

single disorder to treat – chronic tennis elbow. 

 

4.2  CRITERIA  FOR THE SELECTION OF A DISORDER 

Several international reports have drawn up priorities for research into the treatment of 

musculoskeletal disorders. They have used prevalence, personal and societal impact, and 

resistance to existing management strategies as criteria for their selection264-266. These were 

adopted for the purposes of this investigation, but several other criteria were also identified: 

ideally there would already be some evidence to support the application of MCT to that 

T 
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particular disorder; since tissue healing is a particular concern of this investigation, there 

should be identifiable tissue damage to some form of soft connective tissue; the damage 

should be capable of being assessed and monitored experimentally; and the disorder should 

be feasible for use in this investigation. These criteria are summarised in Table 4.1. 

Table 4.1: Criteria used to select disorder for treatment in this investigation 

Criterion Explanation 

A Prevalence Commonly occurring, so that the treatment might have wide 

application were it to prove beneficial 

B Impact Presenting a significant problem to those affected, in terms of 

symptoms and functional compromise, or to the wider society 

through loss of productivity or treatment expense 

C Recalcitrance Resistant to existing management strategies, either by a poor or  

slow response, a tendency to recurrence or to chronicity 

D Identifiable soft 

connective tissue 

damage 

Involving damage to tissue composed of a collagen-based matrix 

manufactured by phenotypes of the fibroblast cell, which have a 

common healing pathway 

E Potential response to 

MCT 

Evidence that MCT might promote healing or symptom alleviation in 

this particular disorder 

F Feasibility for trial Local availability of affected individuals; reliably diagnosed; 

amenable to assessment and monitoring of tissue damage.  

 

There are many forms of tissue damage that might respond to MCT, but these criteria 

excluded a number of them, for instance those primarily affecting bone, hard cartilage, 

muscle, nerve or epithelia, which differ significantly from the soft connective tissues in cell 

type and healing physiology267, 268 (ch 5). Non-specific disorders, such as complex regional pain 

syndrome and low back pain, are also excluded because in these cases tissue damage may be 

absent or impossible to identify269, 270.  These exclusions leave a number of common and 

debilitating disorders that might meet the criteria. Table 4.2 lists 20 of them, identified by 

consulting a range of musculoskeletal textbooks and epidemiological studies 271-275.  
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Table 4.2: Common soft connective tissue disorders identified for possible use in trial 

Rotator cuff tendinopathy 

Frozen shoulder 

Bicipital tendinopathy 

Tennis elbow 

Golfer’s elbow 

Wrist tendinopathy 

Carpal tunnel syndrome 

Trochanteric bursitis 

Knee cruciate ligament lesion 

Hamstring tendinopathy 

Knee bursitis 

Adductor tendinopathy 

Patellar tendinopathy 

Quadriceps tendinopathy 

Knee cysts 

Iliotibial band syndrome 

Achilles tendinopathy 

Knee collateral ligament lesion 

Ankle ligament lesion 

Plantar fasciitis 

 

The list required further filtering in order to select the most appropriate disorder for use in 

the trial. A survey of clinicians was used as the first step in this process, and a description of 

this work follows. 

 

4.3  SURVEY OF CLINICIANS 

4.3.1 Introduction 

The main purpose of the survey was to prioritise the disorders identified in Table 4.2 by 

current clinical criteria, drawing on the experience and opinions of health practitioners who 

treat them. Data regarding prevalence and impact is available in the literature for some of 

these disorders; a survey of clinicians was conducted to rate those that are sufficiently 

troublesome to lead people to seek help from a healthcare professional.  The survey was also 

used to highlight issues in diagnosis of the disorders, which might inform construction of the 

trial protocol; and to  identify the strategies most commonly adopted in their management, 

including the use of electrotherapy. The objectives of the survey were therefore to: 

 rank  the soft tissue disorders by clinicians’ opinions of how commonly they are seen 

in practice, the problems they cause patients and their recalcitrance to treatment;  

 identify issues in diagnosis and management; 

 gauge whether clinicians might employ a novel electrotherapy in their management. 
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4.3.2 Methods and materials 

A two-phase process was adopted: in the first phase, a structured postal questionnaire was 

used to facilitate data collection from a sample large enough to enable a quantitative analysis 

with some capacity for generalisation; in the second phase, semi-structured telephone 

interviews were conducted with a sub-sample of questionnaire respondents. Its aim was to 

obtain more detailed information about management of the highest-ranked disorders. 

Interviews are useful for deepening the coverage and exploring the meaning of data obtained 

by quantitative instruments276 (ch1). When conducted by telephone, they allow involvement by 

respondents from a wider area and use fewer resources than face-to-face interviews or a 

focus group. Approval for both phases of the study was obtained by the University of 

Hertfordshire School of Health and Emergency Professions Ethics Committee. Consultation 

with the relevant authorities established that the study constituted an audit, and so approval 

via the NHS Ethics mechanism was not required (see Appendix 3 for documentation). 

 

4.3.3 Participants and recruitment  

Orthopaedic specialists, physiotherapists, sports therapists and osteopaths were considered 

as possible target populations. Musculoskeletal physiotherapists were chosen because they 

assess and treat many of the listed soft tissue disorders and they spend enough time with 

patients to gain an appreciation of their experience of the disorders. Using this group also 

had methodological advantages. A database of physiotherapist names, specialties, institutions 

and addresses was available; clinicians might be likely to respond to a survey conducted by a 

member of their own professional group; and through the survey, contacts would be made 

with departments who might later collaborate in a clinical trial of MCT. The database 

provides clinical placement information for physiotherapy students in the Southeast of 

England, and aims to include all NHS services and a number of private practices in the region.  

It was used to identify contacts in all 193 outpatient musculoskeletal clinics listed.  They 

were sent the questionnaire and a covering letter stating the inclusion criteria: that 

respondents must be physiotherapists registered with the UK Health Professions Council, 

and have a minimum of 2 years’ full-time equivalent experience treating musculoskeletal 

disorders. Ethical approval was given on condition that no reminder could be sent because 

the letter asked recipients to pass on the questionnaire to another clinician if they were 

unable or unwilling to complete it. 
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Once analysis of Phase 1 data was complete, all respondents who had indicated on the 

questionnaire their willingness to be involved in Phase 2 interviews, and who had had chosen 

at least two out of the three most highly-rated disorders, were re-contacted and invited to be 

interviewed. These clinicians had experience managing the most recalcitrant disorders and 

so could discuss their features, diagnosis and management in detail. The necessary sample 

size to achieve data redundancy varies277, but 12 interviews from a relatively homogeneous 

sample are considered to be adequate278, so this was sought as a minimum number.  

 

4.3.4 Phase 1 – Postal questionnaire  

No existing validated questionnaire was found that aimed to collect the data sought by this 

survey, and so an original format was created. The first version listed the disorders and 

asked the respondent to rate them by frequency of presentation, severity of impact on the 

patient, resources used and responsiveness to treatment, using a 5-point Likert scale. This 

was piloted with four academics who were also practising physiotherapists, and its format 

was revised following their feedback. Allocating scores to 20 disorders by four different 

criteria was judged too onerous and potentially confusing. The revised version asked 

respondents to choose at least 5 disorders and to score them on three criteria. Space was 

given to enable addition of any missing disorder they felt should be included. Questions were 

added to establish the length of experience in musculoskeletal physiotherapy, broad 

classification of the patient demographic, current use of electrotherapies in the management 

of the selected disorders, and to seek permission for possible inclusion in phase 2 of the 

survey. The revised version was piloted by sending it to 10 clinicians (selected from the 

database described earlier using a computerised random number generator). The standard 

covering letter was sent to them with a note explaining that they were in the pilot group, and 

a stamped addressed envelope was included, as well as an option to receive and respond to 

the questionnaire by email if preferred. Six questionnaires were returned. They were fully 

completed and no further changes in format were judged necessary,  so the package was then 

mailed to the rest of the sample. A copy of the questionnaire is provided in Appendix 3. 
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4.3.5 Phase 2 – Telephone interviews 

The interview was semi-structured, and comprised several predetermined open-ended 

questions, with follow-up questions allowed to clarify and deepen responses. Only the top 

three disorders identified by the questionnaire survey were considered in the interview. The 

starter questions were, for each disorder 

 What are the main problems it causes for patients? 

 How do you diagnose it? 

 How do you manage the disorder?  

 Are there any constraints on management (e.g. time, equipment, knowledge) 

 Do you find that some presentations are more resistant to treatment than others? 

 What outcome measures do you use to gauge success of treatment? 

 Any other issues / comments? 

The interview was recorded electronically to facilitate subsequent analysis. This format was 

piloted with an experienced clinician-academic and who had previously commented on the 

first draft of the questionnaire. The process was judged satisfactory and no amendments 

were made. 

4.3.6 Data Analysis 

Questionnaire data was analysed through descriptive statistics. The proportion of 

respondents voting for each disorder was calculated, and points assigned for frequency of 

presentation, impact on patient and recalcitrance to treatment were summed in each case. 

Although comparisons of total rather than average score gives more weight to disorders that 

were chosen by more respondents, using mean scores would give undue weight to disorders 

that few respondents reported as problematic.  Therefore, the former method of data 

analysis was used.  

Recordings of the qualitative interviews were listened to twice. A table was constructed of 

responses to initial questions, and common themes were identified. On second review, 

statements relating to these themes were noted so that areas of agreement and disagreement 

could be illustrated. An account of emergent themes, accompanied by supporting quotations, 
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was viewed by an academic with experience in qualitative analysis as a check on the 

interpretation.  

4.3.7 Results 

Questionnaire 

The postal questionnaire survey was conducted during July and August 2007. From 197 

questionnaires sent, 93 were completed and returned, representing a response rate of 48%. 

The mean experience of respondents in musculoskeletal physiotherapy was 10.7 (SD 7.5) 

full-time equivalent years.  NHS clinics were the main workplace of 88 (95%) of the 

respondents; the remainder worked exclusively in private practice. The predominant patient 

group seen in clinic was reported by 24% of respondents as elderly, 18% as manual workers, 

4% athletes or military personnel and 1% as refugees. The remaining 53% did not specify 

any dominant group amongst their patients.  

Figure 4.1 shows the proportion of the sample identifying identified each disorder as 

problematic in terms of the three criteria. The top three disorders - frozen shoulder, plantar 

fasciitis and tennis elbow - were each chosen by more than 55% of respondents. The various 

tendinopathies were the mostly commonly cited disorders: 97% of respondents chose at 

least one form of tendinopathy. 

Figure 4.2 plots the sums of points allocated by all respondents for the top 10 disorders. 

Ranking disorders by points on each criterion places them in a similar order to that of Figure 

4.2, the main exception being rotator cuff tendinopathy, which ranks fourth in terms of 

frequency of presentation. Frozen shoulder, plantar fasciitis and tennis elbow are the most 

problematic disorders in terms of the proportion of respondents voting for them, and of the 

combined scores of respondents for frequency of presentation, severity of symptoms and 

recalcitrance to treatment. 

Figure 4.3 demonstrates the relative popularity of different electrophysical modalities in the 

treatment of the ten most recalcitrant disorders. Ultrasound was by far the most popular 

modality, being used by more than half of respondents for most disorders. The main 

exceptions were frozen shoulder, for which ultrasound was used by only 17% of those 

identifying it as a problematic disorder, and carpal tunnel syndrome, with 33% usage. Laser 

was also used in a majority of cases, although to a much lesser extent than ultrasound. The 

other modalities were reported as used by less than 10% of respondents for most disorders, 

the main exception being pulsed short wave therapy, which was used by 28% of those 
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choosing trochanteric bursitis. A small number or respondents indicated using ‘other’ 

modalities, but did not specify what they were. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Proportion of respondents identifying top 10 problematic disorders 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Scores for frequency of presentation, severity and recalcitrance to treatment of top 
10 disorders. 
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Figure 4.3: Choice of electrotherapeutic modalities in treatment of top 10 recalcitrant 
disorders.  

 

Telephone interviews 

In the second phase, 15 people were interviewed during the period August - September 2007. 

Interviews lasted between 15 and 20 minutes. The mean experience of the interviewees in 

musculoskeletal physiotherapy was 13.3±7.9 years. A summary of responses is presented in 

Table 4.3. 

There was broad consensus on most questions. For all three disorders pain was usually 

stated as the main problem for patients, although for frozen shoulder this was primarily in 

stage 1. Functional limitation severe enough to cause time off work was mentioned primarily 

for tennis elbow, and occasionally for plantar fasciitis. Once the pain of tennis elbow had 

diminished, patients were seen as unlikely to address the factors that might result in its 

recurrence. For frozen shoulder, limitation in activities of daily living in stage 1 appeared to 

be more significant than work-related problems. A concern was expressed that chronicity 

might be promoted by the centralisation of pain and the impact of psychosocial factors. These 
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may conspire to delay resolution as maladaptive patterns of behaviour and movement are 

not conducive to healing processes.  

Table 4.3: Summary of responses to telephone survey questions concerning top three 
recalcitrant disorders 

Frozen shoulder Tennis elbow Plantar fasciitis 

Issues in differential diagnosis 

Rotator cuff problems, 

impingement, calcific tendinitis, 

cervical spine problems, poor 

scapular tracking 

Misdiagnosis in stage 1 can lead 

to inappropriate treatment 

Diagnosis easier in stiff phase 

some felt virtually impossible to 

identify structure at fault without 

imaging. 

Neural dynamics 

Cervical spine problems 

Annular ligament 

Thoracic problem especially  if 

symptoms bilateral 

Neural dynamics 

Achilles tendinitis 

Main problems for the patient 

Pain, particularly in stage 1 when 

may be in all directions 

Disturbs sleep 

Loss of movement 

Functional limitation (less of a 

problem than the pain) 

Pain 

↓grip strength 

Functional limitation leading to 

time off work and sports 

Pain 

Functional limitation sometimes 

leading to time off work if on feet 

Management strategies commonly adopted 

Painful phase – refer for injection, 

scapular setting, education & 

advice, reassurance that it will 

get better; use of electrotherapy 

(TENS) & acupuncture for pain  

Stiff phase  - for most therapists, 

see once or twice to show self-

management, stretches; for some,  

soft tissue release, muscle 

balance, scapular tracking, joint 

mobilisation,  sustained joint 

glides  

Treat co-factors such as spinal, 

muscular, neural problems 

 

 

 

 

 

 

 

 

Cryotherapy 

Taping, strapping 

Home exercises, stretch and 

strengthening (especially 

eccentric) 

Manual therapy (deep frictions, 

massage, mobilisations with 

movement)  

Electrotherapy (most commonly  

ultrasound) 

Lifestyle, work adaptation 

Education about disorder 

Treat co-factors such as spinal, 

neural problems  

Refer for corticosteroid Injection 

 

 

 

 

 

 

 

Exercise (especially stretching) 

Cryotherapy 

Trigger points 

Addressing problems higher up 

(e.g core stability)  

Electrotherapy (most commonly  

ultrasound)  

Lifestyle, work adaptation 

Education about disorder 

Treat co-factors such as 

muscular, neural problems  

Refer for corticosteroid injection 

Refer to podiatry for more expert 

biomechanical assessment – 

often big improvement after 

orthotics sorted 
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Frozen shoulder Tennis elbow Plantar fasciitis 

Less responsive presentations 

In painful phase, only 

symptomatic relief seen as 

possible. (Minority said could 

prepare for later impact on 

quality of life) 

In stiff phase, disorder seen as 

virtually impervious to treatment 

by most interviewees 

Chronic phase 

 

Chronic phase 

 

Factors limiting their successful management 

Inadequate differential diagnosis 

leading to inappropriate 

management  

Some felt could have more impact 

if saw patients more; others 

thought resources not an issue  

Only seen when already in 

chronic phase 

Age-related degeneration may 

limit response to therapy  

Therapist tendency not to look 

deeper for related problems. 

 

Inadequate differential diagnosis 

leading to inappropriate 

management  

Difficulty identifying and 

addressing all contributory 

factors 

Only seen when already in 

chronic phase – seen as a low 

priority by referring GPs. 

Centralisation of pain in chronic 

cases 

Tendency to re-injure: difficult to 

get patients to rest the area or 

change work patterns / lifestyle  

Contributory co-morbidities e.g. 

Diabetes  

Psychosocial contribution  

Focus on symptoms rather than 

causes 

Difficulty identifying and 

addressing all contributory 

factors 

Centralisation of pain in chronic 

cases 

Lack of biomechanics skills of 

clinician 

If referred to podiatrist, attention 

may not be given to 

neurodynamics or muscle 

balance work 

Contributory co-morbidities e.g. 

Diabetes 

 

Differential diagnosis was recognised by many participants as most challenging for frozen 

shoulder, although diagnosis of the other disorders was not regarded as always 

straightforward. Neural involvement and was often cited as an issue with all three disorders, 

and muscle balance was mentioned for frozen shoulder and tennis elbow. Non-response to 

treatment was sometimes seen as arising from misdiagnosis, particularly in the case of the 

first stage of frozen shoulder, when limitation of movement might not follow a capsular 

pattern and pain could be impossible to localise. Less experienced clinicians were judged 

prone to treat frozen shoulder as a rotator cuff lesion and so exacerbate the problem. 

Unrecognised neural involvement in all three disorders was suggested by some respondents 

as accounting for their apparent recalcitrance.  

The stage of the disorder was universally recognised as key to its response to treatment. All 

agreed that tennis elbow and plantar fasciitis were most resistant when they became chronic. 

For NHS clinicians this was a particular problem as these disorders were often chronic by the 
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time they were seen. For frozen shoulder the situation was more complicated: a majority felt 

that in its acute phase (stage 1 or the painful stage) only education and advice were 

appropriate and that manual therapy was virtually contraindicated, either by the pain it 

could cause or its ‘proven’ inefficacy. Some respondents felt that in later stages the disorder 

was more amenable to treatment, and that sustained improvements were possible; others 

stated that the course of the disorder could not be influenced by treatment at all, and that all 

clinicians could offer were coping strategies.  

A range of treatment options were described for all the disorders. The most common were 

education about the disorder and advice on coping strategies. For tennis elbow and plantar 

fasciitis, addressing aetiological factors such as faulty biomechanics, footwear and 

ergonomics were cited. Adverse neurodynamics, muscle imbalance and trigger points were 

named as contributory or co-existing features that would be treated for all disorders. Where 

electrotherapy was used it was primarily for analgesia, or for encouraging the resolution of 

inflammation in the acute phase of the disorders. Only one mentioned its capacity to 

influence tissue healing. Referral for corticosteroid injections were often suggested, either 

immediately (usually in the case of frozen shoulder) or when conservative approaches were 

ineffective. Many respondents expressed the view that current physiotherapeutic 

interventions are primarily aimed at enabling the patient to adapt to and compensate for the 

effects of the disorder, rather than changing its course. This was especially so for frozen 

shoulder, but for some therapists was also true for the other disorders. Several spoke of the 

need to let the pathology run its own course in the knowledge that in most cases it is self-

limiting. 

For plantar fasciitis and tennis elbow, ongoing aggravation of the affected structure was cited 

most commonly as a factor limiting resolution. The range of inter-related contributory 

factors that may not be diagnosed or easily treated was often mentioned as a reason for 

recalcitrance with all the disorders. For NHS clinicians, funding issues and waiting list 

pressures were regarded as disincentives to addressing these factors.  

Overall, the opinions expressed concurred with the finding of the questionnaire, that frozen 

shoulder is the disorder that is least amenable to treatment, especially in its initial painful 

stage but, for many clinicians, also in later stages. The majority opinion was that 

physiotherapy treatment could not impact upon the course of the disease. Whilst tennis 

elbow and plantar fasciitis were thought to be more responsive to treatment, the general 

feeling was that these disorders also had a natural history whose course was difficult to 

shorten by therapeutic intervention. They also had the added complication of being prone to 
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‘re-ignition’ by repeated microtrauma from movements carried out in work or recreational 

activities. 

4.3.8 Discussion 

Data from the survey provides a range of clinical insights of value to this investigation. 

Frozen shoulder, plantar fasciitis and tennis elbow are judged as the most problematic soft 

connective tissue disorders in terms of both proportion of respondents voting for them, and 

their combined scores for frequency of presentation, severity of symptoms and resistance to 

treatment. Hence, these are all worthwhile candidates for use in a clinical trial of MCT.  The 

tendinopathies were consistent high-scorers, and so if MCT were shown to be effective in the 

management of such disorders, it could have a substantial clinical impact.  

The survey suggests that electrotherapies are widely used in the management of these 

disorders by this group of practitioners, although they appear to have limited success. Their 

potential for influencing the healing process appears to be under-appreciated. Usage is 

particularly high for the various tendinopathies, but much lower with frozen shoulder. The 

fact that modality choices varied significantly with disorder suggests that clinicians are not 

applying them indiscriminately, although usage is not necessarily in accord with 

experimental evidence. For example, trial evidence suggests that ultrasound may be 

beneficial for carpal tunnel syndrome279, yet respondents use it less frequently for this 

disorder than for others for which the evidence base is no stronger280, a finding confirmed by 

other investigators281. So, even if MCT were demonstrated to be effective in the treatment of 

these disorders, this would not guarantee its incorporation into practice. Additional evidence, 

for  example regarding its cost-effectiveness and potential for home-based treatment, might 

also need to be generated. 

Information provided by the interviews suggests that accurate diagnosis and timing of 

interventions are seen as key to effective management of the disorders. Differential 

diagnosis, identification of concurrent pathologies and timing of interventions are also 

recognised in the literature as significant issues for the top three disorders282-286. Therefore 

these require careful consideration in a trial protocol. 

The survey had a number of limitations. The choice of physiotherapists as the target 

population meant that the views of other clinicians were not sought. Disorders regarded by 

physiotherapists as resistant to treatment might respond more readily when managed by 

other health professionals, as evidenced by referrals of cases with plantar fasciitis to podiatry 

reported by some respondents. 
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The questionnaire return rate of 48% is at the lower end of rates typical for research 

published in medical journals287. Low response rates increase the risk of a non-

representative sample generating skewed data due to non-response bias288, but estimates of 

an acceptable rate vary287, 289 Non-response bias is not an issue if the responders and non-

responders are similar in profile288. In this survey, the sample was homogeneous in respect to 

profession, specialty and minimum experience. Non-responders who did not have these 

characteristics would have been excluded from the study. The geographical spread of clinics 

appeared as broad as the original sample, with institutions from all over the region included 

in the returns. Taking these factors into account, there is no evidence to suggest that non-

respondents might have identified and prioritised recalcitrant disorders differently. For the 

interviews, the sample was purposive rather than randomly selected, and was not intended 

to be statistically representative of the population from which it was drawn. The sample size 

for this phase appeared justified on the basis of informational redundancy, since the last few 

interviews mainly confirmed what had already been articulated by earlier interviewees.  

The variables - frequency of presentation, severity of impact on patient and resistance to 

treatment - were amenable to different interpretations, and no formal checks were made to 

ensure that a common understanding existed within the sample. Feedback from the initial 

consultation and pilot mailing did not highlight this as an issue, however, and there appeared 

to be no ambiguity in their interpretation by respondents in the follow-up interviews. 

Because of resource limitations, analysis of the recorded interviews was conducted by only 

one investigator. Ideally, the process would have been conducted by an additional person to 

check for potential errors and bias, and to seek agreement on interpretation290. On the other 

hand, the issues raised by the interviews served mainly to highlight areas that required 

further consideration in planning later experimental work, and did not change the findings of 

the larger, quantitative survey. 

4.3.9 Conclusions 

The survey served the useful purpose of bringing current clinical experience and opinion to 

bear on the process of selection of a disorder to treat, narrowing the choice from twenty to 

three. It also  provided information relevant to the conduct of later experimental work, 

particularly regarding the challenges of diagnosis and patient selection. An account of the 

survey has been published291.  
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4.4  DATA FROM  THE LITERATURE 

The survey of clinicians enabled a more focussed review of the literature to be conducted, by 

considering evidence relating particularly to frozen shoulder, tennis elbow and plantar 

fasciitis. Information was sought relating to the criteria set out in Table 4.1, so that a 

comprehensive rationale could be provided for the choice of a single disorder for treatment. 

4.4.1 Prevalence 

The prevalence of frozen shoulder is estimated to be in the range 2 – 5%, affecting people 

primarily in their 50s, women more than men 292, 293. The non-dominant shoulder is slightly 

more likely to be affected, and recurrence in the same limb is highly unusual 294, although the 

contralateral limb is subsequently affected in up to 34% of cases 295, 296. The disorder is often 

described as self-limiting294, 295, 297, but residual discomfort and loss of movement is common 

years after its supposed-resolution295, 298. In its primary form it is idiopathic, but it may be 

secondary to diabetes, thyroid disease, autoimmune disease, hemiplegia and prolonged 

immobilisation294. A strong correlation has been observed between the incidence of frozen 

shoulder and Dupuytren’s disease, to which it is histopathologically similar299, 300. The 

disorder can follow surgery and trauma, but repetitive strain has not been identified as a 

contributory factor. 

Epidemiological data for plantar fasciitis are scarce. No prevalence figures could be found, 

although a lifetime incidence of 10% in the USA is claimed301 (but not substantiated). Its 

distribution in the population is disputed302, but it appears to be most common in middle-

aged women and younger male runners286. One study303 found that the disorder usually 

resolved completely if conservative treatment commenced within 6 weeks of onset, but that 

20% of cases were still troublesome after 4 years. Significant risk factors include adverse 

biomechanics, unsuitable footwear, the presence of bony spurs, obesity and standing for long 

periods304. The disorder is usually described as a result of cumulative stress causing micro-

tears in the plantar fascia283, 286, and in this sense it is a repetitive strain disorder. 

Prevalence rates of 1 – 3% are reported for tennis elbow in the general population, although 

rates for specific occupational and sporting groups can be much higher (15% and 50% 

respectively) 305, 306. Its peak occurrence is within the fourth and fifth decades, with dominant 

arm involvement twice as frequent as non-dominant 307, 308. Recurrence rates appear to be 

high, with two studies 309, 310 finding that more than 50% or patients suffered recurrence, 

although they do not specify with what severity. A third study 311 found that up to 12% of 
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their sample suffered recurrence of severe pain and disability. Tennis elbow is – at least in 

part - a repetitive strain disorder, with frequent patterned loading of the upper limb in work 

or sport being a primary risk factor307.  

The figures provided here must be regarded with some caution as there are significant 

variations in the values provided by original epidemiological studies. The prevalence rates 

for tennis elbow in the general population are given as 1.1 – 1.3% in one study312 and 10.4 – 

11.6% in another313. The studies looked at the UK and Holland respectively, but the 

discrepancy seems unlikely due to population differences. Reported chronic repetitive strain 

injuries, particularly of the upper limb, have increased dramatically over recent decades 274, 

314. This may be because of previous under-reporting or could reflect real increases due, for 

example, to productivity pressures in the workplace, increased participation in sports, and 

rapid industrialisation in developing countries. Of the three recalcitrant disorders 

considered, this is of particular relevance to tennis elbow, a repetitive strain injury of the 

upper limb. 

These data do not provide incontrovertible evidence as to which disorder is more common. 

Frozen shoulder may be more prevalent, but tennis elbow is likely to be on the increase.  

4.4.2 Impact 

There is very little published information on personal and economic costs specific to each 

disorder, either of treatment or in terms of lost income and production. Most relevant 

surveys only provide data by anatomical region (e.g. neck and shoulder, upper limb)272, 315 or 

general pathology (e.g. tendonitis, rheumatoid arthritis) 316.  

At the personal level, all three disorders can cause severe pain for the sufferer, and this may 

be significantly disabling in their earlier stages. The pain experienced during stage 1 frozen 

shoulder can considerably limit the movement available at the joint and so impact on 

activities of daily living such as dressing and reaching. Undoubtedly the ability to do manual 

work is affected by this disorder, but the literature tends not to address this. Although pain 

and restricted motion may persist, functional restriction is not marked in late stage frozen 

shoulder 295, 317.  

Prolonged discomfort and residual functional limitations are common with tennis elbow, 

though this often goes unrecognised by clinicians: one study found that more than 50% of 

patients with the disorder had persistent discomfort after a year, with some changing 

occupations or stopping sporting activities311. Another reported that nearly a third of 
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workers affected by tennis elbow in highly repetitive manual occupations were absent for 12 

weeks or more as a result of it318. Approximately 1 million patient visits per year were made 

in 1995 – 2000 for plantar fasciitis in the United States319, though the associated costs have 

not been quantified. 

A particular problem with both tennis elbow and plantar fasciitis is that if predisposing 

mechanical problems such as repetitive movements and adverse biomechanics are not 

addressed, the disorders may deteriorate or reoccur283, 302, 307, 320. Reducing these 

contributory factors may be difficult as they could be integral to the patient’s work or 

recreational activities. 

4.4.3 Recalcitrance 

Myriad treatment options are available for each of the disorders, though the evidence-base 

for many of them is limited. Options that have most commonly been advocated in the 

literature for the management of each disorder are presented in Table 4.4. 

There are several  systematic reviews looking at specific interventions for frozen shoulder. 

Two considering the use of oral or injected steroids321, 322 found a short term benefit in pain 

reduction and range of motion, but no long term benefit. A review of physiotherapeutic 

interventions323, including manual therapy, exercise and electrotherapy, found some 

evidence of benefit for all treatments but is critical of the quality of the studies reviewed. 

Aggressive stretching or manual therapy may be counter-productive in stage 1 of the 

disorder324. No interventions appear to make a long-term difference, although there is expert 

agreement that surgical interventions for refractory frozen shoulder are most successful if 

followed by physiotherapy325. One review296 notes that studies do not compare treatments 

with the natural history of the disorder and so cannot say whether resolution is spontaneous 

or due to treatment.  

Systematic reviews of treatments available for plantar fasciitis 301, 326 indicate that steroid 

injections may be of some benefit in the short term, but can may lead to long term 

complications such as plantar fascia rupture; stretching exercises are helpful for pain 

reduction and orthoses are often helpful, especially to people who stand for long periods. No 

evidence was found to support the use of ultrasound, and results for extracorporeal 

shockwave therapy (ESWT) were equivocal. Different outcomes in studies of ESWT may be 

dependent on dose and patient selection301, 327, 328. Most treatments appear to be aimed at 

analgesia or reduction of tissue stress283, 329, although ESWT is also proposed to stimulate 

healing330. 
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Systematic review of treatments for tennis elbow 305, 306 have concluded that corticosteroid 

injections are likely to be beneficial in the short term, and that ESWT is unlikely to be of 

benefit, but could not draw any conclusions about the efficacy of mobilisations, exercise, 

orthoses or surgery. They suggest that no treatments have proven long term benefit. 

However three studies comparing physiotherapy with injections331-333 concluded that the 

former was more effective in the longer term, and found that corticosteroids can result in 

high recurrence rates and delay recovery. A review of 23 RCTs investigating a range of 

physiotherapy interventions found contradictory results that meant none could be endorsed 

apart from ultrasound, for which there was weak evidence in favour334. 

Table 4.4: Management options for treatment of recalcitrant disorders 

Frozen shoulder296, 323, 324 Plantar fasciitis283, 301, 326 Tennis elbow285, 305, 335 

analgesia (NSAIDs, acupuncture, 

TENS , nerve block) 

cryotherapy 

corticosteroid injections 

manual therapy (stretches, joint 

mobilisation) 

exercises 

hydrotherapy 

electrotherapy (laser) 

education and advice 

activity modification 

distension arthrography 

surgery (manipulation, capsular 

release, decompression) 

supervised neglect 

analgesia (NSAIDs, 

acupuncture) 

cryotherapy 

corticosteroid injections 

rest 

self-stretching 

manual therapy 

orthoses 

heel pads 

casting, night splints 

taping 

electrotherapy (extra-corporeal 

shockwave therapy, ultrasound) 

education and advice 

surgery (partial fasciotomy) 

analgesia (NSAIDs, 

acupuncture) 

cryotherapy 

corticosteroid injections 

orthoses 

electrotherapy (laser, 

ultrasound, pulsed shortwave, 

extra-corporeal shockwave 

therapy, phonophoresis)  

exercises 

manual therapy (frictions, joint 

mobilisation, manipulation, 

mobilisations with movement) 

taping  

platelet-rich plasma 

education and advice 

relative rest 

surgery (tendon release, neural 

decompression) 

 

The literature suggests that in most case the symptoms caused by these disorders may be 

expected to resolve, albeit incompletely, irrespective of treatment offered294, 301, 335. An 

effective treatment should therefore either cause quicker resolution of the disorder or reduce 

its impact during its course, compared to a wait-and-see approach, but trials rarely make this 

type of comparison. (This issue is revisited in Chapters 7 and 8, when the results of the trials 

conducted in this investigation are discussed.) Published trials reach inconsistent 

conclusions, suggesting variable success rates for each form of treatment, and often limited 

long term benefit283, 301, 305, 306, 324, 325, 329. The quality of trials or of their reporting is frequently 

judged inadequate.  
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There is little evidence available to identify which patients are more or less likely to respond 

to a particular form of conservative therapy. No specific prognostic indicators for frozen 

shoulder could be found. Its time-course is very unpredictable, with quite different durations  

of each stage claimed by different authors293-296. Staging systems do not appear to be 

incorporated into clinical trials and may be perceived as of limited value in empirical 

research. A review of literature on plantar fasciitis found many risk factors but none that 

reliably predicted clinical outcome283. Since repetitive microtrauma is often a factor in the 

development of both tennis elbow and plantar fasciitis283, 285, continued stress on the affected 

site may cause re-injury and confound therapeutic efficacy, whatever treatment is applied. 

For tennis elbow, manual work and weekly participation in racquet sports were found 

predictive of negative outcomes in two studies336, 337. A later sub-group analysis of trials of 

conservative treatment found that type of employment had minimal impact on outcome338, 

but the nature of the manual work was not specified, nor whether participants modified their 

activities to protect the vulnerable site. Symptom duration of more than three months has 

been found predictive of worse outcome with this disorder339.  

4.4.4 Potential response to MCT 

This criterion was considered in detail in the previous chapter. The weight of available 

evidence is most relevant to tendons and, by implication, to tennis elbow. However there are 

several caveats to consider. Findings from experiments involving animal tendons or 

tenocytes in vitro cannot be assumed to apply to the common extensor humans tendon in 

vivo. Actually since tendons and ligaments form part of the rotator interval, the structure 

affected in frozen shoulder340, these findings might arguably have relevance to that disorder. 

Also, in these investigations soft tissue damage was induced artificially and treatment was of 

an acute lesion. Therefore they cannot be regarded as directly applicable to the disorders of 

interest, which are normally characterised by insidious onset and often treated when 

chronic. 

Since microcurrent can promote healing in non-uniting fractures and chronic skin ulcers, it 

has been argued that it can help with dysfunctional healing in other tissues – such as tendons, 

ligaments and cartilage 113, 143, 171, 341. The argument might be extended to joint capsules and 

fascia, and so include the disorders of interest here. However this line of reasoning makes a 

number of leaps of faith and may be challenged at several junctures. Pathological features 

and repair processes – both normal and disrupted – are not identical in the different tissue 

types, nor in the variety of disorders that affect them. Frozen shoulder commences with an 

inflammatory response in the synovium followed by a reactive fibroplasia in the joint 
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capsule, with excess production of collagen and increased numbers of myofibroblasts292, 300, 

whereas tennis elbow is often characterised by micro-damage of already degenerate tendon 

tissue resulting in poorly organised and inferior quality collagen320. The former disorder 

leads to contracture of the affected tissue294, the latter normally does not. In other words, the 

pathophysiologies are not the same. On the other hand fibroblastic proliferation and tissue 

thickening are common to these disorders, and are also seen in plantar fasciitis342. Matrix 

calcification and hypervascularity typical of granulation tissue can also be found in all three 

disorders300, 320, 343.  

4.4.5 Feasibility and methodological issues  

Formulation of a feasible trial protocol requires that practical considerations and resource 

constraints be taken into account. These included availability of a study sample, time and 

funding, and the expertise of the investigator. Methodological rigour is enhanced by having a 

well-defined study population, recognition of prognostic factors, the identification and 

control of potential confounders, and the availability of valid and reliable outcome measures. 

Case definitions are available for frozen shoulder and tennis elbow, although different 

studies sometimes adopt different versions344, 345; none could be found specifically for plantar 

fasciitis. Diagnosis of frozen shoulder can be problematic282, 346, especially in its early stages 

when pain may limit all movements. It may be mistaken for rotator cuff tendinopathy or 

impingement284. However when stiffness becomes the predominant feature, restriction of 

active and passive movement in a capsular pattern is more apparent, and a complete loss of 

external rotation may be observed. This loss has been claimed to be pathognomonic of the 

disorder294. Diagnosis of plantar fasciitis and tennis elbow requires exclusion of a number of 

other disorders, particularly neuropathy285, 347, but is not described as problematic in the 

literature. Ultrasound has been shown of value in diagnosing all three disorders348-352 

Prognostic uncertainty is a barrier to creating homogeneous treatment and control groups 

and to making meaningful comparisons of  their healing rates. This is a problem for all three 

of the disorders, but perhaps particularly so for frozen shoulder, because of the lack of 

relevant evidence. A factor that could be especially significant for tennis elbow and plantar 

fasciitis is aggravation by continued stress of the injured site. Since cumulative microtrauma 

is implicated in these two disorders285, 302, 335, 347, aggravation should ideally be controlled in 

any clinical trial. This may be impossible because the movements causing the trauma can be 

hard to avoid. The argument does not arise for frozen shoulder because it appears not to be a 

repetitive strain injury.  
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Trials of the efficacy of various treatments for these disorders have employed a raft of 

outcome measures. Validated functional and quality of life measures that have been used 

include the Foot Health Status Questionnaire for plantar fasciitis353, the Shoulder Pain and 

Disability index for frozen shoulder321, 354, and the Patient-Rated Forearm Evaluation 

Questionnaire for tennis elbow355. Algometry, dynamometry and goniometry can provide 

objective or semi-objective measures of clinical outcomes. To gauge the impact of treatments 

in the anatomical and pathophysiological domains, tissue biopsies give structural and 

histological information; haematology can indicate the presence of chemical mediators of 

inflammation and healing; and MRI, radiology and ultrasound imaging can evaluate structure 

and – in the case of sonography – blood flow. The advantage of these measures is that they 

may provide direct evidence about healing processes, whereas the clinical and functional 

tools offer only indirect evidence. Thermography has been proposed as an additional tool for 

assessing and monitoring changes in tennis elbow 356, through quantification and mapping of 

superficial tissue temperature.  However, a correlation of this variable with deeper structural 

and physiological changes has not been established. Biopsies, haematology and MRI were 

beyond the resources available to this investigation, whereas diagnostic ultrasound was not. 

This imaging modality has been used successfully to demonstrate anatomical and 

physiological changes accompanying treatment for including tennis elbow357, 358 and, to a 

lesser extent, plantar fasciitis359. Sonography has been used for imaging of tissue in frozen 

shoulder360, but no reference to its use for monitoring change could be found. 

 

4.5  DRAWING  THE EVIDENCE  TOGETHER 

Having gathered information from the literature and the survey of clinicians, a clearer 

rational for the choice of disorder to treat was available. There remain areas of uncertainty 

and ignorance, and arguments can be made about how the data should be weighted. These 

factors meant there was an arbitrary element to the choice, although a new and effective 

treatment would be of significant benefit in the management of any of the top three 

disorders.  

If the decision were to be taken purely on the basis of the survey, frozen shoulder would be 

the disorder of choice to treat in this study: it is seen commonly in clinic, can be extremely 

painful in its early stages, may take several years to resolve, leaving significant residual 

symptoms, and is often resistant to conservative treatments currently available. The disorder 

scores highly both from the clinicians’ point of view and using evidence from the literature. 
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On the other hand there is no compelling evidence that it might benefit from microcurrent 

therapy, and there are several significant problems in developing a robust experimental 

protocol for its treatment. Prospectively identifying a group with similar prognoses for 

progression of the disorder is not possible. If some shoulders take three or more years to 

‘thaw’ left to themselves, treatment effects might not be apparent within the timescale of this 

investigation. Recruitment might be easier if treatment were offered in the painful stage, but 

differential diagnosis  on purely clinical criteria can be unreliable; once pain has subsided 

diagnosis is easier, but disability is not so severe and motivation to participate might 

diminish. Finally, the available outcome measures would not provide direct evidence of 

healing at a tissue level, which is a central concern of this investigation. Therefore practical 

issues could compromise the chances of a successful study. 

Plantar fasciitis also scores highly as a problematic disorder according to both the survey and 

the literature, but choosing it would give rise to several theoretical and practical problems. 

There is very limited and poor quality trial evidence that it might respond to microcurrent. 

Obtaining a viable sample would present a significant practical challenge. Reliable prevalence 

figures are not available for plantar fasciitis and, although its frequency total score in the 

survey was higher than that of tennis elbow, its average score across 30 respondents was 

significantly lower. All interviewees said they encountered it rarely.  Hence, it was deemed 

inappropriate for inclusions in the trial.  

Tennis elbow did not score as highly as frozen shoulder and plantar fasciitis in the survey, 

but it ranked third in the list of 20 disorders. There is a considerable body of evidence 

already available to suggest that pathological tendinous tissue may respond to microcurrent 

therapy. The direct evidence regarding tendinopathies such as tennis elbow is limited, but 

the experimental literature relates more directly to tendons than to the tissues affected in the 

frozen shoulder and plantar fasciitis. Studying the effects of microcurrent on tennis elbow 

may well have relevance to other tendinopathies - such as rotator cuff, patellar tendon and 

Achilles tendon lesions, which were all high scorers in the survey. Many therapies for 

tendinopathy treat the symptoms, and it has been suggested that effective treatment 

strategies that stimulate a healing response in the diseased tendon need to be developed361. 

Choosing tennis elbow also has several practical advantages: pain is an ongoing feature of the 

disorder, which might encourage recruitment of participants; compared to the other 

disorders, its is somewhat easier for the layperson to identify when reading recruitment 

literature; and diagnosis and monitoring of tissue changes has already been demonstrated as 

viable using sonography. The potential disadvantage of choosing tennis elbow is the chance 
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of re-injury during treatment, although monitoring participant activities would allow this 

factor to be investigated, if not controlled.  

Tennis elbow was therefore chosen as the disorder for investigation in a clinical trial of MCT. 

The next steps in developing a protocol for the study were the definition of a trial population, 

the choice of treatment parameters, and the selection of appropriate outcome measures.  

These issues are addressed in the chapters that follow. 



 

 

Chapter 5 
Experimental Design Issues 

 

5.1  INTRODUCTION 

aving established an argument for subjecting microcurrent treatment of chronic 

tennis elbow to a clinical trial, the next step in this investigation was to plan one. 

Systematic reviews of treatments for tennis elbow consistently comment on the 

poor methodological and reporting quality of studies305, 334, 362. So it was judged 

essential to give detailed consideration to the various elements of a trial protocol. This 

chapter addresses some of the key elements in that process: defining the disorder to be 

treated, choosing an experimental design, and selecting the form of treatment to employ and 

the outcomes to measure. Other methodological issues - such as eligibility criteria and 

methods of data analysis – could only be addressed once these fundamentals had been 

considered. Published clinical trials and other investigations of tennis elbow were used as 

source material for the discussion that follows. Approaches commonly employed in trials 

were assessed against criteria drawn up specifically for this investigation. 

The chapter commences with development of an operational definition of tennis elbow. This 

is necessary to identify those components that might respond to MCT and which should 

therefore be measured in a trial. It was also used later when eligibility criteria were drawn 

up. The focus then moves to selection of an appropriate trial methodology, given the 

questions and requirements for further evidence identified in the systematic review. This is 

followed by consideration of the treatment parameters to be employed in the trial, and a 

report of the evaluation of several MCT devices to see which might be able to deliver the 

required form of microcurrent. Finally, the range of outcomes that might be measured in the 

trial is described, and several are assessed for suitability to the requirements of this 

investigation. The chapter concludes with a selection of the trial design, the form of 

treatment  to be used, and a set of potentially appropriate outcome measures, some of which 

are identified as requiring further evaluation. 

 

H 
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5.2  DEFINING  THE DISORDER   

Defining tennis elbow is not straightforward, and there is continued debate about its 

essential components. This is reflected in the variety of names that have been proffered as 

alternatives to the non-specific title, which derives from ‘lawn tennis arm’, first described in 

1882363. Since it may afflict people who are entirely unacquainted with a tennis racquet, the 

term is clearly a misnomer, but it has been retained in both general and clinical use for the 

lack of a satisfactory alternative. ‘Lateral epicondylalgia’ has been suggested as preferable 

because it focuses on the main clinical feature – pain - without making any assumptions 

about the underlying pathology364, 365. However, this investigation is particularly concerned 

with healing of tendon tissue damage, and lateral elbow pain may exist in its absence, for 

instance secondary to radial neuropathy, radiohumeral arthropathy or as referred pain from 

cervical spondylopathy308, 366. The pain of tennis elbow may have many sources but the 

epicondyle itself is rarely reported as one of them, so the term offers little in terms of 

specificity to the disorder of interest. ‘Lateral epicondylitis’ has been (and still is) commonly 

employed367, 368, although the term has been discredited by histological studies finding little 

evidence of inflammation in the affected tissue when the disorder has become chronic369, 370. 

The title ‘lateral elbow tendinopathy’ is preferable because it identifies the element of the 

disorder of particular interest here, namely tendon tissue damage371. Also, it is general 

enough term to encompass the range of tendon pathologies that might  present in tennis 

elbow, such as damage to the tendon proper or the paratenon, and including cumulative 

micro-damage, calcification and tears. However, the term has the disadvantage of being 

primarily a histological entity, which may or may not have clinical correlates in a particular 

case. The common extensor tendon may show signs of pathology and yet cause no symptoms 

– this has been a finding of both histological and imaging studies348, 372, 373. Equally, clinically 

significant changes may occur in presentations of tennis elbow whilst many tendinopathic 

features remain374, 375.  Thus, if tennis elbow is described only in terms of pathological change 

to the tissue, the essential concerns of clinical features and clinical change may remain 

unaddressed. Hence the term “tendinopathy” is also unsatisfactory in the context of an 

investigation concerned with therapeutic benefits. For these reasons, the alternative titles 

were rejected for use in this report, and the archaic term ‘tennis elbow’ was retained.  

Tennis elbow has been defined as  ‘a painful condition affecting the tendinous tissue of the 

origins of the wrist extensor muscles at the lateral epicondyle of the humerus, leading to a 

loss of function of the affected limb [which can have] a major impact on the patient’s social 

and professional life’376. This description identifies several significant elements of the 
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disorder: the symptoms it provokes, its impact on the individual, and the structure that is the 

source of the problem. It does not specify the nature of the tissue damage, however. Imaging 

of the affected tendon in tennis elbow has revealed many forms of structural change in tennis 

elbow, including disruption of the normal fibrillar pattern, calcific deposits, fluid 

accumulation, thickening of the tendon body or the peritendinous lining, tendon tears, and 

hyperaemia that may be due to increased blood flow in existing blood vessels or formation of 

new ones349, 357, 372. Histological studies have confirmed that chronic tennis elbow is 

associated with cellular and extracellular changes, including increases fibroblast numbers 

and activity, disorganised and immature collagen formation, angiogenesis with associated 

neural ingrowth364, 377, 378. The tendinopathy of tennis elbow could be regarded as any 

combination of these features, although some authors have attempted to restrict the meaning 

of this generic term to a specific form of damage - a result of failed healing following 

repetitive microtrauma 285, 379. This would exclude frank tears and calcific deposits, which are 

not in themselves examples of failed healing, and yet could be the main source of symptoms 

in some presentations of tennis elbow. Adjacent structures such as the radio-humeral 

ligament and joint capsule may be damaged and contribute to symptoms. Differentiating 

between these different forms of structural change and damage is important because it may 

be that microcurrent can affect some of them but not others. Indeed, this may be true of other 

forms of treatment, a possibility that has received little attention in the trial literature to date. 

This issue is further addressed in Chapter 9. 

The pain of chronic tennis elbow has been associated, not only with nociceptive stimulation 

by biochemicals released by inflammatory cells, but also with peripheral neuropathy and 

central sensitisation mechanisms380. Local neurones may increase in number and sensitivity 

and themselves release noxious biochemicals, and neuroplastic change in the central nervous 

system may maintain a pain response even if damaged tissue has healed381. The functional 

loss seen in the disorder is likely a consequence of both the pain experienced and a variety of 

motor deficits, including loss of muscle strength and control382. A model of tennis elbow 

integrating these inter-related elements has been proposed381. It conceptualises the disorder 

as a syndrome comprising local tendon pathology, changes in the pain system (both local and 

central) and sensori-motor system impairments (such as strength and proprioception). 

These may co-exist and interact to different extents in each case. In this investigation, tissue 

pathology and pain are of particular concern because it is these elements that MCT targets; 

nevertheless, if they improve, complex interactions between the systems might also reduce 

motor deficits and improve function. 

 



 
91 Chapter 5: Experimental design issues 

The following working definition was therefore adopted. 

Tennis elbow is a disorder characterised by damage to the common extensor tendon  

in the lateral elbow, local pain and motor deficits in the affected arm,  

which may affect the performance of work or recreational activities. 

This definition was used in the formulation of diagnostic and eligibility criteria for the trials, 

which are discussed in Chapter 7. 

 

5.3  METHODOLOGY 

A randomised controlled trial (RCT) is the design of choice to explore the effectiveness of 

MCT in the treatment of chronic tennis elbow, because RCTs can provide the best evidence of 

whether an intervention causes an outcome216. For the evaluation of MCT, the optimum 

format is a placebo-controlled trial with microcurrent or sham microcurrent applied in 

combination with another form of therapy. Combination therapy is appropriate for two 

reasons. First, MCT has been shown to be most effective in other tissue lesions when used as 

an adjunct treatment; for example with wound dressings in cutaneous ulcers or with 

instrumentation following spinal fusion surgery. Second, there is evidence that controlled 

mechanical loading is necessary to drive effective remodelling during tendon repair, and MCT 

cannot provide this.  

There are several forms of RCT that could be employed. The most informative design in this 

context would be a three-armed trial. In many cases, tennis elbow is a self-limiting disorder 

that resolves in time whether or not it is treated366, 383. However, symptoms may persist for 

several years, and the course is not necessarily predictable308, 337. For a treatment to be 

judged worthwhile, it should lead to better outcomes than a wait-and see approach. A trial 

that includes a minimal intervention arm can be used to test this.  This would be ethically 

acceptable because no single treatment has been found efficacious in all cases, and 

spontaneous healing is the expected outcome in most cases. A sham-MCT group is also 

desirable because treatment with microcurrent may produce a placebo effect. Hence, the 

most robust trial design would have a real MCT, a sham MCT and a “wait-and-see” group, 

with both treatment groups also receiving an exercise programme to provide mechanical 

stimulation. 
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Because part of the rationale for MCT is that it promotes tissue healing, a cross-over trial 

would not be appropriate. If MCT “kick starts” a healing process that was dysfunctional, 

outcomes using a sequence of treatment Awashout periodtreatment B would be difficult 

to interpret since healing might continue through the washout period. A parallel arm trial 

should facilitate unambiguous attribution of causality. Many of the clinical trials cited in 

Chapter 2 used the case series design, sometimes justified on the basis that subjects acted as 

their own controls because their signs and symptoms had been stable for some time before 

the intervention commenced. This approach might be acceptable if used prospectively, with 

baseline assessment on all measures conducted at a defined time - at least several weeks - 

before treatment commenced. However, it would still not be the optimum design for a trial 

involving chronic tennis elbow because symptoms may not be stable. The parallel arm trial 

remains preferable. 

As the systematic review of clinical trials reported earlier revealed, there is substantial 

uncertainty regarding the optimum MCT parameters to use in a trial. Also, because no trials 

so far conducted have measured the effects of MCT on tissue healing in tennis elbow, it is 

difficult even to make an educated guess about the potential effect size. This means that the 

minimum sample size required to produce a statistically significant result is unknown. 

Inadequate sample sizes reduce the power of a study to detect a real difference in outcomes, 

and so undermine the quality of evidence, a deficiency commonly noted in systematic 

reviews of tennis elbow trials384-386. For these reasons, proceeding directly to a full clinical 

trial was judged inappropriate and unethical. In the few published trials that have been 

conducted with the soft connective tissues, the selection of MCT parameters is not justified 

and, possibly as a consequence of using less-effective forms of microcurrent, their small 

samples and effect sizes lead to unconvincing conclusions. In order to avoid these pitfalls, it 

was decided to conduct preliminary studies to investigate whether certain parameters are 

key to the effectiveness of the therapy. These were not designed to evaluate the effectiveness 

of MCT compared to another type of treatment, or to no treatment, but to compare different 

parameter combinations using the same experimental protocol. Therefore, all participants 

would receive some form of MCT. This design is analogous to a phase II pharmacological 

clinical trial, in which dose/response relationships are investigated387. Its disadvantage is 

that it cannot prove whether MCT produces a better outcome than another management 

strategy (including “wait and see”). However, a comparative study such as this can provide a 

rationale for the choice of MCT parameters to be employed in a controlled clinical trial. It can 

also serve several other purposes: evaluation of outcome measures specifically related to 

tissue healing, which have rarely been used in trials of MCT;  gathering data on adverse 
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events and patient acceptability; and gaining methodological experience that could inform 

the controlled trial protocol. The trial would therefore be exploratory, with the intention of 

providing preliminary data upon which a full RCT could be based. 

Thus, a parallel-arm clinical trial in which the effects of different forms of MCT were 

compared, was selected as the most appropriate study design for this stage of investigation. 

 

5.4  FORM OF MICROCURRENT  TREATMENT 

In theory, it would have been preferable to design and build a device capable of providing 

control over all the parameters considered in the review. In practice, doing so would have 

required resources beyond the capacity of this investigation. Instead, the variety of 

proprietary devices available for the delivery of therapeutic microcurrent was considered, 

and several of these were assessed in detail for possible use in the trial. As well as the 

capacity to deliver current with parameters within the therapeutic window delineated by the 

reviews, several other characteristics were considered: 

 Portability: to achieve total treatment times of many hours, the device should be 

small enough to be carried around and not interfere unduly with normal activities 

 Ease of use: repeated and long duration treatment is best carried out by the patient, 

and so the device should be simple to use and durable  

 Safety: possessing a CE mark confirming that it meets European Union health, safety 

and environmental requirements 

 Cost and availability: since multiple devices would be required, those that could be 

acquired at lower cost or on loan would be preferred 

 Exisiting evidence of benefit of treatment provided by the device. 

Devices were identified from published trials, existing contacts within the industry, and an 

internet search. Information on their characteristics was obtained from manufacturers’ 

websites and data-sheets. A comparison of the devices using the selection criteria is 

summarised in Table 5.1. 
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Table 5.1: Characteristics of microcurrent devices evaluated (CR = current regulated)  

Device name & 

supplier 

Parameters Portability Ease of use Available 

evidence 

Suitable 

Accu-o-matic 

Electro-

Therapeutic 

Devices, 

Ontario, Canada 

20-600µA 

0.8-320 Hz 

Pulsed mono or biphasic 

Mains operated  

Not easily portable 

Requires therapist to 

apply manually via 

probes 

  

Alpha-stim 100 

Electromedical 

Products 

Mineral Wells, 

USA 

10-600μA 

Pulsed 0.5, 1.5, 100Hz 

10s on 2s off 

Biphasic balanced rectangular 

waveform 

10,20, 60 minutes or 

continuous. 

Hand-held  

Battery operated 

Adjustable but no 

markings to show 

parameters. 

Application by probes 

or small electrode 

pads 

Weak evidence of 

benefit with 

musculoskeletal 

and post-operative 

pain243, 245 

? 

Electro-

Myopulse & 

electro-

acuscope 

Thorp Institute. 

Encinitas, USA 

0-600µA rms 

0.5-320Hz 

Amplitude and frequency-

modulated square wave, 

alternating polarity every 2s 

Mains operated  

Not easily portable 

Requires many 

parameters to be 

adjusted. 

Small electrode pads 

on affected area. 

Weak evidence of 

benefit in 

Radiation-induced 

fibrosis250, non-

specific pain102 and 

tennis elbow254 

 

Elexoma Medic 

Redplane 

Zug, 

Switzerland 

0-1500µA CR 

Up to 99 minutes 

 

Hand-held  

Battery operated 

Simple programming. 

Small electrode pads 

on affected area. 

No published trials  

 

? 

Intellect 

Chattanooga 

Group  

Hixson, USA  

0-1000μA CR 

Monophasic or biphasic 

Waveform not specified 

0.1 – 1000 Hz 

1 – 60 minutes 

Mains operated  

Not easily portable 

Delivers many 

programs including 

MCT. Requires 

therapist to operate. 

Small electrode pads 

or probes on affected 

area. 

No published trials 

using microcurrent 

parameters 

 

 

Micro Plus 

Biomedical Life 

Systems 

Vista, USA  

0 - 1000µA 

States output voltage 2.5V peak-

to-peak so cannot be CR. 

Biphasic symmetrical square 

wave 

Pulsed  5 -120 Hz Carrier 

Frequency:   14,000 Hz  

Polarity:   Positive, negative or 

bipolar with 1, 2, or 3 second 

adjustment within each range  

Hand-held  

Battery operated 

Similar to TENS device 

with dial controls. 

Markings do not allow 

accurate control of 

parameters. 

Evidence of tendon 

healing in rats145 

 

? 

Microace  

MSL Medical 

London, UK 

1-600µA Hand-held  

Battery operated 

3 pre-programmed 

settings  

Small electrode pads 

on affected area. 

No published trials 

found 

 

? 

Microdoctor 

Micromed 

Technology  

Cranleigh, 

UKK6 HND 

Microcurrent but otherwise 

unknown 

Hand-held  

Battery operated 

Simple programming 

Small electrode pads 

on affected area. 

No published trials  

Predecessor of  

“Tendonworks”- 

see below. 
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Device name & 

supplier 

Parameters Portability Ease of use Available 

evidence 

Suitable 

Pain-away / 

Pain Ease 

Newmark Inc, 

Cheshire, USA 

Nominal 10-25µA 

Not CR 

DC or 0.5Hz monophasic square 

wave 

Continuous application for 5 

days. 

 Circuit embedded in 

adhesive electrode. 

Very simple to apply.  

Weak evidence of 

benefit with 

chronic low back 

pain247 Authors 

state f=71.5kHz but 

manufacturer says 

0.5Hz for that 

version. 

? 

Precision Micro 

Precision 

Electronics 

Montclair, USA 

10 – 600µA 

0.1-990Hz 

Monophasic Square wave 50% 

duty cycle 

Treatment for few minutes in 

total 

Mains operated  

Not easily portable 

Applied by therapist 

via probes 

Found ineffective 

in a tennis elbow 

study388 

 

Rebox 

Unable to trace.  

May be 

unavailable 

0-300µA 

200-5000Hz 

Pulsed monophasic square 

wave199 

Unknown Requires therapist to 

apply manually via 

probes 

Trial gave limited 

support for use 

with tennis 

elbow256. 

 

 

Tendonworks 

Synapse 

Microcurrent 

Canterbury, UK 

40-500µA CR 

3 stage program, mainly 40µA 

monophasic square wave 

Current regulated 

30 minutes 

Hand-held  

Battery operated 

Single button 

operation 

Automatic shut-off 

Small electrode pads 

on affected area. 

Parameters based 

on published study 

for Achilles 

tendinopathy251 

? 

Wewo Thom 

Wewothom 

gmbh 

Bad Saarow, 

Germany 

Nominal 25µA  

8 -12 kHz 

Biphasic square wave 

Not CR 

6 hours 

Hand-held  

Battery operated 

Single button 

operation. 

Small electrode pads 

on affected area. 

No trials published 

in English but 

several 

summarised at 

http://hightonethe

rapy.com/studies.p

html 

? 

 

Those devices marked with a query in the table appeared capable of delivering microcurrent 

within the therapeutic window and meeting the criteria of portability and ease of use. 

Enquiries were made to the suppliers and several of the devices identified were made 

available for further evaluation: the Elexoma Medic, Painaway patch, Tendonworks and 

WeWo Thom. All of these devices have CE marks. Because of commercial sensitivities, some 

suppliers were unwilling to provide a full description of the microcurrent their device 

delivered and so laboratory measurement of their outputs was conducted.  
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5.4.1 Laboratory testing of microcurrent devices  

The purpose of this study was to assess the suitability of the MCT devices for inclusion in a 

clinical trial with chronic tennis elbow. This was based on investigation of their electrical 

characteristics, and suitability for home-based, patient-controlled treatment, which would 

facilitate maximal treatment times. The specific aims were to: 

 Obtain a full description of the current output 

 Establish whether the output current intensity is regulated 

 Gauge the level of parameter control available 

 Assess for durability and ease of use  

Current regulation is the variation of output voltage to compensate for changes in body 

circuit impedance that may occur during treatment. Without current regulation, the actual 

intensity and waveform may differ significantly from nominal values.  

Methods and materials 

All work was conducted by the author. The devices evaluated were: Elexoma Medic, 

Painaway Patch, Tendonworks and WeWo Thom (illustrated in Figure 5.1). Each device was 

subject to a electrical testing and simulated therapeutic use, following the instructions 

provided by the suppliers. To standardise the measurement and description of outputs of 

therapeutic devices, the currents reported in technical specifications are normally those it 

produces in a standard resistor, typically of 500 Ω or 1 kΩ. In this case, to inspect the 

waveform and confirm the nominal current intensity, each device was connected to a 

standard 980 Ω resistor and the voltage waveform across the resistor was displayed using a 

digital oscilloscope (TDS1002B, Tektronix UK Ltd, Bracknell). Sample waveforms were 

stored and their data transferred to a spreadsheet, enabling peak and average current values 

to be calculated. 

To evaluate current regulation, readings were repeated with a 14 kΩ resistance, arbitrarily 

chosen to assess how the device responded to an order of magnitude increase in resistance. 

Finally, to observe electrical performance in clinical application, measurements were made 

with the device connected to the investigator’s elbow using the adherent electrodes supplied. 

Robustness, ease of use and user-control were assessed by inspection of supporting 

documentation, handling of the device and simulating its use for treatment of tennis elbow. 

The skin was prepared by shaving and cleaning with an alcohol wipe, and the electrodes 
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were applied over the lateral epicondyle and the posterior elbow, just proximal to the 

olecranon. 

 
A.  Elexoma Medic 

 
B.  WeWo Thom 

  

 
C.  Tendonworks 

 
D.  Painaway patch 

 

Figure 5.1: MCT devices evaluated in laboratory 

 

Each device was used in accordance with the supplied manual, using nominal settings within 

the defined therapeutic window where possible. A diagram of the circuit used for electrical 

investigation is provided in Figure 5.2.  Instantaneous current values were calculated by 

substituting the known resistance and measured voltages into Ohm’s law (voltage = current x  

resistance). Peak and time-averaged values were calculated using the data recorded from  

several cycles of each waveform. Because of the varying impedance of the body, calculation of 

the currents driven into the tissue by each devices was not possible. 
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Figure 5.2: Circuit diagram for MCT device electrical testing 

 

Results 

The physical and control characteristics of each device were as follows: 

A. Elexoma Medic: about the size of a portable CD player, of sturdy construction, 

supplied in a rigid carry case, used 4 rechargeable batteries. LCD screen showing 

operational parameters and a series of push buttons on the front face for 

programming. These allow a choice of waveforms, current intensity and treatment 

duration up to a maximum of 99 minutes. Adherent electrodes are provided, and 

connect to the device via wires plugged into a socket at the top. Two sockets are 

available, allowing up to four electrodes to be connected. The device shuts off 

automatically once programmed treatment is complete. There is an audible  “circuit 

broken” alarm  but this does not function below currents of about 100μA. A belt 

mounted carry-case is available. A user manual suggests which program to use for a 

particular application, electrode placement and numbers of treatments. 

B. WeWo Thom: disc-shaped device about 3cm diameter and less than 1 cm thick. A 

small recessed button is pressed for several seconds to activate the program, and a 

flashing LED indicates whether the program is running. No parameter adjustment is 

possible and the program runs for 6 hours before shutting off automatically; early 

shut-down can be forced by holding down the button. Supplied with adherent 

electrodes that connect to two sockets at the end of short wires emerging from the 
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side of the device. It can hang freely as it is very light, but may also be held in place 

with tape or a dressing. The battery is not rechargeable, but the manufacturers 

estimate its lifetime as 500 hours. Brief instructions for use are provided.  

C. Synapse Tendonworks: a plastic ovoid of approximate dimensions 4x3x1 cm, with a 

recessed power button and a dim LED indicator within the casing that flashes every 

two seconds during operation. The treatment program runs for a preset 30 minutes 

before switching off, but can be interrupted by holding down the button. The LED 

flashes more quickly if the circuit is broken but there is no audible alarm. Adherent 

electrodes are provided and connect to the device via sockets on 50 cm-long wires 

emerging from its side. The device is designed for single use, the battery reported by 

the suppliers to be able to provide up to 50 treatments. User instructions are 

provided, and the suppliers suggest a complex treatment regime involving varying 

numbers of treatments each day and week for three weeks. 

D. Pain-away patch: also known as the “Pain-ease” and by several other names. Takes 

the form of two adherent dressings approximately 5 cm square with waterproof 

backing, connected together by a conducting lead. Each dressing contains an 

integrated circuit and battery, claimed by the manufacturer to last up to 500 hours, 

and designed to be used continuously for 3 – 5 days.  

A reliable electrical measurement process for use with the Painaway device could not be 

developed, because of the integration of its circuitry into its adherent electrodes. Therefore it 

was excluded from the evaluation. Both the Tendonworks and WeWo Thom delivered a fixed 

program that could not be adjusted by the user; the Elexoma Medic had 8 programs 

delivering a variety of waveforms. One program that provided a monophasic low frequency 

current was selected for evaluation. 

Table  5.2 provides exemplar waveforms recorded when the devices were attached to the 

standard resistance.  The specific details of each device output were as follows: 

 Device A produced a square wave of fixed amplitude (controlled by the operator) and 

frequency modulated in the range 75 – 160 Hz. Groups of pulses of approximate total 

duration 90 ms were seen, with individual square pulses varying stepwise between  1 

and 3 ms and inter-pulse periods of 5-10 ms. The nominal current selected by the 

operator was seen to represent the peak rather than average current delivered, 

which was calculated to be approximately 80% of the peak value.  When the fixed 

resistance was raised to 14 kΩ, the output current was controlled to within 10% of 

the nominal value. 
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 Device B produced a fixed amplitude alternating polarity square wave of frequency 

8 - 12 kHz, and with pulses of duration varying between 70 and 110 μs, with inter-

pulse periods about 20% longer than the preceding pulse. The device produced a 

peak current of approximately 80 μA and an average current of approximately 50 μA 

when applied to the standard resistor. These values dropped substantially when the 

larger resistance was used, demonstrating that the device was not current controlled. 

The manufacturers estimate that an average current of 25 μA is produced when the 

device is applied to body tissue. 

 Device C’s output was only measured for the first few minutes of its program, 

assuming that it remained constant throughout. However, the manufacturer later 

provided a technical specification sheet showing that this was not the case, In fact the 

output varied across a program period of just under 30 minutes, comprising three 

stages with different waveforms and durations. The illustration is taken from the first 

stage, in which an 0.1 second alternating polarity square waveform, amplitude- and 

frequency-modulated  in 20 steps, is generated for six minutes; this is followed by a 

20-minute duration 10 Hz, 40 μA peak, 20 μA average monophasic square wave; the 

program finishes with a repeat of the first stage waveform but for a slightly shorter 

time. During the first and last stages, the current amplitude varies between 40 and 

500 μA, and the frequency between 10 and 900 Hz. Substitution of the higher 

resistance did not vary the peak current by more than 10%. 

Although all three devices produced a square waveform in the standard resistor, the wave 

shape  was altered when the device was applied to the body. Exponential rises and falls 

between pulses were seen with all three devices. 
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Table 5.2: Current waveforms recorded when MCT devices were attached across standard 
resistance and across elbow. Different scales are used to provide clearest presentation in each 
case 

980Ω resistor elbow 

A   Elexoma Medic 

  

1 division = 25ms 1 division = 10ms 

B   WeWo Thom 

  

1 division = 0.25ms 1 division = 0.25ms 

C   Tendonworks 

  

1 division = 2.5ms 1 division = 0.25ms 
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Discussion 

None of the devices was ideal in all respects, because none allowed complete control of the 

current output, which would enable a fixed amplitude and frequency current output to be 

selected. In the absence of evidence to the contrary, it would be preferable to use a constant 

waveform, but the devices most closely matching the criteria all used some form of amplitude 

and/or frequency modulation. No justification for these features was provided either in the 

accompanying literature or in the form of experimental data provided by the suppliers. In 

subsequent correspondence, the supplier of one device claimed that the modulation was 

necessary to prevent neural adaptation but, since MCT is often sub-sensory, this explanation 

is unsatisfactory. The supplier of another device, which used a three-stage program with 

quite different waveforms in each, claimed that the first phase “prepared the cells” to 

respond to the subsequent stimulation, but presented no supporting evidence.  

Ideally, a bespoke device would have been developed that could deliver the required 

waveform, but the requirements of designing, engineering and obtaining safety approval for 

such a device were beyond the scope of this investigation. The device most closely matching 

the criteria was  the Elexoma Medic. It could deliver a current-regulated stable, low 

frequency monophasic square waveform of adjustable average current intensity in the 

required range, with a maximum treatment time of 99 minutes before automatic switch-off. It 

was also robust, portable and reasonably simple to use. The other devices, the Tendonworks 

and the WeWo Thom, were also judged possible for use. They were particularly portable and 

simple to use, although the Tendonworks had a complicated output program with current 

intensity varying between 40 and 500 µA, and the WeWo produced a high frequency 

balanced biphasic current of nominal but unregulated average intensity 25 µA. The suppliers 

of all these devices were willing to loan them in sufficient numbers for a viable study. 

 

5.5  OUTCOMES 

Clinical trials of treatments and other studies of tennis elbow have measured a wide variety 

of variables, often using instruments that lack validity and reliability data, which threatens 

the credibility of their findings. As yet, there is no consensus on whether any of them should 

always be employed. Table 5.3 lists those that have been used most commonly, classified to 

reflect the different elements of the disorder that were identified in the definition given in 

section 5.2. Measures relevant both to tissue healing and to signs and symptoms were 

required for this study, and these are now considered. 



 
103 Chapter 5: Experimental design issues 

Table 5.3 : Outcome variables and measurement instruments used in tennis elbow studies 

Outcome variables variable Measures used 

PAIN 

At rest  1-17 

On movement of wrist 389, 390 

On gripping 256, 391-393 

On pinching 394, 395 

During activities of daily living392, 396-406 

On specific test 

Chair test / lifting test256, 407-411 

Stretch of extensors (Mills’ test) 412-414 

Resisted wrist extension 396, 400, 406, 408, 411, 412, 

415-417 

Resisted finger extension411, 412, 416-420  

Resisted supination/pronation406, 409, 411, 412, 

418-420  

Palpation396, 400, 412, 415-418, 421 

Pressure pain threshold253, 332, 401, 406, 418, 422-424 

Thermal pain threshold422, 424-427  

Trigger points428 

Averaged over 24 hours / previous week / 

during day / night 332, 401, 406, 429-437 

Pain descriptors423, 427  

Location / extent 418, 423, 438-440 

Unspecified  397, 398, 400, 416, 441-452 

 

Dichotomous (yes/no)418, 453 

Visual Analogue Scale (VAS)389 

Numerical rating scale (NRS)421 

Part of questionnaire 

Patient-Rated Tennis Elbow Evaluation 

Questionnaire / Patient-Rated Forearm 

Evaluation Questionnaire355, 415, 417, 429, 442, 443, 

454-460 

Nirschl score397 

Roles & Maudesley scale419, 461-463 

Choice of pre-set words in Mcgill Pain 

Questionnaire423, 427, 464, 465 

Pain diary465 

Drawing on body diagram418, 423, 438, 439 

Pressure algometry 332, 401, 418, 422-424 

Thermal algometry424, 427 

 

FUNCTION 

Maximum grip strength332, 389, 390, 392, 393, 396, 402-

404, 410, 411, 416, 418, 423, 429, 431, 434-436, 443-445, 447, 449, 

451, 454, 459, 466-474  

Pain-free grip strength 253, 332, 333, 338, 391, 398, 401, 

412, 415, 417, 422, 424, 427, 430, 431, 433, 436, 442-445, 468-470, 

473, 475-479  

Max middle finger extensor strength466 421  

Pinch strength 394, 395  

Wrist extensor strength 421, 423, 436, 439, 454, 466, 

472, 480 

Wrist flexor /supinator / pronator peak 

torque439 

Wrist extensor strength (Weight test) 396, 403, 

412, 415, 447, 449, 471, 481 

Pain-free forearm exercise448 

Grip Endurance454  

Wrist extensor / flexor work done411, 413, 439, 

467, 480 

Range of movement at wrist 414, 449, 466  or 

elbow440, 482  

Wrist proprioception413  

 

 

Isokinetic dynamometry 411, 413, 439, 467, 480, 483 

Isometric dynamometry421, 426, 454 

Squeezing sphygmomanometer396 

Maximum weight lifted by wrist extension 

with forward supported on table396 

Performance on forearm exercise device448 

ORI-TETS (device for controlled simulation 

of chair pick-up test)421 

Goniometry 414, 449, 466, 482 

Subjective rating of loss of grip strength416 

Clinician subjective rating484-486 
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Outcome variables variable Measures used 

IMPACT 

Activities of daily living355, 415, 429, 442, 443, 454-460 

Physical / psychological well-being442, 455, 485, 

487, 488 

Healthcare costs489 

Cost-effectiveness489, 490 

Loss of workdays414, 416, 454, 489, 491 

 

 

Patient-Rated Tennis Elbow Evaluation355, 403, 

415, 429, 442, 443, 454-460 

Patient-Rated Wrist Evaluation 

Questionnaire455 

Disabilities of the Arm, Shoulder & Hand 

Questionnaire399, 433, 442, 455, 488, 492-497 

Pain-Free Function Questionnaire332, 338, 431, 

444, 479, 497  

Patient-Specific Functional Scale (PSFS)417, 434 

Nirschl Tennis Elbow Score484 

Mayo Clinical Elbow Performance Index405, 

451, 452, 485, 498 

Elbow Functional Assessment450 

American Shoulder & Elbow Surgeons (ASES) 

elbow form484-486, 498 

Own questionnaire480 

Quality of Life Scales (SF36/SF12) 417, 442, 485, 

487, 488, 496, 497 

Euroqol490, 499 

Hospital Anxiety & Depression Scale455 

Cost of treatment489  

Days of absence from work/sick leave 

/resumption of work 414, 416, 454, 489, 491 

ANATOMY & PHYSIOLOGY 

Joint swelling446  

Radial head mobility500 

Adverse neural dynamics401, 425, 501 

Muscle balance502 

Tissue changes - Visual appearance285, 503 

Tendon thickening357, 480 

Fibroblast activity320 

Collagen changes320, 504 

Neovascularity505, 506  

Bone exostoses 

Calcification480, 507  

Muscle morphology changes508 

Presence of pain neuromodulators509, 510 

Sympathetic ns indicators (skin temperature 

&  conductance, blood flow, heart rate,  blood 

pressure) 422  

Wrist extensor stretch reflex413  

Ul reaction time / motor performance 382, 483, 

511, 512 

Trigger points501 

 

 

 

 

Physical examination446, 500 

Visual inspection on surgery285, 446, 503 

MRI349, 513 349, 513 

Ultrasound 348, 349, 357, 372, 389, 392, 397, 402, 410, 480, 

505, 514-516 

X-ray517 

Isotopic bone scanning518 

Thermography356, 396, 451, 518 

Tissue analysis 

Histology504, 519, 520 

Immunohistochemistry509 

Microdialysis510  

Biopsy508 504, 519, 520 

Electromyography483, 502 

Upper Limb tension Test 2B401, 425, 427, 501 

Physiological data collection devices422 
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Outcome variables variable Measures used 

OTHER FEATURES 

Severity of main complaint 332, 430, 490, 515 

Tolerability446 446 

Patient-rated global status / satisfaction / 

success-failure332, 333, 338, 389, 390, 402-405, 408, 416, 

429, 441, 442, 449, 471, 484, 521-523 

Clinician-rated global improvement / change 

in severity 332, 333, 338, 468, 490, 515 

Patient identification and rating of problems 

they would most like to see resolved497 

 

Numerical rating scale332, 333, 338, 389, 405, 408, 416, 

429, 441, 442, 449, 471, 521, 522  

Verhaar tennis elbow score484, 524 

American shoulder & elbow surgeons (ASES) 

elbow form484-486, 498 

Roles & Maudesley scale419, 420, 435, 461-463 

Own questionnaire411, 418, 431, 438, 439, 467, 480, 493 

Problem Elicitation Technique (PET)497 

 

5.5.1 Pain 

Pain comprises sensory, cognitive, affective and behavioural elements, and there is no fixed 

relationship between them525, so it is necessary to decide which are most significant in the 

evaluation of pain in each context. In a study of the different aspects of pain experienced in 

tennis elbow427, various measures were used to map it, including visual analogue scales of 

pain intensity over several time frames, quantitative sensory tests such as pressure and 

thermal algometry, and the McGill Pain Questionnaire, which asks responders to select words 

that describe the quality of the pain. The different measures were poorly correlated, 

suggesting that the pain of tennis elbow is multidimensional.  

Pain intensity is a quantitative estimate of the severity of pain, and is commonly measured by 

verbal rating, visual analogue or numerical rating scales526. Assessing the construct validity of 

such scales is problematic because there is no accepted gold standard of what is essentially a 

subjectively measured variable527. Therefore validity is commonly assessed by looking for 

and comparing change, when change would be expected, in several pain measures528. 

Composite measures have been shown to be the most valid and reliable measures of chronic 

pain, since they reflect its multidimensionality528, 529. Several questionnaires are available 

that assess multiple aspects of pain. The Patient-Rated Tennis Elbow Evaluation (PRTEE) has 

a pain sub-section, and has been increasingly adopted because of its specificity and a growing 

body of evidence regarding its measurement properties. It employs numerical scales to rate 

pain intensity over the previous week on several dimensions, including least, worst and with 

particular activities. Such features have been shown to increase the reliability and content 

validity of chronic pain rating scales528. The PRTEE  Pain subscale correlates well with a 

Numerical Rating Scale of Pain for resisted wrist extension458. Its use of numerical rating 

scales (NRS) enables a broad range of statistical tests to be applied to collected data, although 
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such scales may not be as sensitive to treatment effects as visual analogue scales526. The 

PRTEE does not consider pain location, extent and quality, or other sensory changes that may 

occur in tennis elbow. Several of these variables can be assessed using a standard body chart 

during the examination, however. 

Another expression of pain commonly used in the assessment of tennis elbow is tenderness. 

Tenderness to palpation at the lateral epicondyle is a common diagnostic criterion for the 

disorder530. This may be indicated dichotomously using a yes/no response, but can also be 

quantified by pressure algometry. Using algometry, tenderness is expressed by the pressure 

pain threshold (PPT), defined as the minimum pressure that induces pain or discomfort531. In 

a study of unilateral chronic tennis elbow in 45 subjects, Pienimaki and colleagues found that 

PPT correlated with pain on palpation, common extensor stretch and perceived pain under 

load, the common diagnostic criteria for the disorder418. They also found significant 

differences between PPT in the involved and uninvolved arms, and in pre- and post-

treatment values, suggesting that it can be used as a sensitive measure of change. Sensitivity 

is indicated by a low p-value in a t-test of differences between means528, 532, and the test for 

pre- and post- treatment PPT values in the Pienimaki study gave p<0.001, as well as a 56% 

difference between values for involved and healthy arms418. Only one study could be found 

that investigated the reliability of pressure algometry for tennis elbow measurement: it 

found that inter-rater reliability was reasonable, but only measured test-retest reliability 

within a single session468. Pressure pain thresholds have been found to vary diurnally and 

across the menstrual cycle 533, 534 and so the inter-test interval may influence reliability. 

5.5 2 Function 

In this context, function is defined as a capacity or body characteristic, such as strength or 

range of joint movement. Comparisons of function between contralateral limbs, or between 

affected and unaffected individuals, allow the extent of an abnormality to be determined. Grip 

strength reductions are commonly reported in tennis elbow and this variable is one of the 

most widely measured in clinical trials for the disorder. Two measures have been adopted 

most frequently - maximum grip strength (MGS)332, 389, 396, 411, 416, 418, 423, 429, 431, 443-445, 447, 449, 454, 

459, 466-469, 471, 478 and pain-free grip strength (PFGS)391, 401, 442, 445. The wrist extensors, some of 

which attach to the lateral epicondyle via the common extensor tendon, stabilise the wrist 

during gripping activities395, 535. So gripping can stress the damaged tendon and generate 

pain. Grip strength is normally measured with a hand dynamometer. For MGS, the subject 

squeezes the dynamometer trigger as tightly as possible; for PFGS, the trigger is gripped 

increasingly tightly until the pain threshold in the elbow is just reached.  
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The construct validity, reliability and responsiveness of hand dynamometry for the 

assessment tennis elbow have been established in several studies 431, 439, 444, 468, 469, 478, and 

PFGS appears to be the superior measure. Validity has been investigated by correlation with 

pain intensity and difficulty scores for the performance of tasks often affected by the 

disorder, such as carrying objects and opening doors. In an early study, PFGS was found to 

correlate moderately well with the other measures, whereas MGS was not431. Pienimaki and 

colleagues467 found that PFGS correlated better with disability than with pain, indicating that 

it is measuring something different from (or additional to) pain, which supports its use in the 

battery of outcome measures employed. MGS can improve when other data indicate that the 

disorder is stable or has deteriorated444, which suggests that MGS is not responsive to change 

in severity. Several other studies have corroborated these findings398, 418, 444, 478. PFGS has 

been shown to have equal or superior reliability to MGS when used to assess tennis elbow431, 

468. The reliability of grip strength measurements has been found to be dependent on time of 

day, body and limb position, and numbers of readings taken, although studies have drawn 

different conclusions about their impact536. Therefore these variables should be controlled or 

at least noted during measurement. Because normal grip strength varies substantially 

depending on factors such as age and sex537, raw PFGS values cannot be used to compare 

symptom severity between individuals. Small absolute reductions in grip strength are likely 

to be more significant to individuals who have a low grip strength to start with. Expressing 

PFGS as a ratio of MGS on the unaffected side has therefore been recommended as a way of 

normalising PFGS and so allowing comparisons of deficits between individuals and groups431. 

Isokinetic dynamometry, in which dynamic strength or work done during elbow extension or 

forearm rotation is measured, has also been used in some tennis elbow trials480, 483, although 

the technique is time consuming and expensive483. Range of movement at the elbow and 

wrist joints have also been assessed, as they may be reduced in tennis elbow440, 466, 482. The 

use of all of these measures in tennis elbow trials is uncommon, however, and their validity 

and reliability for the purpose have not been established. Hence, PFGS (expressed as a ratio 

of MGS on the unaffected side) was selected as the most appropriate measure for use in this 

investigation.  

5.5.3 Disability and participation 

The pain and reduced strength associated with tennis elbow can cause difficulties in many 

activities of daily living, such as lifting bags, turning door handles and gripping petrol pump 

triggers. Pain can be exacerbated by repetitive activities involved in work or recreation. In 

more severe presentations, the affected individual may have to change jobs or cease sporting 
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involvement. These types of consequences are explored in the various patient-rated 

questionnaires that have been used in tennis elbow trials. The PRTEE, mentioned earlier for 

its inclusion of a pain subsection, has two sections relating to disability. Using an 11-point 

numerical rating scale, the respondent estimates the difficulty experienced in carrying out 

named activities over the previous week. The questionnaire was developed specifically for 

assessment of the impact of tennis elbow, and its validity and reliability for the purpose have 

been established in several studies355, 456, 458. Its specificity confers an advantage over more 

generic measures: greater responsiveness to relevant change457, 538.  A manual is available for 

the administration of the PRTEE539, which can help ensure consistency in its administration. 

It is also reported as uncomplicated and easy to use355, 455. 

Several other elbow-specific questionnaires have been used to assess disability and other 

features of tennis elbow. The Nirschl tennis elbow score was designed specifically for the 

purpose; other instruments, such as the Mayo Clinical Elbow Performance Index486 and the 

Liverpool Elbow Score493, are also available. Whilst some of these scales have been validated, 

their measurement properties for use with tennis elbow have received very little scrutiny. 

Where they have, the PRTEE has been shown be equal or superior, although it is not without 

limitations. Whilst some other scales incorporate clinician opinion486, 493, the PRTEE depends 

entirely on rating by the patient, and so lacks an element of objectivity. Its wording is rather 

specific to a North American population, and its questions limit assessment to a number of 

specific activities that may not be the main indicators of disability for a given respondent. 

Compensation for these limitations is possible. Objective measures can be added to the 

assessment protocol, and comprehension by another population may be assisted by minor 

modifications of wording. The problem of inflexibility due to standardisation can be 

addressed by use of another form of functional rating, the Patient Specific Functional Scale 

(PSFS). This enables respondents to identify and rate the activities that they find most 

problematic, so augmenting the data derived from a more condition-specific measure540, 541.  

Other related variables, such as absence from work and economic costs, may require 

sophisticated, resource-intensive and intrusive techniques to measure reliably. Qualitative 

information on these possible consequences of the disorder can be obtained during the 

subjective assessment, but it was decided not to attempt to collect quantitative data on these 

variables. 
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5.5.4 Global assessment 

Whilst questionnaires and specific measurements may capture important elements of the 

disorder, an indicator of global status or change is often used to ensure that the totality of its 

effects is also evaluated. Tennis elbow trials have used a variety of patient- and clinician- 

rated scales including satisfaction with results of treatment442, patient-rating of current 

overall status429 and assessor severity rating332. Patient-rated Likert scales of change are 

commonly used, and a six-point scale varying between -2 (much worse) and +3 (completely 

recovered) provides a reasonable balance between sensitivity to change and descriptors that 

signify meaningful levels of change to the respondent. These scales have been criticised for 

failing adequately to incorporate the prior condition (i.e. their baseline status), and may give 

more information about current status, but they provide reliable assessment of health 

transition in people with musculoskeletal disorders542. 

5.5.5 Tissue changes 

Pain, function and disability may be related to tissue damage, but measuring them does not 

provide any direct information about tissue status. Several methods of gathering relevant 

data have been adopted in trials. The most direct forms of assessment are histological 

analysis of tissue samples504, 543 and microdialysis of biochemicals present in the site of 

interest510. These can confirm the presence and concentrations of cells and chemical 

mediators involved in inflammatory and healing processes, and identify structural changes. 

Biochemical markers of inflammation and repair may also be assayed through blood tests. 

For instance the ethrythrocyte sedimentation rate may be elevated in acute tendinitis 544 ch20; 

however no markers are currently available that are specific to chronic tendinopathy. All 

these procedures are invasive and require specialist skills and knowledge which were 

beyond the scope of the present study.  

An alternative approach is tissue imaging, including radiography, magnetic resonance 

imaging (MRI), bone scanning, thermography and sonography349, 357, 513, 517, 518, 520, 545. 

Correlational studies comparing image analyses with histological findings have established 

that MRI and grey-scale sonography can identify structural changes typical of tendinopathy 

in general513, 546-550 and tennis elbow in particular349, 513, 520. Tendon thickening and tears, 

collagen fibre disruption, increases in ground substance volume, calcific deposits and spur 

formations on the epicondyle can be identified by both modalities348, 357, 551, 552; they also 

enable quantification of tendon thickness553, and Power Doppler (PD) sonography can be 

used to quantify hyperaemia506, 545. Unlike MRI, ultrasound cannot be used to image intra-
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articular structures, but its superior spatial resolution means that it is better able to depict 

focal areas of degeneration372 that are characteristic of tendinopathy. Sonography is also 

more portable and less expensive than MRI554. 

Despite the growing use of sonography in clinical trials, there is little data available on its 

reliability for the purpose. This is particularly true of the various scales that have been 

adopted to grade the severity of  tendinopathy in the disorder555. However, its reliability in 

the identification of pathological features and diagnosis of the disorder have been 

investigated. Studies in which particular grey-scale features were identified by several 

assessors have found only poor to moderate correlation between raters and between 

successive assessments on most features348, 349.  These studies used assessment of stored 

static images; live scanning or using recorded movie images might improve reliability. PD 

imaging of tennis elbow has been subject to limited evaluation. A study comparing 

sonographic findings with a clinical diagnosis provided by an experienced musculoskeletal 

physician found that Power-Doppler sonography was 98% specific, and a combination of 

power-Doppler and grey-scale imaging were 97% sensitive, in diagnosing chronic tennis 

elbow506. It concluded that the absence of a Doppler signal and grey-scale image changes 

could be used reliably in the differential diagnosis of tennis elbow, suggesting that some 

cause of symptoms other than tendinopathy should be sought. These figures compare with 

respective specificity and sensitivity ranges of 72-100% and 36-82% found in other studies, 

none of which used PD imaging348, 349, 515.  

The reliability of all forms of imaging is dependent on the operator and the assessor, but 

tendon sonography has been seen as particularly problematic in this regard348, 547, 556. Partial 

tears may be indistinguishable from areas of degeneration372, and ultrasound reflection may 

cause image anisotropy, an artefact that may be mistaken for a hypoechoic area557, 558. Slight 

variations in probe positioning can make tendon thickness appear very different553. The 

advent of improved image processing software and higher frequency probes in recent years 

has offset some of the potential difficulties546, 547, 557, but reliability studies to confirm this are 

lacking. Despite these limitations, sonography was judged the most appropriate outcome 

measure relating to tissue healing feasible in this investigation, though it was clear that 

attention to its reliability would be required. 

5.5.6 Other variables 

As noted in the earlier review, side effects using surface-mounted electrodes are rare and 

usually mild. In broader surveys of “electrical stimulation” that include this modality, the 
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most commonly reported adverse incidents are skin irritation, burns and local pain559, 560 ; 

more general effects such as nausea and fainting have also been observed, although it is 

difficult to attribute these to the therapy in such cases560. Given the novel application of 

treatment in this study, collection of information about any adverse incidents was included in 

the assessment protocol.  

Acceptability and ease of use are key considerations in the adoption of any new therapy. The 

devices assessed in the laboratory for use in this study were all straightforward to operate, 

but evaluation in the context of a course of treatment is also required. Structured questioning 

of study participants was planned for this purpose. 

 

5.6  CONCLUSIONS 

In this chapter, a working definition of chronic tennis elbow has been produced, a clinical 

trial design selected, and several suitable microcurrent devices identified. A review of 

available outcome variables and measurement instruments has enabled a battery of outcome 

measures to be drawn up, capable of evaluating both tissue healing and clinical signs and 

symptoms of tennis elbow. The use of patient-rated and objective or semi-objective 

instruments enables triangulation of findings based on different measures of related 

variables, and employing both specific and global measures provides a rich account of any 

changes that may occur. The variables initially identified as potentially suitable for use in this 

investigation were: 

1. Tendon tissue structure and blood flow, by sonographic assessment  

2. Pain-free grip strength, using isometric dynamometry 

3. Pressure rain threshold at the lateral epicondyle, using pressure algometry 

4. Pain and disability, using the Patient-rated Tennis Elbow Evaluation Questionnaire 

5. Disability, using the Patient-Specific Functional Scale 

6. Overall change from baseline, using a patient-rated global change score (GCS) 

7. Adverse events, by patient report 

8. Acceptability and ease of use, by patient report 
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These may be supplemented by qualitative information gathered in the subjective 

assessment. Unfortunately, little or no evidence is available on the reliability and 

responsiveness of some of these measures for use in the assessment of tennis elbow. In any 

case, since reliability is affected by contextual factors such as operator skill and the 

measurement protocol, it is necessary to evaluate it in the specific circumstances of this 

investigation561. Experimental work was conducted to enhance and measure the reliability of 

several of the selected outcome measures, and this is the subject of the next chapter.  

 



 

 

Chapter 6 
Development and evaluation of 

outcome measures 

 

6.1  INTRODUCTION 

he reliability of a measurement process is an indicator of its consistency when used 

by different operators, or by the same operator at different times. It depends on the 

skills of the operator, the measurement protocol employed, and the population with 

which it used562(ch5). Where change over time is measured by a single investigator, 

test-retest reliability must be established561. Consistency between measurements taken at 

two points in time, between which the variable of interest is not expected to change 

significantly, is essential if real changes are to be reliably detected. Clinical trials sometimes 

use reliability data gathered from other studies to support their use of particular measures 

(e.g. 454, 563). This is only valid if the same instruments are used in the same way with the same 

population, which may be difficult to establish with confidence. Particularly where previous 

reliability studies have reached inconsistent conclusions about an instrument, or where there 

is evidence of operator-dependence, it is important to evaluate reliability before using any 

instrument in a trial. 

This chapter provides a report of work to enhance and evaluate the reliable use of algometry, 

dynamometry and sonography for use in the clinical trial. Ideally, all of the outcome 

measures selected would have been subject to reliability-testing, but these measures were 

prioritised for investigation because their reliability has been found to vary with device, 

operator and measurement protocol349, 537, 564-567. The PRTEE and the PSFS have standard 

protocols for use539, 540 and have been found reliable by a range of studies, as indicated in the 

previous chapter; and the global change score is often used as a gold standard for assessing 

the validity and reliability of other measures568-570.  

Work was first conducted to develop the investigator’s skills in the use of algometry, hand 

grip dynamometry and sonography of the elbow, and this was followed by a series of tests to 

evaluate their reliability when used to assess normal individuals and those affected by tennis 

elbow. This chapter describes that work. It begins with a report of training and practice in the 

T 
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use of the instruments. This is followed by an account of a study conducted with a sample of 

healthy people with no signs or symptoms of tennis elbow. The primary purpose of the study 

was to gain experience using the instruments, but it also provided an opportunity to develop 

measurement protocols and to test their reliability. The chapter ends with an account of a 

further study which evaluated the reliability of measurements using a sample of people with 

symptomatic tennis elbow. These studies provided reliability data that informed the final 

choice of outcome measures to be used in the clinical trial, as well as information on their 

capacity to register changes in the variables of interest. 

 

6.2  DEVELOPMENT  OF MEASUREMENT  SKILLS  AND 

PROTOCOLS  

6.2.1 Algometry and dynamometry  

Pressure algometry involves the application of increasing pressure to a spot on the body 

surface, via a rubber-tipped probe, until pain is first reported. Tenderness is quantified as the 

pressure applied at this pain threshold, which is displayed by the device. The technique had 

been used by the investigator in a previous study, in which the pressure pain thresholds 

(PPT) over superficial abdominal lesions were measured571. The device used in that study has 

also been employed in several tennis elbow studies422, 423, 475, 476, 572, although protocols vary 

among them. For instance, pressure may be applied to a specific point over the lateral 

epicondyle and/or extensor muscle belly423, or over the most tender point identified by the 

patient475. For the purposes of this investigation, a protocol shown to have reasonable inter-

rater reliability468 was adopted.  

Grip strength measurements in tennis elbow studies commonly employ isometric 

dynamometry (e.g. 421, 426, 454). Typically, a Jamar-type device is used: this has a hand grip that 

is squeezed against hydraulic pressure, the applied force being registered on an integral 

display dial. The Jamar dynamometer has been found to have excellent inter-rater reliability 

in the measurement of both MGS and PFGS in people with tennis elbow468, although its test-

retest reliability with this population has not been reported. Studies have reached conflicting 

conclusions about the most reliable measurement technique for grip strength dynamometry. 

A standard protocol, suggested by the American Association of Hand Therapists573, is 

commonly adopted, but several of its elements - such as the number of trials and body 

positioning - may be less suited to use with a symptomatic population574-577. The protocol was 
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adapted for the current study by changing the testing position: the subject was required to 

stand with the arm by the side and the elbow extended, rather than seated with the elbow 

flexed. Gripping with an extended elbow results in greater stress on the common extensor 

tendon than with the elbow flexed and so is a more sensitive indicator of PFGS in tennis 

elbow574.  

Calibration of the dynamometer was checked using a series of standard weights between 10 

and 50 kg, which were suspended from the device via a leather strap of 5cm width looped 

around the grip. The mean of four readings was taken for each weight. These checks were 

carried out on a monthly basis throughout this and subsequent studies.  

6.2.3 Sonography 

In most studies where sonography is used to assess tennis elbow, the operator is either a 

sonographer or a radiologist with several years of experience of musculoskeletal imaging. In 

fact, experience is often the only guarantor of reliability proffered by authors506, 578, 579. 

Although inexperienced operators have been found to be less reliable in identifying some 

features of tendinopathy580, several studies have concluded that even very experienced 

radiologists can differ significantly in their interpretation of sonographic images567, 580, 581. On 

the other hand, evaluations following short focussed courses in specific applications of 

sonography have shown that novices can be trained to reliably produce and interpret images 

of both normal and pathological tissue, including tendons582-584.  

Efforts to secure the services of an experienced musculoskeletal imager for the clinical trial 

were unsuccessful, and so a training package was created to develop the investigator’s skills 

in sonography specific to tennis elbow. This built on previous experience gained in a study 

that involved imaging of subcutaneous nodules571. The training package consisted of (i) 

attendance of short courses in general and musculoskeletal sonography (totalling 12 hours), 

(ii) study of on-line and other educational materials585-587, and (iii) six hours of one-to-one 

training  and supervision with a radiologist with eight years of clinical experience in 

musculoskeletal sonography. Supplementary guidance was also obtained from another 

radiologist with several years’ experience using sonography in tennis elbow studies and 

trials. Imaging of the lateral elbow was the main focus of the practical work, initially with 

healthy volunteers, and later with people diagnosed with tennis elbow. During this process, 

terms used for the sonographic description of tendinopathy in published tennis elbow 

studies were employed555, and a quantitative measure of several types tissue changes was 

developed for use in the clinical trial.  
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6.3  MEASUREMENTS  USING  HEALTHY SUBJECTS 

The aims of this initial laboratory work were to develop the investigator’s skills employing 

algometry, dynamometry and sonography for the measurement of outcomes selected for use 

in the trial, and to assess the test-retest reliability of grip strength and PPT measurement 

protocols. The study also provided an opportunity to practise using a structured assessment 

process with participants that would be employed later with symptomatic individuals. 

Approval for the study was obtained from the investigator’s institutional ethics committee, a 

copy of which is provided in Appendix 4.  

6.3.1 Study materials and methods  

Participants 

A convenience sample of apparently healthy individuals, recruited from the staff and 

students of the investigator’s institution, was recruited. Those eligible to participate were 

over 18 years old, with no current elbow pain or other upper quadrant symptoms that might 

affect PPT and grip strength measurements, and no current clinical signs or symptoms of 

tennis elbow. Participants were recruited by posters and emailing; an information sheet sent 

to those registering interest and followed up two weeks later if no response was received. 

Informed written consent was obtained at initial assessment. Based on an assumption that a 

reliability coefficient of at least 0.7 would be obtained for each measure, a minimum sample 

size of 20 was required431, 588. In fact, a greater number was  sought to maximise experience 

in using the various instruments. 

Assessment 

A subjective assessment was conducted initially, during which relevant medical history and 

demographic data was obtained. Several standard clinical tests for tennis elbow were then 

conducted: pain on palpation at the lateral epicondyle, on resisted extension of the wrist, on 

resisted extension of the middle finger, or on passive flexion of the wrist (Mills’ test)530, 589. 

Any participant with signs or symptoms of tennis elbow was excluded from this study but 

invited to take part in the subsequent study which would involve symptomatic subjects. 

Participants were asked not to take any analgesia in the 24 hours prior to each assessment.  

PPT measurements were made using a Somedic Pressure Algometer (Somedic AB, Hörby, 

Sweden) with a 1cm2 rubber tip. A patient-operated switch, which froze the pressure display 

reading when operated, was attached to the algometer via a cable. The participant sat with 

the shoulder abducted to about 600, elbow in 900 flexion, forearm pronated, horizontal and 
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supported on an examination table. The other hand held the display freeze control. The 

investigator demonstrated the principle of PPT measurement on the dorsum of the 

participant’s hand, with an instruction to ‘press the freeze switch and say “now” as soon as 

the pressure sensation changes to discomfort’. The elbow was palpated to locate the lateral 

epicondyle and radial head, and a small cross was drawn midway between these landmarks. 

The algometer was applied to the mark with its barrel perpendicular to the skin surface, and 

pressure was applied and increased at 40 kPa/s according to display until the participant 

said “now”. Three PPT measurements were taken on each side, with a minimum 20 s interval 

between readings. 

 
Algometer measuring  

pressure pain threshold at lateral epicondyle  
Dynamometer measuring  

isometric grip strength 

 

Figure 6.1: Measurements of tenderness and grip strength 

 

Grip strength was measured using a Baseline hydraulic hand dynamometer (Fabrication 

Enterprises Ltd, White Plains, USA). This device is of the Jamar-design and has excellent 

levels of inter-instrument agreement with the standard Jamar device for grip strength 

measurements with a non-symptomatic population590. The participant stood with arms by 

side, forearm and wrist neutral, lightly gripping the dynamometer, whose handle was in 

position 2. After an initial practice, the participant was instructed as follows: ‘When I say, 

squeeze the handle as tightly as you can… Now! Squeeze, squeeze.” After a few seconds the 

participant was told to stop squeezing. Three reading were taken on each side alternately, 

starting with the non-dominant limb, and ensuring a minimum 20 s interval between 

readings on the same side. The rate of squeezing was not controlled. Figure 6.1 illustrates the 

instruments and technique used for measurement of tenderness and grip strength. 
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Sonography was conducted using an Esaote MyLab 25 ultrasound scanner with an 

18 - 12 MHz linear array probe (Esaote, Genova, Italy). The shoulder was abducted to about 

600, the elbow flexed to about 600, the forearm pronated and supported by an examination 

table.  Longitudinal and transverse greyscale and Power Doppler scans of the common 

extensor tendon and adjacent structures were conducted bilaterally, and representative 

static images and movie clips were recorded for subsequent examination. Figure 6.2 

illustrates the positioning used for sonographic assessment. For greyscale imaging, scans 

were made at 15 MHz and 70% gain; PD scanning used a pulse repetition frequency of 0.7 

kHz and gain was adjusted between 70 – 90% to balance sensitivity with noise minimisation. 

Other parameters were set according to the manufacturer’s recommendations for 

musculoskeletal  imaging. Notes of any abnormal findings were made whilst reviewing the 

movie clips shortly after the assessment, but no formal attempts were made to assess 

reliability of assessment in this study. Rather, findings were discussed with the radiologist as 

part of the supervised skills acquisition process. A copy of the assessment form used in this 

study is provided in Appendix 4. 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Sonographic assessment positioning 

 

There appears to be no agreed interval between assessments for the evaluation of test-retest 

reliability. They vary between a day and three months in other studies considering grip 

strength and PPT measurements with non-symptomatic populations564, 576, 591. For this study, 

a period of 2-3 weeks was selected. Participants were asked at follow-up if anything might 

have happened that could affect the measurements, for example upper limb injury or taking 

heavy exercise or use of analgesia in the previous 24 hours. 
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Data Analysis 

Mean and maximum values were calculated for each set of three readings of PPT and MGS. 

Descriptive statistics, including graphical plots and tests for normal distributions of data, 

were obtained and inspected. Estimates of test-retest reliability were calculated using the 

Intraclass Correlation Coefficient (ICC) to indicate the level of absolute agreement between 

baseline and follow-up test values592, 593. To establish whether three readings of each variable 

were necessary, ICC values for first reading, maximum reading and mean of three readings 

were calculated. The ICC selected was for single or average measures, depending on whether 

a single reading or mean of three was being used. All statistical tests were conducted with 

SPSS 17, setting test significance at p<0.05, and 95% Confidence intervals were obtained for 

each test result.  

6.3.2 Results 

Between June and September 2008, 46 people were assessed for inclusion in the study. Ten 

had symptoms or clinical signs of tennis elbow and so were excluded from the analysis, but 

were invited to participate in the later study of symptomatic individuals. Two of those 

remaining were unable to attend second assessment, leaving data from 34 participants 

available for the reliability analysis. Although attempts were made to conduct the follow-up 

assessments within the defined period, this was not always possible, and in ten cases there 

was a longer or slightly shorter inter-assessment period (minimum 3 days, maximum 31 

days). Most follow-up assessments happened at a similar time of day to the baseline readings, 

and in only four cases did the time differ by more than 4 hours. One participant reported the 

development of minor forearm pain between assessments; no other changes that might affect 

readings were reported. Participant histories and clinical tests did not always match: of those 

with current symptoms of tennis elbow, few demonstrated a positive response to Mills’ test – 

passive extension of the wrist; one person with no other signs, symptoms or history of tennis 

elbow had a strong positive reaction to resisted middle finger extension. 

Visual inspection of distribution curves suggested that grip strength and PPT measurements 

were approximately normal, but the Shapiro-Wilk test – recommended for sample sizes 

smaller than about 50594 – indicated otherwise: although all PPT measures (first, maximum 

and mean) were normally distributed, most grip strength measurements were not.  Levene’s 

test for homogeneity of variance indicated no significant difference between variances of 

baseline and follow-up measures for each variable. Given the ICC’s robustness to violations of 

parametric assumptions562 ch26, the test was employed with both PPT and grip strength  data. 
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Baseline characteristics for included participants are given in Table 6.1 and summary 

measurement data for the two assessments are given in Table 6.2. 

Table 6.1: Baseline characteristics of participants included in reliability analysis. MGS and PPT 
values are means (95% CI) 

Age (range) / yr 46 (23 – 68) 

Sex 25 Male; 9 Female 

Hand dominance 26 Right; 3 Left; 5 Ambidextrous 

MGS / kg 35 (32-39) Right;  33 (29-36) Left 

PPT  / kPa 127 (112 - 143) Right;  128 (109 – 146) Left 

 

Table 6.2: Summary measurement data for repeated assessments of healthy subjects 

Variable First Assessment Second Assessment 

 n1 mean±S.D (range) n2 mean±S.D (range) 

Maximum Grip Strength / kg     

Left 34 31±10 (13 - 55) 34 33±10 (17 – 53) 

Right 34 33±10 (14 - 52) 34 34±10 (18 – 53) 

Pressure Pain Threshold / kPa     

Left 22 129±34 (61 – 197) 19 150±35 (89 – 204) 

Right 22 127±39 (57 – 213) 19 137±33 (75 – 204) 

 

During the study it became apparent that, for many participants, it was unfeasible to measure 

a PPT at the lateral epicondyle. If pressures greater than 250 kPa were applied, there 

appeared to be risk of skin  damage, and so measurement was stopped at that value. Only 18 

participants reported thresholds below 250 kPa, and so the analysis for PPT is based on data 

from these cases. Scatter-plots for dynamometer and algometer measurements are presented 

in Figures 6.3 and 6.4 respectively. ICC values calculated for PPT and MGS measurements are 

presented in Table 6.3. 

Table 6.3: Intraclass Correlation Coefficients (95% CI) for numerical data obtained in elbow 
assessments. 

 First value Maximum value Mean of 3 values 

Variable Left Right Left Right Left Right 

Maximum 

Grip Strength 

0.93 

(0.83 – 0.97) 

0.92 

(0.85 – 0.96) 

0.95 

(0.88 – 0.98) 

0.97 

(0.94 – 0.98) 

0.98 

(0.95 – 0.99) 

0.98 

(0.97 – 0.99) 

Pressure 

Pain 

Threshold 

0.25 

(-0.20 – 0.65) 

0.45 

(-0.01 – 0.76) 

0.21 

(-0.18 – 0.58) 

0.38 

(-0.08 – 0.71) 

0.33 

(-0.08 - 0.67) 

0.60 

(-0.23 - 0.85) 
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Figure 6.3: Scatter plot of repeated measurements of Maximum Grip Strength (MGS, all in kg) 
with normal subjects. 
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Figure 6.4: Scatter plot of repeated measurements of Pressure Pain Threshold (all in kPa) at 
lateral  epicondyle with normal subjects. 
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Maximum grip strength measurements had ICC values in excess of 0.9 for all variables, with 

the highest values (and narrowest confidence intervals) for the mean of three readings. PPT 

values were much lower, and all had very broad confidence intervals.  These findings are 

reflected in the scatter plots. Grip strength data points (Figure 6.3) are reasonably tighly 

distributed about a 450 line, suggesting a close correlation between assessments. Scatter is 

least for the mean of three measurements at each assessment. PPT data points for all three 

data presentations (Figure 6.4) are widely scattered and so provide little evidence of 

anything other than a positive correlation.  

The primary purpose of the sonographic assessment was to obtain experience in using the 

apparatus and knowledge of the variety of presentations seen in images of the lateral elbow. 

Although none of the participants had symptoms of tennis elbow, abnormalities in the 

common extensor tendon and adjacent structures were identified in several of them. No 

quantitative analysis of these was attempted, but findings were discussed with the 

supervising radiologist, and a number of assessments were conducted jointly. Feedback from 

the supervising radiologist suggested that the investigator was capable of conducting 

competent assessments of the lateral elbow and identifying at least some abnormalities. The 

sonographic apparatus did not have as sophisticated image-processing specifications as 

mainframe devices that are used in many reported trials. Nevertheless, it was found capable 

of identifying typical features of tendinopathy and to register hyperaemia by Power Doppler 

imaging. However, its limitations were demonstrated by the fact that rather high gains had to 

be applied to visualise all structures, and this produced noisy images in some cases. 

6.3.3 Discussion 

The study provided a number of useful insights and conclusions about the assessment 

protocol and the outcome measures themselves. The process of subjective and objective 

assessment shared elements with a typical physiotherapeutic clinical assessment, and 

appeared satisfactory overall.  

The interpretation of ICC values depends on the intended application of the scale592, but a 

value greater than 0.75 has been suggested as indicative of good reliability562(ch26). By this 

standard, measurements of maximum grip strength using all three methods had good 

reliability, but the highest ICC value (and the narrowest confidence interval) was obtained 

when the mean of three readings were taken. The ICC values are consistent with – in fact 

somewhat better than - those of other test-retest reliability studies, which used the American 

Association of Hand Therapists protocol576, 595. Since this study only involved asymptomatic 
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individuals, maximum rather than pain-free grip strength was measured. The reliability data 

is still valuable because, in trials with symptomatic individuals, MGS of the unaffected arm is 

measured and used to normalise PFGS values332, 333, 466, 478, 500. Nevertheless, it remained 

necessary to assess the reliability of PFGS measurements with symptomatic individuals. 

PPT measurements were much less consistent, and levels of agreement varied significantly 

depending on whether single or mean values were used. The mean of three readings gave a 

moderate ICC value but with very wide confidence intervals, and the other methods were 

altogether unreliable. This may have been a result of several factors: slight variations in 

placement and angulation of the instrument were reported by participants as producing very 

different sensations, and many had difficulty identifying a distinct cross-over point from 

pressure to pain. Ceiling effects were often observed, with no threshold being reached even 

at pressures that appeared in danger of causing superficial tissue damage. This highlights a 

limitation of testing reliability with an asymptomatic population: the test site is not naturally” 

tender. Test-retest reliability has not previously been reported using healthy elbows, but 

inter-rater reliability has. In a study assessing several outcome measurements used with 

tennis elbow, PPT measurements on the uninvolved arm were found to have an inter-rater 

reliability of 0.72 (CI:0.55-0.83), better than in this study but still with a rather wide 

confidence interval468. Assessments in that study were both carried out on the same day and 

memory effects may have aided consistency between measurements. Good test-retest 

reliability has been established for PPT measurements on other parts of the body, for 

example over shoulder muscle bellies in healthy individuals591, but the results of the present 

study suggests that reliability differs with site of application. This may reflect differences in 

the sensitivity of different parts of the body. Kosek and colleagues572 found that pressure pain 

thresholds over bony areas were  considerably higher than over muscle bellies, and the lack 

of sensitivity over the lateral epicondyle reported by several participants may reflect a 

relatively low number density of nociceptors in the normal common extensor tendon596. In 

any case, the findings here suggested that this measurement process required further 

evaluation in a symptomatic population before use in the trial. 

The focussed training in sonographic assessment of the lateral elbow provided relevant 

experience and increased the confidence of the investigator in this skill. The fact that 

abnormalities were identified in several tendons, and were confirmed by the radiologist in 

some cases suggested that, after assessing up to 70 elbows, a capacity for pattern-spotting 

was being developed. However, there was a risk of false positives in identifying 

abnormalities, and this would require investigation in the study with a symptomatic sample. 

The supervising radiologist judged the sonographic apparatus capable of providing the level 
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of detail required for this investigation, but suggested further discussion with the 

manufacturers to optimise image processing for this application. 

The study had a number of limitations. One was the lack of formal training in algometry and 

dynamometry. Although the instruments appear straightforward to use, errors in technique 

may have gone undetected and uncorrected because nobody with relevant expertise was 

available to guide and monitor performance. This may have been a factor in the difficulties 

experienced using the algometer and the poor reliability of PPT measurements. Training and 

supervision in sonography was obtained, but the supervising radiologist admitted to limited 

experience in assessing the lateral elbow – in the clinical context, sonography is usually only 

used for this purpose if surgery is being considered. Published guidance from expert panels 

and the additional advice received from another radiologist, who had substantial experience 

in sonography of tennis elbow, compensated for this to some degree.  

The study served two purposes: obtaining experience and assessing reliability. Since there 

was likely to be an initial steep learning curve in processes of measurement, incorporating 

data from early assessments into the analysis may have depressed reliability scores. Ideally, a 

separate period of learning and practice would have preceded data collection for a reliability 

analysis. 

6.3.4 Conclusion 

Despite these drawbacks, experience using the assessment process with asymptomatic 

subjects was generally encouraging. The test-retest reliability of maximum grip strength 

measurement by dynamometry was excellent, and the sonographic skills development 

process appeared to provide a reasonable foundation for further work and testing. The 

manufacturers of the apparatus were approached to discuss the best settings for tendon 

imaging, and they supplied a software update for enhanced image processing. The reliability 

of PPT measurement was a cause for concern, but further testing with symptomatic subjects 

was necessary before deciding whether to retain PPT as an outcome variable, since it might 

prove more reliable when used with that population. 
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6.4  RELIABILITY OF OUTCOME  MEASURES IN 

ASSESSMENT  OF TENNIS ELBOW 

Following the study using healthy subjects, further laboratory work was undertaken to 

assess reliability with a symptomatic population. PPT at the lateral epicondyle and pain-free 

grip strength are more meaningful variables where subjects are symptomatic, and a broader 

spectrum of tendinopathic changes would be expected in sonography in such cases. As 

before, test-retest reliability was investigated, but a shorter inter-test period of 1 – 2 weeks 

was selected to provide a balance between learning or memory effects and the potential for 

change in the disorder. Additional reliability testing was deemed appropriate to evaluate the 

investigator’s sonographic imaging and measurement skills. Inter-rater reliability was 

investigated by comparing assessments conducted independently by the investigator and a 

radiologist experienced in musculoskeletal sonography. 

Estimates of reliability can also be used to calculate the responsiveness of a measurement 

process, which determines the minimum detectable change (MDC) it can resolve. This is the 

smallest measured change in a variable that cannot reasonably be attributed to random 

error, and so can confidently be interpreted as “real” change597. No studies establishing MDC 

values for any of the instruments under test could be found, so, as well being necessary for 

the present investigation, this study could provide data of value to the broader research 

community. The aims of the study were to establish: 

 the test-retest reliability and MDC values for PFGS, PPT and sonographic 

measurements, and 

 the inter-rater reliability of sonographic rating of tendinopathy   

in a sample of people with symptomatic tennis elbow.  

Approval for the study was obtained from the investigator’s institutional ethics committee 

and all recruits provided written informed consent before participation (See Appendix 5). 

6.4.1 Study materials and methods 

Participants 

A sample of people with tennis elbow was recruited by advertising to staff within the 

investigator’s institution and several local sports centres. Included participants were over 18 

years of age with a current diagnosis of tennis elbow. Diagnosis was made on the basis of a 
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history of lateral elbow pain exacerbated by gripping movements, and lateral elbow pain 

provoked by at least one of the following tests530, 589:  

 palpation over the common extensor tendon   

 resisted middle finger extension with elbow extended 

 resisted wrist extension with elbow extended 

 passive wrist flexion with elbow extended  

Diagnosis in other studies typically requires a positive response to more than one of these 

tests345, 506, 598. However, since this study was primarily concerned with the reliability of 

measurement processes, a less restrictive case definition was used. In addition, tenderness 

over the radial tunnel and pain on resisted supination were tested for, as these have been 

suggested as differential diagnostic criteria for radial tunnel syndrome599. As in the previous 

study, and for the same reasons, a minimum sample size of 20 was sought. 

Assessment 

The subjective assessment followed a similar format to that used in the previous study, but 

with additional questioning about the disorder. It began by recording demographic and 

medical data, and collecting a history of the complaint, which included initial cause (if 

known), symptom duration and any treatment received. This was followed by the clinical 

tests for tennis elbow, which formed part of a standard bilateral physical examination of the 

upper quadrant with particular attention to the elbow589, 600. This consisted of visual 

inspection of the upper limb, palpation of the lateral elbow, subjective assessment of active 

range of motion of neck, shoulder and elbow, and of the strength of major upper limb muscle 

groups, overpressure to elbow extension and application of valgus and varus forces to assess 

joint stability, and compression and rotation of the radio-humeral joint as a check for 

osteoarthritis530. Possible cervical involvement was checked by a clearance test, consisting of 

compression and passive extension, side flexion and ipsilateral rotation of the neck600. A full 

cervical assessment was not conducted, and neurological examination was limited to 

myotome testing. An Upper Limb Tension Test for the radial nerve (ULTT2B) was used to 

assess for its involvement601. Because it was expected that some assessments in the later trial 

might take place at the participant’s home, tests were conducted in standing or sitting, rather 

than supine. Figure 6.5 demonstrates the positioning used for the radial nerve stress tests. If 

tensioning produced lateral elbow pain, the subject was asked to laterally flex the neck 

towards the affected side to desensitise the nerve and confirm its involvement. Although 
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testing in sitting is unorthodox, it was thought the most feasible option given the uncertainty 

about the test venue. 

 

Figure 6.5: Positioning and movements used for upper limb tension test 2B.  

 

Algometry was used in the same manner as the previous study to measure the PPT at the 

lateral epicondyle. Grip strength measurement differed, however. After the participant 

practised by squeezing the dynamometer lightly on the unaffected side, maximum grip 

strength was measured on that side using the same protocol as in the previous study; then 

pain-free grip strength was measured on the symptomatic side by asking the participant to 

increase the squeeze until pain first became apparent at the lateral elbow or adjacent 

forearm. Readings were alternated between sides to provide a minimum 20 s rest between 

measurements, and no verbal encouragement was given during the each trial. If a participant 

was symptomatic bilaterally, PFGS was measured for both arms. 

Sonography was conducted as before, and movie clips of longitudinal and transverse scans 

were recorded during each assessment. In addition, rating scales were developed to enable 

numerical grading of the severity of tissue abnormalities. These were intended to provide a 

measure of tendinopathic severity at baseline, and to monitor any tissue changes occurring 

over time. The scales were constructed on the basis of those used in other tennis elbow 

studies. These were evaluated in a literature review conducted by the investigator, which has 

been published555 and is reproduced in Appendix 7. Although some studies have used 

computer-assisted measurement of certain features, most rely on subjective assessment by a 

clinician. Some have used scales with up to 11 grades374, 397, but it is more common to employ 

three or four375, 402, 480, and the more conservative approach was adopted here. Greyscale  
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images were used to grade tendon thickening, hypoechoic areas, fibrillar disruption and 

calcification, and PD images were used to grade hyperaemia. Ratings were based on 

subjective estimation of the physical extent of the abnormality. The greyscale rating were not 

precisely defined at this point, but agreed to equate to normal, mild, moderate and severe 

presentations. The hyperaemia scale was defined, however, using the scheme presented in 

Table 6.4. Examples of sonographic images obtained, and gradings assigned, are given in 

Figure 6.6. 

Table 6.4: Sonographic grading scales for greyscale abnormality and hyperaemia 

Grade Greyscale feature Power Doppler signal 

0 Normal No signal 

1 Mild Single small signal 

2 Moderate  Several signals in less than 33% of visible field 

3 Severe Multiple signals in 33-67% of visible field 

4 n/a Multiple signals in more than 67% of visible field 

 

 

Normal common extensor tendon 

 

 

Cortical spur, grade 1 thickening, grade 1 

hypoechoic area, grade 1 fibrillar disruption 

 

Grade 3 calcification 

 

Grade 3 hyperaemia 

 
Figure 6.6: Greyscale image of common extensor tendon, demonstrating grading of greyscale 
abnormalities and hyperaemia  
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An aggregate greyscale pathological severity score was obtained by summing the scores for 

the individual elements, giving a maximum possible score of 12 points. Since hyperaemia 

may be part of the normal physiological response to tissue damage, it was not assumed to be 

pathological in itself and its score was not combined with those of the greyscale features. 

Scores were assigned by the investigator whilst viewing the move clips recorded at each 

assessment. 

Assessment of PPT, PFGS and tissue abnormality was repeated at a follow-up assessment. As 

in the previous study, participants were asked not to take any analgesia in the 24 hours prior 

to each assessment. At follow-up, they were asked whether they had complied with this 

request, and if anything else had happened that might affect measurements, such as heavy 

upper limb stress, treatment for their tennis elbow, or changes in symptoms. 

Additional evaluation of reliability of sonographic assessment 

Because of the relative inexperience of the investigator in musculoskeletal sonography, and 

the novelty of the sonographic scoring system, an inter-rater reliability study was also 

conducted. This evaluated the consistency in scoring the same images by the investigator and 

a radiologist with 10 years’ experience of musculoskeletal sonography. (This was not the 

supervising radiologist who had been involved in the initial skills acquisition work.) For this 

study, the investigator selected from each baseline sonographic assessment a one-minute 

duration movie clip of the longitudinal greyscale scan, and a static PD image in which the 

maximum signal was visible. Movie clips were used for greyscale images to enable 

identification of the variety of features that might been seen in different parts of the tendon, 

and to help distinguish hypoechoic areas from anisotropy. In other studies, PD signals are 

typically graded according to the maximum signal visible506, 602, and so this convention was 

adopted here by using a single static image. The investigator analysed these recorded images 

after the assessment, and they were also sent to the radiologist for assessment using the 

same grading scheme.   

Analysis 

Mean PPT and grip strength values were calculated for each arm using the three 

measurements taken in each case, and tests for normality and homogeneity of variance were 

applied. PFGS was analysed as an absolute value and as a percentage of MGS on the 

unaffected side, which provided a normalised value for each person431. Grip strength data 

from those with bilateral symptoms – for whom this ratio could not be calculated - was not 

included in the reliability analysis. Test-retest reliability for parametric data was assessed 

using the ICC, as before. Correlation coefficients for measurements of PPT and grip strengths 
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were calculated separately for symptomatic and non-symptomatic limbs. The ICC for each 

measure was then used to estimate its minimum detectable change (MDC) using the formula 

MDC = 1.96*SD*√2(1 – ICC)  

where SD is the standard deviation of the baseline measurements for the sample592, 597.  

The ICC is only recommended for use with such data when the intervals between levels can 

be considered as equivalent562 ch26, which may not be true for the sonographic scales used in 

this study. Therefore Kendall’s tau-b, which measures levels of association between ordered 

datasets562 ch25, was calculated in addition to the ICC. All statistical analysis was performed 

using SPSS 17, significance was set at p ≤ 0.05 and 95% confidence intervals were calculated 

where appropriate. 

6.4.2 Results 

Of 27 participants screened, one did not have current signs or symptoms of tennis elbow, 

four reported symptom changes between assessments, and one was unable to attend the 

second assessment. Of the 21 individuals remaining, 13 were male and 8 were female. The 

mean age was 49 (range 20 – 71) years and the median duration of symptoms was 3 (range 1 

– 240) months. Nineteen were right hand dominant, two were left hand dominant. Six were 

symptomatic on the non-dominant side and one was symptomatic on both sides. The upper 

limb tension test suggested radial nerve sensitisation in two thirds of those assessed and 

produced lateral elbow pain in a third. Inter-assessment periods were between 1 and 2 

weeks in all but three cases (4, 6 and 15 days respectively). 

All participants responded to at least one of the diagnostic tests used, with the exception of 

passive wrist extension (Mills’ test) which was never positive. Several of those positive to the 

resisted movement tests, and who also had sonographic evidence of tendinopathy, did not 

have any noticeable tenderness on palpation over the lateral epicondyle. Summary data for 

measurements taken at each assessment are presented in Table 6.5, and the corresponding 

scatter plots are given in figures 6.7-6.9. 
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Table 6.5: Summary measurements data for repeated assessments with symptomatic subjects  

 

 

Grip strength 

Several participants reported hand pain when using the dynamometer. In three cases, this 

pain rather than lateral elbow pain was reported to be the limiting factor for PFGS 

assessment, one because of osteoarthritis in the hands. Four people refused to use the device 

on at least one assessment because of fear of exacerbation of symptoms. This meant that 

reliability data was only available from 17 people. One of these had bilateral symptoms and 

so PGGS/MGS ratios were not calculated for them. The Shapiro-Wilk test for normal 

distribution, and Levene’s test for homogeneity of variance, showed that grip strength data 

could be analysed parametrically. The baseline mean PFGS/MGS ratio was 94% (SD 24%; 

range 33 – 130%). Table 6.6 presents calculated ICC values for this group, and Table 6.7 

provides the corresponding MDC values. Scatter plots of the data are given in Figure 6.7. 

Table 6.6: ICC (95%CI) for grip strength measurements with symptomatic subjects 

Variable First reading Maximum of 3 readings Mean of 3 readings 

PFGS (affected limb) 0.95 (0.86 – 0.98) 0.96 (0.90 – 0.99) 0.98 (0.94 – 0.99) 

MGS (unaffected limb) 0.92 (0.72 – 0.97) 0.94 (0.82 – 0.98) 0.95 (0.86 – 0.98) 

PFGS / MGS 0.77 (0.46 – 0.91) 0.78 (0.47 – 0.92) 0.84 (0.54 – 0.94) 

 

Table 6.7: Minimal detectable changes for single, maximum and mean of three grip strength 
measurements with symptomatic subjects (kg unless specified) 

Variable First reading Maximum of 3 readings Mean of 3 readings 

PFGS (affected limb) 8.1 7.8 5.1 

PFGS / MGS 17% 10% 9% 

 

Variable First Assessment Second Assessment 

 n1 mean±S.D (range) n2 mean±S.D (range) 

Maximum Grip Strength / kg 
(unaffected limb) 

17 38±12 (16 – 56) 16 40±11 (16 – 53) 

Pain-free Grip Strength / kg 
(affected limb) 

17 34±13 (12 – 55) 16 35±14 (11-58) 

Sonographic scores     

Greyscale abnormality /12 

(aggregate) 

34 1.7±1.7 (0 – 6) 34 1.7±1.5 (0 – 6) 

Hyperaemia / 4 30 0.8±1.0 (0 – 3) 31 0.7±0.9 (0 – 3) 
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Unaffected MGS First Affected PFGS First 

  

Unaffected MGS Max Affected PFGS Max 

  

Unaffected MGS Mean Affected PFGS mean 

 

Figure 6.7: Scatter plot of repeated measurements of grip strength measurements (all in kg) 
with symptomatic subjects 
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 Pressure Pain Threshold 

PPT measurements using the algometer were problematic. The pain threshold could not 

safely be reached with seven participants and three others refused measurement, fearing an 

exacerbation of their irritable symptoms. With nearly all other participants there was 

substantial variation between intra-sessional PPT readings,  and no pattern of decrease or 

increase across successive readings suggestive of sensitisation or desensitisation could be 

discerned. Calculated ICC values using the remaining viable data indicated poor to moderate 

levels of agreement for all variables, but with very wide confidence intervals: lower limits 

were less than zero in most cases. As in the previous study, several participants found it 

impossible to identify a specific pain threshold. Scatter plots are provided in Figure 6.8. 

  

Affected PPT First Affected PPT Max 

 

Affected PPT mean 

 

Figure 6.8: Scatter plot of repeated measurements of preesure pain threshold (all in kPa) at 
lateral epicondyle with symptomatic subjects 
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Sonography 

One set of follow-up sonographic images were lost and two sets were judged of too poor 

quality for analysis, so 17 (34 left and right images) were available for test-retest reliability 

analysis. On first assessment by the investigator, all 17 affected limbs had greyscale 

abnormalities but only 14 showed signs of hyperaemia. Of the 17 unaffected limbs, greyscale 

changes were visible in nine and hyperaemia in three. The majority of presentations had low 

overall greyscale scores, with none higher than 6/12. 

Table 6.8 provides ICC and Kendall’s tau-b values for test-retest reliability of sonographic 

scoring by the investigator, using recorded images from baseline and follow-up assessments, 

and Figure 6.9 provies scatter plots of test-retest measurement of the aggregate greyscale 

and hyperaemia scores. The ICC values indicate moderate to good consistency in rating 

scores on all features, although confidence intervals for tendon thickening and fibrillar 

disruption are wide. Kendall’s tau-b scores were of similar magnitude. Using the ICC values 

and baseline standard deviations, MDC values were calculated as 2.0 for the aggregate 

greyscale score and 1.1 for the PD score. Changes of at least these magnitudes would be 

required in the means of group values to be confident that they are not attributable to 

random error alone. The scatter plots illustrate the positive correlations between 

assessments, and suggest that the high ICC values may be influenced by the numbers of data 

points with low greyscale scores and zero hyperaemia scores. 

Table 6.8: Test-retest reliability of sonographic scoring of tendinopathy 

Feature ICC (95% CI) Kendal’s Tau-b 

Tendon thickening 0.70 (0.48 – 0.84) 0.72 

Hypoechoic area 0.77 (0.59 – 0.88) 0.77 

Fibrillar disruption 0.71 (0.49 – 0.84) 0.73 

Calcification  0.86 (0.73 – 0.93) 0.84 

Greyscale abnormality (aggregate) 0.82 (0.66 – 0.90) 0.74 

Hyperaemia 0.78 (0.58 – 0.89) 0.73 
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Figure 6.9: Scatter plots of test-rest aggregate greyscale and hyperaemia scores in symptomatic 
subjects. The size of the marker indicates the number of data points at that coordinate. 

 

By the time the radiologist who agreed to collaborate in the inter-rater reliability study was 

available  for the work, the clinical trial had already begun and baseline assessment data was 

available from a number of participants. Some of the earlier scans recorded in the test-retest 

study were of poor quality and so, on the assumption that the investigator’s scanning and 

assessment skills would have improved with practice and supervision, it was decided to use 

only the second half of the scans from that study, and supplement these with the first tranche 

of baseline scans conducted in the trial. This provided a sample of 19 participants, all with 

symptomatic tennis elbow, and it is the data from their assessments that was analysed. 

Ratings for both arms are used, since many of the unaffected limbs had signs of tendinopathy. 

ICC values and Kendall’s tau-b values, showing the levels of agreement between the 

investigator and the radiologist in sonographic ratings, are presented in Table 6.9. 

Table 6.9: Inter-rater reliability in sonographic scoring of tendinopathy 

Feature ICC (95% confidence interval) Kendall’s Tau-b 

Tendon thickening 0.46 (0.16 - 0.68) 0.43 

Hypoechoic area 0.72 (0.52 - 0.85) 0.72 

Fibrillar disruption 0.35 (0.05 - 0.60) 0.36 

Calcification  0.76 (0.58 - 0.87) 0.60 

Greyscale abnormality (aggregate) 0.77 (0.55 - 0.88) 0.60 

Hyperaemia 0.89 (0.79 - 0.95) 0.90 
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Figure 6.10: Scatter plots of aggregate greyscale and hyperaemia scores assigned by 
investigator and radiologist to symptomatic subjects. The size of the marker indicates the 
number of data points at that coordinate. 

 

ICC values for tendon thickening and fibrillar disruption were low with wide confidence 

intervals. Kendall’s Tau was also low for these variables. Correlation coefficients for rating of 

hypoechoic areas, calcification, aggregate greyscale score and hyperaemia were considerably 

better, but Kendall’s Tau for calcification and aggregate greyscale showed only moderate 

agreement between raters. Scatter plots of the data, provided in Figure 6.10, illustrate the 

large number of cases with low scores on both scales. Particularly for the hyperaemia score, 

these will have contributed to the high ICC value. In both plots, data points are reasonably 

tightly scattered about the 450 line, however, supporting a good correlation between 

assessments.  

6.4.3 Discussion 

A reasonably-sized sample of participants was obtained through the promotion and 

recruitment and most elements of the assessments proceeded satisfactorily. Although a 

formal evaluation of the diagnostic tests was not conducted, using several of them in 

combination with the subjective history increased confidence in the clinical diagnosis. 

Despite its common use in other studies, Mills’ test was never positive, even with the more 

severe presentations, and so it was decided to eliminate this test from the assessment. To 

provide a more provocative test for milder cases of tennis elbow, it was decided to add the 

chair lift test (lifting a chair by its back with the elbow extended and forearm pronated)589 to 

the assessment protocol for the clinical trial. Although several provocative tests are available 
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as clinical signs of tennis elbow, their diagnostic reliability appears to be rather poor, as is 

inter-rater reliability in their use603. The addition of sonographic signs of tendinopathy may 

increase confidence in a clinical diagnosis, although symptoms of tennis elbow do not 

necessarily accord with signs of tendinopathy. In any case, validating one set of diagnostic 

criteria by correlation with another risks reliance on a circular chain of reasoning. Thus, for 

the purposes of a clinical trial, it may be more appropriate to apply a case definition based on 

patient history, clinical tests and sonographic findings. This issue is further addressed section 

7.7.2. 

 Dynamometry 

The test-retest reliability of grip strength measurements, including the PFGS/MGS ratio, were 

excellent, and highest for the mean of three readings. The MDC value was also lowest for this 

ratio, meaning that a smaller change in this variable could confidently be interpreted as 

“real”, i.e. not due to random error. Some studies with normal populations have concluded 

that a single reading of MGS is as reliable as a mean of three575, 604, but if MDCs are calculated, 

the benefits of using the mean of three over a single measurement become apparent. MDC 

values for PFGS measurements in tennis elbow have not previously been reported. The 

scatter plots (Figure 6.7) confirm the good correlation between assessments with minimal 

scatter for all but first MGS value for the unaffected limb. 

Comparable data from other studies is unavailable. Smidt and colleagues found excellent 

inter-rater reliability in the measurement of PFGS using a Jamar dynamometer with patients 

with tennis elbow468, but patients were assessed by both raters in a single session, so test-

retest reliability was not assessed. Based on an ICC of 0.97, they calculated an minimum 

detectable difference of 1.4 kg, considerably less than in this study. However, they appear to 

have made an error in their calculation: instead of substituting the pooled standard deviation 

of the two datasets as is required569, they used the much smaller standard deviation of the 

difference between the two group assessments. When the appropriate data are used, 

minimum detectable difference value is 5.8 kg, somewhat higher than the MDC value 

obtained here. This is more consistent with an expectation that repeated readings by the 

same assessor (as in this study) would be more reliable that readings by two different raters 

(as in theirs).  

Stratford and colleagues concluded that pain-free grip strength measurements had excellent 

test-retest reliability over a period of up to a week when used to assess tennis elbow 431, 444, 

469, 474.  However the instrument used was specified in only one of these469 studies:  it was a 
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Smedley dynamometer, which is quite different in design to Jamar-type devices and cannot 

be assumed to have the same measurement properties. 

Several methodological features may have influenced dynamometry reliability in the present 

study. Although the rest-period used in multiple measurement protocols has been found to 

affect reliability only marginally in a normal population605, this may not be the case with 

symptomatic groups. The presence of tennis elbow may lead to more rapid fatigue in the 

gripping musculature606, and a 20 second rest period may be insufficient for recovery 

between readings. However, inspection of the raw data showed that, within a single 

measurement session, strength readings increased in some cases and decreased in others; so 

any fatiguing effect may have been balanced by other factors such a learning effects. The 

speed of grip build-up was not controlled and this may have influenced the point at which 

participants stopped squeezing when PFGS was measured. In particular, a rapid build-up 

may lead to PFGS “overshoot” as the individual passes the pain threshold before releasing. 

Recorded values were not hidden from participants and this may have affected their effort 

levels in subsequent testing607, 608.  

Three participants refused to use the dynamometer after initial trial because their condition 

was so irritable. The measurement process may therefore be limited by a floor effect where 

symptoms are particularly severe. Reports received of hand pain on gripping the 

dynamometer were observed in another study, using asymptomatic individuals575. This may 

result from the design of the device, which has an un-cushioned metal handle with no 

discernible “give”, which ensures that the measurement is isometric. Despite the limitations 

of the device and measurement protocol, the reliability data and practical experience of use 

suggested that they were suitable for use in a trial.  

Algometry 

Pressure pain threshold algometry was unsatisfactory, which is unfortunate because it can 

provide a semi-objective pain measure and has been shown to be reliable in other 

applications591, 609. The scatter plots illustrate the paucity of usable data: even though the first 

and maximum readings might conceivably match a positive linear correlation, inspection of 

individual data coordinates shows that readings usually differ significantly between 

assessments. Few studies have considered the reliability of algometry for use with tennis 

elbow. One investigated inter-rater reliability, and concluded that differences between 

ratings of PPT were such that algometry could not be recommended418. Another assessed 

“intra-examiner repeatability” of three readings taken in a single session and reported values 

of 0.90 - 0.92, although the authors did not specify the statistical test used428. In any case, 
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such a short inter-test period allows no extrapolation to reproducibility over several days or 

weeks. 

It might be expected that measurements conducted by the same examiner would be more 

consistent, but this was not found to be so in the present study. This suggests that variations 

in response by the same individual may be the more significant factor. Another approach to 

measuring tenderness has been used: a pre-defined pressure is applied with the algometer 

and the subject gives a numerical rating of pain at that pressure390. This method may provide 

greater consistency but was not assessed in the present study so cannot be substituted with 

confidence. In consequence, PPT measurement was deemed unsuitable for inclusion in the 

trial protocol. However, other measures intended for use in the trial address various aspects 

of pain and its consequences. The Patient-rated Tennis Elbow Evaluation has several items 

rating pain, and PFGS provides an indication of pain irritability. Therefore the loss of PPT as 

an outcome variable was not felt to compromise the outcomes assessment battery too 

severely. 

Sonography 

The study investigated two aspects of the reliability of sonographic assessment of tennis 

elbow. First, test-retest reliability to indicate consistency in scoring of images made at two 

time points by the same rater. This was necessary to evaluate the fitness of the scale for a 

longitudinal study. It also enabled the calculation of MDC values that would be needed for the 

interpretation of trial data.  Second, inter-rater reliability, which gauged the extent of 

operator-dependence in obtaining images and interpreting them. In the absence of a gold 

standard for comparison, and notwithstanding the earlier comment that experience does not 

guarantee reliability, reasonable agreement between the investigator and a more 

experienced imager would increase confidence in the investigator’s use of this measure.  

The results for test-retest reliability were mixed. Ratings of hypoechoic areas, calcification, 

overall greyscale abnormality and hyperaemia all demonstrated good consistency between 

assessments. ICC values for tendon thickening and fibrillar disruption fell short of the 

benchmark but by a small margin. Kendall’s tau-b values were largely in accord with the ICC. 

These results suggest that this system of aggregate greyscale and hyperaemia scoring could 

be used reliably to monitor tissue status in longitudinal studies of tennis elbow. The 

corresponding MDC values suggest that an appropriate number of levels was chosen for each 

of these two scales: if more levels had been added, they may have been redundant because 

the MDC would have spanned several of them. This argument only applies to the 

investigator’s use of the scales: a more experienced imager may have been able to discern 
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smaller gradations reliably, and so a scale with more levels and a smaller MDC might be 

feasible. 

The findings of the inter-rater study follow a similar pattern, but the levels of agreement 

were lower. ICC values for consistency between raters was poor for tendon thickening and 

fibrillar disruption, but better for all the other features. There was good agreement between 

the investigator and the radiologist in scores for calcification, overall greyscale abnormality 

and hyperaemia, and scoring of hypoechoic areas fell just short of the benchmark. For all 

variables, confidence intervals were wider and ICC values lower than in the test-retest study, 

with the exception of hyperaemia. Repeated ratings by a single assessor are usually better 

than those conducted by two different assessors, but it appears that – at least in the case of 

hyperaemia – enhanced experience may have improved the investigator’s reliability. Indeed, 

a comparison with ICC values calculated using only data from the earlier scans (not 

reproduced here) confirmed that inter-rater reliability was better using the later scans. The 

low ICC value for rating of fibrillar disruption may have been because the raters interpreted 

the term differently, as either a disappearance of the fibrils in hypoechoic or indistinct areas, 

or an obvious discontinuity in their parallel arrangement. Poor agreement on the presence of 

tendon thickening may have been a consequence of ambiguous tendon boundaries in some 

cases, and paratenon thickening being registered as tendon thickening in others.  

Where there is a discrepancy between Kendall’s tau-b and ICC, the former test should be 

preferred because of uncertainty over whether the intervals in the sonographic scale are 

equivalent. This guideline was applied to test values for calcification and aggregate greyscale 

scores, where agreement appears moderate rather than good. This might be attributable to 

the different levels of experience of the raters. Comparable studies that could help judge this 

issue are not available, since none has considered the reliability of sonographic rating scales 

for tennis elbow. One study used the ICC to express levels of agreement between several 

well-experienced imagers in identifying (but not rating) sonographic abnormalities, and 

found that the ICC for individual greyscale features was 0.49 at best348. Another study, also 

using well-experienced imagers, found moderate levels of test-retest reliability in identifying 

greyscale features349. These studies demonstrate that general musculoskeletal sonographic 

experience and training does not guarantee interpretation reliability in a specific application. 

In that context, the results of this study are encouraging. This may be a result of several of its 

methodological features. Movie clips were used for greyscale image assessment, in contrast 

to the static images used for assessment in the other studies. Throughout the recording the 

transducer was moved back and forth across the area of interest, so each part of the tendon 
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could be seen repeatedly from a slightly different point of view, enabling an initial impression 

to be verified or amended. Also, images were identified by number and side for each 

participant, enabling comparison of left and right. This could assist interpretation, since the 

sonographic appearance of normal tendons varies between individuals. Such left and right 

pairing is used in some studies349 but not others348. These factors may have enhanced 

reliability. On the other hand, the investigator’s relative lack of experience is likely to have 

diminished it. Moreover, preliminary discussion between assessors of the definitions and 

rating of greyscale abnormalities was limited, and the radiologist had no practice in the use of 

the rating scales. Such preparatory work, has been shown to improve inter-rater 

reliability610. The scanning apparatus may also have limited reliability because it is a portable 

device with less sophisticated imaging software than used in  mainframe devices. 

In this study, five sonographic features that are commonly reported in sonographic studies of 

tennis elbow 349, 357, 372, 506 were rated. Other features, such as tears, sub-tendinous fluid and 

cortical irregularities have also been reported349, 357, but were not included. All the greyscale 

features selected have been associated with pathological changes observed during surgery or 

histological analysis349, 372, but the aggregation of their scores is somewhat arbitrary. Doppler 

ratings were not combined with other scores because hyperaemia may be a pathological 

feature or an indicator of healing, depending upon the stage of damage and repair611, 612. The 

relative contribution of these different elements to the overall status of the tendon is 

unknown, and none appears to be present in every case of tennis elbow348, 349, 372. Moreover, 

grading features only by their physical extent may be inappropriate. For instance, does a 

small but highly hypoechoic area represent more advanced pathology than a larger, less 

hypoechoic one? Validation of the scoring system would require histological analysis for 

comparison but, since tissue samples are normally obtained only during surgery on tendons 

with advanced tendinopathy, this would be problematic.  

The images assigned low ratings could represent pre-clinical signs of damage, or age-related 

degeneration rather than pathological change. In any case, the scales may best be interpreted 

as representing a spectrum of abnormality. Greyscale and Doppler changes have been 

proposed as signifying a progressive continuum of symptomatic tendinopathy in the patellar 

tendon613, and the same may be true for the common extensor tendon.  

Study limitations 

Relatively mild presentations of the disorder seemed to predominate in this study. Although 

some participants were severely affected by tennis elbow, the group mean PFGS ratio of 93% 

is considerably higher than seen in several other tennis elbow studies (e.g. 332, 333), and the 
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sonographic rating scale was suggestive of fairly mild tendinopathy in most cases. This may 

be due to people with more severe presentations being unwilling to participate in a study 

that offered no treatment. Nevertheless, the limited spread of data means that reliability was 

not proven for more severe cases. Indeed, the refusal of some participants with irritable 

symptoms to use the dynamometer illustrates the potential limitations of the device in this 

respect. On the other hand, the sonographic scale could be judged as having “spare capacity” 

to rate more severe cases that might be seen in the trial. 

The inter-assessment duration of 1-2 weeks used in the test-retest reliability study may have 

been too long. Although most of the participants had been symptomatic for at least three 

months, several reported a history of labile symptoms. Even in chronic tennis elbow, there is 

normally a gradual improvement in signs and symptoms and, although participants reporting 

significant changes between baseline and follow-up assessments were not included in the 

analysis, this could have impacted upon the data. The decision to use only part of the 

available data from symptomatic individuals, and its post-hoc supplementation with data 

from the trial, could be challenged as “cherry picking” to obtain favourable results. Statistical 

analysis is most rigorous when used as planned, with prospectively-acquired data. In this 

case the amalgamation of data was judged legitimate because of the on-going skills 

development that could be expected with novice-use of sonography. Even so, the reliability of 

the assessment protocol used might have be enhanced in a number of ways. The greyscale 

grading system was neither objective nor adequately defined, and it was not piloted before 

use in the reliability study. This is likely to have particularly impacted upon inter-rater 

reliability. More specific definitions for each grade, initial agreement on terminology between 

raters, and shared practice using the scales, would have facilitated similar implementation of 

the grading systems by raters. Interpretation whilst scanning, rather than when viewing 

recordings, would have enabled more control and checking of provisional interpretations, 

although this would not have been possible in the inter-rater study because of constraints on 

the radiologist’s time. Although the use of a single representative Doppler image was reliable, 

a movie of a dynamic scan across the tendon would have produced a more comprehensive 

representation of the extent of hyperaemia.  

Although more than 20 people were recruited for the study, various factors identified earlier 

reduced the sample available for analysis to 17 participants. Statistical tests lose some of 

their power as the sample size falls, and so some measure of caution must be applied in 

interpreting the test results obtained. Finally, the minimum detectable changes calculated for 

the grip strength and sonographic measurements are useful quantities for interpretation of 

trial data. However, they are not the same as the minimum clinically significant difference 
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(MCSD) - the minimum change that would be considered important by the patient and/or 

clinician614. The latter measure is of greater clinical import, but could not be calculated within 

this study. It is addressed in the next chapter, however. 

Revised sonographic grading 

To address some of the limitations identified in the sonographic assessment process, a 

number of changes were implemented. Specific definitions of the greyscale abnormality 

grades were drawn up – these are presented in Table 6.10. Also, in order to more accurately 

represent the location and extent of any abnormalities, a template was created to provide a 

visual representation of the tendon and adjacent structures. This allowed abnormalities 

across the full width of the tendon to be recorded in a two-dimensional image, and could 

provide qualitative as well as quantitative information, such as the presence of tears and the 

location of bony spurs (which sometimes appeared in relationship with tendon lesions). 

Completing a template at every assessment allowed longitudinal changes to be pictured more 

easily. An example, including the symbols used, is provided in Figure 6.11.  

Table 6.10:  Revised grading system for sonographic greyscale abnormalities 

Grade 
Hypoechoic area or fibrillar 

disruption 

Tendon thickening Calcification 

0 Normal Normal None 

1 Only just apparent 
Only just apparent One or more punctate 

calcifications 

2 
Present in less than half of the 
tendon between the enthesis 
and the radial head 

Thickened by less than 50% of 
normal 

Deposit up to 1cm long 

3 
Present in more than half of the 
tendon between the enthesis 
and the radial head 

Thickened by more than 50% of 
normal 

One or more deposits longer 
than 1cm 

 

Figure 6.11: Sonographic assessment template with examples of abnormalities 
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6.4.4 CONCLUSIONS 

Taken together, these reliability studies proved valuable in providing data and experience 

essential to the planning of the clinical trial. As a result of them, several changes were made 

to the assessment process and data collection form to be used in the trial. These included  a 

change in the battery of tests used to diagnose the disorder, the rejection of PPT as an 

outcome variable, more detailed instructions in dynamometry to control the speed of 

gripping, more precisely-defined greyscale rating levels, and further adjustment of some of 

the ultrasound scanner settings to enhance imaging. Signs of radial nerve sensitisation were 

observed so regularly that using this as an exclusion criterion, as some studies do480, could 

significantly limit enrolment to a trial. Since the primary focus of the trial would be tendon 

healing,  it was reasoned that radial nerve sensitivity should not be used to exclude 

participation in the trial.  

Although the diagnostic tests for tennis elbow used in this study are commonly employed, 

none has been validated for identification of tendinopathy. However, this study indicates that 

sonography can be used for the purpose. Using a combination of subjective history, clinical 

assessment and sonography increases confidence in a diagnosis of tendinopathic tennis 

elbow and so can be used to formulate eligibility criteria for the trial. 

This study provided evidence on a number of methodological issues that have as yet not been 

reported in the literature: the test-retest reliability of PFGS measurement using a Jamar-type 

dynamometer with a symptomatic population; the minimum detectable change for PFGS 

measurements; the test-retest reliability of a sonographic scale to rate tendinopathy in tennis 

elbow; and the capacity of a relatively inexperienced operator to use such a scale in a 

longitudinal study. Having conducted this assessment of potential outcome measures, it was 

possible to move on to develop the remaining elements of the trial protocol and then conduct 

the trial. This is the subject matter  of the next chapter. 



 

 

Chapter 7 
Clinical evaluation of  

microcurrent treatment 

 

7.1  INTRODUCTION 

he preceding chapters addressed some of the key issues in drawing up a reliable 

protocol for a clinical trial of MCT with tennis elbow. This chapter is concerned with 

the experimental work itself. Before this could commence, further aspects of the 

protocol required development. These included trial objectives, eligibility criteria, a 

comprehensive description of the intervention, and methods of data analysis. The first part of 

this chapter addresses these issues and the trial protocol that was developed. The revised 

CONSORT statement, which provides guidelines for the conduct and reporting of clinical 

trials involving non-pharmacological  interventions236,  was used to provide a framework for 

this process. As in previous chapters, reports of trials of other treatments for tennis elbow 

were used as source material. This section of the chapter constitutes the methods section of 

the trial report. 

The second part of the chapter provides the data analysis and discussion of the trial findings. 

This preliminary study was intended to establish whether there are reasonable grounds to 

conduct a full scale clinical trial and, if so, to inform decisions about what type of MCT and 

what experimental protocol it should use. Its  main aims were to provide evidence of whether 

MCT can improve outcomes in chronic tennis elbow, and whether varying the intensity of the 

microcurrent affects the outcome. The reported data provides limited evidence that MCT may 

accelerate recovery in chronic tennis elbow, and that varying the current intensity affects 

outcome. Various problems encountered in the conduct of the trial are described, and the 

implications of the study for a full trial protocol are explored. 

 

T 
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7.2  TRIAL PROTOCOL 

In this section, the remaining elements of the trial protocol are addressed, using the structure 

suggested by the Consolidated Standards of Reporting Trials statement, which is an evidence-

based, minimum set of recommendations for reporting RCTs236. The title of the study was:  

A randomised clinical trial comparing the effectiveness  

of two forms of microcurrent treatment of chronic tennis elbow. 

 

7.2.1 Objectives And Hypotheses 

The objectives of the trial were to assess: 

 Whether the effects of MCT depend on the intensity of the current applied; 

 The patient experience of home-based treatment using MCT 

 The suitability of a protocol for a full clinical trial of MCT for this disorder 

The first objective was addressed by testing the hypotheses that treatment with 

microcurrent of intensity 50 µA and 500 µA would produce different outcomes in: 

1. healing of associated tissue damage, particularly to the common extensor tendon 

2. associated pain  

3. associated functional deficit  

4. overall improvement or resolution of the disorder from the point of view of the 

person affected  

The trial did not compare MCT with other forms of management. However, data is available 

from trials that have included a minimal intervention group, and comparisons with their data 

were planned to provide an indication of whether – and to what extent - MCT could improve 

outcomes. The patient experience was addressed by collecting data on adverse events and 

patient attitude to the microcurrent device and the treatment process. Analysis of the data 

and the experience of conducting the study enabled a judgement to be made about the need 

for a full scale trial.  
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7.2.2 Eligibility Criteria 

A diagnosis of tennis elbow 

The primary criterion for entry to the study was a diagnosis of chronic tennis elbow, as 

defined earlier (see section 6.4.1). There is no agreed gold standard for diagnosis of tennis 

elbow603. Typically it is based on the individual’s history and response to several clinical 

tests, including – but not limited to – those used in the reliability studies reported earlier530, 

589, 615. These tests have not been subject to extensive psychometric evaluation; indeed, their 

validity as indicators of tendinopathy is questionable because other disorders may give 

positive results using some of them.  For instance, radial nerve entrapment at the elbow may 

produce pain on resisted middle finger extension599, and cervical radiculopathy can reduce 

grip strength595.  Positive tests to do not necessarily correlate with other signs and symptoms 

of tennis elbow418, 603. Moreover, individual tests, such as pain on palpation or resisted wrist 

extension, have shown only moderate levels of inter-examiner agreement616. 

For these reasons none of the typical tests can be considered pathognomonic of tennis elbow. 

A clinical judgement is made, based on the balance of probabilities. The uncertainties 

inherent in this approach may partly account for poor outcomes in some trials. If the 

treatment under evaluation is for tendinopathy, but the familiar signs and symptoms  are 

being produced by a different disorder in at least some of the participants, the power of the 

trial to detect a treatment effect may be diminished. Since the potential effectiveness of MCT 

is predicated on its capacity to influence tissue healing, the presence of tendinopathy was a 

key diagnostic consideration in this study. Sonographic evidence of tendon damage 

(indicated by a non-zero greyscale or hyperaemia score) was therefore included as a specific 

eligibility criterion, along with a clinical opinion based on the history of the complaint, 

current symptoms, and a positive response to two or more of the selected clinical tests: pain 

on palpation of the lateral epicondyle, resisted middle finger extension, resisted wrist 

extension and on the chair lift test530, 589. The last test was added because it appeared likely to 

apply a greater stress to the common extensor tendon than the others, and so be sensitive to 

milder presentations of the disorder. It is one of the few tests with proven intra- and inter-

rater reliability589. The combination of criteria was used to maximise confidence in the 

diagnosis, although it did not necessarily rule out co-morbidities. 

The earlier review of MCT concluded that it appears to be most effective in cases of failed 

healing, so chronicity was selected as an additional inclusion criterion. Tendon healing is not 

naturally a rapid process but, under normal circumstances, might be expected to have moved 

into the remodelling phase within a few months of an acute injury611. Following bone and 
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skin damage, union or wound closure mark reasonably distinct transitions in the repair 

process, by which healing rates may be estimated and chronicity defined. Tendon healing 

does not have an equivalent milestone. Moreovover, tendinopathy often has no identifiable 

moment of causation, so defining chronicity is rather arbitrary. Hence different symptom 

durations have been classified as indicating chronicity in tennis elbow studies - typically it is 

3 months411, 412, 481, and less often 6 months461, 617, although some studies include durations as 

short as one month have been viewed as chronic422, 427. A three-month threshold was used in 

this study. 

Other criteria 

A wide range of eligibility criteria have been applied in tennis elbow trials, summarised in 

Table 7.1. It is not common for these to be justified, and the different selections that appear in 

study protocols suggests that the choices are not always rational. Excluding those with 

bilateral symptoms is one example: unless there is a strong suspicion that this is secondary to 

a central neurological deficit, it is difficult to see why it should exclude participation. Tennis 

elbow may affect both limbs310 and there is no reason to suppose that a treatment that is 

effective for one limb might not benefit the other. Calculating PFGS/MGS ratios is not possible 

in such cases, but this does not appear sufficient reason to exclude them. Excluding those 

with other upper quadrant disorders may be reasonable, because they could be the main 

source of symptoms or could present as co-morbidities and so confound the study by 

influencing outcomes. However, for the present study, it was decided for several reasons to 

apply as few of these exclusions as possible. The use of sonography would give confidence in 

a diagnosis of tennis elbow, by providing evidence of the presence of tendon damage and 

tissue changes, whether or not there were co-morbidities.  It could also be used to detect and 

monitor some other forms of damage, such as a torn radio-humeral ligament, that might 

respond to MCT. If evidence of any upper quadrant disorders excluded participation, the 

available population could be significantly reduced. For instance, excluding those with other 

upper quadrant disorders resulted in the loss of  more than half of otherwise eligible 

participants in one study333. Rejecting these exclusion criteria gives the trial a more 

pragmatic character, providing evidence regarding effectiveness in the typical clinical 

situation, rather than of efficacy in a more tightly controlled but less realistic one. 

On the other hand, if any of these disorders were present, they might influence variables such 

as pain and function, and so disguise any effects of MCT on them. This is a significant 

disadvantage of the pragmatic approach but, since the primary focus of interest was tissue 

healing, it was deemed justified in order to maximise the chances of obtaining a viable 

sample size. So that some account could be taken of the potential impact of co-morbidities, 
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the initial assessment was designed to look for evidence of them. Although formal sub-group 

analysis would be inappropriate given the anticipated sample size, if there were large 

differentials between individuals in treatment response, data on co-morbidities could be 

used to make inferences on their potential as prognostic indicators. 

Table 7.1: Eligibility criteria used in trials of treatments for tennis elbow 

Inclusion 

Diagnosis based on standard tests411, 433, 478, 480, 618 (e.g., tenderness to palpation plus two others618) 

Age 18-65433, 18-70332 

Not responding to other treatments411, 480 

Capable of following instructions433 

symptom duration> 3w433, 6 weeks 332, 333, 3 months411, 412, 481, 6 months461, 617 

physician’s diagnosis433, 506 

ability to understand and complete a questionnaire332 

Exclusion 

Bilateral symptoms 332, 441, 478, 480, 506, 618 

Cervical radiculopathy332, 411 

Peripheral nerve involvement480 

Radial tunnel syndrome411, 441, 480, 618 

Pain over the radio-humeral ligament480 

Sensory disturbance in affected arm441, 480 

Exacerbation on movement of neck or with overpressure480 

Any other elbow pathology480, 506 e.g. tendon rupture in last 12 months332, Osteoarthritis411 

History of elbow fracture or dislocation332, 411 

Congenital/acquired deformity of elbow332 

Cervical411, Shoulder, wrist, hand pathology411, 441, 480  

Carpal tunnel sydrome411 

Rotator cuff tendinopathy411 

Upper quadrant pain (other than due to tennis elbow) requiring treatment or preventing full participation 

in normal work/recreation511 

Systemic / neurological disorders 332, 441, 506, 618  

Rheumatoid arthritis411 

Signs and symptoms suggestive of other causes of pain332 

Treatment by a health care professional for elbow pain in last 1 month618, 6 months511, apart from 

oral/topical analgesia511 

Elbow injection (including cortisone) in last month506, 6 months332, 478, year441  

Previous elbow surgery332, 478, 506 

Previous treatment with trial intervention506 

Contraindications to trial interventions332, 506 

Compensation / litigation 441 

Not first episode441 

 

Several other exclusion criteria were applied, however. Participants must not have received 

any other active treatment (other than oral or topical analgesia) in the previous month, and 

must have experienced no significant improvement in symptoms over that time. This period 
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was selected to provide a washout period for any previous treatment. Participants were also 

required to be over 18 years old, though no upper age limit was set. The lower limit was 

chosen to avoid unnecessary assessments of individuals whose elbow pain would be unlikely 

to be due to tennis elbow, which is uncommon in this age group619. See Appendix 6 for the 

relevant documentation. 

7.2.3 Recruitment 

Several sources of participants were used. Those who had taken part in the earlier reliability 

study using symptomatic subjects were invited to participate; promotional material was 

emailed to staff in the investigator’s institution and to several local racquets clubs; and an 

account of the study with the investigator’s contact details was submitted to a number of 

local newspapers, several of which published it either in print or on line. Expressions of 

interest were sought from people with typical symptoms of tennis elbow, present for at least 

three months. Those replying were sent a detailed information leaflet and a brief screening 

questionnaire, which they could return via email or with the supplied stamped addressed 

envelope. Reminders were despatched after about two weeks if necessary, after which no 

further contact was made with non-respondents. Those appearing to meet the eligibility 

criteria were invited to an initial assessment where they provided informed written consent 

to participate. If found eligible, they were enrolled into the trial and allocated to a treatment 

group. 

7.2.4 Interventions 

The CONSORT statement calls for descriptions of (a) the experimental treatment and 

comparator, (b) the different components of the interventions and, when applicable, of the 

procedure for tailoring the interventions to individual participants, (c) how the interventions 

are standardized, and (d) how adherence to the treatment protocol is assessed or 

enhanced236. 

Experimental treatments 

Based on the hypothesis that current intensity is the most significant variable, two 

substantially different values - 50µA and 500µA -  were compared. The Elexoma Medic was 

the device selected to deliver the treatment because it allowed the current intensity to be set 

by the user. The portability and relative simplicity of the device also meant that it was 

suitable for home-based, patient-controlled treatment. This enabled substantial treatment 

durations to be employed with minimum inconvenience to the participant.  Apart from 

current intensity, the treatment protocol was the same for both groups. All participants used 
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Program 5, which provided a low frequency monophasic square wave (described fully in 

Section 5.4.1). The device has an “active electrode” designated by the manufacturer. It 

corresponds to the cathode when used with monophasic programs, and this electrode 

(identified by colour) was attached over the tendon. Participants were instructed to apply the 

treatment continuously for 99 minutes, once a day for 21 consecutive days. The time of day 

was not specified, and there was no requirement to treat at the same time every day. For one 

group (A), the current intensity was 50 µA; for the other (B) it was 500 µA. These are peak 

rather than average intensity values, which were calculated in the laboratory evaluation to be 

about 20% lower. 

The total treatment period represented a compromise between competing considerations. 

The systematic review suggested that successful applications of MCT usually last between 

weeks and months. The literature provided by the device manufacturer suggested that 

treatment times of 2-4 weeks might be necessary, although they did not provide evidence to 

support this guideline. Increasing the duration of treatment beyond three weeks might 

enhance the chances of success, but also risked reducing participant adherence to the 

protocol since daily self-treatment was required. Three weeks of daily treatment, with total 

exposure times in the tens of hours, is considerably longer than typically used with other 

electrotherapeutic modalities that are claimed to assist healing in tennis elbow (such as 

extracorporeal shockwave therapy620 and low intensity pulsed ultrasound429), and so was felt 

to be a reasonable compromise.  

The skin areas where electrodes were to be placed - over the common extensor tendon and 

just proximal to the olecranon – were shaved if hairy and cleaned with an alcohol wipe to aid 

adherence of the electrodes. The lateral elbow was palpated to identify the epicondyle, and a 

short line was drawn from it, extending distally to indicate the position of the common 

extensor tendon. This was used during the practice session as a guide for placement of one 

electrode so as to cover the area over the tendon. The other electrode was then placed – with 

less precision – just proximal to the olecranon. This configuration (illustrated in Figure 7.1) 

was thought likely to ensure that the microcurrent had both transverse and longitudinal 

components through the tendon, although the actual current path was unknown. The 

electrodes were standard 5x5cm reusable adherent flexible conducting pads with integrated 

short leads. Two sets were provided but further supplies were available if adhesion 

diminished. During treatment, patients could carry move about by carrying the device in 

their pocket or in a supplied case that attached to a belt. 
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Figure 7.1: Positioning of electrodes for treatment 

 

 Other components of the intervention  

The literature review concluded that MCT appears most effective in promoting tissue healing 

when it is accompanied by other interventions. Were a full clinical trial to be conducted, 

exercise therapy would be an appropriate co-intervention since there is evidence that 

controlled mechanical stress can enhance the remodelling process621. However, exercise 

therapy appears to be most effective when it is supervised; home-based exercise 

programmes are difficult to control and adherence may vary substantially between 

participants622. A systematic review considering patient adherence to exercise programmes 

prescribed by musculoskeletal physiotherapists found that that depression and pain during 

exercise may reduce adherence623. Substantially higher levels of depression have been found 

amongst those with chronic tennis elbow than in the broader population455, and at least some 

forms of exercise recommended for the treatment of tennis elbow  are painful624. Thus, 

maintaining a controlled level of exercise as part of a home-based treatment programme for 

chronic tennis elbow may be problematic. So, for the purposes of this comparative study, a 

formal exercise programme was not applied. Instead, a minimal intervention approach that 

has been used in several other studies333, 625 was adopted. This comprised education about 

the disorder and advice on activity modification to minimise stress on the affected tendon. 

Where participants were likely to engage in intense manual activity, either at work or in 

recreation, they were encouraged (and taught how) to use a tennis elbow brace. Although the 

evidence for such braces is mixed626, they may provide some protection against the stresses 

that can cause pain and re-injury of the tendon627, 628. The use of a brace was not mandatory 

but was monitored by questioning the participant at assessments. Non-prescription analgesia 

was also allowed as needed, although participants were asked not to use any on assessment 

days, so as not to influence PFGS measurements. 
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Standardisation of intervention 

In order to ensure that participants in each trial arm all received the same MCT, a number of 

measures were planned. Each person was trained in the use of the microcurrent device and 

observed rehearsing the process of applying the treatment; printed instructions were 

supplied along with a diary sheet to record every treatment and any departures from the 

protocol; and the positioning of electrodes was checked at the post-treatment assessment by 

asking the participant to indicate where they had been applied. If a participant missed a 

treatment for any reason, they were asked to indicate this on the diary, and add a treatment 

to the end of the schedule, so that the total treatment time would be maintained. 

The advice given regarding activity modification and use of a brace depended on individual 

circumstances. Although this sacrificed one element of control in the trial, it is representative 

of a management strategy likely to be used in clinical practice. At the same time it sought to 

provide some measure of control over another potential confounder - the everyday stresses 

acting on the tendon, which may differ substantially according to individual circumstances. 

Exposure to such stresses may have a significant impact on outcome, but this is virtually 

impossible to standardise in any trial. Instead, enquiries were made at each assessment 

about activity levels in the preceding period.  

7.2.5 Assessment 

Assessments were conducted four times over the course of the trial. At the initial assessment, 

demographic data and medical histories were recorded, and baseline values for all outcome 

variables were measured. At subsequent assessments, the outcome variables were re-

measured. These processes are now described in detail. 

Data collected during the initial subjective assessment covered demographics, medical 

history and history of the disorder. They included information on factors that might influence 

response to treatment, and so act as confounders in the study. A wide variety of prognostic 

factors may influence outcomes after treatment for tennis elbow. The include age336, 383, 

gender383, 629, prior occurrence of the disorder474, baseline pain intensity336, 629, involvement 

in manual work336, involvement of the dominant arm336 and duration of symptoms332, 383. 

However, there is inconsistency in the findings of prognostic studies, which may reflect the 

fact that the trial data is for different forms of treatment or combinations of treatment, for 

which the prognostic factors may not be the same. Also, short and long term prognoses may 

differ for a particular factor – one analysis found that age was associated with worse 

outcomes in the short term, but had no influence in the longer term383. A systematic review of 
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studies concerned with prognostic factors for tennis elbow concluded that there was 

insufficient evidence to draw confident conclusions about the prognostic value of any 

factor630. Several studies published since that review have concluded that, for a range of 

conservative treatments there is evidence of a weak association between baseline pain 

intensity and worse short-term outcomes338, 383, and between ongoing stress to the arm (e.g. 

by manual work or involvement in sports) and worse long term outcomes336, 338, 631. Even 

though the evidence for other factors is inconclusive, it was decided to collect data on several 

of those that have at least face validity for influencing outcomes. These include age, diabetes 

and smoking, all of which may suppress tissue healing632, as well as concomitant upper 

quadrant neural or musculoskeletal disorders, and previous episodes of tennis elbow. 

It was also judged important to consider the potential influence of psychosocial factors on 

outcomes. For instance time taken off work may lead to depression and increase anxiety 

levels, which could increase pain perception and functional disability: scores on the DASH 

and PRTEEQ questionnaires have been found to correlate with depression and anxiety455, 633.  

Depression can affect the memory of pain634 and so may influence responses. Involvement in 

litigation or compensation claims may also skew reporting of symptoms635, and fear-

avoidance behaviour may be the cause of maladaptive neuromuscular changes and general 

deconditioning that can contribute to deterioration in soft tissue quality636, 637. Questions 

were therefore included to assess whether the participant was taking off work or involved in 

litigation or a compensation claim because of the disorder. Alizadehkhaiyat and colleagues 

advocate the assessment of psychological status in people with tennis elbow455. They found 

that, in a sample of 16 patients with tennis elbow of more than 3 months duration, 55% were 

likely to be suffering from anxiety and 36% from depression, according to their Hospital 

Anxiety & Depression Scale scores455. These compare to scores of 0.7% and 2.6% respectively 

in the general population638. These rather alarming findings should be tempered by the fact 

that the sample was self-selected from a group of 46 patients enrolled in a broader study. 

Nevertheless they indicate that psychological status may be significantly compromised in 

people with tennis elbow, and so should be assessed. Hence, three screening questions were 

added to the subjective assessment. Two have 96% sensitivity for depression case-finding639; 

the third was of a similar format and enquired about levels of anxiety. 

A physical examination of the upper quadrant (cervical spine, shoulder and upper limb) was 

then conducted, using the diagnostic tests specified above and the process described 

previously (see section 6.4.1). 
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Outcome Measures 

Since tissue healing was the major focus of this investigation, the primary outcome variable 

was :  

1. Local tissue status, measured using sonographic rating scales  

and secondary variables were: 

2. Pain-free grip strength expressed as a ratio of maximum grip strength on the 

unaffected side, measured by isometric dynamometry 

3. Pain and functional limitation, quantified by the Patient-rated Tennis Elbow 

Evaluation questionnaire 

4. Functional limitation, using the Patient Specific Functional Scale 

5. Patient-rated global change, using a 6 point Likert scale 

6. Adverse events, by patient report 

7. Acceptability and ease of use, by patient report 

The new rating system described in section 6.4.3 was adopted for sonographic assessments.  

The PRTEE was also modified by minor changes to the wording of some questions in order to 

make them more meaningful to British respondents. For example “pants” was changed to 

“trousers”, and “washcloth” to “wet cloth”. Although wording changes to questionnaires can 

threaten their validity, these were thought more likely to improve it by enhancing 

understanding. The other measures were used as described previously (see section 6.4.1).  

Timing Of Assessments 

MCT might result in changes in signs and symptoms during or immediately following 

treatment, and these may or may not be sustained. It might also promote tissue changes that 

take some time to become apparent. For this reason, several assessments were planned: at 

baseline, at the end of the course of treatment, and at three weeks and three months after 

treatment was completed. Whilst longer follow-up periods are desirable to establish whether 

any benefits are sustained, three months was judged the most feasible period within this 

investigation. Some trials using sonography as an outcome measure have conducted follow-

up assessments from 6 months to two years after treatment374, 375, 397, but grey scale changes 

following treatment have been observed within 9 weeks of treatment480, and PD changes in 

as little at 2 weeks post-treatment602. Significant remodelling seems unlikely to be seen 
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within three months, but fibroplasia and neovascularity could certainly be expected to occur 

within that time640, 641. It is also reasonable to expect that other outcome variables, such as 

pain and functional limitation, could change on that timescale. 

Outcomes 1 – 5 were measured at all assessment points. At baseline, outcome 5 was defined 

as overall change in symptoms over the previous month. At other assessment points, 

outcome 5 was defined in relation to baseline status. Outcomes 6 and 7  were recorded at the 

first post-treatment assessment, but generic questioning at subsequent assessments allowed 

for participants to report any further adverse events.  The data collection pro-forma used in 

the trials is reproduced in Appendix 6. 

7.2.6 Sample Size 

Because of the lack of high quality trial data on effect sizes of MCT with soft connective 

tissues, estimating the required sample size is problematic.  This trial was a preliminary 

study rather than a formal pilot study because it did not include several elements likely to be 

included in a full RCT proposal, such as a co-intervention and a placebo control group. 

Nevertheless, in the absence of more specific published guidance, recommendations on pilot 

study sample sizes were obtained from the literature. Typically, they are in the range 10 - 

15642, and it  has been suggested that 12 subjects per arm is sufficient to enable statistical 

inferences to be drawn about treatment effects643.  Based on this guidance, and to 

compensate for potential drop outs, recruitment of 15 participants per arm was planned. 

7.2.7 Randomisation And Allocation Concealment  

Since participants would commence treatment as they were recruited, a block randomisation 

process was used to ensure random allocation to each treatment group. A computer-

generated series of blocks was constructed, each comprising a random sequence of four 

letters – two As and two Bs. Each letter represented one treatment group. When a participant 

was enrolled, the next letter in the sequence determined their group allocation. The 

investigator generated the group allocation sequence list before the trial began and applied it 

as each participant was accepted into the study. The sequence was, therefore, not concealed 

from the investigator pre-allocation. 

Blinding 

The investigator provided participants with the MCT device and trained them how to use it. 

Participant knew that no placebo was being used and that they would therefore be receiving 

some form of active MCT. They were told what current intensity to use, but were unaware of 
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the intensity being used by the other group. Therefore the participants were blind to group 

allocation but the investigator was not. 

All elements of the assessment process were conducted by the investigator, and no attempts 

were made to mask group allocation or which arm was symptomatic during assessment. 

However, sonographic ratings of recorded images were conducted several weeks after the 

clinical assessments and, at these times, the investigator was blinded to these factors. The 

investigator also conducted all aspects of data analysis, and was not blind to the form of MCT 

used with each group. 

7.2.8 Methods Of Analysis 

Quantitative data on baseline and outcome variables were analysed statistically where 

appropriate. Descriptive statistics were first obtained, and data were inspected for 

distributions and identification of outliers. The Shapiro Wilk test was employed to assess for 

normality of distributions, and  homogeneity of variance between comparison groups was 

assessed using Levene’s test. These tests were necessary to establish whether parametric 

statistics could be employed644 (ch3). For baseline comparisons, Chi-square was used for 

categorical variables, Mann Whitney for ordinal data and a two-tailed independent samples t-

test for parametric data. Comparisons between groups at baseline can help establish whether 

there are significant differences between them in variables that might affect outcomes645. 

Outcome variable data was tested for significant changes over time and significant 

differences between groups over time. A repeated measures analysis of covariance 

(ANCOVA) was used to examine the data, treating time  as a main effect, MCT group as an 

interaction effect and the baseline value of the variable as a covariate. ANCOVA has several 

features making it suitable for use in this study. It offers enhanced power over the standard 

ANOVA for smaller samples646; it has been found to be robust to violations of parametric 

assumptions, to the extent that ordinal data with all but highly skewed distributions can be 

analysed647; any differences in variance between groups can be compensated for; finally, it 

allows the effects of variations in the baseline parameters within and between groups to be 

taken into account562 (ch24). Because the baseline score was used as a covariate it was not 

included as a dependent variable in the ANCOVA. Therefore the analysis of main effects does 

not provide information across all four time points. Planned contrasts were made between 

subsequent time points, and a two-way related-samples t-test was used to test for significant 

changes between baseline and final assessment, for each group. The non-parametric 
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Wilcoxon’s signed ranks test was used as an additional test for changes in ordinal variables 

over this period.  

For all ANCOVAs, Mauchly’s test of sphericity was applied. If significant departures were 

detected, the Greenhouse-Geisser correction was used where its ε value was less than 0.75, 

and Huyhn-Feldt otherwise644 (p431).  Significance was set to p≤0.05,  and exact significance 

was calculated for non-parametric tests as the sample sizes were relatively small644 (p528). 

Differences between treatment groups were further investigated by comparing the changes 

in scores between baseline and post-treatment assessments, and between baseline and final 

assessments. Two-tailed independent group t-tests were used for this purpose, with 

significance again set to p≤0.01 to compensate for multiple testing. The t-test has been shown 

to be reliable even with small group trials using 5-point ordinal scales648. Nevertheless the 

Mann-Whitney U test was employed as an additional test for differences between groups on 

ordinal scales. 

The global change score (GCS) was used to create a binary measure of treatment success, 

defined as GCS ≥ 2 (“much improved” or “completely recovered”), and success rates were 

calculated at each post-treatment assessment332. Treatment groups were compared on this 

measure using the odds ratio644 (p694).  

Differences over time and between groups were also quantified by the effect size for each 

variable. This is most meaningful for focussed comparisons made at single time points, rather 

than for multiple comparisons across several time points644 (p453). Therefore effect sizes were 

calculated using the formula562 (p648): Effect size = (group mean1 – group mean2)/pooled 

standard deviation. They were interpreted as 0.2-0.5 = small effect, 0.5-0.8 = medium effect, 

and >0.8 = large effect649. The effect size for changes over time was calculated for each group 

between baseline and final assessment; for differences between  groups it was calculated for 

changes between baseline and second assessment, and baseline and final assessment.  

Effect sizes based on non-parametric tests can be difficult to interpret647, but the odds ratio 

was used to signify effect size of the “treatment success” indicator644 (p693). Where statistical 

test results were non-significant, their power was calculated to gauge whether there was a 

likelihood of type II error having occurred. These calculations enabled estimation of the 

necessary sample size for a fully powered study, and were conducted using G-power650.  SPSS 

17 (SPSS Inc, Chicago, USA) was used to perform all other statistical analysis.  
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An intention-to-treat analysis was planned, with missing scores imputed for individuals by 

the last observation carried forward method, making a conservative assumption of no change 

over time562 (ch9). If an individual PRTEE questionnaire was not fully completed, any missing 

score was imputed using the rules provided by questionnaire originators539. Sub-group 

analysis of data from individual trials was deemed inappropriate because of their relatively 

small sample sizes645. 

Approval for the study, a copy of which appears in Appendix 6, was provided by the 

investigator’s institutional ethics committee, and the study was registered on 

www.clinicaltrials.gov, an international register (identifier: NCT00817232). 

 

7.3  RESULTS 

Between December 2008 and August 2009, thirty one eligible participants were randomly 

allocated into the two treatment groups. One member of group B withdrew from the trial 

after a single treatment because of an adverse event (see 7.3.3). The reported analysis is per-

protocol, but an ITT analysis including this person’s data was also conducted for the primary 

outcome variable (greyscale and hyperaemia scores) and on treatment success, and did not 

materially affect conclusions.  Inspection of treatment diaries suggested that all participants 

completed the allotted number of treatments, apart from one who missed one treatment and 

one who added a treatment by mistake. There were eight instances in group A, and four in 

group B, of treatments being missed for a day or more during the three weeks. In these 

situations more treatments were added to the end of the course to bring the total up to the 

required 21. All courses of treatment were completed within 4 weeks. One person in group B 

was unable to attend one of the follow-up sessions and another from group A missed the final 

two assessments. Their missing data was imputed by using the last set of data collected for 

each individual. Seven people had either bilateral symptoms or other morbidity potentially 

affecting grip strength measurements and their data for this variable was excluded from the 

analysis. Figure 7.2 charts the flow of participants through the trial and the baseline 

characteristics for those included in the analysis are given in Table 7.2. 
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Figure 7.2: Flow chart of participants through trial  

 

Ten people thought racquets sports were the main cause of the disorder; nine thought it was 

due to an unaccustomed load; four said it was work-related, and seven reported no obvious 

cause. Three people in the whole sample had taken sick leave as a result of the current 

episode (one in group A; two in B). Two people were experiencing symptoms bilaterally. Nine 

in group A and five in group B reported ongoing heavy upper limb use during the trial, either 

because of work activities or competitive sports (which they were unwilling to forego, 

despite advice to the contrary). All but one of these individuals  in each group reported using 

a tennis elbow brace of some kind during the trial. On initial assessment, a third of the whole 

sample showed signs of radial nerve sensitisation by reporting abnormal sensation in the 

upper limb on ULTT2B. In most cases (see Table 7.2) the test produced pain at the lateral 

elbow. 

The data set for PFGS was compromised by a leak of hydraulic fluid in the dynamometer 

during the trial. This was identified during one of the monthly calibration checks, and 

inspection of the raw data suggested that the dynamometer may have been underestimating 

grip strength for several weeks previously. A replacement device was obtained within a few 

days, and all suspect data was removed from the analysis and imputed by carrying forward 
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the last reading. This mishap led to the imputation of 18% of the dataset (12% from group A 

and 6% from group B).  

Data analysis for the patient-specific functional scale proved problematic. A third of the 

participants were unable to identify an activity that caused them difficulty and which was not 

already listed in the PRTEE. Of those who were able, some could identify three whereas 

others could only identify one. In subsequent assessments several participants could not 

provide a rating for the activity because they had not done it in the intervening time. As a 

result, complete datasets were only available for eight participants. Therefore no statistical 

analysis was attempted, although the data were considered in evaluation of the study 

protocol. 

Patterns of abnormality observed on sonographic assessments were similar to those seen in 

the reliability study. Hypoechoic areas were the most common finding in symptomatic 

tendons, being evident in 26/30 cases. Cortical spurring was also commonly observed 

(19/30), tendon thickening and fibrillar disruption less so (13/30 each). Where calcification 

was seen (in 12/30 symptomatic tendons) it was normally punctuate and sparse; in three 

cases there were large plaques.  Almost all non-symptomatic tendons had sonographic signs 

of structural abnormality. Although these were normally mild (grade 1), two had calcific 

plaques (grades 2 and 3).  A frank tear was only evident in one tendon at baseline. All but two 

of the symptomatic tendons, and ten of the non-symptomatic tendons, had signs of 

hyperaemia. The maximum Doppler signal was normally visible in the anterior portion of the 

tendon, but in several cases vessels were more prominent or only visible exterior to the 

tendon body, either just superficial or just proximal to it.  
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Table 7.2: Baseline characteristics of participants included in analysis  

Group A B 

n 15 15 

Females (n)  9 7 

Age mean ± SD (range)  55±5 (48-63) years 52±7 (40-69) years 

Arm dominance (n) 
11 Right; 2 Left;  

2 Ambidextrous 
14 Right; 1 Left 

Dominant arm affected (n) 11 14 

Median duration current episode (range)  5 (3-18) months 8 (3-24) months 

History of previous episodes (n) 4 6 

Ongoing heavy upper limb use (n) 9 5 

Positive to cervical tests (n) 8 10 

ULTT2B caused lateral elbow pain (n)  4 5 

Greyscale total score mean ± SD (range)/12 3.3±1.0 (2-5) 2.5±1.2 (0-4) 

Hyperaemia score mean ± (range)/4 2.1±1.2 (0-4) 1.6±1.1 (0-3) 

PRTEE pain score mean ± SD (range)/100 36±18 (10-78) 40±18 (12-72) 

PRTEE function score mean ± SD (range)/100 36±22 (0-84) 38±22 (4-80) 

PRTEE total score mean ± SD (range)/100 36±20 (6-81) 39±20 (14-76) 

 PFGS/MGS mean ± SD (range) 67±34 (15-114) % 66±36  (22-132) % 

 

7.3.1 Baseline comparisons between groups  

The Shapiro Wilk test showed that baseline values for participant age and PFGS ratios were 

distributed normally,  but that duration of current episode and greyscale score for group A 

were not (see Table 7.3). The skewness of group A grey-scale score (0.5) and group B 

hyperaemia scores (-0.04) were not extreme. Levene’s test suggested equality of variance 

between groups on age (p=0.613), sonographic greyscale score (p=0.221), sonographic 

hyperaemia score (p=0.864), PFGS ratio (p=0.617), and PRTEE pain, function and total scores 

(p=0.992, p=0.986, p=0.809 respectively) but non-equality of variance on duration of current 

episode (p=0.025). Inspection of box and whisker plots for baseline data indicated one 

outcome variable outlier: a participant in group B whose pain-free grip strength ratio was 

high (in other words, less severe) compared to the group mean.  
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Table 7.3: Shapiro Wilk test for normality of outcome variables  

Variable Group statistic df sig 

Age A 0.907 15 0.120 

B 0.952 15 0.559 

Duration current episode A 0.831 15 0.009 

B 0.874 15 0.038 

Sonographic greyscale score A 0.872 15 0.037 

B 0.923 15 0.241 

Sonographic hyperaemia score A 0.931 15 0.278 

 B 0.873 14 0.046 

PRTEE (Pain) A 0.941 15 0.396 

B 0.922 15 0.207 

PRTEE (Function) A 0.978 15 0.956 

B 0.954 15 0.594 

PRTEE (total) A 0.961 15 0.706 

B 0.967 15 0.809 

PFGS ratio* A 0.929 12 0.367 

B 0.911 11 0.249 

* PFGS data for participants with bilateral symptoms or other disorders potentially affecting grip 

strength were excluded from this and all other analyses. 

Tests were then applied to assess whether potentially significant baseline characteristics 

were equivalent between the trial groups. Independent groups t-tests indicated no significant 

differences on any of these variables (see Table 7.4), although  the mean greyscale score for 

group A was higher (worse) than group B and the difference nearly reached significance. 

Mann Whitney was used as an additional check on symptom duration and sonographic 

greyscale scores because of their distributions, as well as the sonographic hyperaemia scores 

because this scale had only 5 points (Table 7.5). Pearson’s Chi-square test was used to 

examine differences between groups on dichotomous variables that might influence outcome 

(see Table 7.6). No significant differences were found for any variable using any of these 

tests.  
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Table 7.4: Independent samples t-test for baseline differences between groups on continuous 
data 

Variable t df sig 

Age 1.155 28 0.259 

Duration current episode* -  0.166 23.6 0.110 

Sonographic greyscale score 1.805 28 0.082 

Sonographic hyperaemia score 1.014 27 0.320 

PRTEE (pain) -0.513 28 0.612 

PRTEE (function) -0.221 28 0.827 

PRTEE (total) -0.373 28 0.712 

PFGS ratio 0.053 21 0.958 

* homogeneity of variance not assumed 

Table 7.5: Mann Whitney test for baseline differences between groups on non-parametric data 

Variable U sig 

Duration current episode 79.5 0.174 

Sonographic greyscale score 78.0 0.155 

Sonographic hyperaemia score 84.0 0.338 

 

Table 7.6: Pearson’s Chi-square test for baseline differences between groups on dichotomous 
data 

Variable χ 2 sig 

Females 0.536 0.464 

Dominant arm affected 2.160 0.142 

History of previous episodes 0.600 0.439 

Ongoing heavy limb use 2.140 0.143 

Use of brace in study 0.122 0.269 

Positive to cervical tests 0.536 0.464 

ULTT2B causes lateral elbow pain 0.159 0.690 

 

7.3.2 Analysis of outcome variables  

Summary outcomes data for the trial groups are given in Tables 7.7, amd these are 

demonstrated graphically in Figures 7.3 and 7.4. Group means suggest improvements over 

time in most outcome measures with the exception of hyperaemia score, whose 

interpretation is discussed later. However, broad error bars indicate that the differences 

between groups and over time may not be significant and that statistical tests are required. 
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Table 7.7: Summary data for all outcomes at each assessment in Groups A and B 

Variable 
Mean score ± s.d. 

Group A Group B 

Greyscale Score / 12   

Baseline 3.3±1.0 2.5±1.2 

3 weeks 3.3±1.1 2.5±1.2 

6 weeks 2.7±0.7 2.3±1.3 

15 weeks 2.4±1.1 2.7±1.2 

Hyperaemia Score / 4   

Baseline 0.7±1.1 0.5±0.9 

3 weeks 2.3±1.1 2.0±0.9 

6 weeks 2.1±1.2 1.7±0.7 

15 weeks 2.2±1.1 1.9±1.0 

Pain-free Grip Strength ratio / %   

Baseline 0.66±0.34 0.69±0.34 

3 weeks 0.74±0.35 0.74±0.29 

6 weeks 0.79±0.33 0.69±0.34 

15 weeks 0.96±0.29 0.87±0.29 

PRTEE (pain) / 50   

Baseline 18±9 20±9 

3 weeks 11±6 17±8 

6 weeks 8±6 17±8 

15 weeks 4±5 12±6 

PRTEE (function) / 50   

Baseline 18±11 19±11 

3 weeks 9±7 18±11 

6 weeks 6±5 15±10 

15 weeks 5±5 9±7 

PRTEE (total) / 100   

Baseline 36±19 39±20 

3 weeks 20±12 33±18 

6 weeks 15±11 32±18 

15 weeks 9±10 21±12 

Treatment success / %   

3 weeks 40 13 

6 weeks 67 7 

15 weeks 93 47 
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(a) Sonographic greyscale score (b) Sonographic hyperaemia score 

  

(c) Pain-free grip strength (d) PRTEE(pain) 

  

(e) PRTEE(function) (f) PRTEE (total) 

 
Figure 7.3: Variation of outcome measures  in  
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Analyses were conducted to establish whether there were significant changes in the outcome 

variables over time, and significant differences between group outcomes at follow-up 

assessments. Table 7.8 summarises the results of repeated measures ANCOVAs conducted 

with interval and ordinal scales, with time as the main effect and treatment group as an 

interaction effect. In this and subsequent tables, p values reaching the significance threshold 

are given in bold type. Mauchly’s test indicated homogeneity of variance for every variable, 

and Levene’s test of error variance showed no significant differences across assessments for 

any variable. 

Table 7.8: Repeated measures ANCOVA for time*group interactions for groups A and B 

 Within-subjects time*group 

interactions 

variable df F p 

Greyscale 2, 54 2.77 0.039 

Hyperaemia 2, 52 0.06 0.942 

PFGS 2, 40 0.33 0.724 

PRTEE-Pain 2, 52 1.23 0.300 

PRTEE-function 2, 52 1.33 0.273 

PRTEE-Total 2, 52 0.90 0.415 

 

Within subjects contrasts showed that the interaction between time and group was 

significant for greyscale score between times 3 and 4, where F(1,27) = 5.39, p=0.03. The 

results of independent samples t-tests, conducted on changes in variables at second and final 

assessments, are presented in tables 7.9 and 7.10 respectively. 

Table 7.9: Independent samples t-test for differences between groups on change scores at 
second assessment 

 df t p Mean diff (99%CI) effect size power 

Greyscale* 14 -1.0 0.334 -0.07 (-0.12,0.25) 0.38 0.17 

Hyperaemia 27 -0.257 0.799 -0.09 (-1.1,0.88) 0.09 0.06 

PFGS 21 0.226 0.793 0.01 (-0.12,0.14) 0.11 0.06 

PRTEE-Pain 27 -1.61 0.120 -4.2 (-11.5,3.1) 0.59 0.34 

PRTEE-function 27 -0.92 0.367 -3.6 (-14.6,7.3) 0.34 0.14 

PRTEE-Total 27 -2.05 0.050 -10.5 (-24.8,3.7) 0.75 0.50 

* equality of variance not assumed;  

 



 
169 Chapter 7: Clinical evaluation of microcurrent treatment 

Table 7.10: Independent samples t-test for differences between groups on change scores at 
final assessment 

 df t p Mean diff (99%CI) effect size power 

Greyscale* 28 -3.1 0.005 -1.1 (-2.1, -0.1) 1.1 0.84 

Hyperaemia 27 -0.2 0.843 0.1 (-1.2, 1.1) 0.07 0.05 

PFGS 21 0.63 0.534 0.1 (-0.3, 0.5) 0.25 0.09 

PRTEE-Pain 27 -1.6 0.125 -5.6 (-15.5, 4.2) 0.59 0.33 

PRTEE-function 27 -0.9 0.036 -6.3 (-14.1, 1.6) 0.81 0.56 

PRTEE-Total 27 -1.3 0.197 -9.5 (-29.2, 10.3) 0.48 0.49 

* equality of variance not assumed;  

These tests confirmed that, for most variables, improvements in scores did not differ 

significantly between groups. The significant difference between groups in greyscale score 

improvements was in favour of group A. Calculations of effect size and associated power  

demonstrated that low power was an issue in all cases of non-significance, which means 

there was a significant risk of type II error, missing a significant difference when one existed. 

Because there were significant numbers of tied ranks between groups in the greyscale score 

changes, a contingency table was constructed and Kendall’s tau-b calculated for the 

difference in improvements at final assessment. These indicated a significant association 

between group and level of improvement (see Table 7.11) in favour of group A, with 

Kendall’s tau-b = 0.46, exact sig = 0.005, confirming the result of the t-test. 

Table 7.11: Greyscale score change between baseline and final assessment in groups A and B 

 Greyscale Score change 

Group -3 -2 -1 0 1 2 

A 1 4 3 6 1 0 

B 0 0 1 12 0 2 

 

Five cases had evidence of a frank tendon tear (an anechoic area), which was not accounted 

for in the greyscale score. In one case in group B, the tear was visible at baseline and did not 

change significantly over the duration of the study; in two cases (one in each group), a tear 

became apparent at third assessment but had resolved by the final assessment; and in two 

cases (one in each group), a new tear was apparent at the final assessment.  These changes 

did not show any obvious correlation with pain or global change scores, except that the case 

with no change in the tear showed no change until the final assessment, when the pain score 

dropped and the GCS = +1. Most cases of calcification were grade 1, but in group A there was 

one grade 2, which resolved entirely, and one grade 3, which reduced to grade 2 by final 



 

  

170 Chapter 7: Clinical evaluation of microcurrent treatment 

assessment. In group B there was one case with grade 2 calcification, which did not change 

over the course of the study. All three showed substantial improvement in symptoms by final 

assessment. 

In order to calculate the effect size of the treatment between baseline and final assessment, a 

related samples t-test was conducted for each group at these time points. Results, along with 

effect sizes for each variable are presented in tables 7.12 and 7.13.  

Table 7.12: Related samples t-test for differences in scores between baseline and final 
assessment for group A 

 df t p Mean diff (95%CI) effect size 

Greyscale 14 -2.98 0.01 -0.88 (-1.5, 0.2) 0.77 

Hyperaemia 14 0.44 0.67 0.13 (-0.52, 0.79 0.11 

PFGS 11 2.67 0.02 0.31 (0.05, 0.57) 0.71 

PRTEE-Pain 13 -4.99 <0.001 -13.5 (-19.3,- 7.8) 1.34 

PRTEE-function 13 -4.78 <0.001 -13.2 (-19.2, -7.3) 1.27 

PRTEE-Total 13 -5.16 <0.001 -26.9 (-38.1, -15.6) 1.37 

 

Table 7.13: Related samples t-test for differences in scores between baseline and final 
assessment for group B 

 df t p Mean diff (95%CI) effect size 

Greyscale 14 1.00 0.334 0.20 (-0.23, 0.63) 0.26 

Hyperaemia 13 0.82 0.426 0.21 (-0.35, 0.78) 0.23 

PFGS 10 3.51 0.006 0.23 (0.08, 0.37) 1.06 

PRTEE-Pain 14 3.68 0.005 -7.9 (-12.9, -2.9) 0.87 

PRTEE-function 14 3.48 0.004 -9.7 (-15.6, -3.7) 0.90 

PRTEE-Total 14 3.54 0.003 -17.4 (-17.9, -6.9) 0.91 

 

Changes in all variables were significant, with the exception of hyperaemia for both groups 

and greyscale score for group B. The power of the tests in these cases was found to be less 

than 0.3. Wilcoxon’s signed ranks, conducted with all the ordinal scales as an additional check 

for significant change over time (see Table 7.14), confirmed the findings of the related 

samples t-tests for each group.  
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Table 7.14: Wilcoxon’s signed ranks for changes between baseline and final assessment in 
ordinal variables with groups A and B 

               Group A          Group B 

Variable Z Exact Sig  Z Exact Sig 

Greyscale -2.4 0.020  -1.1 0.500 

Hyperaemia -0.5 0.745  -0.8 0.594 

PRTEE-Pain -3.2 <0.001  -2.7 0.004 

PRTEE-function -2.8 <0.001  -2.9 0.002 

PRTEE-Total -3.3 <0.001  -3.0 0.001 

 

The numbers of successful treatments in each group at each post-treatment assessment are 

plotted in Figure 7.4, along with the corresponding success rates. Group A performed 

considerably better than group B at all assessments. One member of each group saw 

deterioration in symptoms between second and third assessments, but improved again by 

final assessment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Number of successful treatments and success rates for groups A and B 

 

Chi square values and odds ratios calculated for each post-treatment assessment (see Table 

7.15) show significant associations between group and success rates by assessments 3 and 4, 

and odds ratios in favour of group A at all time points. (The chi square test was 

underpowered at assessments 2 and 4 because cell counts were less than expected, but 

Fisher’s Exact test reached the same conclusions.) 
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Table 7.15: Differences in success rates and odd ratios for success in groups A and B 

Assessment χ2 Exact Sig Odds ratio (95%CI) 

2 2.7 0.215 0.23 (0.04, 1.4) 

3 11.6 0.002 0.04 (0.004, 0.36) 

4 7.8 0.014 0.06 (0.006,0.61) 

 

7.3.3 Adverse events and side effects  

Group A  

Two people reported occasional tingling either in the forearm or little and ring fingers; one 

reported initial discomfort during the first few treatments, and another felt forearm muscle 

tightness and discomfort during and for a few minutes after treatment. One person handled 

the device with wet hands and reported receiving an electric shock, with arm ache for a few 

subsequent days. Another person reported receiving a mild pulsing shock when touching the 

USB cable socket. 

Group B 

Seven people reported tingling, usually for the initial few minutes of treatment; one of these 

said the feeling was stronger some days and that symptoms were stirred up on those days. 

Another reported three episodes of arm ache the morning after treatment. One person 

reported strong unpleasant bilateral leg tingling during the night after the first treatment and 

withdrew from the trial. Another person reported mild erythema under the cathode after 

treatment, which quickly disappeared. 

7.3.4 Acceptability  and ease of use  

Generally, participants found the devices easy to use. Being able to choose a convenient 

treatment time was appreciated, and nobody said they found the programming necessary 

with this device difficult. The main practical problems reported were associated with the 

length of the electrode leads. These were found to catch on furniture if the wearer moved 

around, even when the device holder was used. If the holder was used, it was necessary to 

unplug and re-plug the leads after treatment is started, which might have led to inadvertent 

pushing of buttons. The holder also obscures the viewing screen. Although the device has an 

audible alarm to indicate whether the circuit has been broken, this does not work below 

about 100 μA, and so the feature was unavailable to group A.  
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The device used rechargeable batteries and participants were supplied with a recharger and 

a spare pair of batteries to avoid missed treatments. Despite the provision of new batteries, 

several participants reported having to recharge them several times over the whole course of 

treatment. All participants said they used the alcohol wipes per protocol, but unused 

materials returned after treatment suggested that may not always have been the case.  

 

7.4  DISCUSSION 

The primary aim of this trial was to investigate whether varying the current intensity of MCT 

affects outcomes in chronic tennis elbow. Although mean improvements in outcomes 

consistently favoured Group A, the differences were rarely statistically significant. It is clear 

from the analysis that the study was underpowered for many of the tests. Effect sizes for 

differences between groups are generally small, as are the corresponding power values, and 

so there was significant risk of type II error – failure to identify a real difference (of 2.0 units) 

between the groups when one existed. The test for differences was close to significance for 

PRTEE function and total score changes by the second assessment, and it passed the 

significance threshold for improvements in the greyscale score by the final assessment. For 

other measures, it is not possible to state with confidence whether or not outcomes differed 

between the two groups. Treatment success rates were significantly in favour of group A at 

third and fourth assessments. By final assessment, the odds ratio suggests that treatment 

success was sixteen times more likely in group A than group B. Such a discrepancy is strongly 

suggestive of a real difference between groups in outcomes that are important to the patient.  

The various prognostic indicators that were identified did not differ significantly between 

groups, and so could not account for the observed differences in outcome. Placebo might 

have influenced treatment effectiveness, but the same device was used by both groups. Group 

B received the higher current intensity and reported more sensory stimulation during 

treatment so the placebo effect might have been expected to favour that group. Yet group A 

saw greater levels of treatment success. Therefore, it is reasonable to suppose that the 

consistent pattern of better outcomes observed in that group on most variables represents a 

real difference. Although effects sizes tend to be small, the differences suggest that MCT does 

impact upon signs and symptoms of tennis elbow, but the sonogarphic data is less persuasive 

regarding structural change. 
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Although there were statistically significant improvements in most measures over the course 

of the trial, this cannot be taken as proof that MCT was the cause of those improvements, 

because the trial did not include a control group. Tennis elbow tends to resolve over time, 

and so some improvement would be expected even if no treatment were applied. However, if 

the treatment had no effect, no difference in outcomes would be expected between the 

groups because they did not differ on significant prognostic indicators. Since they differed 

significantly by final assessment, both on greyscale score improvements and treatment 

success rates, it appears that MCT does indeed influence these outcomes. The behaviour of 

each variable is now considered in more detail.  

7.4.1 Tissue healing 

The two outcome variables providing the most direct evidence regarding tissue healing are 

the sonographic greyscale and hyperaemia scores. Structural abnormalities - as quantified by 

the greyscale score - were mild in a majority of the participants, with no baseline scores 

greater than 5/12. This limited the scope of the scale to demonstrate improvement. 

Nevertheless, scores improved over time, and the largest effect size observed was between 

groups by the final assessment. Although the effect size was large, the absolute difference 

(1.1) was rather small. In fact, it is less than the minimum detectable change for the scale 

(2.0) calculated in the reliability study. The confidence interval for the mean difference 

includes the MDC value, and the variance observed in raw greyscale scores in this study was 

less than in the reliability study so that the observed mean difference may indeed represent a 

real change. However, the clinical significance of such a difference is unknown without 

histological comparison. Calculations using the change data at the second assessment suggest 

that a total sample size of 110 (55 per group) would provide a power of 0.8 to detect a real 

difference between groups at that time. 

The presence and absence of tears and calcifications in the tendon did not appear to correlate 

with pain levels and global changes scores; and no significant sonographic changes appeared 

to accompany the two cases of symptom deterioration. Although the numbers of cases 

involved are too small to draw general conclusions, these observations suggest that 

structural changes in the tendon are not necessarily associated with pain levels, at least in 

cases of chronic tennis elbow. Other factors, such as neural and biochemical changes, may be 

more significant in determining symptoms. 

On initial inspection, variations in hyperaemia scores appear erratic. No significant changes 

were detected over time or between groups, yet there is a noticeable pattern. Both groups 
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demonstrated initial rises in hyperaemia after treatment followed by a fall in the three weeks 

after treatment ceased, and then a further rise by final assessment. At the sensitivities of 

Power Doppler scanning typically available with equipment used in clinical trials, any 

detectable blood flow would be regarded as abnormal555. However, this does not mean that it 

is pathological. Rather, it may be a physiological response to tendon damage, since 

angiogenesis and concomitant increases in blood flow are integral to tissue repair285. 

Increased blood flow may therefore be a sign of a dormant repair process being re-

stimulated. If normal healing resumes, blood flow would be expected gradually to tail off as 

the proliferative phase gives way to remodelling, the final stage of the process. The data show 

some consistency with this pattern, although the second rise in hyperaemia does not follow 

it. This might be explained by re-injury of the tendon in some cases, although none of the 

seven people in whom such rises were observed reported an obvious recurrence, and no 

other significant features (such as heavy upper limb use or not wearing a brace) were 

common among them. A further potentially significant feature arises from the fact that post-

treatment assessments were often conducted a few days after treatment was completed. 

Hence, if the microcurrent was the cause of blood flow increases, the effect was sustained for 

some time after treatment was completed.  

The patterns depicted in Figure 7.3(b) mask a range of individual responses across the whole 

sample. Intra-tendinous blood flow rose between baseline and first assessment in only 11 of 

30 cases, and fell in four. It was unchanged in 14 cases (baseline data was unavailable for one 

person). Inspection of the data showed that most cases where increases were seen after 

treatment began with low hyperaemia scores, and all those with decreases had higher 

baseline blood flow levels. These apparent changes and differences in response could be 

artefacts, results of random variations or measurement error. On the other hand, individual 

responses to MCT may have been influenced by some other factor, such as the phase of 

healing. Blood flow levels change during the healing process: a high level may be a sign of 

normal neovascularisation that would be expected in the proliferative phase of repair, or it 

could be indicative of dysfunction at a later stage, when the number of neovessels would 

normally be expected to reduce. An effective therapy would evoke different responses in each 

case, depending on the initial status of the tissue. If such effects were occurring in this trial, 

aggregating data to test for whole group behaviour and inter-group comparisons may be 

inappropriate. It might account for the non-significance of changes in blood flow analysed at 

a group level, but the sample size means that sub-group analysis is not viable.  This issue is 

revisited in the report of the second trial and pooled analyses in chapter 8. 



 

  

176 Chapter 7: Clinical evaluation of microcurrent treatment 

If microcurrent was indeed responsible for the changes in blood flow, this raises a number of 

issues. In particular, how can microcurrent of a single intensity both stimulate and suppress 

blood flow? It may be that the tissue and cells themselves determine the response. As tissue 

structures and composition change during injury and healing, their electrical characteristics 

also change: the presence of more tissue fluid may decrease circuit impedance relative to the 

surrounding tissue and therefore change the path of applied current and the pattern of 

current density in the area. Tendinopathy is accompanied by a fall in tendon impedance651 

and so more of the available current would be taken than by a healthy tendon. Macrophage 

migration in a wound subjected to an electric field has been found to depend on the stage of 

healing79. It is conceivable, then, that microcurrent might bring about different effects 

depending on the current status of the tissue and disposition of the cells. This is consistent 

with the findings of the literature review in Chapter 3, that microcurrent of constant intensity 

can promote quite different aspects of the tissue repair process, such as proliferation,  die-

back of granulation tissue and prevention of adhesions. Of course, even if microcurrent can 

both stimulate and suppress blood flow, it is not self-evident that the changes observed in 

this study are desirable; but they are at least consistent with a model of MCT enhancing the 

healing process as a whole, not merely one part of the cascade. 

Several studies monitoring blood flow levels during treatment for tennis elbow have 

interpreted reductions in blood flow as an improvement in tissue status374, 389, 397, 516. The 

argument presented here suggests that this may not be appropriate in all cases. Indeed, a 

therapy used with the intention of reducing hyperaemia - or more specifically neovascularity 

- may be contraindicated if an inadequate healing response rather than undesirable blood 

vessel formation is the problem. This underscores the potential importance of preliminary 

sonographic assessment to identify the nature of the problem.  

The type of tendinopathy present in a particular case might also influence outcome. The 

composite greyscale score aggregates several forms of structural abnormality, such as 

calcification or fibrillar disruption, which could itself be secondary to micro-tears or 

degeneration. In this study, frank tears or signs of joint effusion were occasionally observed, 

but these were not included in the greyscale score. It may be that some forms of 

tendinopathy are more responsive to MCT than others, and analysis of outcomes based on 

different classifications of tendinopathy might provide insights in this matter.  
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7.4.2 Pain-free grip strength 

The analysis of data for this outcome variable was marred by the problems experienced with 

the dynamometer. Use of the last-observation-carried-forward approach results in a 

flattening of the response curve for affected individuals and real changes that may have 

occurred are missed. This is likely to have decreased the calculated mean change values for 

both groups, since data from participants in each were affected, but the impact on the t-test 

results is difficult to assess. Imputation was only necessary for four of the final assessment 

readings, so the calculated changes over the full course of the study are likely to have been 

depressed only to a minor extent. The mean difference between baseline and final 

assessments in the better performing group A was 0.31, meaning that PFGS increased by 

31% as a ratio of maximum grip strength on the unaffected side. The clinical significance of 

such a change is unclear – studies investigating the practical implications for the patient of 

particular levels of improvement have not been reported.  

The mean difference between groups in improvements in PFGS by final assessment was 0.1, 

or a 10% difference between the ratios, which only just exceeds the minimum detectable 

change value identified in the reliability study. Therefore, although robust conclusions cannot 

be drawn on this outcome variable because of the low power of the test, the effect sizes for 

differences between group improvements are so small it seems unlikely there was any 

meaningful difference between them. In other words, varying the microcurrent intensity 

probably did not affect improvements in pain-free grip strength. The absence from the trial of 

an exercise programme focusing on increasing grip strength may have meant that any 

potential gains due to falling pain levels were not exploited. Had such exercise been 

incorporated into the treatment programme, any pain relief may have been accompanied by 

more substantial gains in PFGS.  

Clearly, monthly checks on dynamometer calibration were insufficient in this context 

because the problem affected a significant percentage of the data analysed. However, the low 

power of the t-tests for grip strength is also a function of the large variance observed in the 

change scores and the small sample size, reduced still further by exclusion of those with 

bilateral symptoms and upper limb co-morbidities. Although the preliminary reliability study 

indicated that this measurement had excellent reliability with a narrow confidence interval, 

the experience of its use in this trial was less satisfactory. The standard deviation of the mean 

PFGS ratio in the reliability study with symptomatic participants was 0.24, compared to 0.33 

in the baseline values in this study. The lower mean baseline score suggests that more severe 

presentations were included in the trial, which would contribute to the increased variance. 
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The limited information available from this outcome measure is unfortunate because it was 

one of the most objective measures used in the trial. However, this does not necessarily mean 

that PFGS should not be used in another study – larger effect sizes might well be observed 

between two other forms of MCT, or between MCT and another type of treatment. 

7.4.3 Patient-rated tennis elbow evaluation 

Improvements on the pain, function and total scores were observed in both groups over the 

course of the study. The baseline mean scores on each of these scales were equivalent to 

36/100 for group A and 40/100 for group B - indicative of fairly mild presentations of the 

disorder (although severe presentations were also found in the sample). By final assessment, 

the pain, function and total scores had fallen respectively by 39%, 51% and 45% of their 

baseline values in group B and in excess of 70% in group A.  Though substantial, the clinical 

significance of such changes in PRTEE scores has not been established. Studies conducted 

with single item numerical pain scales have suggested that changes of 30% are clinically 

significant, correlating with a global rating of “much better” 652, 653. Multiple-item pain scales 

may have lower clinical significance thresholds654. By the more conservative standard, 

changes on the PRTEE-pain scale were clinically significant for group A at both past-

treatment and final assessment, and for group B by final assessment only.  

If the patterns observed in Figure 7.3 were to represent real differences between group 

improvements, they would suggest that group A performed better than B initially, and that 

the scores converged in the longer term. Thus, a worthwhile acceleration in symptom 

alleviation might be occurring. It is difficult to judge the clinical significance of the different 

rates of improvement, but the greater change in pain score by first assessment in group A 

suggests a worthwhile advantage. Calculations with G*power using the computed effects 

sizes suggest a total sample size of at least 94 would be necessary to achieve a power of 0.8 in 

identifying differences between groups in pain score changes at either assessment. Fewer 

(58) would be required for adequate power at second assessment for total scores changes, 

but many more (276) for functional score changes.  

Comparison with the treatment success criterion (based on reported GCS values), offers 

some useful insights into the significance of the change scores. Like the PRTEE, the 

judgement of treatment success was based on subjective scoring by the patient. Even though 

the absolute falls in PRTEE scores did not differ substantially between groups, the treatment 

success rates did so at all post-treatment assessments. Several factors may account for this 

apparent discrepancy: 
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- patients may judge levels of improvement by criteria other than those rated in the 

PRTEE. However, the instrument was developed specifically as a sensitive measure of 

change for tennis elbow and has been validated for this purpose. The fact that few 

participants were able to identify problematic activities other than those identified by 

the PRTEE suggests that it does have reasonable coverage of functional deficits.  

- the lack of an item addressing average pain intensity over the last week may have 

reduced the PRTEE’s sensitivity to change. Estimates of average pain levels in the 

preceding period is a common outcome variable in tennis elbow trials332, 401, 406, 429-437.  

Items addressing worst and least pain over the preceding week do not  provide the 

same information. Thus, the PRTEE may be unable to distinguish between two people 

with the same maximum and minimum levels but very different average pain levels.  

- there may be threshold scores on the PRTEE that are significant in themselves for a 

patient. Thus, as long as the score falls below that threshold, the patient may judge 

that a significant improvement has occurred, irrespective of the baseline score. 

A study that used an anchor-based approach, correlating PRTEE scores with performance on 

another outcome measure whose clinical significance is already established, could help 

resolve the issue, but none has yet been reported. Using the global change score as the 

comparator offers the benefit of a measure whose clinical significance is reasonably 

straightforward to interpret; but it has the disadvantage of being a purely patient-rated 

measure – triangulation with an independent measure (such as a clinician rating of success) 

would increase the credibility of findings. 

The charts suggest that pain and function scores followed similar trajectories over time, 

which is not surprising given that pain was the factor reported by participants as having the 

greatest impact on activities of daily living. It is likely that, at least in chronic cases, strength 

losses would follow any reduction in use of the affected limb to avoid painful movements, and 

so functional deficits may follow. Rates of change were not identical on these subscales 

however, and this confirms that they were not measuring the same thing. 
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7.4.4 Patient-specific functional scale 

The problems associated with the use of the PSFS were surprising, since it was assumed that 

all participants would be able to identify at least one additional activity that caused them 

difficulty. This was not the case. Several of those who were able to identify an activity 

appeared to find it difficult to rate it consistently, and in many cases the values given were 

quite at odds with their subjective descriptions of symptoms and their global change ratings. 

In the study from which the PSFS originated540, participants were informed of the numerical 

rating they had assigned to each item at baseline assessment. The authors speculated that its 

reliability might be reduced if respondents were unaware of their previous ratings, as was 

the case in this trial. Guidance on this point is not commonly given by the originators of 

subjectively-rated scales – none was provided in the PRTEE manual539. If blinding to previous 

scores reduces the reliability of a scale, this measure may have been similarly affected. Most 

PRTEE reliability studies have used test-retest periods of two days or less355, 457, 655, 656, so 

memory bias may have led to inflated estimates of reliability. In this study PRTEE scores 

appeared broadly consistent with subjective accounts and global ratings, but their reliability 

– and consequently their responsiveness – may have been reduced by blinding to previous 

scores. This seems to have occurred with the PSFS. 

7.4.5 Global Change rating 

As noted previously, tennis elbow is a multidimensional syndrome: very different 

combinations of tissue damage, sensorimotor deficits and pain behaviour may present in a 

sample of people with the same diagnosis381. Individual outcome variables such as PFGS and 

function scales cannot encompass the totality of the disorder, which is why several measures 

were selected for this trial. The global change score is arguably one of the most significant 

outcome variables precisely because of its non-specificity. Its dependence entirely on patient-

rating may be seen as a disadvantage, and it cannot fully  compensate for the relatively poor 

performance of some of the other outcome measures. Its value might have been enhanced if it 

had been supplemented with a clinician-rated global change score. However, these caveats 

do not detract from the value of a patient-centred measure that expresses opinion on the 

totality of the experience of the disorder. 

The levels of treatment success noted in group A immediately after treatment, and the 

significant differences in success rates at subsequent assessments, along with odds ratios 

substantially in favour of group A, provide strong evidence that the two forms of MCT differ 

in their impact. Deciding on the clinical significance of differences in success rates is rather 
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arbitrary, but a criterion of a 25% difference has been suggested332, 333. Using this benchmark, 

the differences between groups A and B were clinically significant at third and fourth 

assessments (6 and 15 weeks after baseline). This is consistent with some members of group 

B having suffered a relapse by third assessment, which also depressed the group’s 

subsequent success rate. The effect sizes at these times, represented by the odds ratio in this 

study, are substantial and suggest that the treatment provided to group A was considerably 

more effective than that given to group B. 

Reconciling the substantial differences between group success rates with the much smaller 

differences apparent between them on PFGS improvements is not straightforward. A 

combination of problems with the dynamometer, small sample size and large variance may 

have led to an unreliable impression of the differences between groups. It could also be that – 

where grip strength reductions due to pain are fairly mild – improvements in the PFGS ratio 

play only a small part in the patient’s perception of their condition. However, this begs the 

question: what other factor or factors determine the judgement of significant improvement in 

the condition? Perhaps the gripping movement used with the dynamometer does not 

adequately model those that are used in normal functional activities. Maybe resting pain, 

rather than pain on gripping, was the dominant feature for some participants. The issue 

remains unresolved. 

7.4.6 Patient experience 

The treatment was generally positively regarded by participants. Judging by the diary sheets, 

compliance was very good. This form of MCT offers the potential attraction of control over 

various elements of the treatment (e.g. time and location), combined with an essentially 

passive experience that required relatively little effort on the user’s part. Given these 

features, a longer treatment period might well be feasible. However, if the treatment had also 

involved an exercise programme, compliance with both may have decreased. This could be a 

challenge, were MCT to be trialled as part of a broader management strategy. 

Reported adverse events were mostly transient but occasionally unpleasant sensory 

stimulation. The two cases of mild shocks delivered by the device were concerning, given that 

it had the CE mark of health and safety approval, and the supplier was informed of these 

events. Both cases were from group A, who were receiving only 50 µA treatment, so it is 

probable that the shocks were due to contact with the USB socket rather than the treatment 

output sockets. It seems unlikely that the case of bilateral leg tingling (in Group B) could 

reasonably be attributed to microcurrent stimulation received some hours previously. 
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Sensations reported with the 500 µA current appeared similar in nature to those experienced 

with Transcutaneous Electrical Nerve Stimulation (TENS). Some users (though none in this 

study) may find these sensations unpleasant and MCT at this intensity might be unsuitable 

for them. Although TENS is used for analgesia, the greater reductions in PRTEE pain scores 

seen in group A (where sensory stimulation was rarely experienced), suggest that a different 

mechanism is responsible for pain relief by MCT – see section 9.3 for further discussion of 

this  issue.  

7.4.7 Is MCT more effective than wait-and-see? 

The significant test results obtained for variables suggests that outcomes differed between 

the treatment groups. This implies that MCT was responsible for at least some of the 

observed change. Both groups improved on most of the measures, but the trial itself could 

not test whether MCT produces significantly better outcomes than if no treatment had been 

received. This question can be addressed by comparisons with data from other trials that 

involved a minimal intervention group. No such data is available for the primary outcome 

measures of tissue change, but comparative data has been published for several of the other 

variables used in this study. The same definition of treatment success was used in two other 

trials that involved “wait-and-see” groups332, 333. They received advice, and were allowed ad 

lib analgesia and brace use, as in this study. The success rates for these groups were 27% and 

32% at six weeks after baseline and 55% and 60% at 12 weeks after baseline, respectively. 

Group A rates (albeit at 6 and 15 weeks) compare favourably with these, comfortably 

exceeding the 25% clinically significantly difference criterion. In the comparator trials, 

success rates for both minimal intervention and active physiotherapy groups reached 80-

85% by 26 weeks, compared with 93% by 15 weeks in group A of this trial. Thus the speed of 

recovery was superior with MCT. Group B performed poorly on all these comparison, 

however. 

Caution is required in interpreting these comparison. The baseline PFGS ratios and measures 

of functional disability in the minimal intervention  groups suggested that they began with 

more severe presentations. On the other hand, the comparator studies excluded those with 

bilateral symptoms, peripheral nerve involvement and a range of upper limb co-morbidities. 

Such characteristics were common in this trial, and may have depressed success rates 

compared to the other studies. Hence, there is strong evidence that varying current intensity 

affects global outcome, and limited evidence that one form of MCT produces a clinically 

significantly better global outcome than a minimal intervention approach over the specified 

periods. 
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Data for minimal intervention groups in several studies are also available for other outcome 

measures used in this trial. The two studies cited above332, 333 measured improvements in 

mean PFGS ratio values of 50% and 110% of baseline values by 12 weeks. Two other trials 

measuring raw PFGS scores (rather than PFGS/MGS ratios) in no-treatment groups saw 

percentage improvements of more than 35% over 12 weeks in one study443 and less than 

10% over 7 weeks in another415. These compare with changes in group A mean PFGS ratios of 

approximately 15% of baseline by 6 weeks and 50% by 15 weeks. The wide variety of 

outcomes in the comparator studies presumably reflect different sample characteristics. It 

seems unlikely that MCT would produce substantially worse improvements in PFGS than no 

treatment at all, and the problems experienced in dynamometry may account for the 

apparently poor performance in this trial compared to the best of the others. The variance 

observed in mean PFGS ratios in this trial (SD = 0.34 at baseline) was high compared to that 

reported in one of the other studies (SD = 0.22)333. 

One trial also used the PRTEE as an outcome measure415 with a minimal intervention group, 

and recorded changes of 6%, -10% and 4% of baseline pain, function and total scores at 7 

weeks. These compared to improvement of over 50% of baseline values on all three scales by 

6 weeks in group A of this trial. Relevant information, including symptom duration and a 

description of the minimal intervention, was  absent from the report of the comparator trial 

and so the groups may have differed in important respects. 

Taken together, these comparisons provide limited evidence that using low frequency 

monophasic MCT of 50µA peak current intensity can produce outcomes superior to those 

obtained from  a minimal intervention study. 
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7.4.8 Study limitations 

A number of limitations have already been identified in the conduct of this trial. Perhaps the 

most significant is that it was underpowered for many of the tests. A combination of rather 

small effect sizes in some cases and large variances in others, meant that there was limited 

statisitically significant evidence of differences between the groups. The possibility of type II 

error is evident from the small effect sizes observed. However, significant differences were 

apparent for the greyscale sonographic score, a primary outcome variable, and the global 

change score, whose clinical significance is straightforward to interpret. 

Inherent in the design of the study was its inability to prove whether MCT was more effective 

than any other form of management, including minimal intervention. The comparison studies 

provided the opportunity for some cautious inferences to be made on this question, but the 

sample size calculated based on the differences in success rates refer only to clinical 

outcomes and may underestimate the sample required to detect differences in sonographic 

scales. Those sonographic scales have not been validated, and may not have been responsive 

enough to register significant changes in tissue status. The aggregation of scores for separate 

elements increased the number of levels available on the scale but, since all included cases 

had baseline scores in the lower half of the scale, its scope for detecting changes greater than 

the MDC was limited. Had the sample contained more severe presentations, the scale may 

have been more fit for purpose. The lack of more severe cases may have been a result of the 

method of recruitment – via local advertising rather than through clinics or GP referrals. It 

may be that potential participants with worse symptoms were already receiving treatment 

elsewhere. The revision of the greyscale abnormality grading system was intended to 

increase its reliability, but this was not tested. The inter-rater reliability of the revised scale 

should be evaluated before use in any other studies.  

Several measures could have improved the methodological quality and value of the trial. The 

randomised list for group allocation could have been generated and held by a person 

independent of the study to ensure the investigator was blind to allocation. Protocol choices 

that were based on pragmatic considerations – such as the inclusion of participants with 

upper quadrant co-morbidities and the lack of control of brace use - may have increased the 

generalisability of its findings; but they also diminished its capacity to establish a clear cause-

effect relationship between independent and dependent variables and may have reduced 

treatment effect sizes. A longer assessment period may have increased the chances of 

significant greyscale changes becoming evident, and would have enabled longer term 

outcomes to be monitored. Although the treatment period was justified on pragmatic 
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grounds, it was shorter than those found most effective in the bone and skin trials reviewed 

earlier, and potential benefits of longer treatment times may have been missed. Likewise, the 

absence of a exercise-based co-intervention – whilst justified on pragmatic grounds – meant 

that the value of MCT as an adjunct treatment was not considered. Several of these issues are 

addressed in Chapter 9 when a proposal for a full-scale trial protocol is presented. 

The generalisability of findings may be threatened by differences between this study sample 

and the wider population of people with tennis elbow. The mean age, gender balance, and 

proportions of participants with bilateral symptoms, dominant arm affected, and attribution 

of symptoms to sporting involvement appears similar to that observed in epidemiological 

studies and reviews285, 530, 619. On the other hand, the proportions reporting attribution of 

symptoms to work activities is somewhat lower than reported in some reviews (30-45%339, 

530 compared to 13% in this study). There is no direct evidence that this affects outcomes, 

although those who continue in heavy manual work tend to have worse outcomes336, 338 or 

recover more slowly631. 

 

7.5  CONCLUSION 

The statistically significant differences and associations detected in this trial suggest that at 

least one form of treatment appears capable of resolving symptoms more rapidly than a 

minimal intervention approach; used as an adjunct treatment, MCT may provide more 

substantial benefits. The evidence for its contribution to tissue healing was mixed. Some 

greyscale changes were seen over a period of weeks in individual cases, but group trends 

only became apparent in the longer term, over several months. The changes over time may 

not have had any clinical significance, and the differences between groups were minor. On 

the other hand, if the patterns of change in hyperaemia were real, they would suggest a 

potentially significant physiological effects of MCT. This is worth pursuing, because the data 

could enhance understanding of the role of bioelectricity and microcurrent in tissue repair. 

Differences in  response observed between individuals suggest that secondary sub-group 

analysis may be informative. Certainly, further investigation of the apparent patterns of 

change is warranted because they may have important consequences for the choice of 

treatment in particular cases. They may also contribute to apparently non-significant group 

differences in trials where other forms of treatment for tennis elbow are being evaluated. 

These issues are considered again in the pooled analysis reported in section 8.6. 
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Because of the lack of available comparable sonographic data, it is uncertain whether the 

changes observed might have happened without MCT. However, it seems unlikely that the 

patterns of change observed in hyperaemia would have occurred without any treatment. The 

potential role of these changes in the healing process have been discussed, but their 

implications for both tissue repair and clinical outcomes have yet to be explored. Obtaining 

human tissue samples to assess the impact of MCT on tissue structures would present 

methodological challenges and ethical concerns; animal studies are probably more feasible. 

Microdialysis could provide indirect evidence by monitoring the presence of chemical factors 

involved in matrix and vascular structural changes657. The most practical implication of these 

findings may be to inform further debate about the bioelectric components tendon healing, 

although the sonographic data provides at least limited evidence that MCT can impact upon 

the healing process in chronic tennis elbow. However, the differences observed between 

groups are insufficient to infer that one current intensity has more impact on healing than 

the other. 

The significant changes over time and differences between groups observed in treatment 

success rates, suggest that MCT can promote resolution of symptoms, and that MCT with the 

stated parameters is more effective in doing so at 50 µA than at 500 µA amplitude. The most 

convincing evidence for this conclusion comes from the treatment success rates. The other 

measures - indicating consistent but non-sigificant difference in favour of Group – are mostly 

dependent on patient opinion. The case would be strengthened if significant differences were 

seen in more objective measures, and a full trial protocol should certainly include at least 

one.  

This trial compared the effects of two current intensities and established that the lower 

intensity produced the better outcome. As the literature review indicated, many other 

parameters may also be varied, but little is known about whether they too can be optimised 

for maximum benefit. Trials comparing the effects of varying these other parameters might 

enable more precise definition of the therapeutic window. It could be, for example, that the 

effects of lower intensity microcurrent are enhanced by selection of a particular waveform. 

The possible combinations are limitless but, given the findings of this study, it would be 

useful to compare the effects of treatments that deliver similar low intensity current, but 

differ on at least one other parameter. Conducting another trial with a similar protocol would 

enable pooling of data from both studies, to make multiple comparisons and explore new 

avenues of analysis.  It would also provide further experience to inform development of a 

fully powered controlled trial. This work is the subject of the next chapter. 



 

 

Chapter 8 
Further clinical evaluation of 

microcurrent treatment 

 

8.1  INTRODUCTION 

During recruitment for the trial reported in chapter 7, it became apparent that more 

participants would be available that were required by the protocol. Therefore it was decided 

to conduct a further trial, comparing the effectiveness of two other forms of MCT. The 

WeWoThom and the Synapse Tendonworks, which were judged suitable for use in a clinical 

trial by the laboratory evaluation reported earlier (see section 5.4.1), were selected for the 

purpose. They deliver similar currents - of the order 25 µA - for at least part of the treatment 

time, but their parameters differ in several other respects, including waveform and treatment 

duration. Hence, this trial compared two different sets of MCT parameters. The Tendonworks 

is specifically marketed to promote tendon healing and its parameters are based on (but not 

identical to) those found effective in a trial of MCT for Achilles tendinopathy251. The 

parameters of the WeWo are based on studies (not published in English - see Table 5.1 for 

source) suggesting that they can reduce musculoskeletal pain and promote microcirculation 

and tissue healing. 

As well as comparing the effects of these two devices, the trial considered adverse events, 

patient acceptability and ease of use in clinical practice. It was expected that a comparison of 

outcomes with those of the first trial would provide additional insights into the relative 

effectiveness of different forms of MCT. Although the two trials were distinct in their 

recruitment periods, their protocols were similar and their participants were drawn from the 

same sources, so it was envisaged that pooled analysis of data would be possible. This 

chapter reports the second trial and the pooled analysis that followed it. 

 

8.2  TRIAL PROTOCOL 

The aims of the trial were the same as in the previous study, except that the comparison was 

between two forms of MCT that varied in several parameters. The WeWo Thom supplied a 
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nominal 25 µA high frequency balanced biphasic current for six hours; the Tendonworks 

delivered a three phase programme, with a low frequency monophasic waveform of average 

intensity 20 µA for 20 of the total 30 minutes. The microcurrent parameters of both devices 

are described in more detail in section 5.4.1. Treatment with the WeWo Thom was given once 

daily for three weeks. The Tendonworks required a more complicated schedule, with five 

days of treatment followed by two days off, repeated for three weeks. In the first week, three 

treatments per day were given, in the second week there were two treatments per day, and 

in the third week one treatment per day. Participants were asked to spread these treatments 

through the day, with a minimum of two hours between each. In addition, the supplier of this 

device recommended that, before cleaning the skin, it should be gently abraded using a strip 

of fine sandpaper to remove part of the stratum corneum and so aid electrical conduction. 

Participants in both groups were asked to do this. Both devices were considerably smaller 

than the Elexoma Medic, and were held in place during treatment either with surgical tape or 

a loosely fitting tubular bandage. In all other respects, the experimental protocol was the 

same as used in the previous trial. Approval for the study, a copy of which appears in 

Appendix 6, was provided by the investigator’s institutional ethics committee, and the trial 

was registered on www.clinicaltrials.gov  (identifier: NCT00905736).  

 

8.3  TRIAL RESULTS 

Between May 2009 and August 2009, thirty one eligible participants were allocated into the 

two treatment groups: group C used the WeWoThom and group D used the Tendonworks. 

Because the supply of some of the latter devices was delayed, random allocation was not fully 

realised, and the majority of early enrolled participants were assigned to group C. Once the 

other device became available, random allocation was re-instituted. Inspection of treatment 

diaries suggested that all participants completed the allotted number of treatments, apart 

from one person in each group who missed one treatment each, and two from group D who 

added two treatments each by mistake. Apart from the two people who received two extra 

treatments, all participants completed the course of treatment in the allotted 3 weeks. One 

person in group D was unable to attend one of the follow-up sessions, and the missing data 

for this case was imputed by carrying forward the last set of data. Figure 8.1 demonstrates 

the flow of participants through the trial. 
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Figure 8.1: Flow chart of participants through second trial 

 

Baseline characteristics for those included in the analysis are given in Table 8.1. Twelve 

people thought racquets or other sports or were the main cause of the disorder; eight 

thought it was due to an unaccustomed load; three said it was work-related, one thought it 

followed trauma, and seven reported no obvious cause. One person in group C had taken sick 

leave as a result of the current episode. Eighteen people reported ongoing heavy upper limb 

use during the trial, either because of work activities or competitive sports. Only two of these 

from group C and one from group D reported using a tennis elbow brace of some kind during 

the trial. On initial assessment, a half of the whole sample showed signs of radial nerve 

sensitisation by reporting abnormal sensation in the upper limb on ULTT2B. In eleven cases 

the test produced pain at the lateral elbow. Three people had bilateral symptoms and five 

had co-morbidities potentially affecting grip strength measurements so their data for this 

variable was excluded from the analysis. 

As in the previous trial, the use PSFS was unsatisfactory. Fifteen of the 31 participants were 

unable to identify an activity that caused them difficulty and which was not already listed in 

the PRTEE. Of those who did, only five were able to provide scores for the selected activities 
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at every assessment, and no statistical analysis was attempted. Because this trial overlapped 

with the first, the dynamometer leak also affected data in groups C and D and 23% of the grip 

strength data in this trial had to be imputed as a result. As before, the last observation carried 

forward approach was used for imputation of missing data. 

Table 8.1: Baseline characteristics of participants included in analysis (PRTEE pain score 
converted to a score/100) 

Group C D 

n 16 15 

Females (n)  9 9 

Age mean ± SD (range)  50±4.5 (42-61) years 54±7.7 (43-69) years 

Arm dominance (n) 13 Right; 3 Left 11 Right; 4 Left 

Dominant arm affected (n) 12 10 

Median duration current episode (range)  8 (3-48) months 6 (3-60) months 

History of previous episodes (n) 3 8 

Ongoing heavy upper limb use (n) 7 7 

Positive to cervical tests (n) 10 2 

ULTT2B caused lateral elbow pain (n)  7 3 

Greyscale total score mean ± SD (range)/12 2.9±1.6 (1-6) 3.4±1.6 (1-6) 

Hyperaemia score mean ± (range)/4 1.9±1.1 (0-4) 1.9±0.8 (0-3) 

PRTEE pain score mean ± SD (range)/100 46±16 (20-96) 42±15 (16-64) 

PRTEE function score mean ± SD (range)/100 34±19 (0-66) 34±18 (10-70) 

PRTEE total score mean ± SD (range)/100 40±16 (15-78) 38±17 (14-67) 

 PFGS/MGS mean ± SD (range) 58±28  (5-96) % 59±33 (11-118) % 

 

Data were inspected with descriptive statistics and baseline variables were compared 

between groups. Symptom duration was not normally distributed, and neither was the 

sonographic greyscale score (skewness in group C=0.691, in group D=0.148). Levene’s test 

suggested equality of variance between groups on age (p=0.115), sonographic greyscale 

score (p=0.909) PFGS ratio (p=0.621), PRTEE pain, function and total scores (p=0.541, 

p=0.833, p=0.577 respectively) and  duration of current episode (p=0.420). Tests of baseline 

equivalence between groups, using parametric and non-parametric procedures as 

appropriate (see tables 8.3 – 8.5), showed no significant differences for any variable, apart 

from a positive response to cervical clearing tests, which occurred significantly more 

frequently in group C  than group D. Five cases of outliers were identified in baseline values 

of outcome variables. Each group had two cases with greyscale scores  of 6/12 and one case 
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in group C had PRTEE pain and total scores above the upper quartile for the group. Re-

analysis excluding these cases did not materially alter any of the test results reported below. 

Table 8.2: Shapiro Wilk test for normality of selected variables  

Variable Group Test result df sig 

Age C 0.908 16 0.108 

D 0.944 15 0.437 

Duration current episode C 0.767 16 0.001 

D 0.602 15 0.000 

Sonographic greyscale score C 0.878 16 0.036 

D 0.874 15 0.039 

PRTEE (Pain) C 0.856 16 0.017 

D 0.954 15 0.585 

PRTEE (Function) C 0.962 16 0.706 

D 0.946 15 0.465 

PRTEE (total) C 0.963 16 0.715 

D 0.959 15 0.677 

PFGS ratio* C 0.944 12 0.555 

D 0.970 11 0.889 

* homogeneity of variance not assumed 

8.3.1 Baseline comparisons 

Table 8.3: Independent samples t-test for baseline differences between groups on continuous 
data 

Variable t df sig 

Age -1.629 29 0.404 

Duration current episode* -0.358 24.5 0.723 

Sonographic greyscale score -0.906 29 0.372 

PRTEE (pain) 0.848 29 0.404 

PRTEE (function) -0.060 29 0.953 

PRTEE (total) 0.393 29 0.698 

PFGS ratio 0.053 21 0.958 

* homogeneity of variance not assumed 

Table 8.4: Mann Whitney test for baseline differences between groups on non-parametric data 

Variable U sig 

Duration current episode 111.5 0.754 

Sonographic greyscale score 96.0 0.330 

Sonographic hyperaemia score 111.0 0.957 
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Table 8.5: Pearson’s Chi-square test for baseline differences between groups on dichotomous 
data 

Variable χ2  sig 

Females 0.045 1.000 

Dominant arm affected 0.860 0.433 

History of previous episodes 1.551 0.285 

Ongoing heavy limb use 0.285 0.724 

Use of brace in study 0.008 1.000 

Positive to cervical tests 7.888 0.009 

ULTT2B causes lateral elbow pain 1.998 0.252 

 

8.3.2 Analysis of outcome variables  

Summary outcomes data for each group are provided in Table 8.6, and charts illustrating the 

variation of outcome measures over time in the two groups are presented in Figures 8.2 and 

8.3. Analyses were conducted to establish whether there were significant changes in the 

outcome variables over time, and significant differences between group outcomes at follow-

up assessments. Table 8.7 summarises the results of repeated measures ANCOVAs conducted 

with interval and ordinal scales for all follow-up scores, with time as the main effect, 

treatment group as an interaction effect, and baseline score as covariate. With the exception 

of the hyperaemia score, Mauchly’s test indicated homogeneity of variance for every variable, 

and Levene’s test of error variance showed no significant differences across assessments for 

any variable. 
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Table 8.6: Summary outcome data for Groups C and D at all time points 

Variable 
Mean score ± s.d. 

Group C Group D 

Greyscale Score / 12   

Baseline 2.9±1.6 3.4±1.6 

3 weeks 2.8±1.4 3.2±1.5 

6 weeks 2.5±1.4 3.3±1.7 

15 weeks 2.2±1.4 3.1±1.6 

Hyperaemia Score / 4   

Baseline 0.8±1.3 1.0±0.9 

3 weeks 2.6±1.0 2.2±1.1 

6 weeks 2.4±1.0 2.0±0.9 

15 weeks 2.3±1.3 2.0±1.1 

Pain-free Grip Strength ratio / %   

Baseline 0.57±0.26 0.68±0.32 

3 weeks 0.56±0.27 0.71±0.31 

6 weeks 0.76±0.26 0.82±0.46 

15 weeks 0.93±0.28 1.13±1.04 

PRTEE (pain) / 50   

Baseline 23±8 21±8 

3 weeks 15±7 17±8 

6 weeks 11±8 15±10 

15 weeks 10±9 11±10 

PRTEE (function) / 50   

Baseline 17±10 17±9 

3 weeks 10±7 14±11 

6 weeks 9±9 12±10 

15 weeks 7±8 8±9 

PRTEE (total) / 100   

Baseline 40±16 38±17 

3 weeks 25±14 31±19 

6 weeks 20±16 26±19 

15 weeks 16±16 19±18 

Treatment success / %   

3 weeks 25 33 

6 weeks 38 53 

15 weeks 75 73 
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(a) Sonographic greyscale score (b) Sonographic hyperaemia score 

  

(c) Pain-free grip strength ratio (d) PRTEE(pain) 

 
 

(e) PRTEE(function) (f) PRTEE (total) 

 

Figure 8.2: Variation of outcome measures in  
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Table 8.7: Repeated measures ANCOVA for time*group interactions for groups C and D, with 
baseline score as covariate 

Within-subjects time*group interactions 

 df F p 

Greyscale 2, 54 2.39 0.101 

Hyperaemia 2, 52 0.25 0.781 

PFGS 2, 40 1.08 0.351 

PRTEE-Pain 2, 56 11.03 0.540 

PRTEE-function 2, 56 0.603 0.551 

PRTEE-Total 2, 56 47.55 0.492 

 

There were no significant interactions between group and time for any variable. The results 

of independent samples t-tests, conducted on changes in variables at second and final 

assessments, are presented in tables 8.8 and 8.9 respectively. They found no significant 

differences between groups in changes of score on any variable, although calculated power 

values were low, suggesting that the risk of type II error was high. The mean differences 

between groups were small for all variables, although the confidence intervals were broad 

and included MDC values for greyscale and PFGS scores. 

Table 8.8: Independent samples t-test for differences between groups C and D on change scores 
at second assessment 

 t df p Mean diff (99%CI) effect size power 

Greyscale* -1.464 15.0 0.164 -0.13 (-0.38, 0.13) 0.54 0.30 

Hyperaemia .789 27 0.437 0.30 (-0.76, 1.37) 0.31 0.13 

PFGS -1.039 21 0.310 0.05 (-0.17, 0.07) 0.43 0.17 

PRTEE-Pain -1.651 29 0.110 -4.60(-12.27, 3.08) 0.60 0.36 

PRTEE-function -0.242 29 0.811 -0.94(-11.63, 9.76) 0.09 0.06 

PRTEE-Total -1.600 29 0.120 -8.26(-22.50, 5.97) 0.58 0.34 

* equality of variance not assumed 
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Table 8.9: Independent samples t-test for differences between groups C and D on change scores 
at final assessment 

 t df p Mean diff (99%CI) effect size power 

Greyscale* -1.480 24.2 0.152 -0.54 (-1.56, 0.48) 0.54 0.29 

Hyperaemia 0.781 28 0.441 0.31 (-0.79, 1.42) 0.28 0.12 

PFGS 0.556 21 0.584 0.06 (-0.25, 0.37) 0.23 0.09 

PRTEE-Pain -1.034 29 0.310 -3.69 (-13.5, 6.14) 0.37 0.17 

PRTEE-function -1.249 29 0.222 3.70 (-11.87, 4.47) 0.50 0.22 

PRTEE-Total -0.656 29 0.517 -4.60 (-22.89, 5.70) 0.24 0.10 

* equality of variance not assumed 

The tests showed no significant differences between groups in improvements on any variable 

at either time point. Table 8.10 compares greyscale changes between groups at final 

assessment; no correlation between group and score change was found (tau-b = 0.24, exact 

sig = 0.19). 

Table 8.10: Greyscale score change between baseline and final assessment in groups C and D 

 Greyscale Score change 

Group -4 -3 -2 -1 0 

C 1 1 2 3 9 

D 0 0 2 1 12 

 

Two cases in group C had evidence of frank tears, both which healed by final assessment; two 

cases of tears were apparent in group D - only one of these healed during the study, but the 

other reported full recovery by final assessment. There were nine cases of calcification of 

grade 2 or above at baseline – one in group C and eight in group D. Only one of these (in 

group D) showed any signs of resolution  during the trial. Six reported being much better by 

final assessment, two somewhat better, and one unchanged.  

Related samples t-tests were conducted to calculate the effect size of the treatment between 

baseline and final assessment for each group. Results, along with effect sizes for each variable 

are presented in tables 8.1 and 8.12.  
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Table 8.11: Related samples t-test for differences in scores between baseline and final 
assessment for group C 

  t df p Mean diff (95%CI) effect size 

Greyscale -2.78 15 0.014 -0.88 (-1.55, -0.20) 0.70 

Hyperaemia 1.1 15 0.289 0.31 (-0.29, 0.92) 0.27 

PFGS 4.28 11 0.001 0.28 (0.14, 0.42) 1.24 

PRTEE-Pain -4.71 15 <0.001 -13.69 (-19.87, -7.50) 1.18 

PRTEE-function -3.41 15 0.004 -10.44 (-16.96, -3.92) 0.85 

PRTEE-Total -4.36 15 0.001 -24.06 (-35.84, -12.29) 1.09 

 

Table 8.12: Related samples t-test for differences in scores between baseline and final 
assessment for group D 

  t df p Mean diff (95%CI) effect size 

Greyscale -1.78 14 0.096 -0.33 (-0.73, 0.07) 0.46 

Hyperaemia <0.001 13 1.0 0 (-0.56, 0.56) 0 

PFGS 2.52 10 0.030 0.22 (0.03, 0.41) 0.76 

PRTEE-Pain -5.02 14 <0.001 -10.0 (-14.3, -5.7) 1.30 

PRTEE-function -4.09 14 0.001 -9.5 (-14.5, -4.5) 1.04 

PRTEE-Total -4.65 14 <0.001 -19.5 (-28.4, -10.5) 1.20 

 

Improvements were seen in both groups on all measures except hyperaemia which, as 

argued previously, is not necessarily an indicator of pathological severity. In all cases, the 

improvements were greater in group C than group D, although the differences between 

groups were not statistically significant and diminished by final assessment. Changes in PFGS 

and PRTEE scores were significant for both groups; for greyscale scores only group C saw 

significant change, although in group D the change was close to the significance threshold. 

Hyperaemia changes were not significant in either group. The calculated power of the test for 

the greyscale score in group D was 0.5. For hyperaemia, it was 0.17 in group A and zero in 

group B. Wilcoxon’s signed ranks, conducted with the ordinal scales as an additional check 

for significant change between baseline and final assessment (see Table 8.13), were 

consistent with the findings of the related samples t-tests.  
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Table 8.13: Wilcoxon’s signed ranks for changes between baseline and final assessment in 
ordinal variables with groups C and D 

           Group C  Group D 

Variable Z Exact Sig  Z Exact Sig 

Greyscale -2.4 0.016  -1.6 0.250 

Hyperaemia -1.1 0.371  -0.3 1.0 

PRTEE-Pain -3.3 <0.001  -3.1 0.001 

PRTEE-function -2.6 0.008  -3.0 0.001 

PRTEE-Total -3.2 0.001  -3.2 <0.001 

 

Following the finding of different blood flow responses apparent in the first trial, patterns 

were response in this trial were inspected. In group D, hyperaemia changed by one grade at 

most, compared to up to 3 grades in group  C. In group D, blood flow was seen to increase in 

seven cases (including two with initial scores of 3), and decrease in  two. In group C, 

responses were similar to those observed in the previous trial, with increases only observed 

in those with low initial scores, and decreases only seen in those with higher initial scores.  

The numbers of successful treatments and associated success rates at follow-up assessments 

are shown in Figure 8.3. There were increasing numbers of successes in both groups at each 

assessment, with group D initially outperforming group C, but rates were nearly equal by 

final assessment.  No deteriorations in symptoms were reported in either group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3: Number of successful treatments and success rates for groups C and D 
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Chi square values and odds ratios calculated for each post-treatment assessment (see Table 

8.14) show non-significant associations between group and success rates at all three time 

points. Fischer’s Exact test at times 2 and 4, when expected cell counts were not reached, 

confirmed these findings.  

Table 8.14: Differences in success rates and odd ratios for success in groups A and B 

Assessment χ2 Exact Sig Odds ratio (95%CI) 

2 2.6 0.454 1.5 (0.32, 7.1) 

3 0.8 0.479 1.9 (0.45, 8.0) 

4 0.01 1.0 0.9 (0.18, 4.6) 

 

8.3.3 Adverse events and side effects  

Group C  

One person reported tingling in the forearm during the first few treatments. Three people 

experienced mild erythema under both electrodes, which quickly resolved after each 

treatment; in the others it was attributable to overzealous use of the sandpaper in skin 

preparation. 

Group D 

Nine people reported tingling, two saying it felt strong at times. One person experienced 

numbness in little and ring fingers during one treatment, one felt post-treatment arm 

heaviness, and another reported fasciculation of the deltoid muscle for 30 minutes after one 

treatment. There were three reports of erythema that seemed likely due to vigorous skin 

abrasion with the sandpaper. 

8.3.4 Acceptability  and ease of use  

Unused materials returned after treatment suggested that skin preparation may not have 

been per protocol in every case. Because all participants received oral and written 

instructions on location of the electrodes, their correct placement was not initially checked. 

However, it later became apparent that some participants were placing the proximal edge of 

the electrode, not directly over the epicondyle, but 1 or 2 cm distal to it. The current density 

and configuration at the tendon may have changed because of this misplacement. 

Neither device required programming or battery changing, and all participants said they 

found them easy to use, although several members of group D said that the complicated 

treatment schedule was not always convenient to follow. Both devices had LED indicators to 
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show when they were operating, but the LED on the Tendonworks was reported by several 

participants as difficult to see. Neither had an audible alarm to indicate if the circuit had 

broken for any reason. Tubular bandaging appeared to be the most efficient way of holding 

the devices and wires in place, which was particularly important for the Tendonworks as its 

leads were rather long. 

 

8.4  DISCUSSION 

As in the previous trial, significant improvements were seen in both groups on most 

measures over the duration of the trial. Differences between groups were less marked, 

however. None of the differences were statistically significant and the values of the mean 

differences between groups and the effect sizes were generally small, particularly by the final 

assessment. For greyscale and PFGS scores, the differences did not reach the MDC values 

calculated in the reliability studies, although the confidence interval for the PFGS score did 

include it at both second and final assessments. In contrast with the previous trial, treatment 

success rates show no significant differences between groups as measured by odds ratios. In 

consequence, there is little evidence that one form of MCT produced superior outcomes to 

the other.  

Both groups improved over time on all variables apart from hyperaemia which, as suggested 

in the last chapter, is not a simple measure of pathological severity. Excluding this measure, 

mean improvements between baseline and final assessment were always superior for group 

C. The changes in greyscale scores did not exceed the MDC value, although PFGS scores did 

so. Improvements in PRTEE-pain scores were 59% of baseline for group C and 45% for group 

D, so both passed the criterion for clinically significant change suggested in the previous 

chapter. Comparisons with outcomes for minimal intervention groups can again be used to 

investigate whether these forms of MCT are beneficial compared to wait-and-see. Two trials 

with such groups reported improvements in PFGS ratios of 50% and 110% of baseline values 

by 12 weeks332, 333, and another reported an improvement of 35% of baseline PFGS raw score 

over the same period443. These compare to improvements of 48% in group C and 37% in 

group D at 15 weeks. Compared to the first two studies, these improvements are worse than 

could be expected by wait-and-see although the confidence intervals for the mean differences 

are wide and their upper limits would suggest improvements of approximately 70% in each 

group. 
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Improvements in PRTEE-scores six weeks after baseline were 53% and 30% of baseline for 

groups C and D respectively. These compare to a change of 6% observed in a wait-and-see 

group 7 weeks after baseline, reported in another study415. Treatment success rates in the 

minimal intervention groups of two studies332, 333 were 27% and 32% at six weeks after 

baseline and 55% and 60% at 12 weeks after baseline, respectively. Groups C and D 

performed better than these groups at 6 weeks and 15 weeks by margins of 10-20%. As 

before, caution is indicated in interpreting these figures  because baseline severity was 

greater in the comparator groups. Nevertheless they provide some indication that MCT with 

the parameters under test and produce outcomes superior to a minimal intervention strategy 

over the timescale considered. The impact of the misplacement of the electrodes by some 

participants is impossible to gauge. It is reasonable to assume that the current reaching the 

tendon may have been lowered, and its direction will have been more biased longitudinally 

than if the electrode were placed directly over the tendon. In fact, this may have been 

advantageous given study findings reported in section 3.3.4, suggesting that charge flow 

along the tendon stimulates cell proliferation optimally. In any case, since checks on 

placement began mid-way through the trial it is not known whether the misplacements 

affected one group more than another. This is a reflection of ‘real world’ patient-

administered interventions, in which per-protocol treatments cannot be guaranteed, and 

may be a significant determinant of treatment outcome. 

In summary, the trial suggests that these two forms of MCT produce outcomes somewhat 

superior to a wait-and-see approach, and that Group C parameters were somewhat more 

effective than those delivered to group D. The latter group differed from the others in having 

fewer cases of positive responses to cervical clearance tests, but this might have been 

expected to be prognostic of a better outcome for group D since it is unlikely that the 

treatment affected neck symptoms. So it would not appear that this difference prejudiced the 

findings. As with the previous trial, low test power was an issue with all of the group 

comparisons, but differences between groups were small and there is little persuasive 

evidence that they are clinically significant. 
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8.4.1 Tissue healing 

Greyscale changes were unremarkable and considerably smaller than the MDC value, so 

there is little evidence of structural normalisation in the tissue. The exceptions to this were 

the three cases of tears that showed signs of healing, one completely. All of these cases 

reported substantial improvements in their symptoms by final assessment, but so did a single 

case in which a tear showed no change. Most examples of grade 2 calcifications showed no 

signs of change, and the affected individuals had a mix of outcomes from much better to no 

change. These observations suggest that calcifications and tears need not be painful, and 

confirm that normalisation of tissue structures is not necessarily associated with clinical 

improvement.  

Group patterns of change in hyperaemia were very similar to those observed in the previous 

trial, although there was no sign of further rises after treatment. Higher blood flow levels 

appear to be maintained three months after treatment, but the mean changes observed are 

smaller than the MDC derived from the reliability data. Group C showed a very similar 

relationship to groups A and B between baseline hyperaemia score and change by first 

assessment, but group D tendons behaved quite differently. There were smaller variations in 

blood flow, and the two cases with the highest initial scores (3) both saw increases in blood 

flow following treatment. As in the previous study, the changes and the numbers involved are 

small, so patterns may be coincidental, but  it is tempting to speculate that the much shorter 

treatment time provided in group D (compared to the other three groups) may have 

contributed to these differences. Application of current for longer periods may be required to 

necessary to cause larger changes in blood flow. 

8.4.2 Parameter dependence 

The small differences between group improvements on most variables suggest that the 

different combinations of parameters did not materially affect outcomes. Drawing firm 

conclusions about the influence of individual parameters is problematic because several 

differed between groups. The nominal average current of the WeWo Thom is 25 µA, but it 

was not current regulated, so may have varied during treatment. The regulated average 

current intensity of the Tendonworks is 20 µA for 20 minutes, but it is higher (the amplitude 

varying between 50 and 500 µA) for the other 10 minutes of the programme. Overall then, 

the average current delivered by the Tendonworks over the course of each treatment is likely 

to be somewhat greater than delivered by the WeWoThom. On the other hand, the total 
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charge delivered to the tissue was less because of the much shorter treatment time – this 

issue is considered in more detail in section 8.6.2. 

The similarity in outcomes for both groups suggests that the complex parameter modulation 

during the Tendonworks programme (and the treatment schedule it required) conferred no 

advantage over the simpler programme provided by the other device. When asked about the 

rationale for the programme, the suppliers of the Tendonworks claimed it was based on their 

own laboratory work, which suggested that a period of biphasic amplitude- and frequency-

modulated stimulation “prepared” the tissue cells to respond to the main phase of treatment 

with monophasic current (Chapman-Jones, private communication), but no data was 

provided to support this contention. Although the earlier literature review found that the 

majority of evidence in favour of MCT is from trials using monophasic currents, this trial 

suggests that a biphasic current can produce similar or better outcomes in some cases. This is 

consistent with the proposition that the intensity of the current is the critical parameter. On 

the other hand, had the treatment times been the same, the outcomes may have been quite 

different. The review suggested that long total treatment durations are most effective, but the 

monophasic proportion of the current supplied by the Tendonworks was only available for 

10 hours in total, which may have been insufficient to outperform the WeWo Thom’s biphasic 

current that was provided for more than 10 times as long. Further consideration is given to 

parameter dependence in the pooled analysis presented later. 

8.4.3 Patient experience 

Reported adverse events were few and mild, which is not surprising given the low current 

intensity that was delivered by both devices. The reports of excessive skin abrasion suggest 

that greater attention should be paid to instructions in this technique – if it is used at all. The 

practice may be unnecessary: abrasion is not recommended with other forms of 

electrotherapy and its value is questionable if the skin is cleaned and a current-regulated 

device is used. The size and simplicity of the devices make them a particularly attractive 

option for patient-controlled treatment, although neither have rechargeable batteries, and 

they are intended for a single course of treatment only. The small dimensions of the 

Tendonworks demonstrate that current-regulation does not require a large device. 
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8.4.4 Study limitations 

As with the previous study, underpowering meant that definitive conclusions about 

differences between groups could not be drawn. However, the small mean differences 

between the group improvements suggests that, even if a statistically significant difference 

had been detected, it would probably be clinically irrelevant. The trial was not fully 

randomised because of the late delivery of devices, and this could have led to an imbalance 

on some significant baseline characteristic, although the only one detected was in response to 

cervical clearance test. In principle, this might have been given group D some advantage, but 

this group performed less well and so the difference between group outcomes may have been 

greater had this imbalance not been present. 

Once again, the problems with the dynamometer and the PSFS measure reduced the data 

available for analysis. The experience confirmed that the PSFS would be unsuitable for 

inclusion in a full trial unless used differently. Its value has been proven in other contexts and 

so it might still be justified to include it, informing the patient of their previous ratings. 

Although the trial provided evidence regarding two particular combinations of MCT 

parameters, its implications for the influence of individual parameters are harder to discern. 

It may have been that the effects of changing one parameter were counteracted by changes in 

another. This illustrates a limitation of using off-the-shelf microcurrent devices - very little 

parameter control  was available with either instrument. The only parameter that can be 

varied with these devices is treatment time, by switching them off before the programmed 

has ended, or by using them more often. The limited battery capacity of the Tendonworks 

allows a maximum of 50 treatments (25 hours), so  its total treatment time could not have 

been increased by more than a factor of two. An alternative experimental approach would 

have been to use the WeWo Thom with both groups and have one group switch off the device 

after 30 minutes, which would allow substantially different treatment time to be compared. 

 

8.5  CONCLUSIONS 

There were no significant differences between outcomes using the WeWo Thom and the 

Tendonworks when used as described, the differences are unlikely to be clinically significant. 

Both devices produced patient-ratings of pain, function and treatment success superior to 

those observed in the wait-and-see groups of other trials, although the participant profiles 

were not identical with these groups. The apparently worse grip strength outcomes suggest 
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that caution be exercised in making these comparisons, and placebo may account for at least 

part of the observed differences.  

The differences in group mean values over time for blood flow were not statistically 

significant, although this may have reflected type II error. An adequately powered trial could 

test the intriguing possibility that the devices might be able to regulate blood flow in the 

same manner suggested in the discussion of the previous trial. The fact that a pattern 

suggestive of such a possibility was seen with the Wewo provides additional grounds for 

investigating this phenomenon, since is has potential implications for tissue healing. 

 

8.6  POOLED  ANALYSES 

Since enrolment to the two trials occurred over different periods, and allocation was not 

randomised across all four groups, primary analysis was conducted separately for each trial. 

However, participants were recruited from the same sources and the trial protocols were 

identical in most respects. Therefore the possibility of pooling their data was investigated, 

since this would allow direct comparisons between outcomes for all four sets of MCT 

parameters. Only one significant time*treatment group interaction was found in ANCOVAs 

that were conducted (for groups A and B on greyscale score), and t-tests were underpowered 

to detect a significant differences between group improvements on most outcomes. 

Therefore only a limited comparative analysis of pooled data was attempted: global change 

scores showed both statistically and clinically significant differences between groups A and 

B, and so these were compared across all groups.  

Further analysis was deemed viable using combined data from all the groups, since this 

should increase the power of the tests. Although the hyperaemia changes observed in each 

trial were not statistically significant, they were of particular interest because of their 

potential association with tissue healing and changes in pain levels, so tests of association 

between hyperaemia scores and other variables were conducted. Combined data was also 

used to test for prognostic significance of a range of potentially influential factors such as 

baseline pain and symptom duration. 

Baseline equivalence was assessed using a one-way ANOVA for variables that had been 

subjected to t-tests in the individual trials. If there was inhomogeneity of variance, the Brown 

Forsythe test was applied644 (p347).  A Kruskall Wallis test was used for non-parametric data, 
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and differences between categorical variables were evaluated using Pearson’s Chi-square for 

pair-wise comparisons between all groups.  

To investigate differences between groups, contingency tables were constructed between 

group and global change scores at final assessment. Kendalls’s tau-b was used to test for 

associations between group and score, and Pearson’s Chi-square tested for associations 

between group and treatment success. Calculations were conducted pair-wise for all groups, 

with significance set to p≤0.01 to compensate for multiple testing. Since hyperaemia has been 

linked both to levels of pain505 and to treatment success in tennis elbow, the relationship 

between the baseline hyperaemia and pain scores, and between baseline hyperaemia score 

and outcomes at final assessment, were also investigated using Kendall’s tau-b as a measure 

of association between ordinal variables. Since electrical charge and current density have 

been suggested as potentially significant treatment parameters in tissue formation84, their 

values were estimated for all groups to investigate whether they might be related to 

treatment success. 

The influence of potential prognostic factors on treatment success was also investigated. 

Although testing multiple variables for predictive properties runs the risk of identifying 

apparently significant relationships by chance, the practice is regarded as legitimate for 

exploratory studies where the factors are selected a priori and with justification. As indicated 

in the last chapter, higher baseline pain and ongoing stress to the arm have been identified as 

two factors predictive of poor outcome after a range of conservative treatments for tennis 

elbow. Several other variables were also considered in this analysis: duration of symptoms, 

gender, involvement of the dominant arm, use of a brace, psychosocial risk factors (non-zero 

scores on the depression or anxiety screening questions, taking time off work or involvement 

in compensation or litigation as a result of the disorder), and whether lateral elbow pain was 

produced by the ULTT2B. Tests for a univariate relationship between each of these variables 

and treatment success at final assessment were made using Spearman’s rank correlation for 

ordinal variables and Pearson’s Chi-square for categorical variables.  

8.6.1 RESULTS 

The Levene statistic confirmed homogeneity of variance for all variables tested apart from 

duration of symptoms. The one-way ANOVA demonstrated no significant differences 

between groups on any of the continuous baseline variables examined. The Kruskall Wallis 

test showed that there were no significant differences between groups on baseline on 

sonographic greyscale and hyperaemia scores and on symptom duration. Pearson’s Chi-
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square found no significant differences between groups in gender, whether the dominant 

arm was affected, incidence of previous episodes, radial nerve stressing causing lateral elbow 

pain, ongoing heavy limb use in the trial and use of a brace in the trial. However, there were 

differences on positive response to cervical clearing tests. Inspection of the raw data showed 

that groups A, B and C had 8, 10 and 10 members respectively with a positive response, 

compared to two members of group D. Table 8.15 shows the mean differences in outcomes at 

final assessment for all groups. 

Table 8.15: Mean differences (95% CI) between baseline and final assessments, and treatment 
success rates, for all groups 

 Variable A B C D 

Greyscale  -0.88 (-1.5, 0.20) 0.20 (-0.23, 0.63) -0.88 (-1.55, -0.20) -0.33 (-0.73, 0.07) 

Hyperaemia  0.13 (-0.52, 0.79 0.21 (-0.35, 0.78) 0.31 (-0.29, 0.92) 0 (-0.56, 0.56) 

PFGS  0.31 (0.05, 0.57) 0.23 (0.08, 0.37) 0.28 (0.14, 0.42) 0.22 (0.03, 0.41) 

PRTEE-Pain  -13.5 (-19.3,- 7.8) -7.9 (-12.9, -2.9) -13.69 (-19.87, -7.50) -10.0 (-14.3, -5.7) 

PRTEE-function  -13.2 (-19.2, -7.3) -9.7 (-15.6, -3.7) -10.44 (-16.96, -3.92) -9.5 (-14.5, -4.5) 

PRTEE-Total  -26.9 (-38.1, -15.6) -17.4 (-17.9, -6.9) -24.06 (-35.84, -12.29) -19.5 (-28.4, -10.5) 

Treatment success 14/15 (93%) 7/15 (47%) 12/16 (75%) 11/15 (73%) 

 

The mean differences are generally greatest in group A, although the difference between it 

and groups C and D are small on most measures. Group B performs worst on most measures. 

The contingency tables for global change scores at final assessment is provided in Table 8.16. 

There is a consistent patterm of group A performing best and Groups C and D performing 

better than group B. However, pair-wise group comparisons of success rates using Pearson’s 

Chi-square showed that the only significant difference was between groups A and B, as 

previously identified. The better performance of group A becomes more apparent in 

comparing the global change scores: six members of that group recovered completely - a 

much higher proportion  than in any of the other groups. However, pair-wise comparisons 

between group GCS scores using Kendall’s tau-b indicated that these patterns of response 

were not significantly different. The table also shows that the treatment was not successful 

for 17 people – more than a quarter of the total sample, although the “failure rate” is reduced 

to 11% if the data for group B (the least successful group) are excluded. 
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Table 8.16: Global change scores and numbers of treatment successes at final assessment for all 
groups 

 Global Change Score Treatment outcome 

Group -1 0 1 2 3 success no success 

A 0 1 0 8 6 14 1 

B 0 5 3 6 1 7 8 

C 0 2 2 11 1 12 4 

D 1 0 3 10 1 11 4 

 

The associations between baseline hyperaemia and pain scores, and between baseline 

hyperaemia and outcomes at final assessment, were tested using Kendall’s tau-b, pooling all 

the data from both trials.  

Table 8.17: Kendall's tau-b as a measure of association between baseline hyperaemia score and 
other variables for pooled dataset 

Variable  Tau-b Sig 

Baseline PRTEE-pain 0.02 0.83 

Change in:   

- Greyscale score -0.04 0.73 

- Hyperaemia score -0.38 <0.001 

- PFGS  0.08 0.45 

- PRTEE-Pain  -0.25 0.005 

- PRTEE-function  -0.05 0.61 

- PRTEE-Total  -0.27 0.002 

Treatment success 0.32 0.005 

 

As Table 8.17 shows, there was no association between baseline hyperaemia and pain scores, 

or changes in greyscale score, PFGS or PRTEE-function at final assessment. However, there 

were significant associations with changes in hyperaemia, PRTEE-pain and total scores, and 

treatment success. These suggest that higher baseline hyperaemia scores are associated with 

falls in hyperaemia and pain levels, and a better overall clinical outcome, by final assessment.  

Table 8.18 illustrates this pattern for one variable, treatment success. One baseline Doppler 

image was lost and so its  data is missing.  
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Table 8.18: Relationship between baseline hyperaemia score and treatment outcome for all 
groups 

  Treatment outcome 

Hyperaemia score  Failure success 

0  3 3 

1  7 7 

2  4 18 

3  2 13 

4  0 3 

Total  16 43 

 

Figure 8.4 displays the behaviour of hyperaemia score over time using pooled data split into 

two categories: low (<3) and high (≥3) baseline hyperaemia scores. Excluding the data from 

D, which appeared to behave differently from the other groups in this variable, did not 

materially change the observed pattern. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4: Changes in hyperaemia scores over time for all groups, split by high and low 
baseline scores 

 

The subgroup means appear to follow a pattern in which low baseline hyperaemia scores 

lead to an initial rise in blood flow, which fall after treatment and then stabilised at a higher 

value by final assessment. In contrast, the group with higher baseline values experience a 

drop on average, which is sustained until the third assessment, when it begins to rise again.  

Related samples t-tests indicate that the rise in score for the <3 group is significant at 3 

weeks (t = 4.7, p<0.01)  and for the ≥3 group at 6 weeks (t = -2.8, p = 0.01). The changes are 

small, however, falling below the minimum detectable change value calculated previously for 

this scale. Across both trials, only two cases with blood flow evident at baseline had 
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hyperaemia scores of zero by final assessment (from initial scores of 2/4 and 3/4).  So 

hyperaemia remained evident in the large majority of tendons three months after treatment 

was completed – a third had final scores of 3 or 4 -  even though symptoms had reduced 

significantly in many of them. 

The results of univariate tests of association between potential prognostic indicators and 

treatment success at final assessment are presented in Table 8.19. Only gender and elbow 

pain on ULTT2B showed a close-to significant correlations with treatment success. The odds 

ratio for success was 2.9 in favour  of men, and 4.7 in favour of those with a positive response 

to the neural tension test. 

Table 8.19: Tests of relationships between potential prognostic factors and treatment success 
at final assessment for participants in all groups 

variable Spearman’s r Pearson’s χ2 Exact Sig 

Age 0.151  0.247 

Duration current episode -0.182  0.161 

Baseline PRTEE-pain 0.047  0.723 

Ongoing arm stress  0.60 0.570 

Gender  3.11 0.094 

Dominant arm affected  2.75 0.160 

Use of brace  0.19 0.760 

Psychosocial factors  2.30 0.563 

Elbow pain by ULTTB  4.13 0.064 

 

A final pooled analysis was conducted to investigate how current density and total charge 

flowing varied between the groups, and whether they might be more critical to outcome than 

current intensity. The current density at the electrode-skin interface is the ratio of the 

current to the surface area of the electrode, which was approximately 5x5 cm for all groups. 

Values calculated using the average current for each group are given in Table 8.20, along with 

the total electric charge (Q) delivered to the tissue,  estimated using the formula Q = I*t 

where I is the average current and t is the treatment time.  

Table 8.20: Current density and charge delivered to tissue in each group 

 Current density         Charge delivered / 10-1 Coulomb 

Group µA/cm2 Per treatment Per course 

A 1.6 2.4 50 

B 16 24.0 500 

C 1 5.4 110 

D 0.8 – 10 1.2 30 
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These figures refer to the skin surface – calculation of the charge and the current density in 

the pathological tissue is problematic658. However, they provide some indication of relative 

magnitudes for comparison purposes. The current delivered to groups A and B was 

monophasic; to group C it was balanced biphasic so the net charge flowing through the tissue 

was zero. The current delivered to group D had a complex waveform comprising both 

monophasic and biphasic stages and the calculations represents an estimate based on data 

provided by the supplier. The results of these calculations suggest that the total charge 

delivered in group B was considerably larger than that received in the other groups. Also, 

although the average current supplied in group C was smaller than in group D, the total 

charge delivered was larger because of the much longer exposure time. 

8.6.2 DISCUSSION 

The pooled analysis provides several additional insights into the significance of MCT 

parameters and of hyperaemia in influencing outcomes. Since all the groups were similar on 

significant variables at baseline, comparisons between them are legitimate. The pair-wise 

tests indicated that only groups A and B differed significantly in treatment success rates. 

However, inspection of the contingency table suggests that the performance of groups A was 

superior to that of groups C and D, which in turn had better outcomes than group B.  Overall, 

then, the data from the trials are consistent with all the forms of MCT tested giving some 

clinical benefit and produce changes in blood flow that may play a part in an enhanced 

healing process; also that the amount of benefit varies between a maximum for group A, a 

minimum for group B, and a response between these extremes for groups C and D. 

Improvements in group A were greater than in other groups at eash time point, which means 

that the benefits accrued more quickly for that group – an important consideration, even 

when longer term outcomes are similar. However, the non-significance of many tests results 

means that few firm inferences may be made and that an adequatelty-powered trial is 

required to confirm whether putative differences are significant. 

Two of the comparator studies using the same definition of treatment success as in these 

trials defined a minimum clinically important difference of 25% in success rates332, 333. Using 

this criterion, and assuming that the least successful group would achieve 50% success at 3 

months, as in this study, a sample size of approximately 60 people per group would be 

required to detect such a difference.   
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Parameter dependence 

Taken collectively, the comparisons between groups in these trials imply that, even where 

other parameters differ, lower current intensity treatment is more effective than higher. The 

small differences between group A and C outcomes suggest that a high frequency biphasic 

current can achieve success rates similar to a lower frequency monophasic current. In fact, 

the mean improvements in groups A and C were remarkably similar on all outcome 

measures. This was somewhat contrary to expectations since the weight of evidence 

considered in the literature review favoured monophasic currents. Apart from the 

differences in waveform, groups A and C also had substantially different treatment durations, 

and it may be that a longer treatment time compensated for a less effective waveform. This 

might also account for the differences between groups A and D, since the treatment time for 

group A was more than three times longer than that of group D. A study comparing the 

effects of substantially different treatment durations for two groups receiving the same 

monophasic 50 µA low frequency waveform would therefore be worthwhile. 

Because similar size electrodes were used in all cases, the current densities are in the same 

proportions as the currents. Hence their calculation does not offer additional information 

about differences between the groups, but it does provide an easier comparison with other 

studies. In chapter 3, effective current densities for a range of tissue types were calculated 

(see Table 3.1). Comparing the calculated figures, the more effective current densities 

observed in this trial - a few µA/cm2 - are at the lower end of the ranges found effective with 

a variety of bone and skin lesions. This is interesting because the figures for those tissues 

refer to the site of the lesion itself (since the electrodes were in direct or very close contact 

with the pathological tissue in those trials), whereas the current densities calculated in this 

investigation refer to the skin surface; the current density at the tendon would be still lower, 

perhaps substantially so. It may be that lower current densities could also be effective with 

other tissues – as Table 3.1 shows, skin grafts and muscle damage have been treated 

successfully with current densities below 0.1 µA/cm2. On the other hand, whereas MCT 

clearly promoted tissue healing in the cases of non-uniting bones and skin ulcers, its 

apparent effectiveness in the present study may have been for other reasons, such as pain 

relief. Lower current intensities were associated with greater treatment success rates, but 

also with fewer reports of sensory stimulation. Therefore, if success is due to an analgesic 

effect, it is unlikely to be by stimulation of afferent fibres and consequent inhibition of 

nociceptive signals, the proposed mechanism of action of TENS659.  

Comparison of the charge delivered during treatment suggests that this is not the critical 

factor in effectiveness, since there is no clear relationship between charge and effectiveness. 
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Very little work has been reported addressing this issue. Brighton and colleagues found that 

bone formation the medulla of an intact rabbit tibia was proportional to the total charge 

delivered by an inserted electrode, but only at an optimum current level84. If the current was 

too high necrosis occurred, and if too low, there was no bone formation, no matter how much 

charge was delivered. Total energy delivered may be a factor in treatment success but its 

calculation requires knowledge of the impedance of the tissue circuit, which was not 

available in this study. 

Adverse events were rare in all groups. As argued earlier, the case of bilateral leg tingling is 

unlikely to have been caused by the treatment. The two cases of mild electric shocks received 

from the Elexoma Medic suggest that the device design may need attention in this regard. 

Subsequent to the these trials, the supplier indicated that a redesign was being implemented, 

which would result in a smaller device with no risk of shocks. These changes should make 

this device safer and more convenient to use.  

The significance of hyperaemia 

The results of tests of association between baseline hyperaemia scores and other variables 

are intriguing. The neovascularity that has been observed in tendinopathy is accompanied by 

neural ingrowth and increases in concentrations of both pain receptors and their associated 

neurotransmitters510, 596. This has been suggested as an explanation for the association that 

has been observed between hyperaemia and pain in various tendinopathies, including tennis 

elbow505, 660. The data from this investigation suggest that hyperaemia and pain are not 

simply related, and several other studies have reached the same conclusion397, 661.  A certain 

confusion in terminology may be at issue here. Neovascularity is not the same as hyperaemia 

– increases in blood flow have been observed in tendons immediately after exercise662, 663, 

and these are clearly not due to angiogenesis. Conversely, falls in hyperaemia seen in 

pathological tendons after treatment are not necessarily signs of reduced capillary density in 

the tissue, although they continue to be interpreted as such in some trials397, 664, 665.  The 

complex relationship between hyperaemia and pain that has been observed in some trials 

may be because reduced Doppler signals betoken a combination of vascular constriction – 

which may not reduce pain - and capillary “die-back” – which may.  

Nevertheless, the significant associations found here between baseline hyperaemia and 

several outcomes suggests that it may have prognostic value, at least for microcurrent 

treatment. In these trials, higher hyperaemia levels at baseline were associated with greater 

reductions in pain and greater levels of treatment success. Interestingly, the association did 

not extend to PFGS and function scores, perhaps because motor weakness – which is unlikely 
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to be affected by MCT – contributes as much to PFGS as pain does. In any case, it appears that 

hyperaemia and pain are related, but in a complex fashion. Microcurrent was more effective 

in reducing pain in cases that started with greater  intra-tendinous blood flow, although these 

were not necessarily the most painful cases. A recent study found no association between 

baseline hyperaemia (which was interpreted as neovascularity) and total PRTEE score after 

treatment of tennis elbow with a 6 month eccentric exercise programme664. PRTEE subscale 

scores were not reported, so it is not possible to tell whether pain and function scores 

changed differently, as in this study, although such exercise programmes have been found to 

reduce both pain and functional disability624. The discrepancy may indicate that the 

prognostic value of the hyperaemia score depends on the nature of the therapy. Certainly, 

this study suggests that MCT is most likely to be of value in cases where hyperaemia scores 

are high. Since the treatment was more successful in these cases, it seems reasonable to 

speculate that their high levels of hyperaemia were pathological and that reducing them 

contributed to resolution of the disorder. There are various approaches to reducing the 

neovascularity associated with tendinopathy, such as sclerosant injections and peritendinous 

vascular stripping666, but if a non-invasive approach such as MCT can achieve similar results 

this is surely an option worth further investigation. However, the fact that hyperaemia scores 

in this investigation’s trials fell to zero in only two cases, but that symptoms reduced or were 

abolished in many more, confirms that changes in intra-tendinous blood flow levels do not 

correlate simply with clinical outcomes.  

Figure 8.4 demonstrates the difference in behaviour of the cases with high and low baseline 

hyperaemia scores, and lends weight to the proposition that MCT may regulate rather than 

merely stimulate blood flow. It appears that the treatment also differs in the persistence of its 

effects, since the initial rise in blood flow for the low scoring group was reversed shortly after 

the treatment ended, whereas the initial fall in blood flow for the high scoring group was 

sustained for some time after treatment ended. Although all these changes are less than the 

MDC value calculated earlier for this measure, the consistent patterns observed (at least 

among groups A, B and C) are consistent with a real underlying pattern of behaviour.  Some 

time after the treatment was stopped, the changes in blood flow may have stopped or been 

partially reversed. If the changes were beneficial, longer application of MCT may enhance the 

therapeutic effect. The regulatory role that MCT appears to play is consistent with the theory 

that it is mimicking endogenous biocurrents that modulate the healing process. Endogenous 

currents of injury are observed until healing is complete (or at least until tissue integrity is 

restored) and so, if MCT works by a similar mechanism, application of current for longer 

periods may be necessary. However, the suggestion that the observed changes in blood flow 
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are part of that process is as yet speculative. The data also illustrate the risks of drawing 

conclusions from group averages, because the behaviour of individuals often departed 

substantially from those averages. Studies with larger samples would facilitate a more 

sophisticated analysis to investigate whether members of more sharply defined subgroups 

behave more consistently. 

Prognostic factors 

Only two of the tested factors were found to correlate significantly with treatment success: 

gender and lateral elbow pain produced by the ULTT2B test. The better outcome for males is 

in accordance with other studies383, 629, and could be explained by a variety of factors, 

including gender-based differences in judging changes in symptoms, differences in work- or 

leisure-related stresses on the arm, or hormonal influences on treatment effectiveness. The 

second of these factors may be eliminated because of the lack of correlation between ongoing 

stress to the arm and treatment success. The significant correlation with a positive response 

to the radial nerve tensioning test begs the question: why should MCT be more effective 

where there is evidence of radial nerve involvement? It may be that entrapment or neural 

sensitisation is the dominant or sole cause of symptoms in these cases, even though 

tendinopathy is also present. MCT appears effective in the treatment of this form of 

neuropathy, perhaps more effective than in treating the effects of tendinopathy alone. 

Possible mechanisms include desensitisation of the nervi nervorum in the radial epineurium, 

reductions in the concentrations of noxious chemicals in the vicinity, or reductions in 

compression of the nerve secondary to tendon healing. The lack of significant correlations 

with other variables, particularly baseline pain and symptoms duration, is encouraging 

because it suggests that MCT may be of benefit in a wide range of presentations of tennis 

elbow. 

Patient Experience 

The flexibility in timing treatment, lack of interference with daily activities and passive 

nature of the treatment were undoubtedly significant factors in the high rates of compliance 

with the treatment protocol. Where effectiveness is dependent on substantial treatment 

durations, as appears to be the case with MCT, compliance is an important consideration. So 

the fact that participants found the microcurrent devices easy and convenient to use is not 

trivial. Home-based patient-controlled therapy, if effective, may offer cost savings over 

conventional therapy, or might encourage the user to comply with other, more demanding 

forms of therapy667.  
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8.7  CONCLUSION 

The pooled analysis, and the two trials that informed it, suggest that a full clinical trial of MCT 

for tennis elbow is justified, and provide information useful in the development of a trial 

protocol. They have also produced some intriguing findings relating to the action of 

microcurrent within the tissue. The low power of the studies diminishes the strength of the 

evidence for a number of the outcome measures, but the significant differences between 

groups A and B in greyscale score changes and treatment success rates suggest that peak 

current intensities of 50 μA or less can produce superior outcomes to currents an order of 

magnitude higher. They also imply that a simple monophasic current produces outcomes 

equal or superior to a current with a biphasic or complex multi-phase waveform program.  

The evidence that MCT can produce better outcomes than a wait-and-see approach depends 

on comparisons with other studies. These led to inconsistent findings, possibly due to a 

combination of differences in baseline characteristics, the questionable reliability of PFGS 

data in this study, and the absence of an exercise program that might have improved 

functional outcomes. Nevertheless, they provide limited evidence that MCT is superior to a 

minimal intervention approach.  

The analysis suggests that a monophasic current of peak intensity 50 µA or less should be 

used in the clinical trial. If the current does indeed simulate the biocurrent that would 

normally drive healing but has failed for some reason, it may be necessary to lengthen the 

duration of the treatment to ensure that the healing process continues to completion. This 

would be consistent with the evidence presented in the literature review. The smaller 

changes in PFGS and function scores suggest that an exercise programme should be used in 

conjunction with MCT, taking advantage of pain reductions to improve strength and 

functional capacity, and possibly to assist in remodelling. If the greyscale score were to be 

used as the primary outcome measure, a sample size of 55 per group in a two-arm trial would 

be required to detect a difference greater than the MDC; since the pathological significance of 

such a change (2 units on the scale) is unknown, this is the only meaningful threshold that 

can be applied. The sample size calculation for success rates cited earlier produced an 

estimate of 60 people per group to achieve the necessary power at 3 months, therefore such 

numbers should provide sufficient power for both this and the sonographic outcome 

measure. 

The findings of the analyses of hyperaemia data open up several possible lines of enquiry: 

what is the physiological significance of the different levels of baseline hyperaemia observed? 

Can these be used as prognostic indicators of treatment success? Does prognosis differ 
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according to the treatment? Is there a relationship between hyperaemia and greyscale 

changes (including features not included in the scoring system used in these trials)? The 

novelty of some of these findings vindicates the decision  to spend considerable time and 

effort developing a sonographic protocol for use in the trials. However, the variance in group 

scores and the small number of levels available on the hyperaemia scale suggest that an 

improved measurement system is required. Hyperaemia scoring using computerised pixel 

counting offers a more sensitive and objective measurement process and this should be 

considered in developing a protocol for both the clinical trial and other studies of hyperaemia 

in tennis elbow. 

The second trial and pooled data analysis completed the experimental work undertaken in 

this investigation. They have added to the evidence provided by the studies reported in 

previous chapters, and together these enable a reasoned response to the thesis that 

prompted them. This is delivered in the final chapter. 



 

 

Chapter 9 
Implications and conclusions 

 

9.1  INTRODUCTION 

The thesis of this investigation was that microcurrent therapy is capable of promoting 

healing and alleviating symptoms following damage to soft connective tissue. To test the 

thesis, two investigative approaches were used: a review of existing evidence concerning the 

use of microcurrent to treat tissue damage generally, and an empirical examination of its 

effects when applied to a specific soft connective tissue disorder. The investigation 

comprised a series of separate studies, with the findings of each informing the development 

of the next. This has led to a rather unconventional reporting structure, with the aims / 

methods / data / discussion format being repeated in several chapters. While each study has 

produced its own outputs, together they provide a body of evidence that may be used to 

construct a response to the thesis. This aims of this chapter are to discuss the findings of all 

elements of the investigation in relation to the thesis, and to identify their implications.  

Three themes were set out in the introduction to this report, which guided and linked its 

various components: microcurrent therapy as a distinct therapeutic entity; tissue healing and 

symptom alleviation; and clinical relevance. The last of these reflected an intention that, 

whilst the investigation should be founded on theory and basic science, it should be 

particularly concerned with implications for clinical practice. Hence, the literature reviews 

gave particular emphasis to clinical trials; the survey sought the views of clinicians to inform 

the choice of a disorder to treat with microcurrent;  the trial protocols included clinically-

relevant and patient-rated outcome measures; and the discussions in various chapters 

addressed the links between tissue healing and clinical change. The other two themes related 

specifically to the thesis, and this chapter begins with a discussion of the implications of the 

studies conducted in this investigation couched in terms of those themes. This discussion 

concludes with a formal response to the thesis. In the next section, the insights and original 

contributions of this investigation are identified, and some of its limitations discussed. 

Suggestions for further research are then offered, and the chapter concludes with some 

summary remarks and reflections on the whole process. 
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9.2   MCT AS A  DISTINCT THERAPEUTIC  ENTITY 

Microcurrent therapy differs from other modalities that involve application of electric 

current to the body in two particular regards: its current intensity and its effects within the 

tissue. Whereas therapies such as transcutaneous electrical nerve stimulation, 

neuromuscular stimulation and interferential currents typically deliver currents in excess of 

1 milliamp, therapeutic microcurrent intensities are 10, 100 or even 1000 times smaller112. 

This distinction is not merely a matter of degree; the smaller currents can produce quite 

different effects within body tissue. Many of the other therapies are used to stimulate 

peripheral nerves to achieve an analgesic effect or cause muscular contraction. MCT rarely 

does this, because its current characteristics are normally insufficient to cause nerve 

depolarisation. Thus, if microcurrent has a therapeutic effect, it is likely to depend on a 

different mechanism. The proposition considered in chapters 2 and 3 is that MCT influences 

the behaviour of cells that are responsible for the manufacture, maintenance and repair of 

body tissue.  

The literature concerning microcurrent falls into two categories: bioelectric phenomena and 

therapeutic application. The former comprises theoretical and empirical work on 

endogenous electricity, its involvement in normal physiology and in the body’s response to 

tissue damage; the latter is concerned with the application of exogenous currents and fields 

thought to activate or influence tissue healing by simulating endogenous bioelectric cues. 

Both of these bodies of work were reviewed to establish whether there is a rationale for 

microcurrent treatment, and to evaluate the evidence regarding its effectiveness. The 

reviews provided limited support for the clinical application of MCT, but raised questions 

about whether its mechanism of action is similar to that of endogenous current.  

That living tissue demonstrates both passive electrical characteristics and active electrical 

behaviour is incontrovertible. The energy expended by all cells in the maintenance of 

electrical potential differences across their own membranes and across a range of tissue 

boundaries is testimony to the centrality of bioelectricity in the processes of life. Its role has 

been explored by chemical and electrical manipulation of the cells that generate it47, 59, 75. The 

former approach – using ion channel activators or blockers – inevitably changes the 

biochemical milieu of the cells. In fact, because many of the chemical reactions that drive or 

modulate physiological processes depend on ionic interactions, it is difficult to distinguish 

between biochemical and bioelectric effects. The latter approach – applying electric fields 

and currents to tissue – can undoubtedly influence cellular behaviour, and do so in ways that 

enhance tissue healing. Yet this does not prove that endogenous electricity guides such 
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behaviour in living tissue. Hence, whilst there are clear associations between bioelectric 

changes and components of healing, attribution of causality is more problematic. This may 

explain why, despite the growing corpus of data on bioelectric phenomena, authorities in the 

field continue to express the uncertainties about their role: ‘the signalling function of [the] 

skin battery remains largely unexplored’47; ‘[electric fields] certainly coexist with the more 

familiar players that control multiple cell behaviours, and it is now timely that their 

physiological roles are explored more thoroughly’75. These statements are hard to reconcile 

with others (sometimes made by the same authors) suggesting that causality has been 

established: ‘This electric field… initiates the wound healing process’47; ‘Proliferation of 

epithelial cells is regulated by a physiological electric field’75;  ‘[endogenous] electrical signals 

control wound healing’668. Arguably, it is only legitimate to say that numerous mechanisms 

have been identified by which bioelectricity could influence tissue healing.  

Even if a causal relationship were to be established, this would not prove that microcurrent 

therapy brought about its effects by mimicking endogenous currents, as some trial reports 

and reviews of MCT claim183, 184, 253, 255. If this were so, it might be expected that MCT 

parameters would resemble those of the biocurrents measured during tissue healing. As the 

literature reviews showed, this is rarely the case. In some studies, the applied currents have 

intensities less than 100µA and use DC or monophasic waveforms (in which the current is 

always unidirectional). These are seen most commonly in trials of MCT for bone healing. 

Some studies involving skin wounds and other forms of tissue damage have used current of 

similar intensity, but many have not, and their waveforms often bear no resemblance to 

those occurring naturally in skin wounds.   

On the other hand, if certain parameters are key to the effects of biocurrent, it may only be 

necessary for MCT to reproduce these in order to have similar effects within the body. The 

clinical trials reported in Chapters 7 and 8 were consistent with current intensity being the 

main determinant of MCT effectiveness; waveform appeared to be considerably less 

important – and may indeed be irrelevant - as a mediator of healing. If biocurrent intensity is 

the most important factor in its influence on healing, then defining MCT primarily in terms of 

current intensity, and claiming that it mimics the current of injury as a cue for healing, would 

be reasonable. Clearly, the electrophysiology of healing requires further elucidation before 

this line of reasoning could be accepted. 

Even so, it can still be argued that the therapy has a distinct mechanism of action. As was 

shown in chapter 2, there is a range of pathways by which microcurrent can influence the 

healing process - pathways that do not appear to be activated by currents of higher intensity. 
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Sonographic findings in the clinical trials reported in Chapters 7 and 8 suggested that MCT 

can both stimulate and inhibit blood flow according to current tissue status. Such an effect 

has not been reported with other electrotherapeutic modalities. Also, MCT can promote pain 

relief without obvious sensory stimulation.  Hence, the literature review and preliminary 

trials provided evidence for another mechanism of action by MCT. These different pathways 

provide the most legitimate justification for considering MCT as a distinct therapeutic entity, 

and for further investigation of its clinical potential. The narrative and systematic reviews 

reported in Chapter 3 took this perspective, and in doing so brought together the evidence 

that is particular to MCT. This reflects a growing awareness that dosage is key to the 

effectiveness of a variety electrotherapies, including extracorporeal shockwave therapy362, 

ultrasound669 and laser therapy670. Reviews that attempt to synthesise findings from trials 

without regard to the intensity of the applied energy may reduce the power of the analysis to 

detect a real effect if there is one – analogous to increasing the risk of a type II error. This 

may be particularly important where the mechanism of action is thought to involve directly 

influencing cellular behaviour rather than causing gross changes in the tissue. Such a 

distinction has been made in modelling the action of therapeutic ultrasound: whilst higher 

intensities are thought to confer benefits by producing heating effects in the tissue, lower 

intensities appear to act by altering ion transport mechanisms in cell membranes671. In this 

sense, high and low intensity ultrasound may more properly be thought of as different forms 

of electrotherapy with different indications. This is also true of applied currents. For example, 

although MCT and TENS involve the same form of energy, possibly with the same waveform 

and frequency, applied to the body via surface electrodes in either case, they constitute quite 

different forms of therapy because of the different effects they bring about. Recognising this 

only provides greater scientific precision, but may also enable more informed clinical 

decision-making.  

 

9.3   TISSUE  HEALING AND SYMPTOM  ALLEVIATION 

The impetus for this investigation was the proposition that MCT is capable not only of 

treating the clinical signs and symptoms associated with tissue damage but also of healing 

the damage itself. This is a particularly attractive prospect because of an implicit assumption 

that the tissue damage is both the originator and the maintainer of the observed signs and 

symptoms. If this is so, promoting tissue healing constitutes a more comprehensive 

management plan than mere symptom management because it addresses underlying causes 

as well as effects. The assumption has obvious validity where MCT is used to promote healing 
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in, say, a non-uniting tibial fracture: healing the bone tissue restores the structural integrity 

that is essential for pain-free and safe weight-bearing. A skin wound may remain a portal for 

infection, a source of pain and a disfiguring defect until re-epithelialisation has occurred. 

These examples illustrate the link between tissue healing and clinical outcomes that is clear 

when MCT is used to treat bone and skin damage.  

The link is much less apparent in the treatment of soft connective tissue disorders, however. 

As the trials reported in chapters 7 and 8 found, normalisation of tendon structure was not 

necessarily accompanied by  clinical improvement, and substantial abnormalities remained 

in some cases that were regarded as treatments successes. Similar patterns have been 

reported in other trials using sonography to monitor change during the treatment of 

tendinopathy664. Hence, structural normalisation and clinical improvement are not 

necessarily correlated. However, this begs the question of what is meant by tissue healing. 

Along with other forms of soft connective tissue, damaged tendons heal by the deposition of 

scar, which contains a greater proportion of ground substance, a different mix of collagen 

types, and a less organised structure than the tissue it replaces267, 672. Even with optimal 

remodelling, scar tissue remains structurally distinct from its surroundings, but this does not 

mean that the tendon has not healed. Although the “mend” is somewhat weaker than the 

original, the new structure may be regarded as satisfactory so long as it can withstand the 

stresses applied during daily activities of living. This might be called “functional healing”. 

Some degree of structural normalisation is to be expected, as fibrils align and ground 

substance levels fall during remodelling, so the sonographic greyscale was an appropriate 

indicator of one element of healing, but it did not address other important elements of the 

process, including neural and biochemical changes. These may in fact be more closely related 

to clinical outcomes – particularly pain – than structural changes are. 

Neovascularisation is a key element of tissue healing. During the proliferative phase, the 

ingrowth of new blood vessels facilitates the transport of oxygen, energy and materials that 

are required for the production of new tissue. In normal healing, once new tissue has been 

laid down and remodelling begins, some of the new blood vessels recede as locally increased 

anabolic activities fall back to previous levels. It is therefore to be expected that hyperaemia 

will be observed in the earlier stages of tendon healing, and seen to decrease as the repair 

sequence progresses. In chronic tendinopathy, this pattern is disrupted for some reason: the 

neovessels do not recede and hyperaemia persists. This has clinical implications because 

neovascularisation is accompanied by neural ingrowth and increased nociceptor density, 

which may at least partly account  for the maintenance of pain in chronic tendinopathy. The 

hyperaemia data from the trials appear inconsistent on this point: there was a significant 
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correlation between changes in blood flow and treatment success, but no correlation was 

apparent between changes in blood flow and pain levels, nor between baseline blood flow 

and pain. The charts of change in blood flow over time (see section 8.6.1) suggest that the 

treatment effects were not fully maintained once MCT ceased, and it may be that the changes 

were too small and too short-lasting to produce a significant and sustained fall-back of 

neovessels and their attendant nerves. 

On the other hand, pain levels did fall significantly over time, and the differences between 

groups suggested that MCT had an analgesic effect. If this is not due to a reversal of 

neurovascular ingrowth, other mechanisms may account for it. The greatest falls in pain 

levels were seen in the groups receiving microcurrent of lower intensity, which was sub-

sensory in most cases, so it seems unlikely that the nerve depolarisation necessary for 

analgesia by pain gate closure was occurring. Another possibility is that MCT modulated the 

production of noxious biochemicals or the sensitivity of nociceptors in the area. Sampling of 

the chemical environment using microdialysis could help investigate these possibilities. Of 

course, the pain experienced in tennis elbow may have multiple sources – at least 19 have 

been identified501 – and MCT may influence some but not others. For instance, local 

application of microcurrent seems unlikely to reduce the referred pain of cervical 

radiculopathy**. However, if its analgesic action is through modulation of healing 

mechanisms, it may have a place in the treatment of multiple possible sources of pain, for 

instance damage to adjacent tissue such as the radiohumeral ligament, the joint capsule and 

the epicondylar cortex. Bone spurs and cortical irregularities were common findings in this 

investigation as in others348, 372; given the evidence for microcurrent’s capacity to promote 

bone healing, such features may respond to MCT (although there is as yet little evidence that 

they contribute to the pain of tennis elbow). 

Persuasive evidence that MCT impacts significantly upon tissue healing in tennis elbow could 

be provided by a longer-term study that monitors recurrence rates. One of the problems 

associated with healing by scar formation is that the repaired tendon has lower strength than 

the original. This is due to the presence of less mature forms of collagen that have weaker 

cross-links than normal tendon544, 611. The weakness is likely to be part of the reason that 

both chronicity and recurrence are common in tennis elbow, as in other tendinopathies673. 

These outcomes are more likely still when the healing process is dysfunctional in some way, 

                                                             
**

 Although there is evidence that another form of MCT, involving application of microcurrent to the brain 
via ear clip electrodes (cranial electrical stimulation), may modulate central pain mechanisms (e.g. Tan, G., 
D.H. Rintala, J.I. Thornby, et al., Using cranial electrotherapy stimulation to treat pain associated with spinal 
cord injury. J Rehabil Res Dev, 2006. 43(4): p. 461-74). 
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for instance due to ageing, which is a significant factor in the development of tennis elbow674. 

Re-injury while repair is in process, or following return to normal activities after the repair is 

supposed complete, is more likely when healing is dysfunctional. If MCT can promote 

functional healing, fewer recurrences might be expected.  

Like any other form of tissue healing, tendon repair is a multistage process. The 

inflammatory phase begins immediately after tissue damage occurs (although there is debate 

about its occurrence and extent in the tendinopathy that results from repetitive 

microtrauma503, 675). This is followed by the proliferative phase, in which neovessels form, 

fibroblast numbers increase and new collagen is synthesised, and then the remodelling 

phase, when the collagen matures, develops cross links and is aligned according to the 

prevailing forces acting on the tendon611. The phases are not discrete, but have considerable 

overlap as the healing process transits between them. Where healing becomes dysfunctional, 

it appears to be in the transition between the latter two phases, because tendinopathic tissue 

resembles the granulation tissue characteristic of the proliferative phase285. Hence, if MCT 

corrects dysfunctional healing, it may be particularly through restoring the dynamic balance 

of anabolic and catabolic mechanisms that is necessary to progress from one phase to the 

next. As the literature review showed, successful treatments of skin and bone lesions have 

usually required the application of microcurrent for many weeks or months. This suggests 

that the therapy does not merely “kick start”  the process but must be continued to sustain it. 

The same may be true of tendinopathy, and the relatively short treatment period of three 

weeks in these trials may account for the rather limited changes observed within the tendon. 

MCT may also be capable of influencing the other phases of healing. The establishment of a 

current of injury immediately after tissue damage, and the observed effects of both 

endogenous and applied currents and fields on cells that are involved in the inflammatory 

process, provide grounds for supposing that MCT may also have value with acute tissue 

injuries. As yet, little evidence is available on the matter. Many of the animal studies 

considered in the literature review applied microcurrent to surgically-damaged tissue. 

However, investigators appear to have focussed their attention on the later stages of healing 

and little data is available on the possible influence of applied microcurrent on the 

inflammatory process. A recent study using MCT on surgically-repaired cruciate ligaments in 

dogs found that, when used in combination with compression bandaging, it produced greater 

short-term reductions in swelling than bandaging alone676. The literature review reported 

earlier found only one human study applying MCT to acute tendon damage (after surgical 

repair of ruptured patellar and Achilles tendons)143, but it focussed on the proliferative and 

remodelling phases, presumably regarding them as the more clinically significant. The review 
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also cited several studies using MCT for delayed-onset muscle soreness, which is associated 

with inflammation following heavy exercise101, 199-203. These showed little evidence of a 

treatment effect on pain. Nevertheless, there would surely be value in investigating the 

potential of microcurrent in the early treatment of tendon strains and tears, which are both 

common and debilitating. 

Little is also known about the possible effects of MCT on remodelling. Repetitive mechanical 

loading, either through normal activities or via a programme of controlled exercises, is 

thought to be a prime motivator of remodelling and provides a rationale for the use of 

exercise in the management of tendinopathy361, 621. The mechanism by which exercise 

promotes remodelling is mechanotransduction, whereby forces on the extracellular matrix 

are transferred to fibroblasts embedded within it and encourage them to remodel the 

matrix621. There is evidence that oscillatory electrical stimulation can also promote 

remodelling, at least in bone40, 677. The same may be true for tendons but again, little evidence 

is available specific to this phase. If MCT can promote remodelling, perhaps an  oscillatory 

component is required during this phase. This would be consistent with a recent proposal 

that mechanical oscillations caused by eccentric contractions in Achilles tendons may 

promote remodelling after injury678. It may be that oscillatory stimulation – whether 

mechanical or electrical - may be particularly important during this phase. Conversely, a uni-

directional current to guide galvanotaxis of cells may be more beneficial in the inflammatory 

and proliferative phases. Hence, the significance of particular parameters may vary according 

to the phase of healing: perhaps current intensity is key during the proliferative phase and 

waveform is more significant in remodelling. This is entirely speculative, but suggests 

possible avenues of research for the future. 

The evidence from the clinical trials conducted in this investigation is equivocal regarding 

MCT’s capacity to promote healing in tennis elbow; it is stronger in relation to symptom 

alleviation. The patient-rated measure of treatment success was particularly persuasive, and 

the measures of pain and function were also suggestive of a benefit. Although activity-related 

pain is the primary symptom of tennis elbow, other features that have been identified include 

local tenderness, reduced joint range of movement, reduced grip strength and impaired 

motor control285, 466, 679. In fact all of these clinical features can – at least in principle – be 

attributed to the pain response: palpating the epicondyle, gripping activities and full 

extension of the elbow all stress the tendon and so can  produce pain680; grip strength and 

motor control may both be impaired by deconditioning following avoidance of activities that 

might provoke pain502. Therefore, reduction in activity-related pain is likely to be essential 

(though not necessarily sufficient) to address the other features of tennis elbow. If, as has 
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been argued from the trial data, MCT has an analgesic effect in tennis elbow, it provides the 

precondition for improvement in the functional capabilities. Since it does not appear to have 

a neurostimulatory effect, there is no apparent mechanism by which it could directly 

influence grip strength, proprioception or reaction times. Hence, there is a clear rationale for 

proposing that MCT’s clinical effectiveness will be enhanced by combining it with other forms 

of treatment that specifically address these features of the disorder. Even if MCT acts only as 

an analgesic, it has potential benefits over various pharmacological treatments such as non-

steroidal anti-inflammatory medication and cortisone injections. Both of these have effects 

on cellular activity that may be deleterious to the healing process681, 682; possibly in 

consequence, cortisone injections are associated with higher recurrence rates than other 

conservative treatments of tennis elbow332, 333. There is no evidence that MCT inhibits 

healing, at least when the current intensity is within the therapeutic window. 

Finally, if MCT is indeed effective in the management of tennis elbow, it may also have value 

in the treatment of other forms of tendinopathy - such as those affecting Achilles, patellar and 

rotator cuff tendons – as well as related disorders such as plantar fasciitis. The survey of 

clinicians reported in Chapter 4 suggests that this would be of great clinical value. 

 

9.4  RESPONSE  TO THE THESIS 

The response of this investigation to the thesis is that: 

There are theoretical grounds and fair empirical evidence to conclude that  

 some forms of microcurrent therapy can promote tissue healing and resolution of 

symptoms in some cases of chronic tennis elbow in the short and medium term;  

 outcomes are dependent on treatment parameters, particularly current intensity;  

 treatment effectiveness may depend on baseline levels of blood flow in the 

affected tendon. 

This response is hedged with conditional terms. The term “fair empirical evidence” is based 

on the framework for ranking evidence that was used in the systematic review218. According 

to that scheme, studies ranked as fair “will be at varying degrees of risk of error [and do not] 

provide a strong evidence base for clinical practice. However, these studies represent initial 

exploration of interventions and so assist in prioritizing the research agenda.”218. So the 
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evidence is not sufficiently convincing to recommend the incorporation of MCT into the 

clinical management of chronic tennis elbow, but the therapy is worthy of further scrutiny 

because of its potential to address both symptoms and their causes. 

 

9.5   ORIGINAL CONTRIBUTIONS  AND LIMITATIONS   

OF THE INVESTIGATION    

This investigation has produced a number of original findings and other contributions that 

may be of value to the research and clinical communities. This section identifies these, and 

discusses some of its significant limitations. Table 9.1 summarises the sequence of arguments 

developed in the early part of the investigation, which provided the foundation for the 

experimental work that followed. 

Table 9.1: Sequence of arguments proposed in this report 

 Cells in the living body generate electric fields across their own membranes and within 

all body tissues. The fields change when tissue is damaged, and generate electric 

“currents of injury”, with intensities in the microamp range, that diminish as healing 

progresses.  

 Applying fields and currents similar to those measured in damaged tissue can promote 

cellular activities that are associated with healing. Disrupting these endogenous fields 

and currents can inhibit healing. This supports the contention that endogenous currents 

help drive tissue healing. However, there may be a complex and evolving interplay of 

biochemical, bioelectric and biomechanical factors as healing progresses. 

 A range of applied currents with intensities in the microamp range are capable of 

promoting healing in a variety of damaged tissues. Evidence of clinical effectiveness is 

strongest for non-uniting bones, spinal fusion surgery, and several types of skin wound. 

 Some apparently effective applied currents do not resemble biocurrents of injury, and 

these may activate mechanisms different from those involving endogenous currents.  

 Effective current intensities appear to differ according to tissue type and form of damage. 

Other parameters, such as current direction and waveform, may also be significant. 

Different combinations of parameters may be indicated, depending on the types of tissue 
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and damage, and on the stage of healing.  Few clinical trials have investigated this issue. 

 Tissue damage is readily identifiable in tendinopathic disorders, and contributes to their 

clinical symptoms. Dysfunctional healing is a factor in the development of chronicity and 

may promote recurrence, which is a common finding in tennis elbow studies. If 

functional healing could be encouraged by therapy, this might reduce both present 

symptoms and recurrence.  

 Systematic review of clinical trials for tennis elbow have found only limited evidence of 

benefit for any existing treatment of the disorder, and consistently identify the need for 

improved methodological quality and reporting. More than 40 outcome measures have 

been used in published tennis studies, often with no regard to their validity and 

reliability. Diagnostic and eligibility criteria also vary substantially between them, and 

are rarely justified. These issues therefore merit particular attention. 

 Sonography is capable of diagnosing and identifying tissue changes in tendinopathy, and 

is increasingly being used as an outcome measure in tennis elbow trials, but little 

reliability data is available to support this. Assessment protocols and measurement 

scales vary in ways that may affect reliability and responsiveness. 

 A clinical trial is warranted, to assess the effectiveness of MCT in the management of 

tennis elbow, but preliminary experimental work is required to evaluate a protocol that 

includes measures relating to tissue healing and clinical variables, and to provide 

guidance regarding which treatment parameters to employ. 

 

The literature reviews were based on the premise that MCT has a particular therapeutic 

mode of action making it suitable for specific clinical applications. Some reviews have 

considered a range of electrotherapeutic modalities including MCT, but not treated it as a 

separate modality166, 683; others have focussed on the application of MCT to a specific tissue184, 

194. None has considered the evidence for MCT across the range of tissue disorders, to 

investigate whether there are common features between them; and none has focussed on the 

use of MCT specifically with soft connective tissues. The narrative review conducted in 

chapter 3 (a report of which has been published in a peer-reviewed journal684) strengthened 

the case for considering MCT as having a unique mode of action, with potential application to 

a range of tissues and disorders. It also enabled some delineation of its therapeutic windows 
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(although considerable uncertainty about them remains). The systematic review provided 

the first rigorous examination of trial data specific to soft connective tissue, and it is intended 

to submit a report of it for publication. 

The quality scoring system used in the systematic review represents both a strength and a 

weakness in this study. It was developed in response to the criticisms that have been levelled 

at existing quality scales: that their focus on RCTs downgrades or excludes studies that may 

provide useful and credible data685, and that they give insufficient attention to full 

descriptions of treatments, co-interventions and participant concordance, which are 

particularly important in multi-modal treatments commonly used in conservative 

management strategies225. By drawing on existing, validated scales and expanding them to 

address these deficiencies, the quality assessment tool was tailored to the particular 

requirements of the review, and well-suited to the purposes of this investigation. It may have 

wider applicability. However, it lacks some legitimacy because some of the guidelines that 

have been advocated for the development of assessment scales227, 686 were not employed. For 

example, the scale was not submitted to a panel of experts to judge its face validity, nor was it 

evaluated for inter-rater reliability or internal consistency. Such procedures would be 

required before the scale could be recommended for broader use. The inclusion of non-RCTs 

in the review was valuable because it ensured that data on adverse effects and patient 

acceptability was available, and these are important considerations in the evaluation of a 

novel therapy. 

Strictly speaking, the survey of clinicians reported in Chapter 4 was not an essential 

component of the broader investigation. It would have been possible to select a soft tissue 

disorder solely by reference to the literature. A tendinopathic disorder would probably still 

have been chosen, since the majority of evidence from existing clinical trials, and from 

relevant animal and cellular studies, relates to tendons. However, the survey provided data 

that helped in selection of a particular disorder to treat, and also highlighted issues in 

diagnosis that were used in development of the trial protocol. It also indicated the disorders 

that are causes for concern in current clinical practice, the variations in management of the 

disorder, departures from evidence-based recommendations, and the differences in 

outcomes achieved. These findings may be of interest to the broader clinical and research 

communities, and an account of them has been published291. 

The attention given to design and protocol development for the clinical trials was justified 

both by the aims of this investigation and concerns that have been expressed in the literature. 

In a recent international survey of course tutors and clinical experts concerned with 
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musculoskeletal research, the validity, reliability and selection of assessment tools and 

outcome measures were amongst the most important priorities identified for postgraduate 

research687. As chapter 5 demonstrated, tennis elbow studies have used a vast array of 

outcome variables and instruments to measure them - at least 50 variables and 40 

instruments were identified in the survey of tennis elbow literature. Many of these have been 

employed with little or no apparent regard for their measurement properties. This appears 

particularly true of trials of surgical interventions, where effectiveness if often judged in 

terms of clinician ratings and questionnaires for which no validity or reliability data is 

available688. However, trials of conservative interventions have also used unvalidated 

outcome measures. In particular, the growing use of sonography as an outcome measure in 

tennis elbow trials has not been matched by attention to its measurement properties. The 

survey of the relevant literature conducted for this investigation, and a series of 

recommendations resulting from it, has been published555. These recommendations were 

followed in the trials reported earlier. 

Using sonography both for diagnostic purposes and as a measure of tissue healing was not 

unproblematic. In the trials, a sonographic diagnosis of tendinopathy was based on evidence 

of abnormality provided by either greyscale or Doppler images. This criterion may have been 

too liberal, since greyscale changes due to age-related tissue degeneration would be expected 

in older participants, even in non-symptomatic tendons. A combination of both greyscale and 

Doppler abnormalities may have been the more appropriate criterion, since it has been found 

to be a highly correlated with clinically-diagnosed tennis elbow. The trials used a 

combination of both clinical and sonographic evidence for diagnosis, but it is possible that 

some participants were misdiagnosed on the basis of similar symptoms from a different 

cause coupled with greyscale changes due to ageing.  

The  validity of sonography in identifying structural features of tendinopathy has been 

established by comparison with histological findings, but its use to gauge pathological 

severity has yet to be validated, and few reliability studies are available. The significance of 

changes in the sonographic appearance of the pathological tendon remains moot, and so 

interpretation of the scale created for this study was not straightforward.  In spite of these 

reservations, sonography was judged the most feasible option in the context of this 

investigation, and one that could provide useful data on changes occurring within the tissue. 

The work done to enhance and evaluate the quality and consistency of sonographic 

assessments provided reliability data that was essential for interpretation of data from the 

trials. It also provided Minimum Detectable Change (MDC) values that would be needed if the 

scales were to be employed in other studies.  
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The reliability studies conducted with dynamometry and pressure algometry were 

significant in two respects: first, they led to the exclusion of pressure-pain threshold from the 

trial protocol because of its unreliability, thus avoiding unnecessary patient discomfort and 

the collection of unusable data; second, they provided confirmation that PFGS measurements 

could be made reliably, and indicated an MDC value that has not previously been reported. It 

also underscored the importance of conducting reliability studies with symptomatic 

populations, amongst whom MDC values may be higher than the normal population because 

of symptom lability. In retrospect, given the problems experienced later with the Patient 

Specific Functional Scale, it would have been preferable to subject this measure – as well as 

the PRTEE - to reliability-testing. This might this have led to efforts to improve reliability of 

the PFGS measurement, as well as providing MDC values for both variables.   

Since the trials were conducted. an experienced research group with numerous tennis elbow 

publications in high quality peer-reviewed journals has published a protocol for a tennis 

elbow trial689. With the exception of sonography, they have selected the same outcome 

measures chosen for this study, including patient-rated global change, treatment success, the 

PRTEE questionnaire, pain-free grip strength and adverse events. They also include a 

measure of anxiety and depression, and pressure pain threshold. The former variables were 

addressed during baseline assessment in this investigation, and the latter was considered, 

but dropped after reliability-testing. Their protocol includes additional measures of 

resting/worse pain (which is questionable since are already measured by the PRTEE), 

health-related quality of life, kinesiophobia and economic costs. The overlap in outcome 

measures provides some reassurance that the selection of clinical measures employed in this 

investigation was appropriate.  

This does not represent an inevitable convergence of protocols in tennis elbow trials, 

however. Other recently published studies continue to use outcome measures of dubious or 

unproven reliability, such as maximum grip strength or the Nirschl score494, 690, 691. The survey 

of trial protocols conducted as part of the experimental design process reported in Chapter 5 

revealed the heterogeneity in diagnostic and eligibility criteria and assessment procedures 

used in studies. This can make comparison of findings and meta-analyses of data impossible, 

which is particularly unfortunate given that pooling of data could compensate for the low 

study sample sizes commonly reported. The arguments proposed for the outcome measures 

adopted in this investigation could help inform the development of a common protocol for 

tennis elbow trials, which would add value to research output308, 692. 
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The trials themselves produced a data pool and findings that can inform the development of a 

protocol for a full trial of MCT with tennis elbow - this is discussed later. They provide strong 

evidence that MCT can treat chronic tennis elbow safely, and successfully from the patient 

point of view; objective measures were less convincing, however.  Pain-free grip strength 

data may have been compromised by the problems with the dynamometer, and the 

sonographic changes observed were small. Further work on the sonographic scales, by 

including other pathological features, increasing the number of level4s or using computer-

aided measurement, might increase their responsiveness to change. 

The trials were planned as exploratory studies, and were not expected to be sufficiently-

powered to detect statistically significant differences between groups on all measures. 

Nevertheless, the decision not to include a control group receiving either no treatment or a 

different treatment was a risky strategy: if there had been no observed differences between 

groups there would have been no evidence that MCT had any effect, because the groups 

would be expected to improve over time even without treatment. In the event, there were 

significant differences between groups on some measures but, given the larger than expected 

recruitment figures, a single trial comparing three groups, two receiving different forms of 

MCT and one control, might have provided more convincing evidence. In fact, during the 

investigation consideration was given to an alternative analytical approach: statistical 

comparison of outcomes with those of another trial involving a minimal intervention group, 

using data for participants matched on significant baseline variables. Lead authors for two 

suitable published trials, which used the same outcome measure of treatment success as this 

investigation,  were approached with a view to obtaining a raw dataset, but in the event it 

was not possible to obtain the data. In any case, matching may not have been possible, and no 

comparable sonographic data were collected in these studies. Comparisons of group values 

for treatment success were used, but these were undermined by potentially significant 

baseline differences between groups. 

The trials represented the culmination of several investigative strands in this investigation, 

each of which has generated its own insights and findings. These are summarised in Table 

9.2. 
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Table 9.2: Original findings and contributions of this investigation 

1. There is a dearth of clinical evidence regarding the therapeutic application of 

microcurrent to other forms of tissue, particularly the soft connective tissues.  A 

systematic review of clinical trials concluded that the evidence is generally of low 

quality and poorly reported, but sufficient to suggest that certain types of MCT may be 

of benefit in the management of some soft tissue disorders. 

2. A survey indicated that physiotherapists find the tendinopathies amongst the most 

debilitating and difficult to treat disorders that they see commonly in practice. Frozen 

shoulder, plantar fasciitis and tennis elbow were rated the most problematic 

disorders in these regards. 

3. A standardised sonographic assessment protocol was developed, using subjective 

rating scales applied to greyscale and Power Doppler images, to provide measures of 

tendon structural abnormality and hyperaemia in tennis elbow. Reliability varied 

depending on the sonographic feature assessed, but ranged from moderate to 

excellent for aggregate greyscale scores and hyperaemia scores, whether measured 

by two different raters or the same rater on two occasions. The concurrent validity of 

the scales was not established, although arguments for their face validity were 

proposed. 

4. The test-retest reliability of pain-free grip strength measurements made with a 

symptomatic population was established, and Minimum Detectable Change values 

were calculated for PFGS measurements and the two sonographic scales.  

5. Pressure Pain Thresholds and the Patient-Specific Functional Scales were found to be 

unreliable outcome measures when used as described with people with tennis elbow. 

6. Two trials comparing different forms of MCT for chronic tennis elbow were 

conducted. These concluded that:  

a. All forms of MCT evaluated were associated with significant improvements 

in patient-rated outcomes by 3 months after treatment 

b. MCT with peak current intensity of 50 µA produced significantly better 

patient-rated outcomes than with intensity 500 µA.  

c. MCT with a biphasic waveform produced similar outcomes to one with a 
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predominantly monophasic waveform of similar intensity but applied for a 

much shorter time. 

d. Higher baseline hyperaemia levels were significantly associated with falls in 

blood flow after treatment and with greater treatment success rates. Hence, 

the therapeutic action of MCT may be dependent on baseline intra-tendinous 

blood flow. 

e. High baseline bloodflow decreased with MCT, with statistically signicant 

falls after 3 weeks of MCT; low baseline bloodflow increased with MCT, 

rising significantly by 6 weeks from baseline. These observations suggest 

that MCT may be capable of regulating, not merely stimulating, intra-

tendinous blood flow. 

f. Although there were consistent patterns of difference between group means, 

small effectrs sizes and/or large group variances meant that the studies 

were underpowered to detect significant differences between groups on 

most outcome variables. The trial follow-up period may also have been 

insufficient to observe significant structural change in the tendon. Hence, 

type II error may have occurred in these trials. 

g. Adverse effects of treatment were rare and mostly attributable to equipment 

and other correctable protocol issues rather than the microcurrent itself; 

patient attitudes to the treatment were positive and compliance with the 

protocol excellent. 

h. Longer treatment times and the use of co-interventions that promote 

remodelling may enhance treatment effects. 

 

Although this investigation has sought to maintain a clinical focus throughout, many of these 

implications are more directly and immediately relevant to the research community than to 

clinicians. The most clinically relevant conclusion is that MCT cannot at present be 

recommended for routine use in cases of chronic tennis elbow (or indeed for any of the other 

soft connective tissues addressed in the systematic review, since the quality of evidence was 

generally poor). The survey of physiotherapists reported in chapter 4 suggested that MCT is 

rarely used in the UK at present; however, it appears to be better known and used in other 
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countries, particularly in North America (Kloth, personal communication). This investigation 

suggests that its application for tendinopathic disorders does not yet have a firm evidence 

base, and may only be supported by the experience of individual practitioners. However, 

further trials are certainly justified, and these may furnish data that will enable clinicians to 

make more evidence-informed decisions about using this modality.  

9.6   RECOMMENDATIONS  FOR FURTHER 

INVESTIGATION 

The studies described in preceding chapters suggest a number of avenues for further 

investigation that may be of value to the research community and to clinicians: 

1. The instrument developed for assessment of methodological quality of clinical trials 

may represent an improvement on some existing tools because it enables 

consideration of a variety of trial designs, not only RCTs. Evaluation of its inter-rater 

reliability, discriminatory capacity and internal consistency would enhance its 

credibility. Alternatively, it could be used as source material for the development of a 

new scale. 

2. The review of trials of treatments for tennis elbow revealed the heterogeneity of 

protocols used. Although the details of trial methodologies will vary with their aims, 

there is scope for the development of a common protocol with standard case 

definitions and diagnostic criteria, as well as validated and reliable outcome 

measures692.  A systematic review of the most common outcome measures, 

identifying the validity and reliability data that exists for each, could help in the 

development of this protocol.  

3. A raw data set gathered from trials using such a common protocol might be valuable 

to research groups for comparative purposes, and possibly for calculation of effect 

sizes in pilot studies. 

4. Although validation of the sonographic assessment scales against histological data in 

a longitudinal study is problematic for the reasons identified earlier, a cross-sectional 

correlation  study might be of value. This would involve sonographic assessment and 

rating of tissue that is about to be excised during surgical treatment of tennis elbow. 

Intra-operative visual inspection and subsequent histological analysis could provide 

comparative quantitative data that could be used to assess both greyscale and 
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hyperaemia ratings. A scale that has been developed to assess changes and 

vascularity in excised tissue samples from patellar tendons693 could be used for this 

purpose. 

5. The potential effects of MCT on local biochemistry could be investigated using 

microdialysis. The problem with using this as an outcome measure is that it involves 

injury to the tendon510, and so may interfere with the healing process. In fact it may 

enhance it, since surgical and other invasive procedures may be effective primarily by 

re-initiating a stalled healing process. New techniques for investigating tendon 

anatomy and physiology are being developed, but most of these involve some degree 

of tissue damage657. Microdialysis may therefore be the best available option at 

present for investigating the presence of biochemicals associated with pain, the 

cardinal symptom of tennis elbow. 

6. Baseline hyperaemia levels were prognostic of treatment success in this study. This 

may be particular to MCT or may have wider applicability. If hyperaemia is measured 

in other studies, this possibility could be investigated. It might then be of value in 

clinical decision-making about management strategies. 

7. Further development of reliable and responsive sonographic scales is desirable to 

enhance their credible use in tennis elbow (and other tendinopathy) studies; the 

experience and data gathered in this study may be useful source material for that 

work. The improvements in reliability that were obtained in this investigation 

compared to previous studies suggests that directed training of inexperienced 

practitioners for a specific application is feasible. This may encourage greater uptake 

of this imaging modality for both diagnosis and treatment effectiveness studies.  

8. Longitudinal sonographic studies have been conducted with other forms of 

tendinopathy to investigate their natural history694, 695. This should also be done with 

tennis elbow so that patterns of change, and the predictive properties of particular 

features, can be investigated. 

9. The evaluation of outcome measures enabled Minimum Detectable Change values to 

be calculated for several of them. It would be useful to both researchers and clinicians 

to have values for Minimum Clinically Significant Difference (MCSD) values, which 

appear to be scarce in tendinopathy research696. These may be calculated by 

comparing changes in the variable of interest with changes on a reference scale, such 

as a global change scale, but the validity of conducting such an analysis 
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retrospectively has been questioned697. MCSD values for the PRTEE and PFGS scores 

are not available in the literature, and so a prospective study to establish these would 

be valuable. It has been argued that these, rather than the MDC values, should be used 

toc calculate trial sample sizes698. 

10. This investigation has concluded that a clinical trial of MCT for tennis elbow is 

indicated. The preliminary studies provided useful data and experience to inform the 

trial protocol. These are discussed in more detail in the next section. 

11. The proposed clinical trial evaluates a single form of MCT. Uncertainty remains about 

the influence of parameters other than current intensity. Trials comparing different 

waveforms, treatment durations and electrode positions – and their effects during 

different phases of healing - might help further define the therapeutic window.   

12. There is evidence of benefit of MCT with acute tissue injuries, such as osteotomies, 

spinal fusions, skin grafts, fresh fractures and surgically injured or repaired tendons 

and ligaments. The potential of MCT to promote healing after tendon strains and 

frank tears should also be investigated, particularly as these may predispose to 

further injury. 

 

9.6.1 Protocol for a full trial  

The protocol used with the preliminary trials described in previous chapters has many 

elements that appeared appropriate for use in the full trial. However, a number of 

modifications are required, and this section identifies them.  

Aims 

This investigation has concluded that of the types of microcurrent evaluated, low frequency 

monophasic 50µA peak amplitude current is most likely to be effective and that its impact 

may be enhanced by an exercise programme and longer treatment duration. These 

conclusions provide the rationale for a trial that evaluates the effects of adding MCT to a 

conventional form of treatment of this disorder. Given the uncertainty about the relationship 

between tendon tissue changes and symptoms, clinical considerations should determine the 

primary outcome of interest. However, if MCT can promote tissue healing in tennis elbow, 

this is significant because it may reduce the chances of recurrence. Therefore the aims of the 

trial are to investigate 
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1. whether addition of MCT with specified parameters to a course of standard 

physiotherapy (including education, advice and an exercise programme) improves 

short and long term efficacy and reduces recurrence rates in chronic tennis elbow, 

compared to standard physiotherapy alone. 

2. the nature and extent of changes that occur in tissue structure and blood flow during 

and after this treatment  

Design 

A well-conducted parallel arm randomised controlled trial is the design of preference 

because it can provide the highest level evidence of treatment effectiveness. It was argued in 

Chapter 5 that, since the symptoms of tennis elbow tend to resolve with time, the use of a 

control group receiving no treatment would enable comparison of the active treatments with 

a minimal intervention approach. However, group data on outcomes from such an approach 

is available from two independent trials and can be used for comparative purposes, as was 

done in this investigation. This enables all participants to receive treatment and so 

maximises the numbers available for subgroup analysis, which is proposed in this protocol. 

Like other electrotherapies, MCT may benefit from a substantial placebo effect699. A placebo-

controlled trial is therefore appropriate, although it is increasingly accepted that evidence of 

a placebo effect is not necessarily a reason to reject a therapy700. Based on data from this 

investigation, and to compensate for anticipated attrition rates of 15%, a sample size of 70 

per arm will be recruited. 

Recruitment and Eligibility 

The preliminary studies recruited via local advertising and excluded people who were 

already receiving treatment from another source. As a result, the sample comprised people 

whose symptoms were not severe enough to drive the individual for conventional treatment, 

or those who had received such treatment but regarded it as ineffective. In order to recruit a 

more representative sample, it is proposed to attempt recruitment via local GPs and NHS 

outpatient physiotherapy departments. A local primary care research network exists, part of 

whose remit is the facilitation of recruitment to trial from general practices. Recruiting from 

NHS facilities also has pragmatic justification: it widens the recruitment pool and may also 

open up avenues of funding for the study. If MCT proves effective, practitioners involved in 

recruitment may also be more open to using it with future patients. 

The main inclusion criterion for this study is a clinical diagnosis of tennis elbow accompanied 

by both greyscale and Doppler sonographic signs of tendinopathy. The clinical diagnosis is 
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based on history and examination, but must include a positive response to at least two of 

provocation tests used in the trials, one of which must be tenderness to palpation over the 

affected tendon. Symptoms must also have been present for at least three months, which is a 

somewhat arbitrary cut-off for defining chronicity. These criteria provide the case definition 

of tennis elbow for use in this trial. In order to make the study as relevant as possible to 

clinical practice, exclusion criteria will be kept to a minimum. They will include upper 

quadrant disorders that might contribute significantly to the signs and symptoms of tennis 

elbow, such as elbow arthritis or cervical radiculopathy. A positive response to the upper 

limb tension test that will not exclude participation, since this may be present in up to 50% of 

people with tennis elbow339. Rather, those with this sign will be taught a simple radial nerve 

mobilisation technique that may be added to their home exercise programme601. Any 

treatment for tennis elbow within the previous three months, other than analgesia and use of 

a brace, will exclude participation to ensure that any changes observed are more likely due to 

trial interventions or natural resolution. The eligibility criteria are summarised in Table 9.3. 

Table 9.3: Eligibility criteria for proposed trial 

Inclusion criteria 

 Lateral elbow pain for at least 3 months, and no significant improvement, as judged 

by the participant, in the previous month 

 Pain severity on normal gripping activities of at least 3/10 or a numerical rating scale 

 Lateral elbow pain provoked by palpation over the affected tendon and at least one of 

the following: the chair lift test, resisted wrist or middle finger extension with the 

elbow extended 

 Sonographic evidence of pathology in the common extensor tendon consisting of both 

greyscale abnormalities and hyperaemia 

 Age over 18 

 An acceptable understanding of written and spoken English 

 Willingness to comply with treatment and follow-up assessments 

Exclusion criteria 

 Any treatment for tennis elbow in the preceding 3 months 

 Concomitant neck or other arm pain that has prevented participation in usual work 

or recreational activities or necessitated treatment within the last 6 months 

 Evidence of other primary sources of lateral elbow pain, including exacerbation of 

elbow pain with cervical spine clearing tests  

 Elbow surgery, malignancy, inflammatory or arthritic disorder 
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Interventions 

Systematic reviews of treatments for tennis elbow continue to conclude that there is little 

convincing evidence upon which to base the management of tennis elbow305, 335, 701. Expert 

opinion suggests that a multimodal approach is required, typically comprising advice and 

education, prevention of further injury, exercise, manual therapy and various forms of 

analgesia285, 702, 703. Where the promotion of tissue healing is a particular goal, protection of 

the tissue and repeated mechanical stimulation are likely to be beneficial, therefore these are 

regarded as key components for the standard intervention in this protocol. Advice, education 

and the use of a tennis elbow brace have all been proposed as enhancing protection of the 

area. None of these are firmly evidence-based, although there is weak evidence in favour of 

the use of counter-force braces704, 705. As for exercise, there are no gold standard guidelines 

but increasing evidence that eccentric exercises may be of benefit in a range of 

tendinopathies, including tennis elbow678, 706. No single regime has yet proven superior to 

others, and existing programmes vary considerably in relation to frequency, loading, 

progression, whether they should be painful and whether they are supervised or home-

based624. Decisions on these matters must therefore be taken on a pragmatic basis. 

All participants will be provided with education and advice about the disorder and ways of 

protecting and reducing stresses on the tendon. Those whose work or recreational activity 

involves repeated heavy loading of the affected limb will be provided with a counter-force 

brace, instructed in its use, and advised to wear it when loading is likely to be an issue. A 

combination of supervised and home-based exercises may benefit from the advantages of 

both approaches: motivation, progression and correction of technique can be provided by the 

therapist, and frequency, cost-effectiveness and patient-convenience may be enhanced by 

self-treatment. The use of MCT as an adjunct may improve adherence to the exercise 

programme if patients are aware of the potential synergy between the two: understanding 

that exercise is necessary to help strengthen and remodel the tissue whose synthesis has 

been promoted by MCT. This provides an additional rationale for using placebo MCT – both 

groups will then be using microcurrent devices – although the knowledge that there is a 50% 

chance of not receiving MCT may decrease compliance in some cases. 

The exercise programme draws on several that have already been judged effective in clinical 

trials. It comprises a stretching and strengthening regime involving both concentric and 

eccentric movements, whose intensity is set so that the eccentric movement is borderline 

painful but not increasingly painful. Resistance is provided by a resistive elastic therapy band 

and exercises are progressed by shortening the band. A therapy band is more portable than a 

weight and so may be used in the workplace if preferred. Wrist extensors and forearm 
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supinators are both targeted. The exercise programme is conducted once daily, five days a 

week for eight weeks, and is primarily home-based; however, the participant is asked to 

attend clinic four times over the eight week period, during which visits the exercises are 

conducted, monitored and progressed. 

Microcurrent treatment is provided by a modified version of the device that was used in the 

first trial of this investigation. A new model is currently in production, which is smaller than 

the original and has been redesigned to avoid the possibility of shocks experienced by two 

participants in that trial. It will deliver current of the same parameters as found most 

effective in the trial, except that the programmed treatment time will be increased to two 

hours. The method of application will be the same as before, except that skin preparation will 

be by cleaning alone, and not involve abrasion. The devices to be used with the control group 

will be modified so that they deliver no current, but will be otherwise identical to the active 

devices. Each unit will have a unique number code. The total duration for MCT will be 160 

hours spread over eight weeks, delivered 4 hours/day, 5 days/week. This compares to 34.5 

hours over three weeks in the preliminary trial, and brings the total treatment duration 

closer towards those found effective in the bone and skin studies reviewed in Chapter 2. The 

five-days-a-week regime provides participants with some flexibility in allocation of 

treatment, and coincides with the exercise programme.  It is intended that using the device 

will remind and encourage participants to carry out the exercises at the same time. 

Compliance with treatment will be assessed primarily by requiring the participant to 

complete a diary that indicates the days on which the treatments were done, whether both 

exercises and microcurrent treatments were completed, and any problems or issues arising. 

The diary will also enable the participant to state whether and how they progressed the 

exercise component of treatment. The possibility of including an electronic compliance meter 

in the MCT device will also be investigated, along with an audible alarm monitoring circuit 

integrity. As an additional check, participants will be monitored performing all elements of 

the treatment during visits to the clinic. A systematic review of strategies to enhance 

compliance with treatment protocols involving exercise concluded by recommending a 

combination of  diaries feedback and goal-setting33, all of which are provided by this protocol. 

Additional supplies of any necessary materials will be provided during visits to the clinic. 

Participants will be requested to have no other form of treatment apart from analgesic 

mediation, and compliance with this request will also be checked at the clinical visits. 
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Assessment 

Initial screening will establish whether symptoms have been present for at least 3 months, 

whether any other treatments are or have been recently received, and willingness in 

principle to comply with the requirements of the study. Apparently suitable candidates will 

be invited to baseline assessment, at which medical history and relevant socio-demographic 

data will be recorded, and a physical examination conducted, using a proforma similar to that 

used in this investigation. Data on body mass index will also be collected as that has been 

identified as a potential factor in the development of tennis elbow616. 

The outcome measures will be similar to those used in the preliminary trials, but with a 

number of additions and modifications. To reflect  the  patient-centred, clinically-oriented 

nature of the trial, the primary outcome measures are: 

- the patient-rated global change scale and associated measure of treatment success. In 

addition, the clinical assessor will assign their own global change score, based on 

their overall subjective and objective assessment of the participant. 

- Recurrence rates, defined by a treatment success rating at first or second follow-up 

and a no-success at any subsequent follow-up assessment689. Where recurrence is 

noted, participants will be questioned to ascertain the nature of the deterioration, 

and whether any behaviours or environmental factors may have contributed to this 

outcome.  

Secondary outcome measures are: 

- Pain, as measured by the PRTEE. The minor word changes to the questionnaire that 

were made in this investigation will be retained. Average pain over a previous period 

is a commonly-employed measure in trials of tennis elbow (see section 5.5), and its 

use will enable some comparison with the results of other studies. Pain over the 

previous week is addressed by several items in the PRTEE, but not average pain.  It 

will therefore be added to the pain sub-section of the questionnaire but analysed 

separately. 

- Pain-free grip strength, using a Jamar-type isometric grip dynamometer.  More 

specific guidance on technique will be given: for MGS, participant will be asked to 

build up the grip over a few seconds up to a maximum and then release. PFGS will 

then be measured the same way, except that the participant will be asked to stop 
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squeezing as soon as their normal pain is felt at the elbow. No verbal encouragement 

will be given, and recorded values will be hidden from participants. 

- Function, as measured by the PRTEE and the PSFS. On the assumption that the 

unreliability of the patient-specific functional scale was due to the masking of 

previous scores, this scale will be used again but with previous scores shown to the 

respondent. The PRTEE manual gives no guidance on this matter539 and so, for 

consistency, previous responses to this questionnaire will also be shown to the 

participant. 

- Tissue abnormality. The sonographic assessment scale developed for the preliminary 

trials would benefit from further development to increase the reliability of scoring for 

individual features, and to decide which features should be incorporated into an 

aggregate greyscale score. Further collaboration with radiologists experienced in this 

area will be necessary. The possibility of more objective scoring – screen calliper-

measurement of tendon thickness and tear dimensions, and computer-assisted pixel 

counts for hyperaemia scoring – will also be investigated. A scale, or several scales 

using these data, will then be developed for use. 

Adverse events, patient impression of the treatment and compliance levels will also be 

assessed as before. Since recurrence is a primary outcome measure in this study, data 

collection over the long term is required. Also, patterns of change in tendon structure and 

hyperaemia are of particular interest, and so regular assessment over the course of the study 

will be necessary. Six formal assessments over the course of a year are therefore proposed: at 

baseline and 4, 8, 12, 26 and 52 weeks later. The 4 and 8-week assessments will be mid-way 

and at the end of the treatment.  For participants with radial nerve involvement at baseline, 

the upper limb tension test will be repeated at subsequent assessments.” A flow chart of the 

trial process is given in Figure 9.1.  

Assessments will probably require more than one person so training in the use of all 

measures (and common interpretation of sonographic scales) will be provided, and each 

participant will be seen by the same assessor for all assessments if possible. All clinical 

assessments will be conducted by a qualified physiotherapist with a minimum two years 

experience of treating musculoskeletal disorders. Sonographic assessments will be 

conducted either by a qualified sonographer or radiologist with musculoskeletal imaging 

expertise, or by a physiotherapist trained specifically for this purpose. Relevant reliability 

data will be collected before the study commences. 
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Figure 9.1: Flow chart of proposed clinical trial of MCT 
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Randomisation, allocation and masking 

Participants will be randomly allocated to one of the treatment groups using a computer-

generated block allocation sequence as in the preliminary trials. The sequence will be 

generated and held by an independent researcher not involved in assessment or data 

collection, and will be communicated as necessary to the clinicians initiating treatment. This 

researcher will also hold the key to the numerical codes of the MCT devices (indicating 

whether they deliver microcurrent or not) and will instruct the clinician as to which number 

device is to be used in each case. 

MCT of the chosen parameters was sub-sensory in most cases in the preliminary trial – 2/15 

reported a tingling sensation at some point during use. Hence, masking to group allocation 

cannot be guaranteed. Both participants and assessors will be asked at the end of the 

treatment to guess their group allocation, so that the success of masking can be gauged. 

Therapists responsible for assessment will not be blinded to symptoms, but those conducting 

sonography will be. 

Data analysis 

All analyses will be conducted on an intention-to-treat basis by an investigator masked to 

group allocation. Descriptive statistics will be obtained, and data assessed for adherence to 

parametric assumptions. Tests will be conducted for baseline differences between groups on 

potentially significant prognostic variables  – age, sex, pain, symptom duration, body-mass 

index and ongoing stress to the tendon. For parametric data, analysis of covariance will be 

conducted using baseline scores as covariate and changes between baseline and follow-up 

assessment scores as the dependent variable. Time will be the main effect and group the 

interaction effect. Dichotomous measures will be analysed by relative risk, and numbers 

needed to treat calculated. Sub-group analyses will also be attempted, with sub-groups 

defined by baseline pain severity, greyscale abnormality and hyperaemia score. Correlations 

between raw and change scores for sonographic and clinical variables will also be 

investigated. 
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9.7  CONCLUDING  REMARKS 

This report has attempted to impose a sense of logical progression on an investigation that 

evolved in ways that occasionally seemed chaotic and arbitrary. Decisions taken on 

apparently reasonable and rational grounds sometimes led to unforeseen consequences, or 

created methodological challenges without obvious solutions. A desire to be rigorous often 

resulted in the endless consultation of the literature, which often appeared contradictory, 

and promoted uncertainty rather than clarity. Few of the positivist certainties held at the 

beginning of this work were intact by the time it was concluded. In hindsight, the 

investigation is characterised by a methodological complexity that may have reduced its 

chances of producing a clear and sound conclusion. A simpler approach may have produced a 

less conditional, more satisfying and clinically relevant response to the thesis.   

For all that, the investigation has led to a number of original findings which may enhance 

understanding of the potential of microcurrent therapy, provide the research community 

with useful data, and add to an evidence base that may ultimately be of benefit to patients. At 

the same time it has provided an opportunity to develop  a range of research skills, both 

quantitative and qualitative, an appreciation of the relationship (and sometimes the lack of 

one) between basic science and clinical practice, and a more critical and structured approach 

to the planning, conduct and evaluation of research. A number of presentations have been 

made and papers published on the basis of the work undertaken during this investigation. 

Several more are in preparation. It is hoped that these will make a worthwhile contribution 

to the understanding and practice of electrotherapy, as well as being tokens of the research 

apprenticeship that generated them.   
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Appendices 

 

Search strategies used to identify studies for potential inclusion 

in a systematic review of microcurrent treatment of soft 

connective tissue disorders.  

PubMed (1960 - 2009) 

1  microcurrent*  

2  "low intensity direct current"  

3  microamp*  

4  micro-amp*  

5  OR/1-4  

6  Clinical trial randomized controlled trial  

7 controlled clinical trial  

8 control trial  

9 random allocation  

10 single-blind  

11 double-blind  

12 triple-blind  

13 mask*  

14 blind*  

15 random* 

16 latin square  

17 placebo*  

18 comparative study  

19 evaluation study  

20 follow-up study  

21 prospective study  

22 cross-over study  

23 non-randomized  

24 case study  

25 case series  

26 prospective  

27 retrospective  

28 volunteer*  

29 OR/6-28 

30 human [lim] 

 

 

Cinahl (1981-2009) 

1  microcurrent*  

2  "low intensity direct current"  

3  microamp*  

4  micro-amp*  

5  OR/1-4 

 

 

EMBASE (1980-2009) 

1  microcurrent*.tiab 

2  "low intensity direct current" .tiab 

3  microamp*  .tiab 

4  micro-amp* .tiab 

5  OR/1-4 

6  Clinical trial randomized controlled trial 

.tw 

7 controlled clinical trial .tw 

8 control trial .tw 

9 random allocation .tw  

10 single-blind .tw 

11 double-blind .tw 

12 triple-blind .tw 

13 mask* .tw 

14 blind* .tw 

15 random* .tw 

16 latin square .tw 

17 placebo* .tw 

18 comparative study .tw 

19 evaluation study .tw 

20 follow-up study .tw 

21 prospective study .tw 

22 cross-over study .tw 

23 non-randomized .tw 

24 case study .tw 

25 case series .tw 

26 prospective .tw 

27 retrospective .tw 

28 volunteer* .tw 

29 OR/6-28 

30 5 AND 29 

31 human [lim] 
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AMED (1980 – 2009) 

1  microcurrent*.tiab 

2  "low intensity direct current" .tiab 

3  microamp*  .tiab 

4  micro-amp* .tiab 

5  OR/1-4 

6  Clinical trial randomized controlled trial 

.tw 

7 controlled clinical trial .tw 

8 control trial  .tw 

9 random allocation .tw  

10 single-blind  .tw 

11 double-blind  .tw 

12 triple-blind  .tw 

13 mask*  .tw 

14 blind*  .tw 

15 random* .tw 

16 latin square  .tw 

17 placebo*  .tw 

18 comparative study  .tw 

19 evaluation study  .tw 

20 follow-up study  .tw 

21 prospective study  .tw 

22 cross-over study  .tw 

23 non-randomized  .tw 

24 case study  .tw 

25 case series  .tw 

26 prospective  .tw 

27 retrospective  .tw 

28 volunteer*  .tw 

29 OR/6-2 

30 5 AND 29 

30 human [lim] 

31 treatment [lim] 

 

Clinical trials registers ( - 2009) 

ChiroAccess (1980-2009)  

OpenSigle (-2009) 

1  microcurrent*.tiab 

2  "low intensity direct current" .tiab 

3  microamp* .tiab 

4  micro-amp* .tiab 

5  OR/1-4 

 

ISI Web of Science ( – 2009) 

1  microcurrent*.tiab 

2  "low intensity direct current" .tiab 

3  microamp*  .tiab 

4  micro-amp* .tiab 

5  OR/1-4 

6 surgery, health sciences, pathology, 

general medical, nursing sports, 

emergency medicine, human [lim] 

 

Google Scholar 

1  microcurrent 

2  microamp 

3  1 OR 2 

4  first 100 hits [lim] 

 

Theses.com ( - 2009) 

1  microcurrent* 

2  "low intensity direct current"  

3  microamp*  

4  micro-amp*  

5  OR/1-4 

6  tendon* 

7 ligament* 

8 fascia  

9 OR/6-8  

10 healing  

11 repair 

12 electric 

13 OR/10-12  

14 5 OR (9 and 13)  
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Study quality assessment tool used in the systematic review of 

microcurrent treatment of soft connective tissue disorders.  

 

Criteria for all studies 

1 Eligibility criteria specified1-4 2 = comprehensive statement of inclusion and exclusion criteria 

1 = partial information about relevant eligibility criteria 

0 = no information about eligibility criteria 

Report describes the source of subjects and a list of criteria used to 

determine who was eligible to participate in the study.1 

2 Treatment fully described2, 4 2 = description allowing duplication of treatment provided 

1 = partial description 

0 = essential elements of description absent 

Including the microcurrent parameters, treatment method and 

timings, and description of any co-interventions and comparison 

group treatment 

3 Treatment standardised4, 5 2 = clear statement of how standardisation was achieved 

1 = statement suggesting standardisation 

0 = not standardised / unclear / no evidence presented 

For MCT, any co-interventions or comparison group treatment. 

Includes adherence to protocol by patient 

4 Key baseline characteristics 

stated4, 6 

2 = data presented for key characteristics that might affect outcome 

1 = data presented for some characteristics that might affect 

outcome 

0 = no relevant data 

5 Key outcome measures 

validated 2, 5 

2 = evidence given for valid use of key outcome measure for this 

application 

1 = key outcome measure has face validity for this application 

0 = no evidence of validity of application  

Key outcomes are those outcomes which provide the primary 

measure of the effectiveness (or lack of effectiveness) of the therapy 
1 

6 Key outcome measures 

reliable2, 5 

2 = evidence given for reliable use of key outcome measures for this 

application 

1 = partial evidence regarding relevant reliability data presented 

0 = reliability of application not established or unclear 

Inter-rater, intra-rater or test-retest reliability as appropriate. 

7 Drops outs and Intention to 

treat analysis1-4, 7 

 

bias8 

2 = statement that all received intended treatment, or ITT analysis 

1 = clear statement of withdrawal numbers and reasons 

0 = unclear or no information presented 

Where subjects did not receive treatment (or the control condition) 

as allocated, and where measures of outcomes were available, the 

analysis was performed as if subjects received the treatment (or 

control condition) they were allocated to. This criterion is satisfied, 

even if there is no mention of analysis by intention to treat, if the 

report explicitly states that all subjects received treatment or control 

conditions as allocated1  

2 
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Participants who were included in the study but did not complete the 

observation period or who were not included in the analysis must be 

described7. 

This item combines criteria that appear individually in other scales - 

the inclusion of ITT analysis and a description of drops outs. The 

former gives the stronger evidence of bias control; the latter allows 

the reader to judge the potential level of bias. The scores reflect this. 

8 Appropriate statistical 

analysis1, 2, 4 

2 = apparently appropriate analysis used 

1 = incomplete analysis presented 

0 = inappropriate or no relevant analysis 

A between-group comparison:  may be comparison of outcomes 

measured after the treatment was administered, or a comparison of 

the change in one group with the change in another. The comparison 

may be in the form hypothesis testing (which provides a “p” value, 

describing the probability that the groups differed only by chance) or 

in the form of an estimate (for example, the mean or median 

difference, or a difference in proportions, or number needed to treat, 

or a relative risk or hazard ratio) and its confidence interval1. 

Statistical power analysis should be used if trends are not statistical 

significant. 

9 Point & variability estimates 

for at least one key outcome1, 

3, 4 

2 = appropriate graphical or numerical data provided 

1 = partial presentation of data 

0 = inappropriate or no data 

A point measure is a measure of the size of the treatment effect. The 

treatment effect may be described as a difference in group outcomes, 

or as the outcome in (each of) all groups. Measures of variability 

include standard deviations, standard errors, confidence intervals, 

interquartile ranges (or other quantile ranges), and ranges. Point 

measures and/or measures of variability may be provided 

graphically (for example, SDs may be given as error bars in a figure) 

as long as it is clear what is being graphed (for example, as long as it 

is clear whether error bars represent SDs or SEs). Where outcomes 

are categorical, this criterion is considered to have been met if the 

number of subjects in each category is given for each group.1 

10 Key outcomes measured for 

>85% of subjects in each 

group1 

2 = numbers allocated and measured stated, and criterion satisfied 

0 = cannot tell, or <85% in each group measured 

This criterion is only satisfied if the report explicitly states both the 

number of subjects initially allocated to groups and the number of 

subjects from whom key outcome measures were obtained. In trials 

in which outcomes are measured at several points in time, a key 

outcome must have been measured in more than 85% of subjects at 

one of those points in time1 

11 No competing  interests9 

 

 

2 =  clear statement of no competing interests 

0 =  potential conflict / no statement /  unclear 

Competing interests were not significantly associated with authors' 

conclusions10 

Additional criteria for experimental studies involving comparison between groups 

12 Method of group assignment 2 = full description allowing duplication 
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described4, 6, 9, 11 1 = partial description 

0 = inadequate or no description 

Were the patients in different intervention groups, or were the cases 

and controls recruited from the same population? Were study subjects 

in different intervention groups, or were the  cases and controls 

recruited over the same period of time?11 

13 Satisfactory method of 

randomisation1, 3, 7 

2 = clear evidence of satisfactory randomisation 

1 = partial evidence of randomisation 

0 = no evidence 

The report states that allocation was random. The precise method of 

randomisation need not be specified. Procedures such as coin tossing 

and dice-rolling should be considered random. Quasi-randomisation 

allocation procedures such as allocation by hospital record number or 

birth date, or alternation, do not satisfy this criterion.1 

Method allowed each study participant to have the same chance of 

receiving each intervention and the investigators could not predict 

which treatment was next. Methods of allocation using date of birth, 

date of admission, hospital numbers, or alternation should be not 

regarded as appropriate7 

14 Groups balanced on key 

baseline characteristics1-4, 6, 

11 

2 = no significant difference on all key baseline characteristics of 

completers, or adjustment in analysis 

1 = no significant difference on most key baseline characteristics of 

completers, 

0 = not stated or differences not dealt with  

At least one measure of the severity of the condition being treated and 

at least one (different) key outcome measure at baseline. The rater 

must be satisfied that the groups’ outcomes would not be expected to 

differ, on the basis of baseline differences in prognostic variables 

alone, by a clinically significant amount. This criterion is satisfied even 

if only baseline data of study completers are presented1. 

Patient groups matched for significant prognostic variables, or effect 

of any differences evaluated in valid statistical analysis9 

15 Allocation concealment1, 3, 4 2 = clear evidence of satisfactory concealment 

1 = partial evidence of concealment 

0 = no evidence 

The person who determined if a subject was eligible for inclusion in 

the trial was unaware, when this decision was made, of which group 

the subject would be allocated to. A point is awarded for this criterion, 

even if it is not stated that  allocation was concealed, when the report 

states that allocation was by sealed opaque envelopes or that 

allocation involved contacting the holder of the allocation schedule 

who was “off-site”.1 

16 Subjects blinded to 

treatment1, 3, 4, 7 

2 = clear evidence of satisfactory concealment  

1 = partial evidence of concealment 

0 = no evidence 

Subject did not know which group s/he had been allocated to. In 

addition, subjects are only considered to be “blind” if it could be 

expected that they would have been unable to distinguish between the 

treatments applied to different groups1.  
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Study participant could not identify the intervention being assessed, 

or if in the absence of such a statement the use of active placebos, 

identical placebos, or dummies is mentioned 7 

17 Therapists blinded to 

treatment1, 3, 4 

2 = clear evidence of satisfactory concealment  

1 = partial evidence of concealment 

0 = no evidence 

18 Assessors blinded to 

treatment1-4, 7 

2 = blinding clearly achieved 

1 = partial evidence of blinding  

0 = no evidence presented 

Stated that the person doing the  assessments could identify the 

intervention being assessed, or if in the absence of such a statement 

the use of active placebos, identical placebos, or dummies is 

mentioned7  

In trials in which key outcomes are self-reported (eg, visual analogue 

scale, pain diary), the assessor is considered to be blind if the subject 

was blind 1 
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   documentation relating to survey of clinicians  

 

From: Leon Poltawski  

Sent: 24 January 2007 12:57 

To: queries@corec.org.uk 

Subject: query 

  

Dear COREC 

  

Apologies for this query but I could not get a clear 

answer from your website FAQs. I am planning a 

questionnaire that will be sent to physiotherapists in 

many Trusts in southeast England. The questionnaire 

is to ascertain clinician perceptions about particular 

types of condition they treat. It does not involve 

information about specific patients, nor does it 

enquire about perceptions of their work-place or their 

employers - the focus is purely clinical. The 

questionnaire will be sent to clinicians at their 

workplace but does not need to be completed there. 

  

Will our own University REC be sufficient to provide 

ethical review of this study? If not, how can ethical 

approval be obtained when the questionnaire will be 

sent to clinicians in many different Trusts? 

  

Thanks for your advice. 

  

   

Leon Poltawski 

Researcher in Electrotherapy 

School of Health & Emergency Professions - 

Physiotherapy University of 

Hertfordshire College Lane Hatfield 

Herts    AL10 9AB 

  

01707 284556 

 

******************* 

 

RE: query  

Queries [queries@corec.org.uk]  

 

Sent:  24 January 2007 14:40  

To:  'Leon Poltawski' [L.Poltawski@herts.ac.uk] 

  

 

The following reply has been provided by Jo 

Downing, Information Officer 

  

Thank you for your query.  When asked to advise on 

the requirement for ethical review by an NHS 

Research Ethics Committee (REC) we consider the 

information sent to us and use the criteria in the 

attached table to reach a conclusion. 

  

Based on the information provided, our advice is that 

the study may be classified as service evaluation.  

On this basis it does not require review by a NHS 

REC.  The main remit of NHS RECs, as set out in 

paragraph 3.1 of the Governance Arrangements for 

NHS Research Ethics Committees (GAfREC), is to 

review research involving NHS patients.  GAfREC is 

available on our website at 

www.corec.org.uk/applicants/help/guidance.htm 

  

Although independent ethical review by an NHS REC 

is not necessary in this case, all types of study 

involving human participants should be conducted in 

accordance with basic ethical principles for example 

informed consent and respect for the confidentiality 

of participants.  When processing identifiable data 

there are also legal requirements under the Data 

Protection Act 2000.  When undertaking an audit or 

service evaluation, the investigator and his/her team 

are responsible for considering the ethics of their 

study with advice from within their organisation.  You 

may find it helpful to discuss your study with the 

relevant R&D Office and your Data Protection Officer. 

  

Where exceptionally an audit or service evaluation is 

felt to raise significant ethical issues and the host 

3  
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organisation considers independent ethical review to 

be essential, an application may be made to an NHS 

REC under GAfREC paragraph 3.2. 

  

 I hope this helps. 

  

Regards 

  

Queries Line 

Central Office for Research Ethics Committees 

(COREC) 

National Patient Safety Agency 

Website: www.corec.org.uk 

<http://www.corec.org.uk>  

  

Ref: 041/01 

  

** 

This reply may have been sourced in consultation 

with other members of the COREC team. 
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Documentation relating to development of outcome measures  
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Documentation relating to reliability assessment of outcome 

measures 
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Documentation relating to clinical trials of MCT  
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   Dissemination of study findings 

 

 

 

Presentations given  

Bioelectricity & Microcurrent therapy  

School of Life Sciences Research Seminar 

University of Hertfordshire 

October 2009 

 A trial of Microcurrent therapy: rationale & methodology 

School of Health & Emergency Professions Research Seminar 

University of Hertfordshire 

May 2010 

Microcurrent therapy in the management of chronic tennis elbow 

School of Health & Emergency Professions Research Forum 

University of Hertfordshire 

September 2010 

Reports 

Microcurrent therapy in the management of chronic tennis elbow 

Final  Report to suppliers of microcurrent devices 

September 2010 

Microcurrent therapy in the management of chronic tennis elbow 

Report to participants in clinical trials 

September 2010 

Abstracts submitted to World Physical Therapy Congress 2011 

Microcurrent therapy in the management of chronic tennis elbow: an exploratory 

investigation. 

Using sonography for the evaluation of tendon pathology in tennis elbow: reliability of 

assessment scales. 
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Publications 
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