
On Straight Words and Minimal Permutators in
Finite Transformation Semigroups

Attila Egri-Nagy and Chrystopher L. Nehaniv

Royal Society Wolfson BioComputation Research Lab
Centre for Computer Science & Informatics Research, University of Hertfordshire

Hatfield, Hertfordshire AL10 9AB, United Kingdom
{A.Egri-Nagy,C.L.Nehaniv}@herts.ac.uk ?

Abstract. Motivated by issues arising in computer science, we inves-
tigate the loop-free paths from the identity transformation and corre-
sponding straight words in the Cayley graph of a finite transformation
semigroup with a fixed generator set. Of special interest are words that
permute a given subset of the state set. Certain such words, called min-
imal permutators, are shown to comprise a code, and the straight ones
comprise a finite code. Thus, words that permute a given subset are
uniquely factorizable as products of the subset’s minimal permutators,
and these can be further reduced to straight minimal permutators. This
leads to insight into structure of local pools of reversibility in transfor-
mation semigroups in terms of the set of words permuting a given subset.
These findings can be exploited in practical calculations for hierarchical
decompositions of finite automata. As an example we consider groups
arising in biological systems.

1 Introduction

From the computational perspective it is very important to know how a par-
ticular element of a transformation semigroup can (efficiently) be generated. Of
special interest are elements of the semigroup that permute a subset of the state
set, as the hierarchical decomposition of the semigroup [8] depends on the group
components [1,2]. Here we study the ways in which a particular transformation
can be expressed without any redundancy. These generator words head towards
the target transformation without without revisiting any transformation along
the way, so they are called straight. Straight words also encode the information
describing all possible ways that particular semigroup element can be generated.

Notation For a finite transformation semigroup (X,S) we fix a generator set
of transformations T = {t1, . . . , tn}, so S = 〈T 〉. We also consider the generators
as symbols, thus a finite product of the generator elements becomes a word in
T+ (the free semigroup on generators T whose associative binary operation is

? Partial support for this work by the OPAALS EU project FP6-034824 is gratefully
acknowledged.

concatenation). It is then convenient to consider the empty word ε as the identity
map. We need to distinguish between the word (often thought of as a sequence
of input symbols) and the transformation it realizes: for the word we just write
the generator symbols in sequence ti1 . . . tin ∈ T+ while the transformation is

denoted by
−−−−−→
ti1 . . . tin ∈ S, where the arrow indicates the order in which the

generator elements are multiplied and emphasizes that is a mapping.
For transformations, we either use the usual 2-line notation for mappings,

or if it would become too space consuming we apply the linear notation sug-
gested in [5]. This is a natural extension of the cyclic notation of permuta-
tions. Considering the mappings as digraphs, each transformation consists of
one or more components. Each component contains a cycle (possibly a trivial
cycle). Unlike the permutation case, the points in the cycle can have incom-
ing edges, denoted by [source1, . . . , sourcem ; target] where target is the point
in the cycle. If a source point also has incoming edges from other points the
same square bracket structure is applied again recursively. We can say that the
points in the cycle are sinks of trees. Parentheses indicate the existence of a
nontrivial permutation of the sink elements of the trees, but not of their sources:(
[sources1; target1], . . . , [sourcesk; targetk]

)
. This corresponds to the cycle

(target1, . . . , targetk) but at the same time it contains information on tran-
sient states. The order is arbitrary if there are more than one component. (See
below for examples.)1

2 Straight Words

If the goal is to generate a transformation s ∈ S as quickly as possible without
any digression, then in each step of the generation a new transformation should
appear. Also, if a prefix generates the identity map, so strictly speaking we did
nothing so far, then the prefix can be discarded. More precisely,

Definition 1 (Straight Words). Let s ∈ S be a transformation generated by

the word ti1 . . . tim ∈ T+, so s =
−−−−−−→
ti1 . . . tim , then this word is straight if

−−−−−→
ti1 . . . tik 6= ε, k ∈ {1, . . . ,m− 1} (1)

−−−−−→
ti1 . . . tik =

−−−−−→
ti1 . . . til ⇒ k = l (1 ≤ k, l ≤ m). (2)

Example 1 (Cyclic (monogenic) semigroup). LetX = {1, 2, 3, 4} and t = (1 2 3 4
2 4 1 2),

or, in the alternative notation, t = ([[3; 1]; 2], 4). The semigroup generated by t
is

〈t〉 = {t = (1 2 3 4
2 4 1 2), t2 = (1 2 3 4

4 2 2 4), t3 = (1 2 3 4
2 4 4 2)}.

t, t2 and t3 are straight words, but these are the only ones. Higher powers, like
t4 = t2, already repeatedly visit transformations. This example shows that being
straight is not necessarily connected to the formal notion of containing repeated
subwords.
1 Our notation is slightly different from [5] as we do not use square brackets for a

singleton source.

Example 2 (Cyclic group). Let g = (1, 2, 3) be a permutation, then g3 = ε is a
straight word producing the identity map. This example justifies condition 1 in
Definition 1, as we allow the identity transformation at the end of a word, but
not inside.

Definition 2 (Trajectory). Let s1, . . . , sn be a sequence of semigroup ele-
ments, sj ∈ S. Then the sequence is a trajectory if for all sj , 1 ≤ j < n there is
a generator ti ∈ T such that sj · ti = sj+1.

A trajectory is a path in the Cayley graph of the semigroup starting at the trivial
transformation. We can associate a trajectory with a word.

Definition 3 (Trajectory of a word). Given a word ti1 . . . tim , its trajectory

is calculated by taking the products of prefixes: ε,
−→
ti1 ,
−−−→
ti1ti2 , . . . ,

−−−−−−→
ti1 . . . tim .

Now we can give an alternative definition of straight words.

Alternative Definition (Straight Words). A word is straight if all the el-
ements of its trajectory are distinct, except the case of loops when the first and
the last element coincide (and equal ε).

Straight words and transformations From finiteness it follows that the
straight words cannot be extended beyond some finite length, since there are
finitely many elements of the semigroup and each prefix should realize a distinct
semigroup element. An obvious bound on the length of the straight words is
|S|. This bound is reached in Example 2. We also observe that all semigroup
elements can be realized by a straight word.

Lemma 1. Let (X,S) be a transformation semigroup with states X and semi-
group S generated by T . Each semigroup element s ∈ S can be realized by a
straight word in the letters of T .

Proof. Let s =
−−−−−−→
ti1 . . . tim . If ti1 . . . tim is not straight then there is k 6= l such that

−−−−−→
ti1 . . . tik =

−−−−−→
ti1 . . . til . Suppose that k < l. Then the product

−−−−−−−−−−−−−−→
ti1 . . . tiktil+1

. . . tim
still generates s, after we cut out tik+1

. . . til .
Similarly, in case an identity appears at some position (not the final one) in a

trajectory then the whole prefix can be ignored up to that point. If the reduced
word is not straight then we can repeat either processes. Due to finiteness this
method will stop, and thus produce a straight word generating s. ut

Another way to see that there is at least one straight word for each transforma-
tion is to observe that the first occurrences of transformations in a breadth-first
generation of S by T are produced by straight words.

Corollary 1. Any minimal length word generating s ∈ S is a straight word.

We have seen that for each semigroup element we can give at least one straight
generator word. The following example shows that there can be more straight
words for a mapping.

Example 3 (Constant Maps). Let t1 = (1 2
1 1) and t2 = (1 2

2 2) be two generators,

then t1 and t2t1 are each straight words for
−→
t1 , while t2 and t1t2 are straight

and both realize
−→
t2 . Constant maps render the transformations before them

negligible.

Synonym Straight Words Different straight words may represent the same
transformation. For example, if we add a second generator, r = (1 2 3 4

4 2 2 4) to
Example 1, then clearly r and t2 are words with this property. Moreover, two
different words may have the same trajectories.

Generalization: Straight Paths We can study straight words in a more gen-
eral settings, we look for straight words w = ti1 . . . tim such that s · −→w = r,
where r, s ∈ S. Actually these arise as labels of ‘straight paths’ in the Cayley
graph of the semigroup between nodes s and r, i.e. simple paths that do not
cross themselves but go directly from s to r. We get the special case of straight
words when s = ε.

Computational Implementation Computational enumeration of straight words
can easily be done with a backtrack algorithm. We implemented the search algo-
rithm in the SgpDec software package [4] in the GAP computer algebra system [6].

3 Minimal Straight Words and Permutations of Subsets

From now on we focus on straight words that induce permutations on a subset
of the state set. The full permutator semigroup Perm(Y) for a subset Y ⊆ X in
(X,S) is

Perm(Y) = {s ∈ S : Y · s = Y }.

Elements of Perm(Y) are called also permutators of Y . Perm(Y) is closed under
products, so by finiteness it restricts to a group of permutations acting on Y .
The restrictions of elements of Perm(Y) to Y thus comprise a permutation
group or ‘pool of reversibility’ or ‘natural subsystem’ within the transformation
semigroup (X,S). However, while any s ∈ Perm(Y) is also defined on all of X it
is not generally a permutation of X. Elements of Perm(Y) may agree on Y but
disagree on X \Y , so Perm(Y) may not itself be a group nor act faithfully on Y .
We also call a word a permutator word if it realizes a permutator transformation.

Example 4 (Cyclic uniquelly labelled digraph as an automaton). The genera-
tor set consists of 3 elementary collapsings, T = {a = 1 7→ 2, b = 2 7→ 3,
c = 3 7→ 1}. The generated semigroup has 21 elements and, in the notation
introduced above, the straight words of the semigroup elements are: [3; 1] = c,
[2; 3] = b, [1; 2] = a, [[2; 3]; 1] = cb, [[1; 2]; 3] = ba, [[3; 1]; 2] = ac, ([1; 2], 3) = cba,
([3; 1], 2) = bac, (1, [2; 3]) = acb, (1, [3; 2]) = cbac, ([2; 1], 3) = bacb, ([1; 3], 2) =
acba, [[2; 1]; 3] = cbacb, [[1; 3]; 2] = bacba, [[3; 2]; 1] = acbac, [1; 3] = cbacba,

[3; 2] = bacbac, [2; 1] = acbacb, plus the constant maps that are represented by a
lot more straight words:
[1, 3; 2]: abca, aca, acbabca, acbaca, acbacbca, acbca, babca, baca, bacbabca, bacbaca,
bacbca, bca, ca, cbabca, cbaca, cbacbabca, cbacbca, cbca
[2, 3; 1]: abc, acabc, acbabc, acbacabc, acbacbc, acbc, babc, bacabc, bacbabc, bacbacabc,
bacbc, bc, cabc, cbabc, cbacabc, cbacbabc, cbacbc, cbc
[1, 2; 3]: ab, acab, acbab, acbacab, acbacbcab, acbcab, bab, bacab, bacbab, bacbacab,
bacbcab, bcab, cab, cbab, cbacab, cbacbab, cbacbcab, cbcab.

Now let Y = {1, 2}. There are exactly 4 straight words permuting Y , bac and
cbac realizing the transposition (1, 2), and c and bacbac realizing the identity,

thus {−→c ,
−→
bac,
−−→
cbac,

−−−−→
bacbac} = Perm(Y). These words happen to give 4 distinct

transformations of {1, 2, 3}. Note that two of these words are products of two
of the others. There are also many permutator words that not straight, e.g.−−→
baac =

−−→
bbac = ([3; 1], 2), which is

−→
bac.

A word w is a minimal permutator of Y if w represents an element of Perm(Y)
and w is not a product of two or more words permuting Y . That is, w 6= w1w2

for any words w1 and w2 representing elements of Perm(Y). The set of minimal
permutators is not necessarily finite, as we can use idempotents to “pump in the
middle” like banc in Example 4. Therefore we turn our attention to the set of
straight, minimal permutator words of Y , denoted by MS(Y).

Fact 1 The set MS(Y) of straight minimal permutator words for Y is finite.

Proof. The assertion easily follows from the fact that straight words are bounded
in length. ut

Now we need to show that we do not lose anything by discarding the words that
are not straight, i.e. we can still generate the full permutator semigroup. We will
use the following obvious fact.

Fact 2 If w = uv permutes Y and u permutes Y , then v permutes Y .

Theorem 1. In the free semigroup T+ on the generators of S, the minimal
permutator words M(Y) of Y generate the subsemigroup of all words realizing
elements of Perm(Y). That is,

〈M(Y)〉 = all words representing elements of Perm(Y).

Moreover, the straight minimal permutators MS(Y) of Y generate a subsemi-
group of words realizing all elements of Perm(Y).

Proof. Let p = t1 . . . tk represent an element of Perm(Y). We show p is a product
of minimal permutators by induction on k. Either p is a minimal permutator or
there is a least j strictly less than k so that t1 . . . tj permutes Y . Now t1 . . . tj
is a minimal permutator of Y and p = (t1 . . . tj)(tj+1 . . . tk) with each of the
expressions in parentheses permuting Y . The length of the second word is strictly
less than k, so by induction hypothesis, it too can be written as a product of

minimal permutators of Y . This proves that an arbitrary word p representing
an element of Perm(Y) can be factored as a product of minimal permutators
of Y . Each minimal permutator factor can be shortened by removing letters if
necessary to a straight word. The result follows. ut
Theorem 2. Any word w representing a permutator of Y can be factored uniquely
into a product of minimal permutators of Y .

Proof. By the previous theorem, we can write w = w1 · · ·wk, where each wi is a
minimal permutator word of Y . Suppose w can also be written as w = w′

1 . . . w
′
`,

where again each w′
i represents is a minimal permutator word for Y . We show

` = k and wj = w′
j for all j (1 ≤ j ≤ `). If this were not the case, then let i be the

least index such that wi 6= w′
i. Without loss of generality, assume |wi| ≤ |w′

i|. It
follows then that w′

i = wiv for some nonempty word v. By Fact 2, v represents a
permutator of Y . But we have then written w′

i as a product of permutator words,
this contradicts the choice of w′

i as a minimal permutator. It follows wi = w′
i for

all i, and, since the two factorizations are of the same word, that ` = k. ut
Corollary 2. The minimal permutator words are a code.

Corollary 3. The straight minimal permutator words are a finite code.

The last corollary shows the usefulness of straight words, when looking for per-
mutators instead of an infinite search space we can restrict the search to a finite
set of words.

Fact 3 For a minimal permutator word w, there is a (in general non-unique)
straight minimal permutator word red(w) obtained from w by removing some

letters such that −→w =
−−−−→
red(w).

Proof. Considering the Cayley graph of the transformation semigroup (X,S)
with generators T . This has vertices S1 = S ∪ {ε}, where ε denotes the identity

mapping on X, and edges s
t−→ s′, where s′ = s

−→
t with t ∈ T , s, s′ ∈ S1.

Now, by the alternative definition of straight words, it is clear that a word is
straight if and only if the path it labels starting at ε and has no loop (does
not enter any node more than once). Noting that adding or removing loops to
the path corresponding to a product does not change its endpoint, we conclude
that removing contiguous subwords from the word w corresponding to loops,
iteratively if necessary, results in a path with no loops (or a simple loop at ε),
corresponding to a straight word w′ representing the same transformation as
w. ut
Theorem 3. There is a well-defined homomorphism φ : M(Y)+ � MS(Y)+

from the semigroup of permutator words onto the semigroup generated by mini-
mal straight permutator words, where for each minimal permutator w ∈ M(Y),
φ(w) is a straight word having the same trajectory as w except for the removal
of loops. Furthermore, φ is a retraction, i.e. φ(w) = w for all words w in MS(Y)
(and hence is the identity on MS(Y)+). For all permutator words w ∈M(Y)+, w
and φ(w) act by the same permutation of Y , and moreover by the same mapping
on X.

M

t 4

t 5

C

t 8

P

t 2

t 6

R

t 7

t 9

t 1

t 3

Fig. 1. Petri net for the p53-Mdm2 regulatory pathway. P = p53, M =
Mdm2, C = p53-Mdm2, R = p53*.

Proof. To get a well-defined homomorphism from the minimal permutator code
to the straight word minimal permutator code, one only needs to choose some
reduction for each minimal permutator (any reduction at all would work). The
reason why one gets a homomorphism is due to that fact the minimal permuta-
tors are a code, hence free generators of a free semigroup, so we need only say
where each generator goes and extend uniquely by freeness. ut

The reduction of a minimal permutator to a straight word need not be unique.
This comes from the fact that synonym straight words do exist. Thus the ho-
momorphism of the theorem need not be unique. One natural way to choose
the reduction red(w) is the following: given a minimal permutator word w that
is not straight, find the first node (along its trajectory) that is later repeated.
Start deleting letters after the letter that first takes us into this node. Find the
last time this node occurs. Delete all letters from there up to and including the
one taking us into the node for the last time. This process removes at least one
letter since the word was not straight. Repeat the procedure until the resulting
word is straight. This necessarily terminates with a reduced form for w, realizing
the same transformation by a straight word obtained from w by excising some
subwords (‘removing loops’ in the trajectory as described).

4 A Biological Example

It seems that in constructing interesting examples the human mind is somewhat
constrained and reverts back to special cases. Therefore studying “naturally
occurring” transformation semigroups can be useful, so here we investigate a

biological example. We should also mention that in exchange semigroup and
automata theory can also provide useful tools for other sciences [9].

The p53-Mdm2 regulatory pathway Biological networks are frequently
modelled by Petri nets and thus it is not difficult to convert such a model to
a transformation semigroup [3]. Figure 1 shows such a model of the p53-Mdm2
regulatory pathway, which is important in the cellular response to ionizing radi-
ation and can trigger self-repair or, in extreme cases, the onset of programmed
cell-death (apoptosis). This pathway is involved in ameliorating DNA damage
and preventing cancer [7]. Figure 2 shows the corresponding finite automata
with 16 states in which two levels of each of the 4 molecular species involved are
distinguished. Corresponding to the transitions we have the following generator
transformations:

t1 = [1; 2][3; 4][5; 6][7; 9][8; 10][11; 12][13; 14][15; 16]

t2 = [2; 1][4; 3][6; 5][9; 7][10; 8][12; 11][14; 13][16; 15]

t3 = [1; 3][2; 4][5; 7][6; 9][8; 11][10; 12][13; 15][14; 16]

t4 = [3; 1][4; 2][7; 5][9; 6][11; 8][12; 10][15; 13][16; 14]

t5 = [4, 12; 8][9, 16; 13]

t6 = [2, 6; 5][4, 9; 7][10, 14; 13][12, 16; 15]

t7 = [5, 6; 2][7, 9; 4][13, 14; 10][15, 16; 12]

t8 = [8, 11; 3][10, 12; 4][13, 15; 7][14, 16; 9]

t9 = [5; 1][6; 2][7; 3][9; 4][13; 8][14; 10][15; 11][16; 12]

Analysis of a permutator subsemigroup None of the above generators con-
tain a cycle, so the existence of a nontrivial permutation group cannot be simply
read off. The generated semigroup has 316,665 elements. The decomposition of
the semigroup shows that it has (several copies of) the following group com-
ponents: cyclic group C2 acting on 4, symmetric group S3 acting on 3 and C2

acting on 2 states.
We pick the set {3, 5, 8} (there are many 3-element subsets that are mutually

reachable from each other under the action of the semigroup, therefore they have
isomorphic permutator groups). Computer calculation shows |Perm({3, 5, 8})| =
549. Consider the following words of length 13 and 15, found by a breadth-first
search, a = t1t5t3t8t5t1t4t8t5t7t8t5t6, b = t1t4t8t5t3t8t5t1t4t8t5t7t8t5t6 realizing
transformations

−→a =([1, 2, 10; 3], [4, 7, 9, 11, 12, 15, 16; 5], [6, 13, 14; 8])
−→
b =[1, 2, 4; 3]([10, 11, 12, 13, 14, 15, 16; 5], [6, 7, 9; 8]).

As highlighted, these are clearly permutator words for the set {3, 5, 8} and gen-
erate S3. It is easy to verify that these two words are straight. Moreover, a and b
can be checked to be minimal permutators (i.e. they cannot be properly factored

into permutators of {3, 5, 8}). However, the idempotent powers of these words
−→
bb and −−→aaa are not equal, so the transformations do not lie in the same subgroup
of the semigroup of the automaton.

1 0 0 0

1 0 1 0t 1

0 0 0 0

t 4

0 0 0 1

0 0 1 0

t 7

0 0 1 1

t 1

1 0 0 1

t 3

t 9

0 1 0 0
t 8

1 1 0 0

t 3

0 1 1 0

t 1

t 8

t 4

1 1 1 0

t 1

t 5

t 2

1 1 0 1

t 6

t 4

t 8

t 6

t 3
t 2

1 1 1 1

t 7 , t 9

t 2 , t 6

1 0 1 1

t 8

0 1 0 1

t 5

0 1 1 1
t 4

t 9

t 7

t 1

t 8

t 4

t 4

t 2 , t 6

t 7 , t 9

t 5

t 2 , t 6

t 7 , t 9

t 3

t 9

t 4

t 1
t 7

t 2

t 3

t 8

t 6

t 2

t 5

t 4

t 6

t 9

t 3

t 8

t 7

t 1

t 3

t 1

t 3

t 8

t 7 , t 9

t 2 , t 6

Fig. 2. Automaton derived from 2-level Petri net of the p53 system (16
states). The labels on the nodes encode the possible configurations for
M, C, P and R (in this order). 0 denotes the absence (or presence be-
low a threshold), 1 the presence (above the threshold) of the given type of
molecule. For instance, 0101 means that C and R are present. The shaded
states correspond to the state set {3 = 1000, 5 = 0001, 8 = 0100}.

We derive from these words, x = bbabb (a word with 73 letters), which reduces
to straight word: bba, (with only 43 letters), giving the transformation −→x =
([1, 2, 4; 5], [6, 7, 9; 8], [10, 11, 12, 13, 14, 15, 16; 3]) and y = aaabaaa, (another long
word with 93 letters), which reduces to straight word aaab (with 54 letters),
giving the transformation −→y = ([1, 2, 10; 5], [6, 13, 14; 8])[4, 7, 9, 11, 12, 15, 16; 3].

These words (a,b, aaab, bba) are all straight permutator words, but obviously
aaab and bba are not minimal permutators since they are products of (straight)
minimal permutators a and b.

We have two copies of the symmetric group S3 each faithfully acting on
{3, 5, 8} = {M,R,C}: one S3 is generated by a and y, and another isomorphic
copy of S3 by b and x with idempotents (the identity elements of these two

groups):
−→
a3 =

−→
y2 = [1, 2, 10; 8][4, 7, 9, 11, 12, 15, 16; 3][6, 13, 14; 5] and

−→
b2 =

−→
x3 =

[1, 2, 4; 3][6, 7, 9; 5][10, 11, 12, 13, 14, 15, 16; 8], respectively.

Together the elements −→a and
−→
b generate a 12 element semigroup which is

just the union of these two groups. This is to some extent counterintuitive, as one
would expect one copy of the permutator group for one particular subset of the
state set; furthermore as mentioned above the permutator semigroup Perm(Y)
has, not just these 12, but 549 elements, and this is but one of many instances
of sets of states in this biological model acted on by the symmetric group S3.

5 Conclusion

Based on algorithmic efficiency considerations we studied straight words that
encode loop-free paths in the Cayley graph of a transformation semigroup. We
focused on straight words generating transformations that permute a given sub-
set of the state set. We found that these minimal permutator straight words form
a finite code, and also the minimal permutator words form a code, although, as
easy examples show, the latter is generally an infinite code. The minimal permu-
tator straight words generate the corresponding subgroup of the transformation
semigroup. These can be exploited in the calculations of hierarchical decomposi-
tions. These findings show that there may be a lot more ways within a semigroup
to generate a subgroup than one might think, but for finding the subgroup it is
enough to consider a subset of them.

References

1. Egri-Nagy, A., Nehaniv, C.L.: Algebraic hierarchical decomposition of finite state
automata: Comparison of implementations for Krohn-Rhodes Theory. In: Confer-
ence on Implementations and Applications of Automata CIAA 2004. Springer Lec-
ture Notes in Computer Science, vol. 3317, pp. 315–316 (2004)

2. Egri-Nagy, A., Nehaniv, C.L.: Cycle structure in automata and the holonomy de-
composition. Acta Cybernetica 17, 199–211 (2005), [ISSN: 0324-721X]

3. Egri-Nagy, A., Nehaniv, C.L.: Algebraic properties of automata associated to Petri
nets and applications to computation in biological systems. BioSystems 94(1-2),
135–144 (2008)

4. Egri-Nagy, A., Nehaniv, C.L.: SgpDec – software package for hierarchical coordinati-
zation of groups and semigroups, implemented in the GAP computer algebra system,
Version 0.5.24+ (2010), http://sgpdec.sf.net

5. Ganyushkin, O., Mazorchuk, V.: Classical Transformation Semigroups. Algebra and
Applications, Springer (2009)

6. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.4 (2006),
http://www.gap-system.org

7. Kastan, M.B., Kuerbitz, S.J.: Control of G1 arrest after DNA damage. Environ
Health Perspect. 101(Suppl 5), 55–58 (December 1993)

8. Krohn, K., Rhodes, J.L., Tilson, B.R.: The prime decomposition theorem of the
algebraic theory of machines. In: Arbib, M.A. (ed.) Algebraic Theory of Machines,
Languages, and Semigroups, chap. 5, pp. 81–125. Academic Press (1968)

9. Rhodes, J.: Applications of Automata Theory and Algebra via the Mathematical
Theory of Complexity to Biology, Physics, Psychology, Philosophy, and Games.
World Scientific Press (2009)

http://sgpdec.sf.net
http://sgpdec.sf.net
http://www.gap-system.org

	On Straight Words and Minimal Permutators in Finite Transformation Semigroups
	Attila Egri-Nagy and Chrystopher L. Nehaniv

