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Abstract 
 

 

Abstract 
This investigation identifies how CAD models of typical automotive body assemblies 

could be defined to allow a continuous optimisation of the number of iterations 

required for the final design and the number of variants on the basis of Parametric 

Associative Design (PAD) and how methodologies for the development of surfaces, 

parts and assemblies of the automotive body can be represented and structured for a 

multiple re-use in a collaborative environment of concept phase of a Product 

Evolution (Formation) Process (PEP). The standardisation of optimised processes 

and methodologies and the enhanced interaction between all parties involved in 

product development could lead to improve product quality and reduce development 

time and hence expenses. 

 

The fundamental principles of PAD, the particular methodologies used in automotive 

body design and the principles of methodical development and design in general are 

investigated. The role which automotive body engineers play throughout the activities 

of the PEP is also investigated. The distribution of design work in concept teams of 

automotive body development and important methodologies for the design of 

prismatic profile areas is critically analysed. 

 

To address the role and distribution of work, 25 group work projects were carried out 

in cooperation with the automotive industry. Large assemblies of the automotive 

bodies were developed. The requirements for distributed design work have been 

identified and improved. The results of the investigation point towards a file based, 

well structured administration of a concept design, with a zone based approach. The 

investigation was extended to the process chain of sections, which are used for 

development of surfaces, parts and assemblies. Important methods were developed, 

optimised and validated with regard to an update safe re-use of 3D zone based CAD 

models instead of 2D sections. 

 

The thesis presents a thorough description of the research undertaken, details the 

experimental results and provides a comprehensive analysis of them. Finally it 

proposes a unique methodology to a zone based approach with a clearly defined 

process chain of sections for an update-safe re-use of design models.
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Yea, though I walk through the valley of the shadow of death, I will 
fear no evil for thou art with me; thy rod and thy staff they comfort 

me. 
 

Psalm 23/4 of David - King James Bible 
 
 
 
 
 
 
 
 
 

Do not go where the way may lead you, but where no way is, and 
leave a track.  

 
Jean Paul 

(Johann Paul Friedrich Richter) 
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2D / 3D 
 
2D refers to two dimensions, e.g. height and width of a piece of paper. In manual 
design 2D methodologies of e.g. descriptive geometry are used to develop 3D parts 
and assemblies. 3D refers to three dimensions, e.g. height, width and depth of a 
cube. Under support of a Cartesian coordinate system any point of an object can be 
described in the 3D modelling space. 
 
Before CAD was established in the 1980th the manual 2D design was standard for 
the development of automotive body parts. To develop the spatial sense of 
engineering students the methodologies of 2D design are still used in lecturing at 
universities. 
 
The CAD system CATIA offers for 2D modelling the work bench Sketcher and the 2D 
application Work on Support in the 3D environment. The 2D modelling of sections is 
the basis of several methodologies for the development of automotive body parts. 
The standard is to develop 3D geometries under support of 2D sections. After 
completion of detailing 2D drawings may be produced showing the 3D part or 
assembly in 2D views, sections and details. 
 
 
A-pillar (B-, C-, D-pillar) 
 
“Pillars are the vertical supports of the greenhouse of a closed automobile body. 
They are referred to with letters, such as "A-pillar", "B-pillar" and so forth, moving 
from the front of the windshield to the rear of the car” (Wikipedia, 2010). Pillars 
connect the structural parts of the roof rails with the structural parts in the floor area. 
Cabriolets only have lower B and C-pillars, coupes only lower B-pillars while station 
wagon, 5-door hatchbacks or SUVs also have D-pillars. 
 
 
Assembly Constraints 
 
Assembly Constraints (3D Geometric Constraints) are constraints for the assembly 
(e.g. coincidence of axes or planes) or definition of a relative position (e.g. offset) of 
parts designed independently. The assembly method using assembly constraints is 
called Bottom-Up-Method. The most robust way to use assembly constraints is, to 
only apply the constraints to identical published positioning (assembly) geometries 
such as points, lines or planes defined on both parts.    
 
 
Bedding 
 
Beddings are functional and geometrical profile areas where the mating flanges of 
BIW are joint e.g. by spot welding, and weather strips or bonding material are applied 
for sealing or mounting of other mating parts such as door or wind screen and interior 
trim panels (door bedding, window bedding etc.). In many cases these profile areas 
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are prismatic (of constant cross section). Special design methodologies are used to 
design bedding profiles under support of references. 
 
 
CCP-Link 
 
The CCP Link (Cut Copy Paste Link) is the CATIA definition for a Reference-to-
Reference link. This link is defined when two parts are opened in two separate 
windows outside the assembly context. The link points from the receiver to the 
sender. The sender does not know the receiver but the receiver knows the sender. 
The position matrix of the sender is not noticed by the receiver. When the reference 
part (sender) is moved, the dependant part (receiver) will not follow the movement. 
Conversely the dependant part (receiver) can be moved independently from the 
reference (sender). 
 
This link type depends on the element name and the UUID identifiers of the involved 
documents and is only active, when the documents with the correct UUID, used for 
the link definition, are loaded. 
 
 
Class-A 
 
All surfaces of an automotive body exterior and interior which are visible for the 
customers must be designed with a special attention for modelling quality, curve and 
surface continuities. These surfaces represent the formal styling of a carline. When 
CAD-technologies were established in the 1980th special CAD software was 
developed on basis of Bezier mathematics (e.g. ICEMSurf). The ICEM-Technology 
company called their high quality surfaces Class-A. Nowadays OEMs have different 
standards for visible surfaces. For Volkswagen companies Class-A surfaces are all 
visible exterior and interior surfaces, even the surfaces of the zones a customer can 
only see when e.g. a door or lid is opened.  
 
 
Component 
 
In CATIA V5 a component is a 2D or 3D structuring element which cannot be saved 
separately but in one of the formats of CATIA, such as CATDrawing or CATProduct. 
 
 
Context-Link 
 
When links are defined within a product structure Reference-to-Instance links are 
generated. 
 
From the dependant part a link (in CATIA: Import link for geometry and KWE link for 
parameters) points to the references on the next higher product level. Conversely 
independent from the number of Instance or KWE links one Context link points from 
product level to the dependant part. The dependant part knows its product and the 
product knows its dependant part. When references are replaced or altered the 
design of the dependant part automatically will be updated. The Reference-to-
Reference link considers the position matrix. As soon as the reference part will 
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change its position the position of the dependant part will be altered too. Conversely 
the dependant part cannot change its position independently. 
 
 
Concept section 
 
Concept sections are true most (radial) sections used for the modelling of automotive 
body parts. In parametric associative design these sections are completely 
constrained cross sections, prepared to control the constraints of two or more true 
(radial compound) sections used to design profile areas (sub areas) of the cross 
section. These true sections are the basis for the derivation of surfaces.  
 
This methodology only works when all areas of responsibility share the concept 
development of complete zones (zone based approach). If the development of one 
cross section / zone must take place in different centres of competence control 
sections are necessary to control the cross section and further more DMU to control 
the whole 3D zone. 
 
Concept sections and control sections are often called Master sections. 
 
 
Control section 
 
Control sections are necessary to examine the completed design of the zones of an 
automotive body when the development of every single zone took place in different 
centres of competence (see Concept-sections). Control sections are also defined in 
true most (radial) position. 
 
Concept sections and control sections are often called Master sections. 
 
 
File-based 
 
The file based data management resigns the use of a product or team data 
management environment (PDM or TDM). 
 
This method and workflow is possible for the management of relational design 
projects with distributed tasks for teams with not more than 10 designers when the 
read and write permissions, the part numbers (names), the instance names the 
reference names and the development stages (versions) are clearly appointed. 
 
The file based data management requires a team leader responsible for the team 
data, a project directory for the complete design and a directory for the area design of 
every single team member. The team leader has the permission to read and write in 
all directories of the team. The single team member has the permission to read from 
the project directory and read and write from his own directory. For the overall update 
of the project directory (project stages, versions) deadlines are appointed where the 
team leader reads the files from the directories of the team members, checks the 
observation of the requirements and replaces the files in the project directory. 
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Feature 
 
In CAD technology the term describes a limited design sequence with the target to 
complete a design with a special attribute such as a swept surface, fillet, birds beak, 
hole etc. The design sequence can be an integrated part of a CAD programme or 
can be defined individually by a designer. CAD programmes allow the storage, 
cataloguing and reuse of design sequences defined individually. In CATIA features 
for the reuse of design sequences are called e.g. Powercopy or UDF (User Defined 
Features). 
 
The combination of several features forms a master model for the reuse of the design 
for a large assembly or design principle. The hypernym for both, feature and master 
model is template.  
 
 
Geometrical Set 
 
Geometrical Set (GeoSet, GS) is a folder system (no geometry) used in the CATIA 
design work benches for wire frame and surfaces. Geometrical sets enable to gather 
various design features in one set or sub-sets. In Geometrical Sets any feature can 
be used any number of times. The order of features is no matter but they maintain 
the relations to their input. 
 
Geometrical Sets allow the individual sorting of features according to design or 
assembly sequences. GeoSets are used to define traceable and legible hierarchical 
tree structures. The name of a Geometrical set and its last element (feature) should 
always have the same name. 
 
 
Glass house 
 
Glass house is the term used in automotive body engineering to describe all area 
above the waist line of a car. In Germany instead of “glass house” the English term 
“green house” is used.  
 
 
Grey Zone Surfaces 
 
The term “Class A“ defines visible (freeform) surfaces in the exterior and interior of 
vehicles. Class A surfaces show a minimum continuity of G2 (Curvature Continuity) 
or better G3 (Curvature Change Continuity). The design of these surfaces is 
preceded on base of scanned styling models under support of programmes like 
ICEMSurf or ALIAS.  
 
Class A surfaces which become visible only after the opening of e.g. a door or lid are 
defined as Grey Zone Surfaces. While the visible Class A surfaces are designed on 
base of scanned styling models, grey zone surfaces are designed as functional 
surfaces during body development process first and redesigned as Class A surfaces 
in a later stage of the design process. 
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G0-, G1-, G2-, G3-Continuity 
 
Continuity is a mathematical indication of the smoothness of the flow between two 
curves or surfaces. 
 
G0: Positional continuity: Curves meet or intersect under any angle exactly at their 
end points, surfaces along their corresponding edges. Positional continuity (G0) 
means that there is a bend between the curves or a bend in the joined surfaces.  
 
G1: Tangent continuity: Curves meet or intersect exactly at their end points, 
surfaces along their corresponding edges. Tangent continuity means that there is no 
bend between the two curves or surfaces but a smooth transition. Both tangents at 
the corresponding ends of the two curves or surfaces are the same. A simple 
example for G1-continuity is the fillet between two lines or between to planar 
surfaces.  
 
G2: Curvature continuity: Curves meet or intersect exactly at their end points, 
surfaces along their corresponding edges. Curvature continuity means that the two 
meeting/intersecting curves or surfaces have the same end tangents as well as the 
same curvature on both corresponding ends. 
For the definition of spine curves for surfaces (such as swept surfaces) G2-continuity 
is expected. 
 
G3/G4: higher continuities: G3-continuity means that not only the conditions of G2-
continuity are fulfilled but also that the rate of change of the curvature on both sides 
of curves or surfaces starting from their meeting point or edge is the same.  
For Class-A surfaces (visible design surfaces of exterior and interior) G3-continuity is 
expected. G4-continuity means that the rate of change of the rate of change of the 
curvature is the same on both sides. 
 
 
Import-Link 
 
CATIA definition for a Reference-to-Instance link on base of reference geometry. For 
detailed description see Context-Link.  
 
 
KWE-Link 
 
CATIA definition for a Reference-to-Instance link on base of reference parameter. 
For detailed description see Context-Link.  
 
 
Kinematics Constraints 
 
Cinematic is the knowledge about movement without consideration of forces. 
 
The degree of freedom (DOF) of a body depends on the number of possible 
independent movements the body can perform relative to another body. E.g. a cube 
can be moved on the planar surface of a second body in two directions and can be 
rotated around its centre of gravity (DOF=3).  
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In the design of assemblies some movements are desired while other possible 
movements are excluded by the design of the single parts. A cinematic is definite 
when all desired movements are defined by Kinematics Constraints and the degree 
of freedom is equal zero. 
 
The multitude of possible joints and movements requires a high number of 
Kinematics Constraints. E.g. a revolute joint has one rotational degree of freedom, a 
prismatic joint has one translational degree of freedom, a cylindrical joint has one 
rotational and one translational degree of freedom or a point/curve joint has three 
rotational and one translational (tangential) degrees of freedom.  
 
 
Knowledge ware 
 
Knowledge ware (Knowledgeware) is a term used for software for the application of 
Knowledge Based Engineering / Knowledge Based Design (KBE). 
 
KBE is the integration of expert knowledge, rules and or processes into CAD designs. 
Expert knowledge collected once can be customised to all people involved and keeps 
well preserved even when know-how carrier change their position or leave the 
company. “An efficient KBE environment will release design engineers from time 
consuming routine work and guaranties standards for process traceability. The single 
design engineer thereby gets more time for new, ambitious work which requires his 
creativity. This leads to a higher motivation and effectiveness of every single 
designer.” (Schneider 2005) 
 
 
Link 
 
Parametric Associative Designs (PAD) with their link network between design 
elements only become replicable and alterable structured CAD models by the 
different kind of links. The choice of link and the point of relationship is an important 
structuring feature of PAD models. 
 
Important links are Parent/Child relations, Instant-Links (References in an assembly 
from multiple used elements to the document of origin, Instance-to-Instance-links 
(Assembly Constraints), Reference-to-Instance-links, defined within one product 
structure) and Reference-to-Reference links defined between documents opened in 
different windows. 
 
 
Master model 
 
The goal of any Parametric Associative Design (PAD) should be the deployment of 
one or more CAD models of assemblies or design principles which can be 
automatically adapted to new specifications by change or replacement of references. 
The inner consistency of these CAD models should always deliver correct results 
with every useful change or adaptation. These so called master models are the 
results of systematic structured designs build up from a large number of individual or 
existing features. 
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Master models and features are also defined as templates. 
 
(In DMU context a master model is a collection of 3D data from CAD and other CAE 
programmes to build a digital prototype.) 
 
 
Master section 
 
Master section is a common name for Concept sections used for the development of 
surfaces as well as for Control sections used for the examination of completely 
designed zones (see Concept section, Control section). 
 
 
Method 
 
Duden Volume 10(2002) describes „method“ as the mode of execution; the way to 
reach a defined goal and mentions the similar terms instrument, operation, mode, 
way, technology. 
 
DWDS (2008) describes “method” as a sytem of rules or systematic arrangement 
which enables to systematically achieve or display scientific findings or organize 
practical activities in a rationell way. 
 
In PAD a method can be to structure the design of a large package area into zones 
or to structure the design of the zones according to the IDO (Input-Design-Output) 
principle. 
 
 
Package section 
 
In the early phases of PEP the package process optimises the space allocation for 
the various parts. To describe these space allocation cross-sections, previously 
defined section developments and competitors’ data are used. These sections are 
often distorted in terms of their geometric integrity and therefore can not be utilised 
for dimensioning and surface derivation and extraction. Package sections are often 
used to describe the number of parts situated in a zone of the body. They are also 
used to control certain functions or legal requirements.  

 
 
Part 
 
Merriam Webster (2007:2) defines the term “part” besides others as one of the often 
indefinite or unequal subdivisions into which something is or is regarded as divided 
and which together constitute the whole or as an essential portion or integral 
element. In mechanical engineering a part is a component used in a higher-level 
mechanical assembly. 
 
CATIA V5 makes a data format CATPart available which is mainly provided to store 
the design of a single component of an assembly. In the concept phase of a body 
development only primary and secondary surfaces are necessary and the data size is 
more or less small. In this phase it is also useful to define assemblies in CATPart 
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models and use geometrical sets to structure sub assemblies and parts according to 
the Bill Of Materials (BOM). 
 
 
Powercopy 
 
Powercopies are templates used in CATIA for the reproduction of standard design 
principles (e.g. design of a stiffening swage in a sheet metal part, design of surface 
bands from concept section etc. See examples in appendix). Designed in a 
separated CAD-model the template can be inserted into another CAD-model as often 
as necessary (e.g. 35 swages for a floor panel developed by 35 insertions of one 
powercopy). After insertion powercopies can fully be edited. A similar template is the 
UDF (User Defined Feature). In contrast to powercopies the UDFs cannot be edited 
after insertion. Therefore these templates are used for applications third users are 
not allowed to change.  
 
 
Product 
 
CATIA V5 defines a data format CATProduct and speaks about product while a 
platform for the assembly of the single parts is meant. So the product structure in 
CATIA represents the structure for the assembly of the various sub assemblies and 
parts according to the BOM.  
 
 
Publication 
 
In CATIA publication is a method to highlight reference geometries and parameters in 
the hierarchical tree of an assembly which shall be used for the definition of assembly 
constraints or MML. CAD-programmes can be initialised to only use published 
references for the definition of links. 
 
Haslauer (2005) describes publication as a way of access to packed references with 
unknown object types. As a result it seems to be theoretically possible to e.g. 
exchange published curves with published surfaces. But the automatic 
synchronisation of links after the replacement of published references is only possible 
when the replaced and the replacing reference have the identical name und object 
type. 
 
 
Package 
 
“The package manages and harmonises the requirements (demands) for the 
constructed spaces (summarised complex spaces such as engine compartment, 
interior, under floor, boot), the ergonomics and whole features of a vehicle in the 
cooperation with all centres of competence  and accompanies the vehicle 
development from the idea up to end of production. The management of the whole 
vehicle geometry data and actuality of this data in every development stage is the 
main task of the package “ Grabner & Nothhaft (2006). 
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In the layout phase before styling a layout of the vehicle is prepared on base of 
specified targets to safeguard all important dimensions of the vehicle interior and 
exterior. Therefore all Carry Over Parts (COP) like engines, gearboxes, chassis, 
climate control unit etc. including their designed spaces and BIW connections are 
positioned. The positioned COP, first body structures, expected volumes for 
occupants, boot and tank etc. and legal and company geometric requirements are 
the Hard Points for the styling department. 
 
During styling phase there are often conflicts between technical and styling targets 
which require adjustments, corrections and compromises on both sides. 
 
In package phase 2 after styling phase the layout is refined systematically in 
cooperation with styling and concept design to describe all designed spaces by 
contours, surfaces and principle cross sections. The detailed layout confirms the 
compliance with ergonomic requirements, such as seating and courses of motion, 
direct and indirect vision of driver, as well as all necessary legal and company 
requirements. This detailed layout is the basis for the development of derivates and 
successors. 
 
 
PAD 
 
The Parametric Associative Design (PAD) of a component or an assembly is the 
method to control components by parameters, such as numerical values or 
geometrical elements (curves, lines, surfaces etc.), and to associate e.g. geometry, 
parts or process steps under support of links. In the context of this work PAD can as 
well define a single part or assembly design arranged according to the method 
mentioned above. 
 
 
RPS-System 
 
RPS is a system of dimensional accuracy points in a part or a welding assembly used 
for a clearly defined position in design space, for fixation on mounting or 
measurement devices. If a clearly defined mounting is to be defined all the degrees 
of freedom in direction X, Y and Z as well as rotation around X, Y and Z axes have to 
be controlled under support of contact surfaces, position, shape and size of fixing 
holes. 
 
 
Strategy 
 
In context with the planning of PAD-models “strategy” defines the way to define and 
structur geometry along the development process chain. The term „strategy“ must be 
seen in context with the terms “system”, „method“ and „tactic“. 
 
 
System 
 
“System“ is an 'integrated whole' of elements which are related to each other and can 
be seen as united elements bound together by goal, function or purpose and in this 
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context are restricted from their environment (e.g. system for the concept 
development of an A-pillar, structured into two zones and three transition areas 
(joints) to mating body structures). Systems are organized and preserved by 
structures. Structure is the pattern of the system elements and their relations defining 
a system and its functions (Structuring elements in CATIA are the hierarchical tree, 
CATProducts and CATParts (data formats for assemblies or parts), Geometrical Sets 
(folders) and the design features). 
� The function of a system is the ability to transfer defined input parameters into 
defined output parameters. Input and output parameters are the relations of a system 
to its environment. 
� Each system consists of elements (components and subsystems e.g. zone of 
lower A-pillar, joint between upper A-pillar and roof rails and their different panels for 
BIW, interior and exterior trim and mounting parts) which are related to each other. 
Often this relation is a two way interaction.  
 
� A system of this kind can be restricted from its environment (other systems) and 
divided into subsystems by defined boundaries. In this way the function of a single 
system can be observed and reflected easily. This restriction is necessary as the 
human comprehension is restricted to understand the overall functions of large 
systems (Wikipedia, 2008:1). 
 
 
Tactic 
 
The terms “strategy” and “tactic” should be handled in a direct context. Strategy 
normally is used to achieve a superior goal while tactic defines the steps and actions 
to achieve an intermediate goal. In PAD e.g. the strategy can be to use the modeling 
method (surface, volume…) in relation to the manufacturing method (deep drawing, 
moulding…) and the tactic can be to use only update safe functions within a design 
feature. 
 
 
Template 
 
In CAD technology templates are the sum of all digital design models for the reuse of 
standard design concepts. Individual or standard design sequences, so called 
“features” and extensive structured design models for the reproduction of standard 
assemblies and standard design principles, so called “master models”, define a large 
variety of templates. 
Templates retain approved design methods and solutions and allow fast partly 
automated design steps. Templates enable standardisation and reuse of common 
design concepts. This allows the early approval of design variants and a higher 
degree of ripeness and higher development quality in early project phases (Haasis et 
al, 2006). 
 
 
True section 
 
True sections are defined perpendicular (compound radial) to the spine and guide 
curve. These sections are used for modelling of prismatic profile areas (sub zones). 
The constraints of the true section are controlled by a concept section which controls 
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a complete cross section with two or more prismatic profile areas. True sections are 
the basis for the derivation of surfaces (see Concept section). 
 
UDF 
 
UDFs (User Defined Features) are templates used in CATIA for the reproduction of 
standard design principles (see Powercopy, Template) 
 
 
UUID 
 
“The Unique Universal Identifier (UUID) is an internal mark, which is defined when 
creating a CATIA document. The UUID is important for Reference-to-Reference link 
(CCP link). UUID, file name and time stamp are influencing storing, inserting and 
replacing of components within a product structure.” (Braß, 2005) 
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A8    Car line of AUDI 
 
ABC    Substitute for user name in start model, first character first name plus 
     first two characters of family name  
 
ADA    Adapter, file definition used for references in start model 
 
ADP    Adapter, file definition used for references in start model 
 
AK 4.6   Collaborative work group of the five German automotive OEM’s 
     regarding CAD/CAM activities and regulations 
 
AUDI   Latin translation of “Horch”, one of the roots of the German automotive  
     OEM 
 
ASSY   Assembly 
 
BIW    Body In White 
 
BMW   Bayerische Motoren Werke, German automotive OEM 
 
BOM    Bill Of Materials (Parts List) 
 
BRep    Boundary Representation 
 
CAD    Computer Aided Development/Design 
 
CAE    Computer Aided Engineering (Calculation/Simulation) 
 
CAO    Computer Aided Optimisation 
 
CAPP   Computer Aided Process Planning 
 
CAT    Computer Aided Tolerancing 
 
CATScript Programming language used in CATIA 
 
CATPart  Data format for a part in CATIA 
 
CATProduct Data format for an assembly in CATIA 
 
CAx    Computer Aided “Anything” 
 
CATIA   Computer Aided Three-Dimensional Interactive Application (CAD  
     Software of Dassault Systèmes) 
 
CCP    Cut Copy Paste Link  

Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XXVII 



List of Abbreviations 
 

 

CEG    CATIA Einsatz Gruppe (Collaborative sub work group of AK 4.6 of the 
     five German automotive OEM’s regarding common use and timing of 
     CATIA releases) 
 
CFD    Computational Fluid Dynamics 
 
COP    Carry Over Part  
 
CSG    Constructive Solid Geometry 
 
CV    Curve, element type used in CATIA 
 
D4    Internal definition for carline A8 of AUDI 
 
DCM    Data Control Model 
 
DEV    Digital Engineering Visualisation  
 
DfX    Design for X (X=suitable for assembly, manufacturing, total cost…) 
 
DMU    Digital Mock-Up 
 
DPT    Digital ProtoTyping 
 
EBOM   Engineering Bill Of Materials 
 
EDM    Engineering Data Management System 
 
EG    Predecessor of EU, Europäische Gemeinschaft (former EWG  
     Europäische Wirtschaftsgemeinschaft) 
 
EU    European Union 
 
FEM    Finite-Element-Method 
 
FEM    Finite-Element-Method, file type used for preparation of reference   
     geometries in start model 
 
GCIE    Global Car Manufacturers Information Exchange Group 
 
GFI    Gesellschaft für Ingenieurleistung mbH, German engineering supplier 
 
GEO    Geometry, file definition used for the design (modelling) work in start   
     model 
 
GeoSet   Geometrical Set, file type used in CATIA wire frame and surface design 
 
GSD    Generative Shape Design, Work bench used in CATIA 
 
HAW   Hochschule für Angewandte Wissenschaften (University of Applied  
     Sciences) 
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List of Abbreviations 
 

 

 
HVAC   Heating Ventilation Air Conditioning 
 
IDO    Input Design Output (Structuring method for design process) 
 
JT      Data format for visualisation and data exchange (Siemens –  
     Unigraphics PLM Solution) 
 
KBE    Knowledge Based Engineering 
 
KIN    Kinematics, file definition used for preparation and execution of  
     kinematics simulations in start model 
 
KPR    Konstruktions-Produkt (Design assembly), file definition for assemblies  
 
LHS    Left-Hand Side 
 
LN    Line, element type used in CATIA 
 
MBOM   Manufacturing Bill Of Materials 
  
MBS    Multi-Body System 
 
MIG    Metal Inert Gas welding, gas-shielded welding 
 
MML    Multi Model Link 
 
MS    Microsoft  
 
NC    Numerically Controlled 
 
NVH    Noise + Vibration + Harshness 
 
NX    CAD software of Siemens PLM 
 
OEM    Original Equipment Manufacturer 
 
OHP    Overhead Projector 
 
PAD    Parametric Associative Design  
 
PC    Powercopy, template used in CATIA 
 
PDGS   Former CAD-Software of Ford Motor Company 
 
PDM    Product Data Management System 
 
PEP     Product Evolution (Formation) Process 
 
PhD    Doctor of Philosophy 
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List of Abbreviations 
 

 

RHS      Right-Hand Side 
 
PLM    Product Life-Cycle Management  
 
PT    Point, element type used in CATIA 
 
PM    Parameter, element type used in CATIA 
 
PN    Plane, element type used in CATIA 
 
RPS    Referenz-Punkte-System, system of dimensional accuracy points in  
     parts and assemblies 
 
PT    Point, element type used in CATIA 
 
ProE    Pro Engineer; CAD software of Parametric Technology 
 
SAE    (American and international) Society of Automobile Engineers 
 
SF    Surface, element type used in CATIA 
 
SgRP   Seating Reference Point 
 
SUV    Sport Utility Vehicle 
 
SYRKO  Former CAD-Software of Daimler  
 
TDM    Team Data Management system 
 
UDF    User Defined Feature, template used in CATIA 
 
URL    Uniform Resource Locator, e.g. the "address" of a web page on the  
     World Wide Web  
 
UUID   Unique Universal Identifier 
 
VDA    Verband der Automobilindustrie (association of the German automotive 
      industry  
 
VDI    Verein Deutscher Ingenieure (association of German engineers) 
 
VR    Virtual Reality 
 
WRS     Window Regulator System 
 

Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XXX 



Acknowledgements 
 

 
Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XXXI 

Acknowledgments 
 

The work in this thesis has been carried out over a period of seven years and could 

not have been completed without the support and patience of the supervisory team, 

some of my colleagues and my family. 

 

I am very grateful to my principal supervisor, Dr. George Haritos, for his continuous 

guidance, constructive comments and enthusiasm towards this work; many thanks 

are due to George for his patience and useful discussions during the writing up 

period. He has helped me very much to convert some of my Pidgin English into 

proper English. I am also very grateful to Prof. Dr. Peter Bullen, who was my second 

supervisor for all his encouragement and sound advice. 

 

I should also like to acknowledge and thank all academics and students who 

participated in the 25 team projects conducted as part of this research for their time 

and valuable feedback. In particular I thank my colleague Jutta Abulawi who 

supported me with some of the team projects and translated parts of this thesis from 

German into English. 

 

Last but not least, I want to thank my wife Linda for all the support that she gave me 

during the years I have been working on this thesis, especially for all her patience 

when my mind was somewhere in this project while she wanted to talk to me about 

important issues. 

 



 
 

 
Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XXXII 

 

 



Declaration of Non-Plagiarism 
 

 
Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XXXIII 

Declaration of Non-Plagiarism 
 

 

I hereby declare that: 

 

1. The research reported in this thesis, except where otherwise indicated, is my 

original research. 

 

2. This thesis has not been submitted for any degree or examination at any other 

university. 

 

3. This thesis does not contain other persons’ data, pictures, graphs or other 

information, unless specifically acknowledged as being sourced from other persons. 

 

4. This thesis does not contain other persons’ writing, unless specifically 

acknowledged as being sourced from other researchers. Where other written sources 

have been quoted, then:  

a. Their words have been re-written but the general information attributed to them 

has been referenced  

b. Where their exact words have been used, then their writing has been placed inside 

quotation marks, and referenced. 

 

5. This thesis does not contain text, graphics or tables copied and pasted from the 

Internet, unless specifically acknowledged, and the source being detailed in the 

thesis and in the References sections. 

 

 

 

Signed:  Gerhard Tecklenburg 

 

Date:  September 15th, 2010 

 



 
 

 
Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XXXIV 

 

 



Publications related to this Research 
 

 
Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XXXV 

Publications related to this Research 
 
 
[1]   Tecklenburg, G. (2004) 'Die parametrisch assoziative Konstruktionsmethodik  
  in der Karosserieentwicklung und deren Auswirkung auf die Hochschullehre.'  
  VDI-FVT Conference „Entwicklungen im Karosseriebau 2004“ Hamburg.  
  04-05 May. Düsseldorf: VDI 
 
  English title and abstract:   
 
  'How the parametric associative design method influences the design 
  education at the university.' 
 
  Within Parametric Associative Design (PAD) in addition to the geometric  
  features of a part or product the designer’s intention is stored in form of  
  constraints and dependencies between the geometries. The variation or  
  exchange of the driving parameters will change the geometries of the product  
  according to the programmed intentions. Update-Safety, an associative  
  process chain and the re-use of CAD-models for similar designs are the major  
  objectives of PAD. 
 
  Associative CAD-models allow for the first time the representation of complex 
  interdependencies of parts, assemblies and process steps within the same 
  model. The clear definition of referencing geometries and parameters and the 
  possibility to exchange these steering references whenever necessary enables 
  process partners to share the development. Industry speaks about concurrent 
  engineering since decades; PAD delivers the tools to implement this method in 
  design engineering.  
 
  The implementation of the parametric associative technology leads to more 
  complex CAD-models. The history trees of the design models become more  
  important than the geometric representation. Rules have to be defined to  
  make CAD-models legible for all process partners involved. 
 
  The PAD technology has been used in mechanical engineering with its often  
  more simple geometries since several years. In automotive body design OEMs  
  start with this technology now. The change over to this new technology needs  
  an optimization of the design education at universities. The education in  
  design engineering, calculation, simulation and information technology have to  
  close ranks. 
 
 
[2]  Brockmeyer, H.; Tecklenburg, G. (2005) ' Entwicklung einer parametrisch – 
  assoziativen CAD-Modellkette für die Prozesskette der Karosserieentwicklung.'  
  Mobiles. No. 31. pp. 58-59. 
 

 



Publications related to this Research 
 

 
Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XXXVI 

  English title and abstract:  
 
  'Development of a parametric associative CAD-model chain for the process  
  chain of automotive body development.' 
 
  The development or improvement of methods for the parametric associative  
  design of assemblies of automotive bodies in cooperation with German OEMs  
  is one of the major challenges of the Hamburg University of Applied Sciences.  
 
  The styling oriented development process of automotive bodies, world wide  
  legal requirements and several other increasing demands lead to a high  
  number of variants and lots of adjustments throughout the design process.  
  The PAD technology offers methods for concurrent design engineering. The  
  early and detailed planning of project variants and possible adjustments (front  
  loading) in combination with re-usable CAD-models will help to reduce costs  
  and time to market.  
 
  The publication shows on the example of the concept development of front  
  door and relating body areas how PAD technology could be used in  
  automotive body development.  
 
 
[3]  Tecklenburg, G. (2005) 'Entwicklungspotenzial, Modularisierung, Konstruk- 
  tionsmethodik am Fahrzeugheck'. Opening Speech. CTI-Conference „Fahr 
  zeugheck und Heckklappe“. Sindelfingen. 14-15 December. 
 
  English title and abstract:  
 
  'Development potentials, modular design and design  methodology at the rear  
  end of automotive bodies.' 
 
  Modern technologies on cars are fascinating engineers in development and  
  production as well as customers. Which are the main design criteria for  
  automotive bodies of passenger cars and lorries conform to appearance,  
  ergonomics, function and manufacturability? 
 
  Automotive engineers work in a permanent area of conflict of styling- design 
  and calculation-/simulation-principles. They work at OEMs, engineering or  
  component suppliers. Their responsibilities in the area of automotive body  
  engineering are the project management, design, calculation, testing and  
  preparation for production. 
 
  The presentation shows the multiple topics on the rear end of automotive  
  bodies. On the example of a tail gate functions and design methods are  
  explained. On this foundation the chances for the use of parametric  
  associative design technology are illustrated. 
 

 



Publications related to this Research 
 

 
Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XXXVII 

 
[4]  Tecklenburg, G. (2006) 'Die parametrisch assoziative Konstruktion einer  
  Heckklappe'. Presentation. CTI-Conference „Fahrzeugheck und Heckklappe“  
  Munich. 13-14 December. 
 
  English title and abstract:  
 
  'The parametric associative design of a tail gate.' 
 
  Modern technologies on cars are fascinating engineers in development and  
  production as well as customers. Which are the main design criteria for  
  automotive bodies of passenger cars and lorries conform to appearance,  
  ergonomics, function and manufacturability?  
 
  Automotive engineers work in a permanent area of conflict of styling- design-  
  and calculation-/simulation-principles. They work at OEMs, engineering or  
  component suppliers. Their responsibilities in the area of automotive body  
  engineering are the project management, design, calculation, testing and  
  preparation for production. 
 
  The University of Applied Sciences Hamburg organised in summer semester  
  2006 a seminar for the parametric associative design of typical assemblies of  
  an automotive body with distributed tasks for the students engaged for the third  
  time. In hands-on-like environment teams of students had the tasks to use,  
  improve and optimize design methods. 
 
  On the example of a tailgate and the corresponding body areas the use of  
  parametric associative design with distributed tasks is explained in detail. One  
  of the main focuses was the idea to distribute the design work zone based and  
  not according to the number of parts involved.  
 
 
[5]  Schumacher, A.; Tecklenburg, G. (2007:1) 'Cost reduction using modern  
  development methods in the vehicle body design.' Presentation. 25th European  
  Car Body Conference “Strategic questions of car body engineering today and  
  tomorrow”. Bad Nauheim. 13-14 March. 
 
  Abstract: 
 
  Two development engineers explain modern development methods for the  
  design and calculation of automotive bodies. After the explanation of the  
  demands for cost and time reductions typical modern methods of  parametric  
  design, knowledge based engineering, distribution of work, associative FEM,  
  crash simulation and structural optimisation are presented based on typical  
  examples of body development. 
 
 
[6]  Tecklenburg, G. (2007:2) 'Parametric Associative Design of a Tail Gate.'  
  Presentation. 4th Metzeler Sealing Conference “Fahrzeugtüren und -klappen  
  2007”. Lindau. 20-21 June. 

 



Publications related to this Research 
 

 
Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XXXVIII 

 
  Abstract: 
 
  Modern technologies on cars are fascinating engineers in development and  
  production as well as customers. Which are the main design criteria for  
  automotive bodies of passenger cars and lorries conform to appearance,  
  ergonomics, function and Manufacturability?  
 
  Automotive engineers work in a permanent area of conflict of styling, design 
  and calculation/simulation-principles. They work at OEMs, engineering or  
  component suppliers. Their responsibilities in the area of automotive body  
  engineering are the project management, design, calculation, testing and  
  preparation for production. 
 
  The University of Applied Sciences Hamburg organised in summer semester  
  2006 the third time a seminar for the parametric associative design of typical 
  assemblies of an automotive body with distributed tasks for the students  
  engaged. In hands-on-like environment teams of students had the tasks to use,  
  improve and optimize design methods. 
 
  On the example of a tailgate and the corresponding body areas the use of  
  parametric associative design with distributed tasks is explained in detail. One  
  of the main focuses was the idea to distribute the design work zone based and  
  not according to the number of parts involved.  
 
 
[7]  Tecklenburg, G. (2007:3) 'Karosseriekonstruktion: Parametrisch Assoziatives 
  Konstruieren.'  Mobiles. No. 33. pp. 14-19. 
 
  English title and abstract:  
 
  'Automotive body design: Parametric associative design' 
 
  The development process of automotive bodies is mainly managed by  
  automotive body engineers. The demands of so called body design engineers  
  in automotive companies have changed a lot throughout the last two decades.  
  Designers became more and more poor managers of design and project work.  
  Project managers with own design experiences get retired. Young project  
  managers do not have enough design experience and sometimes even do not  
  want to design themselves at all.  
 
  A good body engineer is only successful when he runs his management  
  mission on base of a broad professional competence such as soft skills and  
  management competence, a good foundation of mechanical engineering  
  knowledge and a broad expertise about the methods used along the process  
  chain of automotive body development.  
 
  The complexity and prospects of parametric associative design in the process  
  chain open up to the managing engineer only when he has detailed knowledge  
  for the use of modern CA-tools as well.  

 



Publications related to this Research 
 

 
Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XXXIX 

 
[8]  Tecklenburg, G. (2007:4) 'Die parametrisch assoziative Konstruktion im Ent- 
  wicklungsprozess Karosserie'. Conference „Parametrisch assoziative Entwick-  
  lung von Baugruppen der Fahrzeugkarosserie - Visionen und Erfahrungen für  
  zukünftige Entwicklungsprozesse“. HdT Essen. 22-23 November. Renningen:  
  Expert 
 
  English title and abstract:  
 
  'The Parametric Associative Design in the development process chain of auto 
  motive body.' 
 
  The fundamentals of parametric associative design (PAD) in automotive body  
  design will be illustrated and discussed. Rules to manage the complexity of  
  PAD-models are pointed out. The process chain “automotive body  
  development” gives an example how PAD can be used to structure and control  
  development processes. Up-to-date examples of associative design in  
  automotive body assemblies validate the definitions. 
   
  In conclusion the use of PAD in design engineering education at the university  
  is explained. 
 
 
[9]  Tecklenburg, G. (2008) 'The Parametric Associative Design (PAD) of Vehicle  
  Closures.' Presentation. 7th International CTI Forum 'Automotive Doors'. Bonn.  
  12-13 February. 
 
  Abstract: 
 
  After an introduction regarding the University of Applied Sciences Hamburg  
  and in particular the department automotive and aeronautical engineering with  
  its major 'automotive body development' the situation and interaction between  
  OEMs, suppliers and universities throughout the product development chain  
  are explained. 
 
  Parametric Associative Design (PAD) principles enable the process partners  
  involved to share development data and knowledge in clearly defined ways.  
  The presentation gives an insight on fundamentals of PAD such as the  
  different possibilities for associative product models, the ideas of reuse and  
  templates, legibly structured design models, zone based or part based design  
  work. On the example of doors and tailgates the handling of these methods  
  and other door specific methods is illustrated. 
 
 
[10] Tecklenburg, G. (2008) 'Parametrisch assoziative Entwurfsmethoden bei der  
  Modellierung von Baugruppen der Karosserie.' Plenary address. Conference  
  'ICEM - Information Day ' ICEM Technologies, Hanover. Munich. 21 October. 
 
  English title and abstract:  
 

 



Publications related to this Research 
 

 
Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XL 

  'The Parametric Associative Design methods for the development of typical  
  design spaces of automotive body.' 
 
  The associative process chain in the area of concept development of  
  automotive bodies is interrupted in several stages. One reason for an  
  interruption is the interaction between Class A – surfacing and concept design. 
 
  The Class A – surfacing process often uses programmes (such as ICEMSurf)  
  which deliver very good options for the Class A design process itself but do  
  not allow the direct interaction on an adequate quality level.  
 
  In early phases of concept development the Class A surface models are too  
  late and full of mistakes (such as doubled or damaged surfaces and  
  curves).This leads to a duplication of work as the PAD designer has to define  
  dummy-data himself to fulfil the data quality expected in a PAD design. 
 
  The outcome of a conversion of Class A data into parametric data are isolated  
  and often damaged data. The isolation of data makes sense as it is not allowed  
  to change Class A data. On the other hand it takes a lot more effort to repair  
  and slightly change (!?) converted Class A data than to update a well  
  structured PAD model after the exchange of references.  
 
  The presentation in front of Class A designers tries to open up the mind of the  
  audience for the challenges of a cooperative design process chain. Examples  
  for the parametric design of gaps, grills, Class B surfaces or textured interior  
  surfaces show that the use of PAD in typical areas of the Class A surfacing  
  process is possible.  
 
 
[11] Tecklenburg, G.; Untiedt, S. (2008) 'Parametrisch assoziative Package- 
  Schnitte in der Prozesskette Karosserieentwicklung. Presentation. VDI-EKV  
  Conference 'CAD-Produktdaten 'top secret?!' '. Munich. 02-03 December.  
  Düsseldorf: VDI 
 
  English title and abstract:  
 
  'The Parametric Associative Package-Sections in the development process  
  chain of automotive body.' 
 
  Within Parametric Associative Design (PAD) in addition to the geometric  
  features of a part or product the designer’s intention is stored in form of  
  constraints and dependencies between the geometries. The variation or  
  exchange of the driving parameters will change the geometries of the product  
  according to the programmed intentions. Update-Safety, an associative  
  process chain and the re-use of CAD-models for similar designs are the major  
  objectives of PAD. 
 
  The associative process chain in the area of concept development of  
  automotive bodies is interrupted in several stages. One reason for an  
  interruption is the reuse of isolated package sections from former product  

 



Publications related to this Research 
 

 
Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XLI 

  developments. Package sections often taken as results of former designs just  
  describe the parts and assemblies to be used in a design space of a new  
  development. As these sections are often grit sections cut through inclined  
  and curved body areas dimensions of these sections do not allow to use  
  segments for the development of curves and surfaces. 
 
  The publication and presentation shows on the example of the inclined and  
  curved upper A-pillar how on basis of Class A – surfaces, curves and  
  reference surfaces a new 3D process chain of (1.) a true most cross section is  
  defined to set parts, sub-assemblies, proportions and dimensions for the  
  design space, (2.) true sections for three different prismatic areas (inner and  
  outer door bedding, window bedding) are defined to develop prismatic  
  surfaces and (3.) offsets of reference surfaces complete the design space.  
  After completion of the 3D design a new true most section and package  
  sections for the examination of e.g. binocular obstruction according to legal  
  and company requirements are cut.  
 
  The achievement is a 3D design of the upper A-pillar zone which can be fully  
  re-used and edited for further developments on the same project or similar 
  successors and in different stages of the process chain.  
 
 
[12]  Tecklenburg G; Haritos G (2009) Modular System for Methodological Design  
  of Vehicle Body Assemblies. Automob. Tech. Z. (ATZ worldwide eMagazines  
  Edition) 12: 956-963 
 
  English abstract: 
 
  The University of Applied Sciences (HAW) Hamburg and the University of  
  Hertfordshire in collaboration with the automotive industry set up a R&D  
  process to optimise the design methods in the “new” parametric associative  
  approach. The objective with the parametric associative design was to develop  
  new methods for task allocation and a more “structured” approach in the  
  organisation of design processes while designing automotive body  
  components. Groups consisting of four to seven students evaluate assemblies  
  for the body.  22 realistic projects were identified before by automotive  
  companies. Here,  important conclusions are presented for the example A-pillar. 
 
 
[13]  Tecklenburg G (2010) 'Parametrisch assoziativer Ansatz zur Konstruktion von  
  Baugruppen der Karosserie' Conference PLM Forum 2010.16-17 June.  Mann- 
  heim, Dassault Systemes Deutschland GmbH 
 
  English title and abstract: 
  
  'Parametric associative approach for the design of automotive body asseblies.' 
 
  Introduction, portrait of the university, development of design methods in  
  cooperation with the automotive industry, cooperation with software providers  
  ICEM and TransCat PLM, Parametric associative approach for the design of  

 



Publications related to this Research 
 

 
Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XLII 

  automotive body assemblies: package sections, true most concept section, true  
  (compound radial) sections for the derivation of prismatic surfaces, efficiency  
  analysis of design methods according to criteria applicability, traceability,  
  update safety, time saving by replication. 
 
 
[14]  Tecklenburg G (2010) 'Die parametrisch assoziative Konstruktion im Entwick- 
  lungsprozess Karosserie. Einführung, Ziele, Ergebnisse'. In:  Tecklenburg G  
  (ed) 'Die digitale Produktentwicklung II', 1st edn. Expert,  Renningen, pp 1-8 
 
  English title and abstract: 
 
  'The role of parametric associative design in the Product Evolution Process   
  (PEP) of an automotive body – introduction, goals, results.' 
 
  The development or improvement of methods for the parametric associative  
  design (PAD) of assemblies of automotive bodies in cooperation with German  
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  Hertfordshire and companies of the German automotive industry have been  
  carried out to establish a systematic parametric associative design (PAD)  
  process for assemblies of the automotive body. In context with the product  
  development design methods, methods to structure the information flow within  
  the Computer Aided Design (CAD) - model, the application of Knowledge  
  Based Engineering (KBE) and the distribution of design work for automotive  
  body assemblies have been investigated.  
 
  The design work during concept development of an automotive body is  
  characterised by the use of 2D sections and 3D wire frame and surface  

 



Publications related to this Research 
 

 
Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 XLIII 

  models. On base of package sections the (radial) concept sections are  
  developed. The concept sections are the reference for true (compound radial)  
  sections which prepare the generating segments for the derivation of surface  
  bands. Surface bands are the basis for the design of body zones, junctions of  
  two ore more body zones, filleting, detailing and the derivation of parts. 
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  radial) sections for the derivation of surfaces and parts in PAD-models  
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  describes methods for the reliable design of frequently required prismatic  
  surface areas. 
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One of the main tasks of automotive body design is to define, collect and optimise 

the methods of car body design. The applied methods of design in the automotive 

body design sector differ from those applied in mechanical engineering in general. 

 

With introduction of the conventional Computer Aided Design (CAD), the design 

methods have been relegated to a second place due to the fact that for the task only 

the final geometry result of the system parts appears to be of importance, and neither 

the geometry generation nor the controlling parameters and references are given due 

attention. 

 

During the last decades Original Equipment Manufacturers (OEMs) have changed 

their design strategy and started to produce more and more different car models in 

the part of the automotive industry. This involves a rapidly increasing shift of product 

development, from the OEM to suppliers and engineering partners. Design methods 

and processes are no longer the central point of interest for the OEM product 

developers. As a result, the OEMs have lost a great deal of know-how in product 

development methods. 

 

The Parametric Associative Design (PAD) offers the possibility of representing 

development methods structured in CAD-models as well linking design, calculation 

and planning processes with each other. In addition, there is the possibility to store 

knowledge of these processes in the CAD-models and to reuse them in a “new” 

product development cycle. An inherent feature of PAD is that in addition to the 

design of a product, the designer’s intention is stored in form of constraints and 

dependencies between the geometries and parameters of the various parts. A 

variation or exchange of the controlling parameters will change the design of the 

product according to the design intentions. The focus in body design is to define and 

optimise characteristics and dependencies within parts and assemblies according to 

the three major requirements in body engineering: styling, functionality and 

manufacturing. 

 

In contradiction the focus in conventional CAD-design is to develop the geometry of 

single parts. For optimisation and development parts have to be totally redesigned or 
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modified extensively, whereas PADs can be totally updated, either automatically or in 

single steps without - or with a minimum of remodelling the geometry of the parts.  

While the conventional design is only one of many tools within the process chain, the 

PAD-model assumes a leading role within the process from concept development to 

manufacturing. Information stored in the parametric design of a body assembly is, for 

example, the basis for tool and jig design in manufacturing, for tolerance 

investigations and for quality control.  

 

There are various links defined in PADs at different levels. For example, links between 

geometry and design features control the geometries at part level; links between parts 

define shape and position of the parts within an assembly as well as the function of the 

assembly. Links between design tables and parameters control the values of part 

parameters, links between a 3D-model and its related drawing, control views of the 

drawing and assembly constraints define the positioning of related parts. 

 

A body designer who has to satisfy conflicting interests from different partners within 

the process chain into the CAD-models now assumes a much more important role in 

the development process than that in the past. The classical distinction between a 

body engineering designer and body engineering manager is unsuitable for the new 

parametric design process. The “new” body engineer designs the assemblies and 

manages the body development process, and he is strongly supported by the 

parametric design models described. This new design approach needs system 

engineers with an excellent understanding of how their components relate to 

associated systems, which can coordinate the development processes and who at the 

same time are highly proficient CAD-designers. 

 

In the interests of a cost- and time-optimised development process, a collaboration of 

all parties involved in the product development and its application to production cycle, 

must and can be redefined with the help of the methods of parametric associative 

development. This thesis will explore and contribute to this development process. 
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1.1 Current Situation in Automotive Industry and resulting Tasks 

for Product Development  
 

In figure 1.1 the conflicting targets for a global acting automotive development are 

shown. In the past competition in the automotive industry took place between a few 

manufacturers on a very regional basis.  

 

 
Fig. 1.1  Conflicting targets in the automotive industry caused by external factors 

(Mantwill, 2007) 
 

 

Today, however, the competition takes place between a significantly larger number of 

manufacturers and products on an international level as pointed out by Clark & 

Fujimoto (1992).  According to German association of the automotive industry (VDA, 

2006) and Baur (2007) a global competition and an increasing market dynamic during 

the past years have led to an unprecedented change in design strategy (see figure 

1.1). The higher complexity of the vehicles and the model offensive are characterised 

by an increasingly regional customer orientation and growing demands on the 

product, which leads to pressure to reduce development costs and time (Bauer 

2002), (Mantwill et al 2006). 

 



Chapter 1 
 

 
Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 5 

 
Fig. 1.2  Increase of model range and variants vs. decrease of development time at 

SKODA Auto a.s. (Baur, 2007) 
 

 

The development environment for the body design engineer has been steadily 

changing for the last few decades.  During the 50’s car bodies were developed on the 

basis of Class A surface design, principle sections and designs only largely 

supported by model makers (see chapter 2).  In the 70’s an almost complete surface 

description of all design elements of a car body was produced through a large 

number of designs, which were, still manually produced.  All requirements – such as 

producibility, assembly and occupant ergonomics – were evaluated by means of a 

large number of physical mock ups and prototypes built. With the introduction of CAD 

technology the two dimensional design was replaced by the development of 3D 

design in which the surfaces are completely described.   

 

Today the 3D designs are the 3D master for digital or virtual product development. 

The 3D designs of Class A surfacing and mass production development are thus the 

basis for geometry formation and determination of model design, which in turn are 

amplified by Digital Mock Up (DMU) assembly and process simulation and further 

functional virtual control methods such as, simulations for crash, passenger 

protection, riding comfort under conditions inducing vibration or fluid dynamics. This, 

however, does not mean that virtual body design development can replace entirely a 

real product with simulation.  It rather provides the early, consistent and continuous 

implementation of Computer Aided Anything (CAx) methods in order to ensure that 

the physical prototypes are able to meet the demands required in shorter time 
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(Schöneburg, 2007; Breitling, 2007). A further reduction of development time (time to 

market) and costs is possible by the consistent application of virtual methods in 

product development and production planning and control (see figure 1.2). 

 

The 3D-CAD model is thus playing an important role as knowledge based system. 

The conventional 3D-CAD models were purely geometrical models that could not 

provide the information needed for development. Modern parametric associative 3D 

CAD models, on the other hand, not only store the history of their development, but 

can also explicitly acquire further expert knowledge, which can be accessed (e.g. 

material, weight, centre of gravity, 3D dimensions and tolerances, table of welding 

spots and related validated weld guns, inclusion of design variants, tables of 

optimized parameter ranges or standard parameters etc.).  The complete or partial 

reuse of a parametric associative CAD model for product development and further 

processes results in a reduction of development time and costs and facilitates the 

capacity for further innovative development (see chapters 3 et seq).  

 

An effective means for reducing development time is to use concurrent engineering 

developmental procedures (see figure 1.3). The parametric associative design based 

on explicit references enables subsequent substitutions and adaptations to new 

reference data. This is the basic principle of the early concurrent/simultaneous 

engineering of components, which is based on simple self-generated geometry, 

which is later replaced by the actual reference geometry.  

 

There is, however, a danger that the integration of expert knowledge in a CAD model 

will lead to a loss of knowledge if the CAD model is passed on thoughtlessly in a 

global development environment.  The rights of the knowledge-based creator and his 

designs must be protected.  However, a smooth design process from layout to mass 

production development requires the transposition of the reference geometries from 

design process to design process.   
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Process 1: Early processes such as Layout, Concept, Styling, Package                                     
Process 2: Intermediate processes like Surfacing, Calculation, Simulation                                  
Process 3: Late processes such as Design Mass Production, Tool Design  

Fig. 1.3  Shorter and adjustable process chain 
 

 

The know-how which underlies knowledge-based designs and is complex in some 

areas must be constantly updated and adapted to new models, variants, software 

and hardware environments. The new methods of parametric associative design, 

which are closely associated with calculation and simulation processes, thus require 

a comprehensive new organisation of the collaboration between OEMs, suppliers and 

the engineering partners. 

 

 

1.2 Possible Approaches 
 

The process chain of body development today produces a lot of redundant data (see 

chapter 5). Although the methods of parametric associative construction enable 

abbreviated, adaptable processes, the definition of linked processes at the drafting 

stage of the vehicle to its production planning fails because of several factors, such 

as: 
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a) A continuous use of data is not achieved because departments adhere to 

software solutions which correlate to each other poorly due to differences in 

focal points and data format. 

 

b) The transfer of isolated geometry is restricted due to “political” decisions, so 

that in follow up processes reference geometries must be redesigned. An 

integration of design and calculation into follow up processes requires, 

however, a clear definition of the controlling data to be produced and stored 

additionally in the structural tree by the design engineer. 

 

 

An example for subject a) is the interface between Class A surfacing and concept 

design. The design requires that surfacing provides 

 

i. offset-capability (for design with material thickness), 

ii. continuously closed surfaces (expected surface quality) with 

iii. the first bent portion (expected gap quality), 

iv. all related continuous curves (spine/guide curves for design 

process), and 

v. untrimmed surfaces (reference surfaces for design process). 

 

The data which is provided by surfacing after the conversion into a native CAD-

format often contains gaps and continuity errors and must be repaired. Untrimmed 

surfaces do not existent or are duplicated. Class A surfaces are often not offset-

capable because the minimum radius is not adhered to. Many of the problems 

mentioned are due to the different data formats or due to interface problems and can 

add considerably longer time and harder work in the development process. This 

gives an example of the problems at the interface level between different disciplines. 

 

Another important factor is the humans which run processes, e.g.: In the ideal 

scientific world, all scientists from different disciplines should work together to solve 

problems.  The reality, however, is very similar to the world of industry. The pressure 

to publish something innovative, intellectual property rights and personal vanity are 

obstacles which prevent access to state-of-the-art know-how and lead to a 
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transfiguration and academic use of material that is, at least in parts, already of 

general knowledge (Lakhani et al, 2007). 

 

One of the most valuable commodities in countries that are poor in raw materials is 

the know-how possessed by scientists and industrial experts. A policy of non 

disclosure thus impairs today the integration of knowledge in parametric associative 

design models in the industry, as well as the continuous introduction of integrated 

processes that could penetrate beyond departmental divisions, business areas and 

company gates.  

 

By means of a systematic design of CAD models, the parametric associative design 

allows the coordinated combination of interacting in one hand with structures that are 

packed with know-how and on the other hand with isolated partial structures 

containing little know-how. Often it is not the stored design procedure which is 

confidential, but rather the geometrical data and parameters of a new vehicle which 

result from this procedure. 

 

A neutralisation of the CAD models by means of an exchange of confidential 

references versus standard geometries and standard parameters and precise 

agreements for usage could contribute to the application and optimisation of the 

models through a large number of users.  

 

A possibility for extending the use of knowledge could be CAD model structures 

which are created and expanded on a common basis, whereby, the concept 

developer would contribute the geometry and the required function, and the 

production planner would provide the demands for the production of the designed 

system. 

 

An intermediate goal for companies should be the establishment of libraries 

containing PAD models with standardised “Best Practice” solutions.  A prerequisite 

for this would be a corporate culture which encourages close cooperation and 

provides its employees with a comprehensive understanding of relationships in 

processes, so that they can put their expertise at the disposal of a third party.  
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This leads to the research question: 

 

“How does the parametric associative design support the development of 

body assemblies with distributed tasks?” 

 

And from the application point of view, the even more specific question: 

 

 “How could a parametric associative CAD model be clearly structured to 

 provide information for linked processes in the form of Knowledge Based 

 Engineering (KBE)?” 

 

 

1.3 Aims and Objectives 
 

The overall aim of this investigation is to determine how CAD models of typical 

automotive body assemblies could be defined to allow a continuous optimisation of 

the number of iterations required for the final design and the number of variants on 

the basis of automated update-safe parametric associative design (PAD) models.  

 

The first objective would be to produce computer models as test benches and 

demonstrators of the PAD applied to automotive body engineering.  

 

The original contribution of this research is the application of PAD to the process and 

design methods of automotive body engineering. The novelty in this approach and 

contribution to knowledge is the application of PAD in the process chain of 

automotive body development where the combination of functions and forms of 

assemblies often is more complex than in mechanical engineering.  

 

In actual processes a lot of knowledge gets lost from project to project for several 

reasons, e.g. change of responsibility, new project team etc. The second objective of 

this thesis is to define structures where the explicit knowledge of the company and 

implicit knowledge of the engineers involved in the project, can be captured and 

transported between various process steps to improve the time and the quality of the 
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output. Automotive body design methods of are the main focus of this investigation. 

Rules and standards need to be defined to allow consistent update safe PAD models 

which can be re-used in follow up processes and other projects. 

 

The equal distribution of design work between design engineers is another aim of the 

work. Large assemblies can either be subdivided according to the bill of materials or 

subdivided into zones. For the third and fourth objective the zone based approach 

needs to be investigated to find suitable rules of how far the degree of detailing of 

defined zones is reasonable and how a pure section based concept development can 

be substituted by reusable models of process chains from concept section to 3D 

assembly zones. 

 

 

1.4 Methodology 
 

In 2001 the author started to explore the field of PAD in depth. Two PAD training 

courses in 1999 and 2001 and 3 month industry training at an OEM in 2001 were the 

basis of this investigation. In 2000 the author started lecturing Parametric Design at 

Hamburg University of Applied Sciences. 

 

From 2003 the author developed a new study course named, “The Design of Body 

Assemblies with Distributed Tasks using the Help of Parametric Associative Design” 

at the Hamburg University of Applied Sciences to research methods of parametric 

design and cooperative work under supervision of the author with groups of students, 

engineers from industry and university. 25 tasks for group work were defined by the 

automotive industry and investigated and designed by 25 groups of five to eight 

students in a period of 7 months. In a number of about 70 further joint projects (final 

year projects of 5 months duration) supervised by the author between university and 

industry the focal points and methods for product development and links have been 

investigated. In the centre of the new group work seminar the following subjects are 

of main importance: 

 

• to find, apply and improve design methods for automotive body design, 
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• to distribute the planning and design work in an equal manner, 

• to test Knowledge Based Engineering (KBE) applications, 

• to reproduce the process chain of product development in the PAD models. 

 

Examples of the 25 projects are closures such as bonnet, side doors and tail gates, 

front end, floor panel or rear wall of Body In White (BIW) or building sets for motor 

cycles or heating, ventilation and air conditioning (HVAC) system. The results of the 

projects have been presented to guests from the industry and universities in four 

conferences organised by the author. 

 

The investigation for this present report is organised according to three different foci / 

working steps: 

 

Step 1 of the investigation deals with the exploration of the PAD technology and the 

implementation of the complex new CAD-methods into the development process of 

the OEMs and the suppliers integrated in such processes. The complexity requires a 

step-by-step consideration of advanced detail parts designed with driving parameters 

on a part level only up to relational design models with links throughout the process 

chain (see levels of implication in chapter 3). Standards have to be defined, such as 

standard structural trees, data exchange formats etc. as well as standardised design 

steps for typical body assemblies. The permanent outsourcing of design work 

throughout the last two decades has led to a loss of design knowledge on the part of 

the OEMs today and prevents the OEMs from taking full advantage of the new 

methods. 

 

Step 2 of the investigation deals with the product development process. The idea is 

to represent the development processes in PAD models, where the standard 

processes and the vehicle processes have to be explored. The vehicle process in 

body engineering can be divided into two main phases, the preparatory or concept 

phase and the serial (mass production) or detailing phase. The concept phase is a 

phase of strong collaboration between styling, package, concept design, suppliers 

and digital prototyping. Results from calculations and simulations provide strategies 

to optimise the parameters defined between simulation and design. This phase with a 

wide span of design variants and design changes is predestinated for the uses of 
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PAD while the content of parametric and association should be reduced in the 

detailing phase as soon as design decisions have been made. In both phases a lot of 

changes happen and the developments are optimised in several loops. 

 

Step 3 of this investigation concentrates on specific items of PAD to offer a deep 

insight into important study areas. The idea is to explore design methods for surface 

design on one hand and the distribution of work between groups of engineers 

working in concept phase on the other hand. Collateral CAD-validation test beds with 

different levels of complexity prove the theories defined.   

 

 

1.5 Conclusion to the Chapter 
 

This chapter describes the situation in the automotive industry and the role of the 

body engineer. A comparison of old and new design methods shows the chances of 

a new product development under strong support of parametric associative design. 

This leads to the research question and an explanation of aims, objectives and 

methodology. 

 

The next chapters will point out important differences between body engineering and 

mechanical engineering and give an insight into the fundamentals of parametric 

associative design.  
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Comments: 

 

The following considerations are based largely on generally accepted formulations. 

However, it should be pointed out that the results based on body design analyses 

obtained using CATIA of Dassault-Systèmes. It is therefore possible that some 

quotations are latently subject to an interpretation that depends on this specific 

system. 

 

In the application of CAD systems on an international level, the use of English menus 

has prevailed. In the terminology which refers to specific systems, these were 

replaced by neutral expressions wherever possible in this study. Complex terms are 

further explained in the Glossary and in the List of Abbreviation.
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This chapter explains basic and advanced methods of automotive body design which 

are required for the definition of stable parametric associative design models / 

processes and for the validation test bed. 

 

 

2.1 Classification of Surfaces and Surface Continuity 
 

The interior and exterior aesthetic of automobiles (see figure 2.1) strongly depends 

on the quality of the exterior and interior surfaces (Class A) defined by visible light 

and shadow flows and highlights and the assembly of the body panels and functional 

components (e.g. windows and lights), i.e. the visible gaps and the relative alignment 

of the sub-assemblies. Flushness of surface transitions and the optical appearance of 

gaps define the quality of an automotive body surface. To give an example,  

 

 
Fig. 2.1  Quality of gap design in the example of an AUDI (Dehn, 2001) 

 

gaps have a functional relevance e.g. to split movable parts from fixed parts of the 

body as well as an aesthetic relevance to draw characteristic styling lines. To keep 

the optical appearance of a gap as small and as parallel as possible tolerances and 

thermal expansions of the parts involved have to be taken into account and the gap 

should run always parallel to the theoretical radius run-out of a surface. To keep the 

optical appearance of a sloped gap parallel the designer will change the technical 

breadth of the gap and probably displace the flush mating surfaces. 

Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 16 



Chapter 2 
 

 

The method of designing visible interior and exterior surfaces (Class A surfaces) 

differs among auto manufacturers. In most of cases, point cloud and mesh data 

provide the basis for modelling the surfaces and gaps according to technical and 

aesthetical requirements. A common tool for the bridging between styling and 

engineering is the technical surfacing software ICEMSurf (Lender, 2001). 

 

The technically modelled surfaces are the basis for the engineering design of the car 

body panels. Class B surfaces (grey zone/hidden zone surfaces) are surfaces which 

become visible when the side door or the trunk lid is opened. They are initially 

generated by the concept engineers as functional surfaces when designing doors 

and body-in-white panels and subsequently remodelled by Class A engineering to 

meet the aesthetic requirements 

 

The following figure shows the classification of automotive body surfaces as defined 

by BMW: 

 
Fig. 2.2  Classification of surfaces according to BMW Class A, Class B, Class C, 

Class D (Dehn, 2001) 
 

 

Visible surfaces should ideally have a continuous curvature gradient (G3); in any 

case they must have curvature continuity (G2) (see figures 2.3, 2.4 and glossary). 
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To visualize the continuity of surfaces or surface transitions, CAD software displays a 

porcupine-type (comb-type) curve along the cross-sections of the surfaces or curves. 

The principle of these porcupine curves is that the curvature radius is visualized by a 

straight line (spike) normal to the analysed curve, pointing away from the centre of 

the curvature. The length of each straight line is proportional to the curvature radius. 

The curvature gradient (comb-curve) is visualised by a smooth indicator curve 

connecting the end points of the straight lines (see figures below). 

 

The design of car body panels on the basis of design surfaces requires faces, 

surfaces, and curves with unambiguous directions. 

 

  
Fig. 2.3 Porcupine-type curve analysis, Point continuity (G0) (LHS), 

Porcupine-type curve analysis, Tangent continuity (G1) (RHS) 
 

  
Fig. 2.4 Porcupine-type curve analysis, Curvature continuity (G2) (LHS), 

Porcupine-type curve analysis, higher continuities (G3/G4) (RHS) 
 

 

2.2 Direction Control for Curves and Surfaces 
 

Contrary to general mechanical engineering, where individual parts are often 

designed with individual, independent coordinate systems reflecting their orientation 

during manufacturing processes, car-specific body parts are designed with reference 
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to the vehicle coordinates system, oriented and located in the assembled car-line 

position. Only approximately 10% (Braß, 2004) of the parts of an automotive body-in-

white are carry-over or standard parts with their own individual coordinate system. 

During the initial phase of package design and during the phase of concept 

development (simultaneous with styling), the final location of the sub-assemblies is 

not yet defined. In these early phases of product definition, sub-assemblies of the 

automotive body may be moved with the aid of local coordinate systems. 

 

Car body panels are designed in their car-line position. The panels are curved and 

inclined once or twice and their orientations are neither normal nor parallel to the 

main planes of the vehicle coordinate system. 

 
Fig. 2.5  Vehicle coordinates system (Karmann, 2005) 

 

Generally, only the left half of the car is designed, while the right half is generated as 

a mirror-image of the left half. Most of car manufacturers place the origin of their 

main coordinate system in the centre of the front axle (see figure 2.5). The location of 

each body part in the car is clearly defined with reference to this vehicle coordinates 

system, using the following three coordinates: X (distance from the centre of the front 

axle in the direction of the car length. Only Ford defines the vehicle coordinate 

system in front of the car in a certain distance from fire wall to avoid negative X-

coordinates), Y (distance from the centre of the car in the direction of the car width), 

and Z (distance from the centre of the front axle in the direction of the car height). 

As many body parts are made of panels with constant sheet thickness, shape design 

is the standard method for designing body parts. This means that either the interior or 
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the exterior surface of the part is designed. Subsequently, a solid model is generated 

by applying a material thickness to the shape model. The solid model is then used to 

determine mechanical properties like weight etc., and for Digital Mock-Up (DMU) 

processes. 

 

The design of these surface models requires the unambiguous definition of the 

surface and curve orientation. This is achieved with the following procedure: 

 

The orientation of curves is defined strictly according to the vehicle coordinate 

system. This means that horizontal curves which are normal to the front axle (i.e. in 

the direction of the length of the car) are defined as parallel to the X axis. Horizontal 

curves which are parallel to the front axle (i.e. in the direction of the width of the car) 

are defined as parallel to the Y axis. Vertical curves which are normal to the front axle 

are defined as parallel to the Z axis of the vehicle coordinate system. Closed curves 

are defined in the mathematical positive direction, depending on the main view 

rendering an image of their geometry which comes closest to its true image. 

 

Parts with visible surfaces (Class A and Class B) are always designed starting off 

with the modelling of the visible surface. All other parts are designed starting off with 

the punch (die) side of the part (see figure 2.6). Parts with varying thickness (e.g. a 

cast part with ribs) are designed by defining all outside and inside surfaces, with the 

surface normal pointing inwards. 

 

 
Fig. 2.6  Principal design of a drawing tool (Schmidt-Jürgensen, 2002) 

In CAD models, the designed surface must be marked unambiguously. This can be 

done by ensuring that the surface normal and the sheet thickness vector always point 

in the direction of the sheet thickness (see figure 2.7). 
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Fig. 2.7  Cross member seat (punch surface) with surface normal (mauve) and 

sheet thickness vector (green; length of arrow = sheet thickness x 100) (Rehner & 
Brill, 2006) 

 

 

2.3 CAD Techniques for the Design of Body Parts 
 

This section describes the different CAD techniques used to design body parts 

according to the different needs defined by design process and manufacturing 

methods. 

 

 

2.3.1  Hybrid Design 
 

The complex compound angle of surfaced parts of the automotive body and its 

interior are usually modelled as three-dimensional hybrid designs. Hybrid design is a 

mixture of wire frame, surface and solid design. Points and curves define the basic 

geometry of the surface models. Surface models are used to describe the part 

geometry as well as the cutting geometry (see figure 2.8). 
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Fig. 2.8  The surface model of the sheet metal part (yellow) is thickened in the 

direction of the sheet thickness vector to become a solid model (grey) and be 
trimmed by the cutting surfaces model (beige) (Brill, 2006) 

 

The accomplished surface models of the parts are thickened to obtain solid models. 

Typically, ribs, domes and draft angles are added to the solid model to accomplish 

the design. Additional information contained in the solid models (material, weight, 

centre of gravity etc.) increases the usefulness of the CAD models. 

 

Modern CAD software facilitates the structuring of hybrid designs and the interaction 

between the workbenches of the surface and solid modelling. To ensure that the 

models can be updated in a stable manner (without the model “crashing out”), the 

Boundary Representing elements (BReps), e.g. faces of solid elements may not be 

used for surface modelling. 
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2.3.2  Visualisation of 3D Models & Wire Frame Representation 
 

A wire frame model is the basic model for defining and visualizing 3D designs. In 2D 

design of automotive bodies, the wire frame model representation is the only possible 

method of visualization. The free-form automotive surfaces are represented by three-

dimensional curves (shape-defining guide curves = character lines) and planar 

curves (grid-sections = height-, breadth- and length-sections). For perspective 

visualisations, boundary contours are added to obtain an optimum three-dimensional 

visualisation of the surfaces by a 3D mesh of wires (see figure 2.9). 

 

 
 

Fig. 2.9  Wire frame model (edge model) of a cube and wire frame model of an 
automotive body (BMW 507 – Schäpe, BMW)   

 

 

Wire frame models form the basis of three-dimensional surface modelling. The 

elements of the wire frame model are points, straight lines and curves. Straight lines 

and curves are calculated from several supporting points using interpolation or 

approximation algorithms (see figure 2.10). The calculated contours are used for the 

generative surface modelling. 

 
Fig. 2.10 Interpolation and approximation of curves from points (Lindemann, 2005) 
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The design of cross-sections is a well-approved method in automotive body design to 

analyse and define package zones. Together with guide curves and reference 

surfaces, these cross-sections are the basis of the surface modelling process. 

Points define the basis of guide curves. Specific reference points (points of interest) 

used for positioning nodes or for controlling/manipulating profile contours are defined 

on the spine curves. The profile contours located on the normal planes and the spine 

curves are the generative input to the surface design process (see figure 2.11). 

 

 

2.3.3  Surface Creation & Definition 
 

The basic curved surface types used in the surface modelling process are profile 

surfaces, skewed surfaces and free-form surfaces. 

 

To improve their quality, surfaces should always be designed using planar curves 

with at least continuous curvature. Although modern CAD software permits the 

construction of surfaces from three-dimensional curves, however, these methods 

should be avoided wherever possible because such surfaces are difficult to control.  

 

To design a profile surface, a planar closed or open profile contour, a guide curve 

and a spine are required. The profile contour can consist of one or several straight 

lines and/or curves. The spine curve must have continuous curvature. Planar spine 

curves with continuous curvatures yield the best surfacing results. The guide curve 

must have at least tangent continuity. 

 

The size (i.e. length and height) of the profile contour and the curvature of the spine 

curve are directly interrelated. The combination of a guide curve with small curvature 

radius with a large profile contour leads to undesirable loops in the derived surfaces. 
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Fig. 2.11 Design of a body structure (front end) on the basis of a wire frame model 

(Rösen, 2006) 
 

The following figures show the profile surface variants. Figure 2.12a shows a 

prismatic profile surface, with spine and guide curve (violet) being identical. The 

profile is defined by the light blue coloured, planar contour. The non-prismatic profile 

surface in figure 2.12b has the same profile contour, and is defined by a separate 

spine curve (straight line = X axis) and a guide curve (violet): 

 

                  
Fig. 2.12 Prismatic profile surface (swept surface) (LHS), 

Common profile surface (swept surface) (RHS) 
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Fig. 2.13 Example of profile surfaces: A reinforcing body part on the basis of a free-

form surface contains an outer stiffening collar flange (turquoise) on the basis of a 
common profile surface and a bedding flange (orange) for the mating part on the 

basis of a prismatic profile surface. 
 

The boundaries of car body panels often have a prismatic cross-section (see figure 

2.13). Examples of prismatic profile surfaces are the bedding surfaces for window 

panes, the hemming flanges on doors and closure panels or joining flanges (e.g. for 

spot welding). 

 

General prismatic profile surfaces as shown in the right part of figure 2.12 are often 

applied to designs which must fulfil special requirements to ensure the parts can be 

removed from the mould/tool (e.g. central surface of seat upholstery or reinforcing 

collar of a body panel). 

 

Skewed surfaces (see figure 2.14) are created with the aid of skewed straight lines. 

Skewed straight lines are neither parallel nor do they intersect each other. In CAD 

models, skewed surfaces are usually defined using two planar curves which are 

located on parallel planes. 

 

Skewed surfaces e.g. are required when designing doors and closure panels, as 

transition surfaces in the corners of the inner panels. 

Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 26 



Chapter 2 
 

 

 
Fig. 2.14 Skewed surface 

 

Together with profile surfaces, free-form surfaces are the most common type of 

surface used in automotive body design. Free-form surfaces are designed from four 

or at least three planar curves (see figure 2.15). One of these curves forms the 

theoretical boundary and acts as the spine curve. At least two other curves (cross-

sections) are defined on planes normal to the spine curve. 

 

 
Fig. 2.15 Free-form surface 

 

 

2.3.4  Solid Model Formation (Construction) 
 

A solid model is normally composed of several solid bodies. 
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When solid models are made up from simple, basic bodies (primitives), they are 

referred to as Constructive Solid Geometry models (CSG – see figure 2.16). A solid 

geometry model made up from surfaces with defined material direction is called 

Boundary Representation elements (BRep) model. 

 

The basic bodies (also referred to as primitives) of the CSG method have a shape 

which can be described with simple mathematics, e.g. cube, cylinder, prism, pyramid, 

sphere, torus or wedge with rectangular basic surface. Some software packages also 

permit the definition of CSG on curved surfaces. These basic bodies are then 

combined with Boolean operations like unite (U), subtract (–) or intersect (∩) to build 

the desired solid geometry models. The sequential data structure of CSG models 

offers a straightforward description of the design sequence and requires little memory 

space. 

 
 

Fig. 2.16 Example of a CSG tree. Each node shows the symbol for the Boolean 
operation used (Wikipedia, 2007:1). 

 

 

The BRep method defines solid bodies with the aid of the surrounding surfaces (skin) 

and their boundaries. These boundaries can consist of basic topological elements 

like nodes (corner points, vertices), edges, faces etc. Each of these basic elements 

has attributes which clearly describe its geometry (e.g. coordinates, curvature, angle 

etc.) and interrelations with neighbouring basic elements. Contrary to a pure surface 

model, where the designer is responsible for defining the direction of the surface 

normal, the data base of a BRep model contains material vectors which point towards 
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the inside of the solid body it represents. For subsequent design steps (like trim, 

offset, fillet…), it is necessary to control these vectors and adjust them according to 

the required direction. 

 

Generally, a solid basic body is designed by defining planes on which closed profiles 

are specified in sketches, representing the cross-section of the basic body. These 

sketches are then extruded in the direction normal to the plane on which they were 

defined, to achieve a three-dimensional body. Alternatively, basic bodies can be 

created by rotating an open profile around a rotation axis. A more complex method is 

the multi-sketch body which basically consists of several non-parallel sketches which 

are extruded and intersected with each other. These bodies are all referred to as 

sketch-based solids. 

 

It is also possible to convert a surface model into a solid geometry model by sewing 

surfaces (provided they are fully closed) with virtual material or by adding a material 

thickness to the surfaces (on one or both sides of the surface). 

 

 

2.4 Body Design Based on Sections and Functional Surfaces 
 

Hänschke (2007) as well as Zimmer & Schumacher (2007) describe a process chain 

for body development with body engineers which define geometry only and Computer 

Aided Engineering (CAE) engineers which control the functions of a body. These are 

very single sided considerations because besides important functions like e.g. crash, 

safety, durability, Noise and Vibration Harshness (NVH) acoustics and aerodynamics 

there are hundreds of other important functions a body engineer has to look after, 

such as positioning of park distance sensors, air flow in a grill design, positioning of 

hinge axis and latch, layout design of a four link hinge to guarantee non interference 

between bonnet and front screen in a crash, side door movable glass fitting, 

kinematics of door stop etc. 

 

When designing sub-assemblies of the automotive body one must distinguish 

between styling-driven and function-driven and purely functional (not visible for 

customer) sub-assemblies. A typical example of a sub-assembly driven by design 
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plus function is the A-Pillar, the exterior surface of which is defined by the styling of 

the car. Functional surfaces for installing body components (like windows, doors, 

binocular obstruction of the driver) as well as secondary elements (like structural 

reinforcements, water hose, electric harness) and passive safety devices (like 

airbags) add functional geometry to the styling surfaces. 

 

As an example of a merely function-driven sub-assembly defined by the author on 

basis of profiles, the design of a front seat cross member for a limousine shall be 

explained in this section.  

 

 
Fig. 2.17 Assembly cross member front seat in context with mating BIW parts  

 

The design of the sheet metal parts of a cross member assembly is typical for simple 

profile driven parts. The bracket with nut for seat mounting is taken as an example for 

Carry Over Parts (COP). The reuse of the corner reinforcing beads geometry gives 

an example for the use of templates. The PAD functions and the design in context 

link methods therefore will be explained in depth in a later chapter.  
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The seat cross member is a structural element of the automotive body-in-white (BIW) 

which serves two functions: adjustability of the seat position, and secure sustainment 

of all loads, particularly in the case of an accident.  

 

The analysed seat cross member is designed for a car with an aluminium body (AUDI 

A8), and it shall be manufactured from sheet metal (i.e. from several panels which 

are joined together). The whole cross member front seat consists of an outer panel, 

two horizontal reinforcement panels and two brackets with self piercing nuts for 

attaching the seat (see figure 2.17). The reinforcement panels, the support panels 

and the outer panel are joined together with self piercing rivets (not shown). 

 

   
 

Fig. 2.18 Master section for developing primary prismatic profile surfaces  
 

The design is performed as Relational Design in the context of all neighbouring parts. 

The bottom of the seat cross member must mate with the floor panels. The sides of 

the seat cross member are limited by the position and geometry of the sill (outer side) 

and the tunnel (inner side). The upper surface is determined by the geometry and the 

attachment of the seat frame. The ventilation duct connecting the air conditioning 

module (HVAC) with the rear foot compartment crosses the cross member front seat. 

Control devices shall be mounted to the floor panels in the area of the cross 

members. The joints between the outer panel of the cross member and the sill, the 
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floor panels, and the tunnel shall be designed as butt joints (with bent portion 

flanges), which are MIG welded. The geometry must be designed to ensure rapid 

moistening and draining of the surfaces in the process steps of immersion painting 

(cataphoretic painting). All geometric reference elements of the neighbouring parts 

are prepared in separate adapter models according to the Input-Design-Output (IDO) 

principle (see chapter 3) and supplied to the design of the cross member.  

 

 
Fig. 2.19 Reference geometries and primary surface of the outer shell narrowed 

down by a second primary surface to give space for the seating pan.  
 

The design is performed on the basis of a true development (compound radial) 

section, where the outer panel and the horizontal reinforcement panels are 

dimensioned relative to the reference geometry (see figure 2.18). The location of the 

cross-section geometry is also determined by the reference geometry. The cross-

sections are used to extrude primary surfaces with planar prismatic profile. In the 

centre, the outer panel is indented by a second surface with prismatic profile, to 

account for the space reserved for the seating pan (see figure 2.19). The design of 

the seat attachment depends on the design of the seat frame. The flanges and the 

aperture for the ventilation duct are designed according to manufacturing aspects in 

context with the corresponding parts. To reinforce the outer panel, its design is 

accomplished with four “bird’s beaks” (corner reinforcing beads) (see figure 2.20). 

 

Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 32 



Chapter 2 
 

 

The replacement or the modification of reference geometry causes the automatic ad-

aptation of the parts modelled with the parametric associative design method, to re-

flect the design intent implemented in the model. 

 

 
Fig. 2.20 Completed Assembly Cross member front Front Seat 

 

 

 

2.5 Conclusion 
 

The methods and examples shown in this chapter point out important basic features 

of body design which are the preparation for a structured parametric associative de-

sign. In the following chapters the fundamentals of PAD will be explained and in this 

context the methods of body design will be articulated further. 
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Until the mid 80's, Class A designs, design concepts and detail drawings were 

prepared manually on drawing tables and drawing boards. Car body designs were 

drawn in the scale of 1:1, requiring drawing tables 7 metres long and 1.5 metres wide 

(see figure 3.1). 
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Fig. 3.1  Comparison of design methods   (Albers, 2001) 
 

The designs were prepared manually on non warping drawing film with special 

pencils, felt tip and ink pens, using set squares, curve templates, spines with weights, 

and compasses. The required quality of the drawings with respect to line thickness, 

clearness and geometric correctness was extremely high as developed 2D curves 

(form lines) and 3D curves (character curves, functional curves) of the drawings were 

directly used for car body manufacturing.  

 

The design process was always focused on complete assemblies and package 

areas. In most cases, several designers prepared their drawings in a team, working 

simultaneously around the table, discussing problems and necessary adjustments or 

corrections as they arose. Communication was not a problem. 

 

As early as 1975, car manufacturers started experimenting with computer-aided 

design software. Initially, two-dimensional drawings were created on the computer 

screen, and the three-dimensional models were later derived from the drawings (see 

figure 3.1). However, car body designers soon realised that the design process had 

to be inverted, starting off with the modelling of the 3D geometry and subsequently 

Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 36 



Chapter 3 
 

 

deriving the drawings. OEM's and independent software companies developed a 

large variety of CAD programs, which were not as comprehensive as today's 

software, but contained several very useful features. According to the experiences of 

the author examples of such pioneering software solutions are Ford's "PDGS" and 

Daimler's "SYRKO". 

 

Design with non-parametric non-associative CAD software is focused on the 

modelling of individual parts and components. Complete assemblies are difficult to 

design with these systems. To check how the individual parts fit together in an 

assembly, session and digital mock-up models were generated. The designers 

started to concentrate on their individual parts, finding it difficult to keep the 

requirements and restrictions of the final product in mind. Communication among 

designers working on separate computer work stations, often in different rooms or 

even at different locations, became increasingly difficult. 

 

To overcome these problems, automotive manufacturers started experimenting with 

parametric associative CAD software in car body design projects in the mid 1990's 

(see figure 3.1). They followed the foot prints of power train developers, who had 

introduced the method of PAD about 5 to 10 years earlier, encountering fewer 

difficulties as their mechanical designs and solid geometry models were much easier 

to control with parametric and associative relations. The associative approach of PAD 

software used in automotive body design is focused on modelling assemblies as a 

whole and using reference elements and surface geometry to describe the 

boundaries of package areas. 

 

A drawback of conventional, non-parametric CAD software is the fact that later 

changes often require complete remodelling of the geometry. The approach of PAD 

systems permits planned changes and variant generation through parameter 

modification or replacement of geometric objects. Thus, 3D models can be reused. 

However, before such "long-life" models are created, the designer must develop a 

strategy for efficiently and safely controlling his geometry through intelligent 

parameters and well-defined interfaces between components or package areas. 

Professional modelling methods must be developed and tested before being used in 

the design process to ensure stable, high quality design results. The desired output 
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of the PAD process is a reusable 3D model of the product geometry, containing 

related information for subsequent process steps like simulation, production planning, 

NC program generation, etc. 

The objective of the PAD approach is to perform all steps of the product development 

process with the aid of 3D master models using native data from one CAD system. 

Additionally, all information pertaining to these process steps shall be linked to the 

models or incorporated into them. Thus, PAD models assume the role of key 

information carriers through the entire process chain from package design to 

manufacturing, and even for subsequent steps in the product lifecycle. With 

increasing integration of confidential information and knowledge into these models, 

new procedures are required for collaboration between automobile manufacturers 

and their subcontractors.  

 

 

 

3.1 What are the main Attributes of PAD? 
 

Apart from geometric information, PAD models contain the design intent in the form 

of dependencies between geometric elements. When certain design characteristics 

(parameters) are modified or replaced, the geometric model is automatically updated 

to reflect the changes. The update process relies on the design intent stored in the 

form of relations and associative links.  

 

Usually, sheet metal parts are designed from several independent basic geometric 

objects like planes, points and curves, using a sequence of structured design steps. 

The chronology of the design steps and the parameters of the basic geometric 

objects are saved in a 3D model. Parameters can be of numeric (variables) or 

geometric (curves, surfaces etc) nature. They are defined through relations and 

controlled by rules and checks. 

 

PAD offers optimum possibilities for documenting design intent, rapid modification of 

models to changing geometric requirements, the re-use of design steps ranging from 

small sets of elements and operations (micro-templates) to large product models  
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(macro templates) as well as the rapid generation of part families from one CAD 

model. 

 

PAD permits the definition of links and relations between parts and assemblies to 

control the transfer of information to dependent CAD models used in subsequent 

process steps or to trigger subsequent changes.  

 

Compared with non-parametric CAD models, the file size of PAD models is larger 

because the complete design history is saved in the model.  

 

To ensure better understanding of the PAD models, standard modelling methods 

must be used. However, the clarity of PAD models decreases with growing number of 

basic geometric elements used for the design because the number of relations rises. 

Such complex models become difficult to edit and may cause undesired effects when 

updating the changed model. 

 

Consequently, the process chain of parametric associative CAD design requires a 

consistent structured approach with defined interfaces to a larger number of small, 

comprehensible CAD models. 

 

 

 

3.2 The logical Operators of Parametric and Knowledge Based 

Engineering (KBE) 
 

Modern CAD-Software such as CATIA V5, NX or ProE can store the explicit 

knowledge of a company and the implicit knowledge of the designer and reuse it for 

Design (see Glossary “Knowledge ware”). In the following sections the operators for 

Knowledge Based Engineering (KBE) are described.  
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Fig. 3.2  Examples of design variants of a housing upper shell:  
The numeric parameters for Sheet Thickness and Offset Width, and the geometric 
parameters Portal Curves and Guide Curves permit the generation of 120 variants 

(multiplication of all parameters defined). 
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3.2.1  Parameters 

 

Parameters are control variables or elements used to define the geometrical form 

and the functionality of parts and assemblies. The modifications of these control 

variables or the replacement of elements causes the automatic adjustment of the 

modelled geometry according to the design intent stored in the PAD model. 

Parameters of the types “length” and “angle” are used to control the designed 

geometry. Modern parametric CAD systems additionally offer various different 

parameter types based on units used in physics or engineering mechanics, as well as 

dimensionless integer and real numbers. This permits the explicit integration of 

engineering rules and formulas into the CAD models. Boolean operators and 

parameters which can be either "true" or "false" can be used to activate or deactivate 

design sequences stored in the model. A very useful parameter is of type “string” 

(alphanumeric) which serves as switch between different configurations. Even 

measurements stored in the model can be used as dynamic parameters representing 

geometric characteristics which result from design operations. Finally, geometric 

elements like curves or surfaces can be used as convenient geometric parameters 

(see figure 3.2). 

 

Any CAD software requires the user-input of parameters to define the numeric 

features of individual design steps. Usually, these parameters are hidden inside the 

model once the geometric definition of the specific design has been accomplished. 

These hidden parameters are sometimes referred to as implicit or intrinsic 

parameters. Not only numeric values typed into special user menus but also 

dimensions defined in sketches and data from external files like tables or associated 

engineering drawings can be used to create parameters and to link them to the 

modelled geometry. 

 

To support the comprehensibility of PAD models, all controlling variables and 

elements must be made clearly visible at all levels of the specification tree. For this 

purpose, explicit, user-defined parameters are created and displayed in the 

specification tree (see figure 3.3). To enhance model clarity, they can be grouped in 

parameter sets. By creating user-defined relations, these parameters are linked to 

the internal (hidden) design parameters inherent in the model. 
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Fig. 3.3  A set of explicit parameters controlling geometric details of a “bird’s beak” 
(stiffening swage) 

 

 
3.2.2  Geometric Constraints 

 

Apart from parameters, geometric constraints are used to define geometry in the 

PAD model. E.g. instead of defining a numerical parameter of type “angle” between 

two parallel lines and assigning to it the value of zero degrees, the geometrical 

constraint "parallel to each other" is enforced on the two lines. Other examples are 

lines which are made coincident to a point or tangential to a curve. With reference to 

coordinate systems, even constraints like "horizontal" or "vertical" can be assigned to 

lines. 

 

Among the geometric constraints which modern parametric CAD systems offer are: 

parallelism, tangency, horizontal and vertical orientation, concentricity, symmetry, 

equal distance, coincidence, the location of a point in the centre or at the end of a 

line, the definition of the axes of an ellipse as major or minor axis, etc (see figure3.4). 
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Fig. 3.4  Geometric constraints in a sketch 

 

Comparable to sketches, where the geometric constraints are explicitly represented 

by small symbols, three-dimensional geometric elements can also be controlled by 

geometric constraints.  

 

These constraints, whether explicitly displayed or hidden in the model, are an 

important contribution to the unambiguous definition of design sequences. If one or 

several of the parameters or geometric constraints are deleted, the definition of the 

design becomes ambiguous. 

 

 

3.2.3  Design Tables 

 

Design tables are helpful defining parameter families. A design table permits the 

assignment of parameters to values stored in an external file which is used for the 

remote control of parameters in one or several PAD models. 

 

A design table can be created using an existing MS Excel worksheet or a text file 

containing the names and values of the parameters to be controlled. To associate 

such an external file with parameters defined in a PAD model, each column (or row) 
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of the file must be mapped to a distinct parameter. If the required parameters have 

not yet been defined in the PAD model they can be generated from the design table.  

 

However, this method is error prone during the mapping process of parameters to 

columns or rows of the external file. It is much safer and more convenient to define 

the parameters in the PAD model before creating the design table. Parametric CAD 

systems support this method and offer assistance for creating Excel or text files on 

the basis of explicit parameters which the designer selects, e.g. from the specification 

tree of the model. 

 

Parameters which are already controlled by a relation or by an associated design 

table cannot be linked to other design tables or be used to create them, they are not 

transposable. 

 

Both methods of creating design tables and linking them to the PAD model finally 

result in external links from the explicit model parameters to the external file. 

Changes made to the values stored in the external file will affect the PAD model. 

Both methods permit the later addition of new parameters to the design table. 

 

Design tables are of great use where geometry or part families are to be defined. The 

use of MS Excel worksheets permits the definition of relations between parameter 

values stored in one or several design tables. 

 

 

3.2.4  Relational Checks 

 

A check can be defined to notify the designer of design changes violating predefined 

requirements. The check uses parameters or geometric characteristics to monitor 

changes made to the PAD model, and find out whether the changes result in the 

violation of the specified design restriction. The check does only inform or warn the 

designer, and it has no effects on the design itself. To assist the designer, the icon 

representing the check in the specification tree is a traffic light showing a red light 

when a check is not fulfilled. Where appropriate additional messages or warnings can 

be displayed to inform the designer of the violated check (see figure 3.5). 
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Length is smaller than 
width 

Relations

Check.1

Check.2  
 

Fig. 3.5  Traffic light application in specification tree and information window with 
the user defined message "Length is smaller than width“(Braß, 2005) 

 

 

3.2.5  Formulae 

 

Formulae are used to define parameters or conditions of controlling parameters. 

They are defined like equations, with the controlled parameter on the left hand side of 

the equals sign, and the relation defining the parameter on the right hand side of the 

equation (see figure 3.6). 

 

Parameters as well as the relations associated to them can be imported from external 

files. It is possible to define several formulae controlling the same parameter; 

however, only one of these relations may be active at any time. 

 

 
 

Fig. 3.6  Formulas assigning implicit parameters with values calculated from explicit 
parameters 

 
3.2.6  Rules 

 

A rule is a simple programmed code controlling the relations between parameters 

using "If … Then" formalism (see figure 3.7 and 3.8). 
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Rules can be used to assign discrete values or relations to parameters or to define 

associations between geometric parameters and the corresponding geometric 

elements. Rules can become very powerful when they are used to trigger macros 

coded in a programming language like Basic Script or Visual Basic. 

 

On the contrary the syntax of rules is very limited. 

 

 

3.2.7  Reaction 

 

A reaction is a rule which is only triggered when a previously defined event occurs. 

Whereas the rule continuously controls the geometry of the PAD model, the reaction 

is only activated when the event associated will take place. The list of possible events 

which may initiate the reaction depends on the design sequence and the features.  

Different features allow different events to be used to start the reaction. 

 

Reactions offer better control of the points of time when the action programmed in 

the reaction shall be executed. 

 

 

3.2.8  Macros 

 

Macros are powerful subroutines coded in Visual Basic for Applications, Visual Basic 

Script or Basic Script. They can be recorded from operations performed by the 

designer or programmed from scratch to repeat routine tasks or provide user-friendly 

interfaces to complex PAD models and design configurations. As macros can control 

and read explicit and implicit parameters, they can be used to produce protocols of 

specific design configurations in the form of reports. They can also be applied to pass 

on parameter values and geometric elements to subsequent steps in a product 

definition process chain. Typical applications are parameter optimisations with CAE 

methods and automatic generation of NC program code. 

 

Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 46 



Chapter 3 
 

 

 
 

Fig. 3.7  A rule applies a number of points to a spline curve depending on curve 
length and gap width 
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However, macros can only reflect the intelligence and the knowledge of the persons 

involved in their programming. Usually, designers are not well qualified programmers 

and lack the pertaining experience. They may be experienced in handling parameters 

and relations or rules but often find it difficult to manage complex tasks of error-

handling and designing user-friendly interfaces. On the other hand, professional 

programmers usually lack the experience of a designer and do not speak the same 

language. They may not even understand the complexity of the design task. Macros 

coded by professional programmers will never be accepted and used by experienced 

designers if they have the feeling that they can no longer use their creativity and 

intuition in the design process. With increasing subcontracting of complex 

engineering tasks OEM will lose more and more knowledge and the continuous use 

of macros will add to this loss and impair innovation. 

 
Fig. 3.8  The housing upper shell is controlled by geometric parameters. 

Parameters of type “string” (switches) and rules allow the designer to choose from 3 
portal curves and 2 guide curves (geometric parameters) on either side (see figure 

3.2) 
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3.3 Management of Complexity in PAD models 
 

PAD permits multi-model links (between parts and assemblies) which are used to 

control the way information is passed on to other PAD models in the process chain, 

and to initiate resulting changes in these models. Compared with conventional and 

unparametric models, the file size of PAD models is larger because the complete 

history of design steps is stored in the model. 

 

To ensure the easier understanding of PAD models, standard procedures must be 

used for their creation. The more basic geometric elements are required to build a 

model the less understandable will the model be to persons other than the designer 

who created it. The designer may not be able to remember his design strategy and 

might find it difficult to modify the model without causing indefinable update errors or 

non usable geometry (Brill, 2006). 

Consequently, the parametric associative CAD model chain requires a consistent, 

structured approach with defined interfaces to a relatively large number of small, 

easily comprehensible PAD part models. This is one of the main differences between 

PAD and conventional non-parametric CAD modelling. 

 

 
Large Number of Elements 

Plurality 
 

Large Number of Relations 

 
Number of Variations of 
elements and Relations 

Dynamics 

 
Variability* 

(Measure of Complexity) 
Complexity 

Fig. 3.9  Variability = Number of conditions a system can assume (Wildemann, 
2000) 
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To limit the complexity of a PAD model (see Fig. 3.9), standard specification trees 

must be used for modelling similar parts (e.g. sheet metal parts, cast and injection 

moulded parts). Standard modelling procedures must be designed ensuring the 

consistent application of the Input Design Output (IDO) principle. Uniform naming 

conventions at all levels of the specification tree on one hand, and a well-structured 

design method which uses a uniform pattern on the other hand should be employed. 

This design method starts with defining of primary geometric elements first, followed 

by secondary geometry and accomplished by details like edge fillets, trimmings and 

holes or pockets. The number of links can be reduced dramatically, if the individual 

zones of a design are kept independent of each other for as long as possible. 

Relations can easier be understood when references are published. 

 

Figure 3.10 shows the IDO principle applied to an assembly in the concept phase. In 

the input folder, all information required for the design (e.g. Class A surfaces and 

curves and Carry Over Parts (COP)) are prepared following the IDO structure. From 

there, the information is released to the actual design process. The required 

references are inserted into the input folder of the respective part, and processed 

systematically to generate the desired design geometry. They are then passed on to 

subsequent processes (with or without active links). In the output folder of the 

assembly, output information is gathered, structured in sensible sets and published. 

 

The consistent use of the standard structure and standard names ensures that 

subsequent processes can access the relevant objects in the specification tree 

automatically, e.g. with the aid of macros. 
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Fig. 3.10 IDO-principle on all levels of an assembly with published references and 

outputs 
 

Primary geometric elements are often designed sketch-based, using true sections on 

intersection planes normal to the spine curve of the expected geometry. Each section 

is resolved into straight and curved elements, which have a curvature exceeding the 

desired edge fillet radii by far, and which are at least two or three times longer than 

required, to permit intersecting and filleting between the derived surfaces without up-

date errors. The basic elements are coloured and renamed by the designer to reflect 

their association to specific parts or processes (see figure 3.11). 

 

   
Fig. 3.11 Principle section, true section and primary surfaces derived thereof. Upper 

area tailgate of a van (Aldag et al, 2006) 
 

Once the boundaries of the primary surfaces have been defined (e.g. through 

trimming or filleting) the secondary surfaces are designed in a separate process. The 
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examples of secondary surfaces shown in Figure 3.12 are joggles and 

reinforcements for hinges and the third brake light. When the curves and surfaces 

are created, the unambiguous definition of their directions is of great significance 

because subsequent operations like trimming, filleting and offsets depend on the 

direction of the original elements. 

 

The design work is performed independently for the various functional zones into 

which the part or assembly has been subdivided (e.g. tailgate upper, side, lower, 

hinge attachment, lock attachment etc.). The geometric elements generated for the 

individual functional zones are kept separate from those of other zones as far as 

possible to enhance the comprehensibility of the PAD model and keep the links 

clearly arranged and the number of links to a minimum. 

 

 

 

 

It is the purpose of this thesis to apply the proven method of collaborative 

manual design on large design tables to the methodical creation of PAD 

models, permitting complete assemblies to be designed simultaneously in a 

zone-based approach. 
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Fig. 3.12 Zone-mode design of a tailgate and its corresponding surfaces (Aldag et 

al, 2006) 
 

Only after all design details such as joggles, edge fillets, holes have been created, 

the zone models are combined to make up the complete assembly and derive all 

individual parts. When using this design method, it is advisable not to design the 

specific assembly (e.g. a tailgate) in an isolated manner. Instead, the neighbouring 

surfaces of adjacent parts (in this case: roof, roof rail, side panel, bumper) should be 

modelled within the same process. 

 

Another method for generating the design of individual parts from e.g. the zone 

based concept design model is the manufacturing-based approach, which utilises the 

individual manufacturing process steps to structure the design. For a deep-drawn 

part this would be: drawing step 1, drawing step 2, trimming and punching 

operations. For a cast part this would be: unmachined cast, milling and boring 

operations. This method permits the easy reuse of the PAD models in production 

planning processes but requires early communication between product engineers 

and production process engineers. 
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3.4 Dependencies and Associations 
 

The key requirements to be met by a parametric associative CAD model are the 

unambiguous and complete definition of the geometry (integrity) and the sensible 

interrelations (model coherence).  

 

The central idea of associative design is that each design element is generated in a 

geometrical, technical or functional context or is related to such a context. The term 

"associative design" is derived from the verb "to associate" (Leo-Dictionary, 2007) 

conveying the concept of recording and modelling the dependencies of a geometric 

element of its environment (Forsen, 2003). 

 

As several different types of links can be established in a PAD model, the various link 

types are explained in detail in the next paragraphs: 

 

 

3.4.1  Geometric Constraints 

 

Most CAD designs are based on sketches describing the two-dimensional geometry 

of the cross-section of a part or an assembly. 

 

Conventional drawings depict the coordinates and dimensions of geometric elements 

used to make up the design. Geometric constraints like parallel, perpendicular, 

coincident etc. can be used to describe the geometric relationship between the 

individual elements (see 3.2.2). 

 

In addition to 2D constraints used in CAD sketches, PAD systems support the 

definition of three-dimensional geometric constraints (assembly constraints, instance-

to-instance links) for creating assembly designs from existing parts (bottom-up 

method) and the definition of kinematic constraints required for simulating the 

kinematical behaviour of an assembly . 
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Fig. 3.13 Parent/child relations in the example of a swept surface (child)  

 

3.4.2  Parents/Child Relations 

 

To aid designers in controlling the associations they establish, PAD systems can 

display so-called parents/child relations of individual design steps. Upon the 

replacement of parameters or geometric elements (parents), the child elements are 

automatically adapted to reflect the changes provided they permit to unambiguous 

recreation of the child geometry (see figure 3.13).  

 

 

3.4.3  Multi-Model Links (MML) 

 
PAD systems permit the unambiguous definition of parametric associative 

assemblies based on links between individual parts and assemblies defined within or 

between product contexts. They are directed links, pointing from the receiver model 
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(dependent part) to its sender model (reference). In most cases, these links are 

established between geometric objects. In CATIA, such links are referred to as multi-

model links (see figure 3.14, Braß, 2005). 

 

Positioning
of instances

Document view:
Document types

Relationships with or
within CATIA V5

Design view:
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Reference-to-Instance MML

Publishing
Publishing

Instance

 
 

Fig. 3.14 Overview of multi-model links (MML) in CATIA V5 (Braß, 2005) 
 

Below, some examples are given of multi-model links and their handling: 

 

3.4.3.1 Instance Link 
 
An assembly can comprise several identical parts. When modelling such an 

assembly with a CAD system the file containing the geometric information of the 

repeated part is only loaded once (as the original part) into the assembly model. 

Subsequent additions of the same part to the assembly lead to the creation of further 

instances of the same part, with all instances of this part pointing to the same original 

file. To distinguish the instances, they are usually identified by instance numbers (see 

figure 3.15). 
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Fig. 3.15 There are four instances of the same part in the assembly: four instance 

links point to one document. 
 

3.4.3.2 Instance-to-Instance Link 
 

When individual parts and subassemblies are joined together to define an assembly 

with the bottom-up method using assembly constraints (3D geometric constraints), 

these constraints cause links to be established between an instance of a part and an 

instance of a different part or a different instance of the same part (see figure 3.16). 

The unambiguous and complete definition of all required assembly constraints to 

define the desired degree of freedom for the parts is only possible by manipulating 

the individual instances of the parts, taking into account the constraints which have 

already been defined. 

 

3.4.3.3 Reference-to-Instance Link 
 

Assemblies containing sub-assemblies and individual parts which have been created 

according the top-down principle (according to the method of design-in-context / 

relational design) contain special folders (skeleton, adapter, mating part) to control 

the references at each hierarchical level of the product structure. The links between 

these folders must all point in the same direction. Generally their direction is vertical, 
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with horizontal links only permitted inside subassemblies. The behaviour of the links 

depends on the context in which they have been defined.  

 

 
Fig. 3.16 In the assembly shown above, a geometric constraint points from one 

instance of a document to another instance of the same document. 
 

 

Links which are established between parts which are defined in the same product 

structure and in one window are referred to as Reference-to-Instance Links (see 

figure 3.17). So-called Import Links point from the dependent part to the product 

node. Additionally, a so-called Context Link is created pointing from the product node 

back to the dependent part. The Reference-to-Instance Link is thus based on the 

relative path between the documents of the assembly. The dependent part knows its 

dependency of the assembly and at the same time the assembly knows its 

dependent part. 
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Fig. 3.17 Reference-to-Instance links in an assembly 

 

 

If the references on an assembly level are modified or exchanged without editing or 

deleting the links, the dependent design is automatically modified to reflect the 

changes. These links also take into account the positions matrix of the part. If the 

position of a part is defined relative to a reference part and the reference part is 

moved, the dependent part is repositioned automatically. On the other hand, the 

dependent part cannot be moved; it requires the reference part to move it. 

 

In complex assemblies, it is advisable to control the effects of design changes on 

dependent geometry using a combination of view links and manual links. 

 

3.4.3.4 Reference-to-Reference Link 
 

References established between parts which are not opened in the product context 

but in separate windows (see figure 3.18), are created as Reference-to-Reference 
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links (in CATIA they are called Cut Copy Paste (CCP) links). This type of link is 

defined under support of the element names and the Unique Universal Identifiers 

(UUIDs) (see glossary) of the respective documents and is only active if the original 

documents (with the UUID numbers stored in the link) between which the link was 

established are loaded into the CAD system simultaneously. As no document paths 

are stored in the link, the pertaining part documents cannot be loaded automatically. 

 

 
Fig. 3.18 Update behaviour with Reference-to-Reference Links: the change of the 
position of the reference part does not change the position of the dependant part 

(Braß, 2005). 
 

 

The dependent part knows that it contains a link to the reference part, but the 

reference part does not know any of the parts it is linked to. This type of link does not 

contain any information relating to the position matrix of the dependent part. If the 

reference part is moved, the dependent part does not move automatically. 

Consequently, it is possible to move the dependent part without moving the reference 

part. 

 

 

 

3.4.4  Management of Associative Documents 

3.4.4.1 Handling the References to Control PAD Models 
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To handle multi-model references in PAD models, structuring elements like specific 

geometrical sets (CATIA), parts or assemblies are used to establish a management 

system for the reference geometry which controls linked parts and assemblies. 

 

 

Adapter

Styling Data Engineering  
Data

 

Fig. 3.19 PAD assembly with four parts and one adapter which hosts control 
parameters and reference geometries from previous process steps (Braß, 2005) 

 

 

In the context of a complex parametric associative product structure, e.g. a Body-In-

White (BIW), these management systems serve as interfaces between the individual 

part and assembly designs of the product as well as between the individual phases of 

the development process. They are therefore the key elements for the systematic 

structuring of a parametric associative product development process. 

 

The literature describing such management systems uses various names for the ele-

ments used as interfaces. They are called skeleton, adapter, interface, reference or 

mating part models (see figure 3.19). The definitions are often used as synonyms 

without considering differences which may exist between the various subtypes of 

management systems. Forsen (2003) defines "mating system" as superior to the sys-

tems "adapter" and "skeleton". According to Forsen, the skeleton system does not 
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establish links to designs outside the context of the currently defined design, whereas 

the adapter system is capable of establishing links to any design irrespective of the 

context. Forsen describes the skeleton system as defining fundamental internal geo-

metric structures and links in an isolated PAD model, contrary to the adapter system 

serving as the interface to corresponding assemblies. Forsen stipulates that the 

skeleton system can be considered as a special subtype of the more general adapter 

system. 

 

The name skeleton system is derived from the noun skeleton1, which stands for the 

main structure supporting the design. The skeleton model of a PAD, controls basic 

geometric elements and structures with respect to their dimension, orientation and 

location in the space. Depending on the hierarchical level, the skeleton model 

controls the location of individual geometric elements or complete parts. In 

automotive body design, it is common practice to create grid-sections (relative to 

vehicle coordinate system) at previously agreed locations. These grid-sections 

intersect the design results and permit the validation of package spaces besides 

DMU. The location of the agreed intersecting planes for example can be defined in 

skeleton models and then be made available to the entire process.  

 

The most frequently used term for the link management systems is the term 

"adapter". It is derived from the verb "to adapt“2. This term depicts the intention of the 

management system: to collect references in a comprehensible manner at the 

interface between superior and subordinate parametric associative designs and 

make them available to the design process, and to support their adaptation to 

modifications of the design. Additionally, the adapter system can be understood as a 

system for subdividing complex linked assembly designs into comprehensible and 

manageable ones. Thus adapter models are suitable for keeping the parametric 

associative design of subassemblies and package space independent of each other 

while taken the mutual geometric interrelations into account (see figure 3.20). They 

help to keep the number of links to a minimum and ensure comprehensibility of the 

links established between all components involved in the design. The adaptability of 

a PAD depends on the quality of the references defined in the adapter and the 

stability and robustness of the parametric relations.  

                                            
1 skeleton = the main structure that supports a building, etc. OXFORD (2000) 
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Fig. 3.20 Systematic Preparation of References in the Adapter Model on the 
Example of design Surfaces and Curves 

 

 

Haslauer (2006) compares the adapter system to an adaptable plug system used for 

electric connections. He believes that existing and newly established reference 

elements should be used to permit the adaptation of PAD model via the adapter 

interface.  

 

Inside an assembly hierarchy containing several subassemblies, the management 

systems for reference geometry and parameters are always hosted at the top 

assembly level, and they point downwards to the direction of the dependent 

subassembly levels and parts. 

 

Within a complex multi-assembly PAD model, several separate adapters can exist at 

the various hierarchical levels inside the model. Additionally, different adapters can 

be defined at the same hierarchical level to separate different categories of input 

information. Inside the adapter model, the input geometry is processed to make it 

"adaptable" for the geometric operations depending on the reference geometry, e.g. 

                                                                                                                                        
2 adapt = sth (for sth) to change sth in order to make it suitable for a new use or situation OXFORD (2000) 
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by extracting surface sections, smoothing guide curves, re-orienting surfaces and 

curves, renaming elements according to naming conventions and publishing them.  

Quite often, the initial creation of a PAD model is made in the early stages of a 

product development process before the required input data is available. In this case, 

the interface models are defined with dummy geometric elements of the same 

element type as the expected real input geometry. This dummy geometry is then 

used to build the PAD model, and later in the design process it is replaced by the 

correct reference geometry. A high-quality PAD model can then be updated and 

evaluated to reflect the current state of the actual design project.  

 

3.4.4.2 Vertical and Horizontal Dependencies 
 

To maintain the clarity of the association network created between all geometric 

elements and to ensure stable update processes, it is advisable to define links 

between parts and subassemblies on the next higher hierarchical level of the model 

i.e. vertical references. 

 

The definition of direct horizontal references between different adapters or parts 

which belong to the same hierarchical level is not advisable because such links are 

hardly comprehensible and bear the risk of closed-loop links (e.g. two parts with 

cross-references to each other which cannot be evaluated). Such cyclic links cause 

undesired interruptions when the model geometry is updated.  

 

On the contrary in the detailing phase of a design is sometimes difficulty to define 

links to hierarchical levels far away. Therefore in some cases it is more suitable to 

define single horizontal links. 

 

3.4.4.3 Links in Complex Assembly Structures 
 

The association network of complex assemblies makes it difficult to identify the root 

causes of update errors after design changes or the replacement of geometric 

elements. In such complex models, view links should be used to visualize the 

changes before the manual links are modified to adopt the changes. 
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In the adapter at the next higher hierarchical level, an automatic as well as a manual 

(isolated) link are defined for the same geometrical element (see figure 3.21).  

 

Complex Assembly
Reference Geometry
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Adapter

or Mating-Part

Dependent
Part

External
References

Isolated Copy
of external
References or
own Geometry

Dependent
Design

Automatic    Link
= View Link
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Fig. 3.21 Definition of view links and manual links 

 

 

The automatic link is copied into the design geometry but not used for design 

operations. Instead, the isolated manual link is used to build the design geometry. 

The automatic link always visualizes the actual geometry of the reference element 

without influencing the geometry of the dependent element, this is why it is called 

"view link". The designer evaluates any changes made to the reference element and 

their impact on the geometry defined in his model. Only when he is sure that the 

changes will not cause update errors or other problems, he replaces the outdated, 

isolated manual link with an isolated copy of the modified reference element to 

update his geometry and adapt it to the changes. Thus there is no automatic update 

of his model, and it is the responsibility of the designer to check the view links on a 

regular basis. On the other hand, he never risks that his model is destroyed by 

update errors which cannot be resolved. He always has the time to guard his model 

before exploring the consequences of any design changes. 
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3.5 Useful Steps for the Implementation of Parametric Associative 

Design 
 

 
Fig. 3.22 Author’s interpretation for the implementation steps needed for PAD 

(sources: BMW, DC, IBM) 
 

The complexity of modern automotive development and their implementation in an 

even more complex parametric associative process requires a careful introduction of 

all persons (employed by OEM's and subcontractors) involved in the process to this 

new concept. The effort for changing the design process from the conventional, non-

parametric approach to the new principle of consistent PAD can be compared to the 

effort which was required when moving from manual drawings to conventional 

computer-aided design (see figure 3.22 and the following explanations). 

 

 

3.5.1  Advanced Part Design 

 

To implement PAD successfully, the designers should learn to define and use 

parameters and associative links within a single part. Their organisations should 

develop and supply standard methods for the structured development of surface, 

volume and hybrid design models. 
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Comparable to the philosophy of reusing standard components in manufacturing (so-

called Carry Over Parts (COP)), the organisation should define standard specification 

trees in start models used for the specific design tasks. Equally, standard methods 

should be defined for creating design features. Templates of drawing frames and 

standard texts or symbols should be defined to speed up routine processes and 

support uniformity of the design. Such templates could be stored in catalogues 

making them easily available to other designers. 

 

Additionally, the organisations should define detailed procedures for establishing 

links within parametric parts and for integrating engineering knowledge in the models 

or in the CAD system. Often, tools for integrating knowledge are referred to as 

Knowledgeware. They permit the definition of rules and other relations between 

objects defined in the PAD models. Knowledgeware helps to store the knowledge of 

an organisation and its employees in such a way that it can be reused at a later point 

of time.  

 

As this unsophisticated implementation step does not allow any links between parts, 

product design is performed following the bottom-up principle. All parts are defined 

independently of each other and then arranged together with assembly constraints to 

define the product structure. The conventional file-based method of storing CAD 

documents does not cause any problems with PAD files which do not have any 

external links. 

 

Among the German automotive manufacturers, Daimler was the first to develop 

standard procedures for this implementation step of PAD in individual models, and 

have maintained in this step. Their concepts have been adopted by many other 

organisations when developing methods for parametric associative design (Daimler, 

2006), (Brill, 2006).  

 

 

3.5.2  Design in Context 

 

The implementation step "Design in Context" allows the controlled establishment of 

links between parts belonging to the same subassembly. However, no external links 
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are allowed to point from the subassembly to other PAD models. Design in context is 

the first step towards parametric associative design of product structures. 

 

It adopts the principles of advanced part design and offers a structured approach to 

managing the simultaneous design of individual parts within the context of a product 

structure. 

 

As opposed to advanced part design, product structures created with the design in 

context method contain several part models (adapters) which host controlling 

parameters and reference geometries used in the design of several dependent parts. 

The adapters are always defined on the product level of the specification tree, 

ensuring the vertical direction of the links to the parts embedded in subordinate 

components (assembly, sub-product, and subassembly). 

 

Whereas changes to isolated PAD parts have no effect to the environment of these 

parts, the modification of controlling parameters in models established with the 

design in context method invokes changes in the individual part as well as its 

environment. 

 

Standardized well-structured product models can contain output information for 

subsequent process steps like DMU kinematics, structural analysis, tolerance 

simulation and generation of manufacturing plans and programs. These output data 

are automatically updated when the underlying geometry is changed. 

 

The storage of assemblies containing links between individual models requires 

special care to ensure that the links can always be evaluated and resolved. If files are 

stored on data carriers in a file-based way, the save management functionality of the 

CAD system should be used to assist the process of saving the individual files. 

Alternatively, team data or product data management systems can be used to 

manage the storage of complex PAD models. 

 

The design in context method is the suitable method for the design of assembly 

groups developed by one engineer or a small group of engineers throughout one 

process step (e.g. concept phase). The method can be performed with Single Model 
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Links (SML), where the assembly is defined in a single part model using geometrical 

sets (folders) to describe sub assemblies and detail parts. The second way to apply 

this method is the use of Multi Model Links (e.g. Reference-to-Instance-Links) where 

the assemblies and subassemblies are defined in product models and the detail parts 

in part models. 

 

 

3.5.3  Relational Design 

 

Encompassing the two implementation steps described above, the method of 

relational design realizes the establishment and management of links and relations 

between assemblies and their development processes. 

 

The file-based storage of linked assemblies and development steps is extremely 

difficult to manage because of the high number of individual model files involved and 

the distribution of design responsibilities in various departments. To coordinate 

distributed design tasks and responsibilities and to manage a growing number of 

design variants and versions, TDM or even PDM systems are required. 

 

 

3.5.4  Process Chain Integration 

 

Parallel to the efforts of implementing parametric associative methods in the car body 

design, the implementation of theses methods in other design processes and e.g. in 

production planning and tool design are being investigated. 

The long-term objective is the stable establishment of all required inter-model 

relations and links throughout the entire process chain of product definition and 

manufacturing. 

 

 

3.6 Summary 
 

This chapter describes the change of CAD from conventional non-parametric design 

to parametric associative design. Due to the complexity of relations and associations 
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established in PAD models, this new design approach requires a new disciplined and 

structured methodology among designers. 

 

The applications of the different links described strongly depend on the Product Data 

Management (PDM) system of the OEM/supplier which must be able to administrate 

the links. In the German motor industry this situation led to different results. In the 

early phases of product development where the single engineer is responsible for a 

large assembly or module two different methods are in use: 

 

1) BMW introduced a single model method. In this method from large assemblies 

to the complete Body in White (BIW) all assemblies, sub assemblies and parts 

are designed in a one part model. The parts, sub assemblies and assemblies 

are stored in geometrical sets (folders). This method is only possible in wire 

frame and surface design and uses in part links for the associations between 

geometries and parameters. To keep the file size small only primary surfaces 

can be designed. 

 

2) When it is necessary to design secondary surfaces and details as well as 

solids the file based method based on Multi Model Links (MML) is used in the 

early phases. According to part or assembly character parts are stored in part 

models and sub assemblies and assemblies are stored in product models. The 

whole assembly of sub assemblies and detail parts is defined in a product 

model. Reference-to-Instance links (import and context links) are used to 

administrate the relations between geometries and parameters. 

 

As soon as different engineers, departments or companies are involved in the 

development of an assembly and in the detailing phase of product development 

where assemblies are often split between different engineers the MML method under 

support of Reference-to-Reference links (CCP-links) is used. In this method again the 

whole assembly of sub assemblies and detail parts is defined in a product model. 

But in contradiction to the first MML method described above the design of the single 

sub assemblies and parts of the assembly takes place on different computers worked 

out by different engineers. 
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The author has experimented with all three methods as well as the simple method 

using Instance-to-Instance links (assembly constraints). As PAD offers its most 

advantages in the early phases of development where lots of variants are approved 

and several changes appear the author decided to work with MML method using 

Reference-to-Instance links. 

 

The implementation of well-structured methods for design in the assembly context 

permit the enrichment of PAD models with information for subsequent product 

development steps and the re-use of models. Before this new design approach can 

be applied successfully to car body design, the following questions must be 

answered: 

 

What are the differences between the car body design process and other 

product definition processes in the automotive engineering sector? (See 

chapter 5) 

 

Which modelling methods are suitable and applicable to car body design? 

(See last chapters where applications of PAD are described) 

 

How are the modelling methods implemented in parametric associative 

design processes?   

(See last chapters where applications of PAD are described) 

 

The following chapters attempt to give answers in more detail to the above questions. 
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A product life cycle (see figure 4.1) consists of seven major phases: product 

planning, product development, production planning, production, sales, product use 

and disposal/recycling. It is a complex, iterative and multi-disciplinary network of 

processes, of which the first three phases (from product planning to production 

planning) are generally summarized as the Product Evolution (formation) Process 

(PEP). In this process the product design plays a key role (Liese, 2003). 

 

The competitive production of technical products strongly depends on the capability 

and the performance of the development and design process. This process 

comprises numerous individual and interrelated tasks which must be accomplished 

(or rather: solved), and it is influenced by company-specific constraints as well as 

market-specific and organisational development trends (according to directive 2221 

of the association of German engineers (VDI directive)). 

 

 
 

Fig. 4.1  Seamless product life cycle (Schlögl, 2007) 
 
 
As outlined in VDI directive 2235, value-analysis projects have shown that the costs 

of a product are mainly determined in the design phase, whereas later phases in the 

product realisation process are only of minor influence (see figure 4.2). The product 

costs considered in the analyses do not only comprise the manufacturing costs but 

rather the total costs caused by the product (i.e. costs of its development, 

manufacturing, use and disposal). As can be seen in figure 4.2, the development and 

Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 74 



Chapter 4 
 

 

design processes determine approximately 70% of the total costs of a product. 

However, the costs of these initial processes amount to only 8% of the total costs. 

 

 
 
 

Fig. 4.2  Cost determination and cost origins within company divisions (VDI-
Directive 2235, 1987) 

 
 

 
 

Fig. 4.3  Cost distribution of design costs according to Roller (1997) 
 
 
In his analysis of four major machine manufacturers with over 1,000 employees using 

conventional CAD methods Roller (1997) came to the conclusion that 80% of the 

design costs were spent on designing product variants, modifications and 

adaptations (see figure 4.3). The high percentage of non-innovative design tasks 

justifies the implementation of parametric associative design methods, as these tasks 
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benefit in particular from the facilitation of changes and modifications through PAD 

described in detail in chapter 3 of this thesis.  

 

 

Fixed       
Delivery  Date

 
Fig. 4.4  Comparison of planned and actual design efforts (Stüdemann, Schnepp, 

2S Engineering) 
 
 
Figure 4.4 depicts the consequences of unplanned, late changes on the costs of 

design projects carried out with conventional CAD methods. The scope of the 

observed project was the design of three cockpit air vents comprising 110 individual 

parts in total. The diagram shows the initially planned design time (brown curve) and 

the time actually spent (blue curve). The additional, unplanned time was required for 

creating a part which had not been considered necessary to begin with, and between 

two and twelve design modifications per individual part which took between 9 and 40 

hours each. A reusable parametric associative design would have caused a higher 

initial effort in creating the PAD model, however the overall project could have been 

accomplished with much less effort as the implementation of the changes would not 
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have required the remodelling of the individual parts (Schreiber, 2007; Haslauer, 

2006). 

 
As outlined in chapter 3, Parametric Associative Design (PAD) requires a disciplined, 

well-structured approach to ensure the stability (i.e. robustness) of the models when 

the geometry is updated after changes and parameter variations have been 

implemented. When CAD systems with PAD functionality are used, design features 

are linked to reference elements and their resulting geometry, unless the links are 

explicitly avoided or eliminated. 

 

The main benefits of a well-structured, traceable modelling procedure are: 

• update stability and reusability of PAD models through 

• controlled links to reduce the complexity,  

• best achievable design quality in each design step, and 

• standardised naming of design elements.  

 

Consequently, this chapter will analyse whether available methods for structuring the 

design and development processes in general can be used to support the methods 

described above in structuring the parametric associative process chain.  

 

 

 

4.1 General systematic Approaches to Development and Design  
 

A design methodology systematises and generalises the design tasks. Whereas the 

last centuries were dominated by intuitive design procedures, a methodical approach 

to development and design is favoured today. The advantages of the methodical 

approach are the improved concentration on the actual requirements of the design 

output, the avoidance of misleading or redundant development and the reduced effort 

with respect to time and costs (Ursinus, 2001). 

 

The literature offers several widely accepted standard rules on design methodology 

(Pahl & Beitz, 2005; Ehrlenspiel, 2006; Hubka, 1992; Roth, 2000; Roth, 2001; Koller, 

1994…) which are supported by the VDI 222n family of directives. In this chapter, the 
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VDI directive 2221 is presented in detail and is compared with the approach 

suggested by Pahl & Beitz. 

 

 

4.1.1  VDI Directive 2221  
 

VDI directive 2221 (1993) proposes an industry-independent, universal methodical 

procedure for developing and designing technical products. This procedure 

comprises seven individual steps (see figure 4.5) which are performed fully or 

partially, depending on the specific design requirements, and which may be repeated 

in several iterations to achieve an optimum solution. 

 

 
 

Fig. 4.5  Phases of product development (VDI-Directive 2221, 1993) 
 

 

Wiendl (2000) has published his concerns that the procedure of VDI directive 2221 

may not be a suitable for complex concurrent engineering projects. He doubts that 

the strict adherence to the VDI directive provides an optimum support for the product 

development processes:  "The VDI directive does not offer a methodical support for 

managing the timing and the exchange of inputs and outputs between individual 
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parallel and iterative process steps. Stipulating a one-dimensional process flow, the 

directive does not allow for the flexibility required to manage complex interrelations 

between the process steps." 

 

The approach suggested in the VDI directive favours the systematic, subsequent 

arrangement of all development and design processes. It structures the individual 

steps and defines a standard nomenclature. Permitting the omission and the iterative 

repetition of individual process steps as well as the going back one or more steps 

and then moving forward again, the directive reflects the actual design processes. 

The recommended repetition of individual process steps yields new findings which 

are valuable input for subsequent process steps, and therefore contribute to the 

optimization of the developed products. 

 

The directive suggests starting as early as possible with breaking down the 

development project into small manageable tasks which are suitable for a holistic 

engineering approach. It thus enhances the early identification of partial problems 

and restrictions through the definition of structures and interrelations. It proposes the 

parallel conception of alternative solutions, the reuse of well-known and proven 

solutions and the introduction of rational organisational job-sharing using concepts 

like concurrent engineering. 

 

Additionally, the directive suggests a universal approach to problem solving: the 

process of finding a solution is subdivided into phases which yield more and more 

detailed results as the project evolves. The directive describes this strategy: "from 

abstraction or generalization to concrete or detailed solutions". This approach, which 

is also described as "from interior to exterior" or "from coarse concepts to fine details" 

will be discussed later in this chapter. 

  
The directive describes the difference between development and design tasks and 

concludes the following universal procedure for classifying these tasks: 

 

• Was the task requested by internal or external customers? 

• Shall a completely new product be developed including the required 

manufacturing equipment? 
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• Which degree of novelty is expected of the product – new, variant or 

adaptive design? 

• Shall the product be developed for large batch or one-off production? 

• What industry category does the product belong to (e.g. special purpose 

vehicle, passenger car, aircraft)? 

• What are the typical design goals (e.g. light-weight structures, high safety, 

ergonomic and aesthetic design …)? 

• What external restrictions or internal requirements govern the 

development (e.g. market competition, cost reduction, rapid development, 

reuse of standard components, design instructions, in-house or external 

production …)? 

 

The development and design process is of major significance for the whole Product 

Evolution Process (PEP) and defines production, sales, use and disposal/recycling. 

Experiences and expectations from previous development projects influence the new 

PEP. The success of the product development strongly depends on internal 

communication and the exchange of information with all functions involved in the 

product life cycle. 

 

The number of iterative cycles required for the successful accomplishment of the 

development project (see figure 4.5), the extent of the development tasks and the 

manufacturing aspects must be determined individually for each development project 

as they depend on the product to be created (e.g. mass product or individual one-off 

design). Individual designs and small series are usually developed using readily 

available components and standard parts whereas mass products are generally 

dominated by special designs tailored to suit the specific requirements of the product. 

With the growing diversity of mass products, many companies are introducing carry-

over and platform concepts to reduce the number of individual parts and increase 

batch sizes in the production. Generally, the definition of the design details requires 

much iteration to ensure that all requirements are met and optimum solutions are 

found for competing and contradictory requirements. It is common practice to define 

digital prototypes in suitable PDM/CAx systems (Digital Mock-Up = DMU) and verify 

design decisions through comprehensive calculations and numerical simulations 

before physical prototypes are built and tested. 
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Fig. 4.6  General approach to development and design (VDI-Directive 2221, 1993) 

 

 

The design process consists of four main phases (see figure 4.6) which the VDI 

directive simply refers to with the Roman numbers I to IV. They may be called 

• planning, 

• concept definition, 

• embodiment, and 

• detailing. 

 

The first of seven process steps (see figure 4.6) is devoted to clarifying and defining 

a portfolio of design goals, which is later turned into the design specification 

containing detailed requirements of the design output. These requirements are 
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continuously refined and adjusted with growing knowledge of the specific 

characteristics of the product and the feasibilities. At a certain milestone within the 

project, the specifications are frozen and defined as compulsory for all subsequent 

development steps. 

 

The second process step deals with the definition of the overall function and the 

associated main and supporting functions of the product or system to be developed. 

They are documented in a function model, which is an abstract representation of the 

planned product functionality. 

 

 
 

Fig. 4.7  Method of subdivision (encapsulation) and link-up for problem and system 
structuring (VDI-Directive 2221, 1993) 

 

The decomposition of the overall function into partial functions and their synthesis 

into feasible structures (see figure 4.7) forms the input of the third process step, the 

search for suitable solution principles. 

 

The engineering solutions found for individual partial functions are combined into an 

abstract product model referred to as "effect structure". The output of the third 

process step is a set of solution principles. 
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In the fourth process step (see figure 4.6), the solution principles are translated into 

realizable modules. Contrary to the functional model and the effect structure defined 

in the previous process steps, the realizable modules already reflect the proposed 

product structure consisting of sub-assemblies and components (partial systems and 

system elements) and indicate their interrelations. According to the VDI directive, the 

modularisation prior to the time-consuming steps of embodiment and detail design is 

inevitable, particularly for complex products, to facilitate an efficient breakdown 

structure of design projects and to identify and solve focal points in the development 

(VDI directive 2221). Even if manufacturing processes and boundaries between 

individual components have not been finalized, the determination of well-defined 

interfaces permits the parallel design of variants, individual product zones, sub-

assemblies and components which are later synthesized. 

 

In the fifth process step, the variants, individual product zones, sub-assemblies and 

components are roughly dimensioned. Principal cross-sections and primary surfaces 

are designed, permitting the optimization of functionality and design. The sixth 

process step is devoted to the detailed design by adding secondary surfaces and 

detail features to the primary surfaces and preparing bills of materials and 

engineering drawings (where applicable). Finally, in the seventh process step, 

additional documents describing the product, its manufacturing processes and all 

instructions for use, maintenance and disposal, are prepared. Examples of these 

documents are production plans, assembly instructions, and user and service 

manuals. 

 
For computer-aided design processes, the directive recommends the combination of 

software solutions for the individual process steps to integrated development 

systems.  It is necessary to ensure the continuity of the process chain and the work 

flow, and the efficient reuse of process step outputs as native inputs to subsequent 

steps. Integrated development systems permit the flexible application to different 

tasks and process steps. The core elements of computer-aided development are the 

product models, which represent the whole product or only parts of it as they contain 

product-defining data and their interrelations. 
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According to Liese (2003), the product development process can be considered as a 

modelling process, in which partial models are created in a sequential performance of 

embodiment stages comprising the input, structuring and linking of data. 

 

 

4.1.2  Comparison of VDI Directive 2221 to the Approach of Pahl & Beitz  
 

Pahl & Beitz (2005) recommend a methodical, systematic procedure for engineering 

design to support the designer in meeting his main responsibility with respect to the 

technical and economic product characteristics and the large diversity of engineering 

problems and tasks in the development of technical products. Pahl & Beitz define 

design methodology as a set of concrete procedures for developing and designing 

technical systems, which have evolved from the findings and conclusion of design 

research, psychological investigations, and a large variety of practical experiences. 

They use flow charts to depict their design methodology and support the practical 

organisation and management of design projects, and their subdivision into parallel 

and sequential steps which are interrelated. Additionally, they describe strategies for 

meeting the design goals and objectives, and methods for solving individual design 

problems and tasks, to support the designer's intuition with a methodical approach 

ensuring the successful accomplishment of the design work. 

 
According to Pahl & Beitz, a design methodology shall: 

• permit the problem-oriented approach to any design task independent of the 

associated industry,  

• facilitate the identification of optimum solutions, 

• ensure reproducible solutions and avoid random solutions, 

• support the transfer of solutions to similar tasks, 

• be compatible with definitions, methods and knowledge of the corresponding 

disciplines, 

• be suitable for the application of electronic data processing, 

• easily taught and learnt, 

• help to facilitate design work, save time, avoid false decisions and ensure 

active and devoted cooperation of all persons involved, 

• facilitate the planning and control of project work in an integrated, multi-

disciplinary product realization process, and 
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• serve as a guideline for team and project leaders. 

 
When comparing the VDI directive 2221 with the methodology published by Pahl & 

Beitz, it becomes evident that both approaches divide the product definition process 

into the following four main phases: planning and clarifying the task, conceptual 

design, embodiment and detail design. Both approaches stress the need for multiple 

iterations in individual process steps to optimize product functionality and topology.  

 

 
 

Fig. 4.8  Comparison of VDI directive 2221 and Pahl & Beitz 
 
 
While the general approach of the VDI directive 2221 comprises seven process 

steps, the methodology of Pahl & Beitz defines only five process steps. The 

difference between both step models is that the principle solution stage is considered 

as one process step by Pahl & Beitz whereas the VDI directive subdivides this step 

into two steps (Step 2) and (Step 3) and the process step of structure and preliminary 

layout by Pahl & Beitz is subdivided into two steps (Step 4) and (Step 5) by VDI 

directive (see figure 4.8). 

Both approaches break down the embodiment stage, which aims at the definition of 

the material, geometric and manufacturing characteristics of the product, into four 
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Process steps. Despite the evident differences in the nomenclature and the degree of 

abstraction of these approaches, they can both be considered as representative of 

today's procedures in the development of automobiles and their components.  

 

According to Pahl & Beitz, only 3D CAD systems are capable of supporting the 

integrated computer-aided Product Evolution Process (PEP) with a product model 

derived from a unique data base. 

 

Liese (2003) states that the descriptions of design processes, which can be found in 

the VDI directive 2221, and the works of Pahl & Beitz and other renowned authors 

are always formulated as work instructions. "To gain a complete understanding of the 

product development process, not only the required process steps must be known 

but also their interrelations, their timing restrictions and the required information 

flows" (Liese, 2003). 

 

 

 

4.2 Detailed partial Methods of structured 3D CAD Modelling 
 

4.2.1  Strategies of increasing Concretion 
 
Most publications on problem solving share the conclusion that solution finding 

processes should be performed in a sequence of cycles with increasing 

concreteness. A selection of these strategies shall be explained here. 

 

4.2.1.1 Strategy "from coarse Concepts to fine Details“ 
 
The geometry is determined in one or several initially separated design zones, and 

the created CAD model is refined in several steps with increasing detail, evolving 

from a coarse concept to a detailed, fine design. The work on individual design zones 

can be accomplished independently, with different degrees of maturity. The design 

zones can be assembled to larger zones or complete products by joining, trimming, 

filleting and other operations. The detailed design is derived directly from the coarse 

topology which was defined in the early design stages. 
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This strategy is the dominating method for designing car body panels, where the 

design process starts with primary surfaces and is refined through the generation of 

secondary surfaces, geometric details (features), fillets etc. 

 

4.2.1.2 Strategy "from Exterior to Interior" 
 

When the created products require an aesthetic exterior, the overall styling of all 

visible components is accomplished before the engineering design task is started, 

and broken down into individual problems/tasks. This strategy applies to car body 

design as well as the design of consumer products. The overall visual impression of 

the product is the main driver dominating the engineering design process, and 

functional aspects may be considered subordinate to a certain extent (VDI directive 

2221). 

 

The predominantly styling-oriented design process of a car body starts off with the 

free-style shaping of the exterior appearance. Once the initial draft of the vehicle 

(general layout and package) is prepared, the styling is brought in line with this draft. 

The resulting visible surfaces are then analysed to ensure that styling, functionality 

and manufacturing requirements are met. 

 

On the basis of these exterior styling surfaces and characteristic curves, the 

functional parts and sub-assemblies of the car body are designed, starting with the 

exterior body panels and ending with interior parts like reinforcement panels etc. 

 

4.2.1.3 Strategy "from Interior to Exterior" 
 

The design of a machine (e.g. an automotive engine) is primarily dominated by the 

desired function. The exterior appearance plays a very minor role and it merely 

governed by aspects of manufacturability and safety, and the interfaces with other 

components. 

Together with mechanical strength and passive safety requirements, the space 

occupied by the automotive engine and its accompanying components as well as the 
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front axle (and the front wheel suspensions) have a strong influence on the exterior 

shape.  

 

The vehicle interior is designed on the basis of passenger ergonomics (seating 

package), taking into account the space the passengers need to feel comfortable, 

their visual and haptic sensations, as well as active and passive safety requirements. 

While the exterior shape of a passenger car is designed with the strategy "from 

exterior to interior", the car interior and the surrounding window surfaces are 

designed from interior to exterior according to the needs of passengers and users. 

 

 

4.2.2  Modelling Principles 
 

In every development project, engineers should strive to model their designs with an 

optimum robustness (update stability), and create comprehensible and clearly 

structured geometric elements and specification trees. Another important 

requirement is the suitability of the design task to be accomplished by several co-

workers in collaboration. To satisfy all these constraints, several modelling principles 

have been developed, which will be described in this section. 

 

4.2.2.1 "Bottom-up" Principle 
 

When all individual parts are designed independently, and subsequently joined 

together to sub-assemblies and complete product structures with the aid of assembly 

constraints, the modelling procedure is called bottom-up principle. Only in the final 

stage of this modeling process, when the parts are assembled, can the designer 

verify that all parts fit together without collisions, and that the overall assembly meets 

the requirements with respect to functions and shape. All control parameters and 

references are defined within the separately modelled individual parts. There are no 

links between the individual part models. 

 

The systematic assembly of the separately designed components can be facilitated 

by simple positioning geometry (points, straight lines, planes…) which are used to 
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establish the assembly constraints between the parts when joining them together in a 

product structure. 

 

Typical parts which are suitable for the bottom-up principle in automotive body design 

are standard parts, standardized components, and carry-over-parts.  In the design of 

small batch and one-off products, this principle is also used. In the design of mass 

products like automobiles, the mixture of repeated and unique (new) parts leads to 

the combination of bottom-up and top-down design. 

 

4.2.2.2 "Top-down" Principle 
 

On the basis of a previous design, the empty product structure of the new sub-

assembly is defined. The product structure identifies the required sub-assemblies 

and individual parts of the product. In the automotive development and production 

planning processes, engineering bills of materials (EBOM) and manufacturing bills of 

materials (MBOM) are defined. In addition to the actual parts and sub-assemblies, 

the engineering bill of materials contains additional engineering models, like styling 

surfaces, package models or kinematic simulations, which are not contained on the 

manufacturing bills of materials. When the MBOM is derived from the EBOM, 

manufacturing aids and media are added, like jigs and fixtures or lubricants and 

adhesives. 
 

Once the responsibilities for the design of all sub-assemblies have been assigned 

and the driving parameters and reference geometries as well as anticipated 

modification scenarios have been defined, the empty start-up models of the parts and 

sub-assemblies are filled with suitable geometric elements or existing geometries of 

previous designs which are adapted to the current design task. 

 

Modeling is performed in the context of the sub-assembly. The Individual parts are 

controlled by reference geometry and parameters on the sub-assembly level - these 

elements can only be modified in the sub-assembly and do not belong to individual 

parts. In some cases, the geometry of a part may be based on parameters and/or 

reference geometry from another part which belongs to the same sub-assembly. 
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4.2.2.3 Automatic Link and View Link 
 

The "automatic link" principle defines links between controlling parameters or 

reference elements and dependant geometry in a dynamic way, so that the 

modification or the replacement of the control elements causes the automatic 

adaptation of the dependent geometry according to the engineer's design intent. 

 

Derived from the "automatic link", the "view link" principle contains all links between 

driving reference elements or parameters and dependent (driven) geometry twice: 

 

a) Isolated links are used to design the driven sub-assemblies and individual 

parts, to avoid their automatic modification when driving reference elements or 

parameters are changed. The designer can take his time to assess the 

consequences of the changes on his model. 

 

b) Parallel to the isolated links, so-called "view links" are established which are 

dynamically linked to the reference elements or parameters. These links show 

the designer that changes have occurred in the reference elements without 

automatically triggering any modifications in his model. 

 

c) If the designer decides to accept the changes of the driving elements 

announced in the "view links", he must replace the isolated links in his model 

with new isolated copies of the changed automatic links. 

 

In chapter 3.4.4, these principles are described in more detail and illustrated in a 

figure. 
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4.2.2.4 Lean Hierarchy 

 

To keep the network of links resulting from "parent/children" relations of a PAD model 

as comprehensible and simple as possible, the hierarchy of elements must be kept 

as lean as possible. 

 

Brill (2006) recommends not exceeding five hierarchical layers in the specification 

tree. Hierarchical structures are obtained by combining sub-structures of identical 

significance to main structures and storing all reference elements and parameters 

which govern these sub-structures at the head of the main structure. Cross links 

between sub-structures of identical significance should be avoided. 

 

The complexity of the links within a product model can be further reduced by using 

symmetry, copy or pattern functions of the CAD systems (Liese, 2003). 

 

4.2.2.5 Zone-based Modelling 
 

The subdivision of a larger sub-assembly into design zones permits the parallel (or 

simultaneous) accomplishment of design tasks by several designers. In independent 

investigations conducted by Opel, and the HAW Hamburg in cooperation with 

Volkswagen Nutzfahrzeuge this approach of concurrent engineering was verified as 

recommendable for the concept design phase. 

 

This principle permits the separate storage of the geometry pertaining to individual 

design zones (e.g. a B-pillar with cross-sections to the body panels and the front and 

rear doors) for later reuse and combination with alternative design zones in a new 

automobile project or an automobile variant. 

 

The designers who use this approach for a collaborative design project must refer 

their geometry to control elements of a main adapter. For all interfaces between the 

zones, specific interface adapters must be defined, and the neighbouring geometry 

must be referred to the interface adapter. 
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4.2.2.6 Transparent Modelling 

 

To make a 3D CAD model as "transparent" (i.e. understandable) as possible, it is 

recommended to use standardized names for all objects in the specification tree of 

the model. The names should reflect the function and the context of the elements 

(Liese, 2003). 

 

Many design tasks require the same design logic of the geometrical sub-sets, leading 

to identical patterns of geometrical elements. If this design logic is standardized, the 

patterns can be easily reused within the same design. Together with standardized 

naming conventions, the repetition of design patterns enhances the comprehensibility 

of CAD models to people who where not directly involved in the creation of the 

model. Misinterpretations and misconceptions can be avoided and designers find it 

much easier to modify and adapt models they have not created themselves (Brill, 

2006; Liese, 2003). 

 

4.2.2.7 Model Parameter Variation 
 

The desire to establish robust PAD models which can be reused requires the 

foresighted structured use of control parameters and references. The interior 

consistency of the models must be ensured by the definition of parameter sets, 

ranges and families, and their possible variations must be checked through iterative 

variations and validated before the CAD model is released. 

 

 

4.3 Object-oriented Design 
 

Object-oriented programming has been used in Europe since the mid 80s and has 

influenced CAD modelling as this programming technique is now state of the art for 

modern 3D CAD systems. The fundamentals of object-orientation are also applicable 

to the parametric associative design process, which is then referred to as object-

oriented design. While the user of conventional CAD systems concentrates on 

generating explicit geometrical elements, PAD models are created with the focus on 

objects and their functionality. 
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Objects are tangible and visible things which fulfil a certain purpose. As part of a 

product to be developed, all objects (should) contribute to the main function of the 

product, either directly or indirectly. According to the required partial functions of the 

design, the object-oriented design engineer defines individual design zones which 

can be considered as objects of a mechanical part or a sub-assembly. Examples of 

such objects are e.g. the recess of the door inner panel for the door latch or the 

recesses in the B-pillar for the door hinges. As the function and the design of both 

"recesses" are similar, a class "recesses" can be derived and defined. Object classes 

contain basic definitions of similar objects, i.e. each object belonging to the same 

class inherits the attributes and the behaviour from its class. 

 

The advantages of object-oriented design are the same as those which have led to 

the success of object-oriented programming: 

 

• reuse of designs, and 

• ability to control complex model structures. 

 

 

4.3.1  The Object-oriented Design Process 
 

According to Brill (2006), Schäfer (1994) and Booch (1994), the object-oriented 

design process can be divided into the phases (see figure 4.9): 

 

• conception,  

• analysis,  

• design,  

• evolution, and  

• maintenance. 

 

4.3.1.1 Conception 
 

Wikipedia (2008:2) defines the conception (n; verb: conceive, adjective: conceptional, 

from the Latin concipere: to take in, from capere to take) as a comprehensive 

collection of objectives and derived strategies and measures for the implementation 
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of a larger idea requiring strategic planning. The concept contains the necessary 

information and reasoning, often accompanied by a risk analysis, an action plan and 

a schedule. In the automotive development projects, the results of the concept phase 

are documented in a requirement specification.  

 

4.3.1.2 Analysis 
 

In the subsequent analysis phase, the objects and classes of the design zones to be 

designed are identified and their interrelations and dependencies are determined. 

 

For graphic representation of these relations and the necessary discussion, mind 

maps are a useful tool. Due to the high complexity of interrelations and 

dependencies, the initial concept mind map often lacks comprehensibility. This 

disadvantage can be avoided by hierarchical mind map structures (see figure 4.10), 

which can serve as a valuable basis for defining a top-down structure of the design 

and the associated sub-assembly hierarchies. 

 
 

Fig. 4.9  The object-oriented design process according to Booch (1994) 
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Fig. 4.10 Mind maps – from left to right: concept mind map, linked and  hierarchical 

mind maps 
 

 

4.3.1.3 Design 
 

In the design phase the initial geometry is created in the CAD system. 

 

4.3.1.4 Evolution 
 

The continuous optimization of the sub-assembly to be designed is performed in 

numerous iterations on the process chain from concept development to final design. 

Each iteration is a challenge to the stability and robustness of the CAD model which 

should be improved continuously, based on lessons learned. 

 

4.3.1.5 Maintenance 
 

Once a CAD model is released, it must be maintained. This stage does not differ 

much from the evolution phase. Additional refinements and the addition of new 

functions increase the robustness of the model and open up the reusability of the 

model in other project contexts. 

 

 

4.3.2  Important Principles of Object-Orientation 
 

The principles of object-orientation shall help to control the complexity of a task.  In 

the works on object-oriented programming, we find different classifications of the 

basic elements of object-orientation. The main elements of object-orientation as 

described by Booch (1994) are: 
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• abstraction,  

• encapsulation,  

• creating hierarchies,  and  

• modularisation. 

 

4.3.2.1 Abstraction 
 

Abstraction denotes the concentration on the essentials. To abstract means to omit 

details and to eliminate references to specific examples through generalization and 

simplification. With the aid of such a "fuzzification", objects can be classified, and 

object classes with common attributes can be defined. 

 

In the context of automotive body design, abstraction means for example to identify 

and design of the essential primary surfaces of a part, and to postpone the design of 

less important secondary surfaces and details to later design steps. Brill (2006) 

states the definition of the class “reinforcing bead” containing the objects “roundly 

bead” and “trapezium bead” as another example of abstraction. Both objects have 

many identical design details. 

 

4.3.2.2 Encapsulation 
 

Encapsulation means the isolation of a partial problem or system from its 

surroundings, and the reduction of the relations to the surroundings to an interface. 

According to Schäfer (1994), encapsulation and abstraction complement one 

another. While abstraction focuses on the exterior aspects of the objects, 

encapsulation concentrates on the internal aspects. Encapsulated partial systems or 

objects with identical interfaces can be replaced independent of their internal 

structure, and they can be reused without limitations within the same model or in 

other CAD models. 

 

"All components of an object are encapsulated, i.e. isolated from its surrounding, 

which is replaced by defined interfaces. From the overall system perspective, the 

object appears as a black box. The complexity is reduced either by the concentration 
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on the exterior characteristics and the integration into the overall structure or by the 

concentration on the internal design with all its numerous details and the negligence 

of the overall structure (Brill, 2006)." 

 

4.3.2.3 Hierarchy 
 

Wikipedia (2008:3) defines hierarchy (from Greek ιεραρχία = hierarkhia) as 

combination of ιερή, hieré = holy and αρχή, "arché" - control, order, principle, the 

beginning, the first. The term is applied to a system of objects arranged in a graded 

order. It denotes a series of ordered groupings within a system, such as the 

arrangement of plants and animals into classes, orders, families, etc. Consequently, 

the classification of objects in a hierarchical system implies a ranking of these 

objects. 

 

The manufacturing bill of materials defines the hierarchy of an assembly with respect 

to its sub-assemblies and parts. Starting off from the top node (the root), the 

hierarchical tree branches split off into subordinate assemblies and individual parts. 

The order in which parts are designed and the decisions on their reuse determine the 

design hierarchy of the parts or design zones. 

 

4.3.2.4 Modularisation 
 

The term module denotes a standard self-contained unit or item that can be used in 

combination with others. Products or systems with a modular design therefore consist 

of an assembly of standardised modules. 

 

Brill (2006) defines modularisation as the process of determining which sections of 

the object hierarchies shall be saved in individual files. He considers abstraction, 

encapsulation and the definition of hierarchies as the logical internal structures, and 

modularisation as the physical structuring of the data. As examples of design 

modularisation, Brill states the decomposition into separate files like external 

references, concept geometry, product geometry creation, drawing generation, and 

associated process documentation. 
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4.4 Summary 
 

All of the above methods and process steps have in common that several solution 

variants are investigated, calculated, simulated, built as samples or prototypes and 

tested, to continuously improve and optimise the output of the development process. 

 

Investigations of the author have shown that the development of mass produced 

automotive body parts needs several iterations to optimise parts and assemblies 

according to different, in parts conflicting goals throughout the different phases of 

product development.  

 

PAD is a kind of object oriented design. The design approach and definition of the 

structural tree require the consideration of all methods and strategies explained in 

this chapter to guarantee the update safe exchange of reference geometry and 

parameter variations as well as the legibility and the reusability of PAD models. 

Nevertheless it is the task of the OEMs to settle mandatory rules for all engineers 

involved in the development process. The German association of the automotive 

industry (VDA) has a centre (VDA-QMC) which defines rules for the cooperation 

between OEM and suppliers to improve quality and standards. Besides this centre 

there is a user group of all German OEMs using CATIA which defines common rules 

for the product development process. 

 

In the product and production process development of mass products like automotive 

bodies and their components, the design and development tasks are distributed 

among numerous engineers within the OEMs and their subcontractors. All of them 

must meet the same overall product and project requirements. The single basis of 

most decisions, validations and verifications, as well as new developments, variations 

and improvements are the 3D design data sets. Consequently, the next chapter will 

discuss in detail the process chain of automotive body development and the 

distribution of tasks within this chain. 
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Chapter 5.  Set-up and Activities of the Product Evolution Process 
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For the development of a new passenger car which shall be produced in large 

batches, comprehensive and careful planning is required to meet the numerous 

conflicting design and manufacturing constraints. All relevant initial strategic plans 

are developed by a product strategy committee. The overall responsibility is assumed 

by a member of the chief executive committee of the OEM or by a management 

representative appointed for the project. Once the product strategy committee has 

decided to launch a new automobile project, the Product Evolution Process (PEP) is 

prepared, comprising product planning, product development and production 

planning. For this purpose, the OEM has defined master processes permitting the 

detailed planning of the project and the reliable validation of the maturity levels. To 

support this, the Quality Management Centre (QMC) of the German Association of 

Automobile Manufacturers is currently trying to establish a nation-wide process of 

maturity level validation between OEM and Suppliers (VDA, 2006 & Klein, 2006 & 

Weißbrich, 2007). The nature of the development project (e.g. a facelift or a 

completely new passenger car) determines the duration and the details of the 

development and planning scope of the required product development processes. 

 

The master processes describe and control the different maturity processes in the 

product evolution, e.g. the maturity processes for the automobile package, the 

styling, the module definitions, the prototype phase or the mass production phase 

based on the analysis of several independent publications (Braess & Seiffert, 2007:1 

& Damme, 2003 & Dietze, 2001 & Form, 2006 & Gevert, 2003 & Klein, 2006), the 

master processes of three German OEMs (BMW, Daimler and Volkswagen) have 

been reconstructed and compared (Fig. 5.1). According to the literature, the master 

process of a conventional automobile development has duration of approximately 54 

to 60 months. The project timing is structured with the aid of defined phases and 

milestones (Volkswagen), Quality Gates (Daimler) or synchronisation points (BMW). 

The milestones are defined control points (often documented in project reports) at 

which certain results or findings must be available and a certain product maturity 

level must be achieved. It is the objective of the master processes to define the 

maturity level validation (to ensure the reliability) in the product evolution (PEP). 

Phases and milestones are defined for each new project before the project is kicked 

off. 
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Fig. 5.1  Master Product Evolution Processes (PEP) acc. to Braess & Seiffert 
(2007:1), Damme (2003), Dietze (2001), Form (2006), Gevert (2003), Klein (2006) 
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Independent of a specific automobile project, the OEM and system suppliers 

continuously monitor the market. This often leads to general investigation and 

research projects which are yet independent of specific car or system developments. 

As described in chapter 4 (see figure 4.6), the PEP comprises analyses, definitions, 

coarse and detailed design steps, which are iteratively performed, often jumping back 

and forth within the steps, and finally leading to optimized solutions. 

 

The development of a new automobile is generally performed independent of the 

aggregate development. Several other modules and components like front seats or 

axles and suspension systems are rarely developed with reference to a specific car 

project, i.e. they remain unchanged in their basic design and are only adapted to the 

special requirements of the car project. 

 

Nowadays, most OEMs have adopted platform strategies for deriving different 

models and production lines from a standardized design basis. Generally, a platform 

is defined as the reusable design of the floor pan components, which is only of 

indirect influence on the styling and design of the visible parts of the body-in-white 

but has uniform reference points for the automotive body production (clamping and 

positioning points) and for attaching power train components like engine, 

transmission, and wheel and suspension system etc.. The sophisticated process of 

defining platform concepts is based on comprehensive analyses and research 

projects carried out by all OEMs. The consequence of the platform strategy is that 

the early phases of car body design can and must use a set of carry-over parts which 

are available as 3D CAD models. The selection of the correct platform components 

for the product family must occur at the beginning of the design project and must be 

verified and validated as soon as possible with the highest achievable reliability. 

BMW subdivide their master PEP which follows the strategic product planning phase, 

into the following two major phases: “preparatory phase” and “serial (detailing) 

phase”, each of which are allowed to take approximately 30 months. Both major 

phases are split up into three subordinate phases. The preparation phase is broken 

down into “initialization phase”, “concept phase” and “design phase”, and the 

detailing phase is broken down into “agreement phase”, “confirmation phase” and 

“maturity phase” (see figure 5.1). 
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The objectives of the first major phase, the preparatory phase, are (see figure 5.2): 

 

• investigate, define, agree and verify design, technology, and innovations of 

the basic model of the new car family, 

• investigate, define, agree and verify design, technology, and innovations of 

the cars to be derived from the basic model (this process begins after the 

basic model has been defined), 

• determine timing and responsibilities for the serial phase, 

• eliminate initial conflicts between design objectives as far as possible,  

• accomplish and freeze package and styling, 

• derive the engineering bill of materials, and  

• elect development partners. 

 

This phase is responsible for defining about 75% of the product costs, and it has a 

major impact on the company's profit of the next decade. 

 

In the process of converging package, styling and engineering, which is a part of the 

preparatory phase, the approach is from interior to exterior (with the focus on 

technical constraints, i.e. "form following function“) as well as from exterior to interior 

(with the focus on styling, i.e. "form following emotions") (Braess, Seiffert, 2007:2). 

The design freedom of the car body is restricted by the styling-oriented exterior 

shape of the car and the function-driven package. This leads to numerous conflicting 

and contradictory objectives which must be resolved in multi-disciplinary 

convergence processes. 

 

The objectives of the second major phase, the serial (mass production, detailing) 

phase, are listed as follows: 

• The harmonization of the development output (i.e. the results of the 

preparatory phase) with current legislative requirements, standards, 

competitive situations and research conclusions, 

• the detailed design of individual parts and zones, and their optimization and 

verification in the context of the complete car design through calculation, 

simulation, testing and prototype investigation, 

• the accomplishment of the homologation legislation and type approval, and 
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• the planning and production of series production tools and fixtures, and their 

maturation through sample inspections and pilot production to ensure the 

capability of all production processes. 
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Fig. 5.2  Distributed tasks in PEP acc. to (Dietze, 2001 & Form, 2006) 
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In the following section, the most significant steps of this second major phase in the 

evolvement of a new passenger car are described and analyzed from the designer's 

point of view. 

 

 

 

5.1 Packaging / Ergonomics Process and Concept Development 
 

“The packaging process manages and harmonizes the requirements of component 

locations, ergonomics, and the overall characteristics of a car. It is a multi-disciplinary 

process which accompanies the complete product evolvement cycle, from the first 

ideas to the end of production. The administration of all geometric data of the car and 

the control of all associated documents (to safeguard that each document is up to 

date) also belongs to the responsibilities of the packaging process. “(Grabner & 

Nothhaft, 2006) 

 

It is the objective of the packaging process to control and harmonise the interior of 

the passenger compartment (e.g. the arrangement of the seats) and luggage 

compartment, the location of power train components, and resulting characteristics 

like wheel base, front and tail section and ground clearance. The basic car concept 

defined at the beginning of the development phase is continuously substantiated as 

the development progresses and package plans, styling concepts and subassembly 

designs are getting more and more detailed and refined. In the past, this process of 

converging package, styling and design was a two-dimensional process. Today, the 

availability of digital 3D tools (3D CAD, Computer Aided Styling System (CAS), large 

scale projections, power wall, Virtual Reality (VR) caves, 5-axis milling machines, 

rapid prototyping etc.) has lead to a dramatic acceleration and improvement of the 

development process. 

 

In the first phase of the packaging process, about 60 to 54 months before Start Of 

Production (SOP), initial objectives are defined on the basis of strategic specifications 

derived from market analyses and predictions as well as project-independent results 

of technical investigations and research. The resulting concept package is a first 3D 

package, which initially comprises only about fifteen components (Gessner, 2001) of 
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power train, wheel and suspension system (including their interfaces with the car 

body), the locations of passenger seats and the driver's fields of vision and the 

envelope of luggage compartment. It is supplemented with components from 

previous car projects, permitting the rapid qualitative visualisation of the new car 

concept. In addition, this concept package documents the resulting basic car 

dimensions like overall length, height, width and the location of the engine and the 

axles, as well as the anticipated positioning of the driver and the other passengers. 

On this basis, a dimensional design concept is derived which contains a preliminary 

coarse of hard points. In this phase between five and six competing concepts are 

developed in parallel, e.g. with varying wheel base. Additionally, pre-development 

issues are defined, which must be tackled and solved to ensure the realisation of the 

package concepts. 

 

Once the initial design objectives have been determined, the second phase (about 54 

to 40 months before (SOP) is devoted to the preparation of a correct and marketable 

overall car concept. All major open issues contained in the initial concept are 

resolved to obtain a first draft concept containing already about 50 sub-assemblies of 

the new car. Conflicts between styling and package are resolved by compromises 

(convergence), leading to an agreed plan of hard points. 

 

 
 

Fig. 5.3  Validation of ergonomics with RAMSIS and seating mock-up on Rolls-
Royce Phantom (Lindermaier, 2006) 
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Furthermore, the engineering concept of the automobile project is determined in this 

second phase, to permit the verification of the package of wheel and suspension 

system and power train. With the aid of up-to-date manikins (virtual anatomical 

models of the human body) ergonomic investigations are made to validate seating 

positions, viewing angles and access to the car (see figure 5.3). The virtual analyses 

are verified with a first physical seating mock-up. 

 

Based on the initial design objective, the automotive body development process 

prepares a concept for the automotive body structure. The overall car concept, which 

is prepared in the concept phase, is aligned with these first automotive body 

analyses. Initial Finite Element Method (FEM) calculations are made to verify the 

overall car concept with respect to structural strength and stiffness. Additionally, 

concept analyses are performed in all domains of the automotive body development, 

to harmonise the overall car concept with the structural concept. If the initial design 

objectives are proved to be feasible, the second development phase leads to the 

confirmation of these objectives. A final plan of hard points and the first vehicle 

integration plan are the output of this phase. 

 

The vehicle integration plan (see figure 5.4), which is documented in engineering 

drawings (scale 1:1), tables and written descriptions, contains all major interior 

components like seats, steering wheel and other cockpit elements, as well as the 

Society of Automotive and Aeronautical Engineers (SAE) manikins and Seating 

Reference Points (SgRP). The space occupied by power train and wheel and 

suspension system is visualized in the three main views. Furthermore, all major 

dimensions, driver viewing angles, nominal loads, slope angles etc. are documented 

in this plan. In the past, the resulting two-dimensional geometry was the basis of the 

styling tape plans. These tape plans (scale 1:1) were used to optimise styling 

geometries to and initiate the 3D design process. 

 

Today, packaging is a completely three-dimensional process, permitting the ideal 

integration of the development of initial styling geometries (main curves and guide 

curves), the generation of principal sections describing package and component 

envelopes through boundary surfaces into the overall process. Package functional 

surfaces are three-dimensional surfaces, describing the space occupied by individual 
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components (e.g. diesel engine with its envelope surface determined for idle 

vibrations or the front wheel with the envelope surface of permissible steering and 

suspension movements, arm reach envelops of the passengers according to legal 

and ergonomic specifications or viewing pyramids. 

 

50 months before SOP, the principal sections are created in 3D models using 

standard locations in the car coordinate system, and standard names for the 

geometric elements. To begin with, cross-sections of previous and other cars from 

the OEM product portfolio are used to obtain a coarse description of the topology of 

the zones and compartments to be developed. This coarse description is used to 

reach agreements and compromises between conflicting objectives with all 

departments involved in the car evolvement process.  Subsequently, the principal 

sections positioned at standard locations in the car coordinate system are replaced 

by actual development sections derived from the functional surfaces of the package, 

from styling data and concept development results. These development sections are 

used for documenting relevant problems, reaching agreements between the design 

departments and for creating primary design surfaces. 

 

In the third phase, approximately 40 to 30 months before SOP, the vehicle integration 

plan (see figure 5.4) is detailed further. In the middle of this phase, the package of 

the basic car model of the desired product family is officially released (package 

freeze). In the meantime, about 150 sub-assemblies of the car have been entered 

into the package plan. It is the main goal of the packing process to generate the 

geometric evidences that all legal and other requirements and specifications 

including OEM-specific regulations and standards are met and all conflicts resolved, 

and to keep the number of design variants to a minimum. Examples of such issues 

are the seating layout, luggage compartment layout, direct and indirect views of the 

driver, head clearance and head impact zones, accessibility of control elements, 

access to car, location and layout of restraint systems, pedestrian safety, bumper 

heights, ground clearance, slope angles etc. 

 

With the aid of CAD and DMU (Digital Mock-Up), the packaging team continuously 

checks virtual design surfaces, module and part designs against hard points and 
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envelope surfaces and possible collisions of components. This way, the configuration 

of the car is verified more and more in the 3D models. 

 

 
 

Fig. 5.4  Vehicle integration plan (side view, plan view, front view) (Grabner & 
Nothhaft, 2006) 

 

In this phase, the first physical models of the future sub-assemblies are produced 

e.g. milled from hard foam. These physical mock-ups are used for experiments and 

test backing up the virtual validation processes, e.g. with ergonomic investigations 

performed by test persons, and with manufacturability studies. 
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After package freeze, the overall geometric data of the car is prepared according to 

internal standards and GCIE (Global Car Manufacturers Information Exchange 

Group), and simplified overall car plans according to GCIE are prepared for 

exchanging data with other OEMs (see figure 5.5). 

 

 
 

Fig. 5.5  Example of global standard package dimensions acc. to GCIE (2006) 
 

 

Even during the detailing phase, design modifications and adjustments accounting for 

current research results may occur. Consequently, the packaging team remains 

responsible for the validation and verification of all such changes with respect to legal 

and other requirements. In mass production phase (detailing phase), the ergonomics 

team assumes the responsibility for the fine-tuning of control element surfaces and 

locations, operating forces and paths.  

 

At the close of the serial phase, production part homologation processes and type 

approval are carried out, supported by the packaging team. 
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5.2 Technical Support of Aesthetic Design (Styling) Exterior and 

Interior 
 

“The most important function in aesthetic design is to give the product a soul of its 

own. This soul is not alone created by technical development neither package or with 

the decoration; the product soul can only be created by a stylist who is able to 

combine aesthetic, style and emotion. 

 

In the competition for market dominance the manufacturers (OEM) have to satisfy 

customer’s demands in ever increasing market segments. Parallel to the daily 

complex demands in customer lifestyle and the increasing number of products on the 

market, styling and “product soul” are growing in importance. You can’t just glue on 

“product character”, nor is it achieved by just using the logo symbols and colours of 

corporate identity. The combination of brand identity and “product soul” is achieved 

by the interplaying of aesthetic design, interior and exterior, of colours, shapes and 

materials. Thus aesthetic design defines the brand.“ (Ostle, 2003) 

 

The aesthetic design process was the last manual layout process that has changed 

enormously through the developments in the virtual world. With the aid of computers 

it is possible to serve better process integrations and to have a greater variety of 

styling layouts in a shorter time span. Years ago the pure development of design 

ideas with manual sketches, renderings, tape renderings, clay (Plastilin) modelling, 

synthetic wood (Epowood, Uriol) or hard foam where on the forefront. Today the 

whole design process is developed in a new order with reduced numbers of format 

and media discontinuations aided by 3D computer aided styling systems with a great 

variety of import and design functions supported by large screen projections and 3D 

VR visualisation (Power Wall, Cave) (see figures 5.14 and 5.15). 

 

Sketch boards including software for sketching, rendering and airbrush techniques 

are available for freehand sketching. It is thus possible to underlay a 3D package 

while using the 2D sketcher, which leads to the exact and correct proportions and 

perspectives. Or it is also possible to scan back ground photographs or handmade 

sketches to be used for a 2.5D styling process. 
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Today the way back from milled and hand finished design models into the computer 

(redesign) is possible by use of modern scan and import functions. High-resolution 

real time visualisations and the animation of the 3D design models enhance the 

efficiency of the styling process. 

 

Aesthetic Designers are still sceptical toward the new process: “Digital models tend 

to have a more optimistic appearance on the screen and on power walls. Only the 

physical and tangible model will give you the best impression. It is true that the CAD 

models save a lot of money. It is however fact that a car factory sells real cars. 

Because of this fact it is necessary in the phase of deployment to work on real cars.” 

(Kraus, 2007) 

 

 

5.2.1  Core Areas of Aesthetic Design (Styling) 
 

“The exterior is love at the first sight. The interior is the marriage.” (Sielaff, 2004) 

 

The basic form of organisation of aesthetic design is advanced design, exterior 

design, interior design and colour & trim. These areas are supported by modelling, 

studio engineering and studio management. Some OEMs assign ergonomics and the 

Class A surfacing also to aesthetic design. 

 

Advanced design and concept design follow similar rules as early project concept 

developments of assembly groups within the technical design process. Both are often 

independent of a core project. The characteristic of concept design and advanced 

design is to collect ideas and visions without regard whether they can be integrated 

into the technical design process. Advanced aesthetic designers track down new 

design trends based on the information of trend research. The results of their 

creativity are translated to design models or even show cars for car exhibitions. 

 

Exterior aesthetic design creates the specific visual character of a vehicle by 

designing proportions of painted panels, glass and light surfaces. Additionally 

character lines, highlights and graphic elements determine the visual character. Thus 

brand image is created by the typical styling of the front and rear end or the shaping 

of the C-pillar. Aerodynamics plays an important driving force for composition work of 
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exterior for the last decades. Recently the legislation for pedestrian’s protection has 

influenced the arrangement of the front-end considerably during the last years. 

 

Interior aesthetic design must also include haptics, scent and the auditory sense into 

the arrangement besides the visual language of shapes. Not only seating package, 

ergonomics and passive safety influence the interior process. Also topics like seat 

design and arrangement, accessibility of operating units, vision of instruments and 

many more are of big importance. The aim is to offer the customer a comfortable, 

functional interior and a safe and secure feeling. The selection of materials for the 

interior components influences this point largely (see figure 5.6). 

 

In close co-operation with paint, textile and plastics industries, colour & trim develops 

colour and material combinations for interior and exterior, texture of plastic parts, fab-

ric and leather for seats and trim etc., which have to correspond to future fashion 

trends. The careful selection of materials must also meet all requirements for quality 

and durability. 

 

 
Fig. 5.6  Renderings of the interior (AUDI, 2008) 

 

 

The roles of designers and modellers are often fusing during the aesthetic design 

process. In the conventional process modellers have largely been occupied mostly to 

convert sketches, renderings and tape plans into clay models. They were optimising 

it in close co-operation with the aesthetic designers. Because of there artistic skills 

and excellent capacity to think in three dimensions, modellers are today occupied 

with aiding 3D styling models on Computer Aided Styling system (CAS) work sta-
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tions. Afterwards, the virtual styling models are milled in clay and are completed and 

optimised by the modellers. Then the virtual model is updated with the latest design 

in a redesign process by scanning and surface modelling. 

 

Studio engineers play an important role within the design process. They mediate 

between the aesthetical and technical design process. Like the modellers studio 

engineers must be able to understand and interpret emotions and motivation of the 

stylists. Their task is to demonstrate the possibilities and the technical limits to the 

stylist. They are also authorised to represent the stylist’s claim to the engineers of the 

other development departments. Studio engineers are continual compiling the latest 

information about working methods, production processes, materials, legal 

requirements etc. and they are developing new technical ideas. The aesthetic 

designers get continuously informed by them about the possible innovations and 

consequences for the styling process. Studio engineers are responsible to guarantee 

the first functional feasibility of a styling by the use of principle sections, layouts and 

model building. They conduct the aerodynamic tests of design models. Together with 

method planners studio engineers consider about the production realisation at this 

early stage. As “ambassadors” of aesthetic design, studio engineers present the new 

styling to the other departments of development. They conduct the design and the 

development from the beginning of the PEP shortly until the SOP. 

 

 

5.2.2  The new digital Styling Process  
 

After a phase of discussion and interpretation of the list of goals of the new project 

the styling process begins with a contest of ideas. Every aesthetic designer involved 

displays his individual interpretation of the project in layouts and sketches. Within the 

styling process, which consists of creative phases, presentations, discussions and 

decisions, several competing aesthetic designs are worked out at the same time. At 

the end of this process there is one styling concept which combines essential details 

of these competing styles (see figure 5.7). 

 

At the beginning of the aesthetic design process (see figure 5.7) the artistic and 

creative work comes to the fore. First of all it is important to let the design ideas 

ripen. The package / aesthetic design convergence process starts afterwards. Thus 
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the artistic process of the tracked topic begins with freehand sketches of free chosen 

perspectives. Not till the second step these handmade sketches are digital edited 

with the support of sketch boards and are converted to the proportions of the 

underlayed 3D package. For that purpose the freehand sketches can be scanned to 

reshape and to change those on the sketch boards (see figure 5.6). 

 

Preparation Phase

DMU

Package, Concept Development

Design Exterior, Interior / Technical Support

Class A Surfacing / Design / Technics Convergence

Creative Process

Design 
Freeze

Digital Layouts

Digital Exterior Models

Visualisation / Animation

1:1 physical Models 1:1 Exterior Model

Technical Support: Studio Engineering, Package, Concept Development, Aerodynamics, Tooling

Ergonomics

Digital Interior Modell 1:1 Interior Model

Faesability Studies

Serial Product. Phase

Cubing Models

Design 
Confirmation

Model
Selection

 
 

Fig. 5.7  Digital Aesthetic Design (Styling) process acc. to Ostle (2003), Dietze 
(2001), Damme (2003) 

 

 

In the second phase of the aesthetic design process the conversion, the refinement 

of the proportions and the composition of details is carried out by 3D modelling in 

CAS. Orthogonal 2D outlines can be used as the basic framework for modelling and 

designing within the 3D model (sketch mapping). The stylists and modellers develop 

precisely tailored surfaces on the CAS system. The shapes and proportions of the 

model can be modified efficiently and the 3D data is available anytime so that a 

constant surface data flow to the development is possible. In the first instance five or 

more competing concepts are tracked. The concentration on two concepts is carried 

out shortly. Physical clay models of these two concepts are manufactured in a scale 

of 1:1. The precise refinement work takes often place at milled partial models, which 
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can be added with assembly components from rapid prototyping or else of mass 

production. 

 

Within the hand-crafted process renderings and tape plans have been the pre-stage 

for the physical model. Alongside the multifarious possibility of inspection and the 

possibility to animate styling models on a screen or a silver screen for visualisation 

and discussion, renderings (see figure 5.6) and tape plans are nowadays derived 

afterwards from 3D models of the CAS system. 

 

The redesign process turns out to be demanding. The scanning data of physical 

models, which have been milled from CAS data and been changed and optimized, 

are interpretable and sometimes redesigned surfaces do not reflect the styling idea of 

the optimized physical models. After closing-off the second phase the aesthetic 

design of the vehicle has largely been detailed and one final concept has been 

chosen. 

 

 
Fig. 5.8  Preparation of Styling adventure model at the end of styling phase (AUDI, 

2008) 
 

 

The finish of aesthetic design takes place within the third phase. The exterior model 

and the interior model merge to one model (see figure 5.8). Parallel to the second 

phase the Class A surfacing has already begun to optimise the surfaces of the design 

models in CAD. The definition of the gaps in position, width and producability as well 

as the quality of the surfaces has to be adjusted between aesthetic design and Class 

A surfacing together with the demands of the technical conversion. The designed 
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Class A surfaces are tuned with the aesthetic design by using physical data control 

models of the interior, exterior and the complete vehicle (cubing models) and are 

finally determined. Stylists accompany the technical design of the assembly 

components from the concept development till detailing phase. They ensure the 

accurate conversion of their aesthetic concept, especially in cases of the often 

required compromises within the development and the production preparation. 

 

 

 

5.3 Class A Surfacing / Styling / Techniques Convergence 
 

“Today the Class A surfaces are the geometrical representation of all surfaces that 

are visible for the customer both interior and exterior under consideration of all 

technological and shape aesthetical demands.” (Lender, 2001) 

 

 
Fig. 5.9  Manual Class-A surfacing with spline and spline weights 

 

 

The former manual Class A process originally derived from shipbuilding. In the 

search for flow-enhancing designs of hull shapes it was possible to design grid 

sections (length- = vertical frames, breadth and height sections) through the hull 

under support of long, flexible splines, made of homogeneous material. These 

splines were kept in desired form by the use of spline weights (see figure 5.9). By 

alternately raising the weights curves with smooth curvatures developed which were 

free of dents, waves or any kind of inconsistencies. Thus surfaces were clearly 

defined along the sections however the areas between the sections were not defined. 
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Up into the nineties automotive Class A surfaces were designed by this wire frame 

method of grid sections and 3D curves. Today however without exception the Class 

A surfacing is completed with the aid of special CAD programs e.g. ICEMSurf or 

CATIA V5 workbench ICEM shape design. All of these programs are based on the 

principals of curve- and surface algorithms of de Casteljau and mathematics of 

Bèzier (see figure 5.10). 

 

The Class A process is a major component of the PEP. It’s primarily importance lies 

in the early position in the development process and thus the big influence of all the 

following processes which are continuously dependent upon up-to-date surface data. 

With the introduction of Class A surfacing into the early stage of PEP a dynamic loop 

process of surface and gap modelling and adjustment under support of all relevant 

specialist begins to harmonise the demands of styling and technical design. Class A 

development is completed with the release of the data control models which is 

followed on by the release of all customer relevant surface data of interior and 

exterior vehicle surfaces. 

 

The process of surface development is based on scanning data which is generally 

available as a mesh of polygons which is originated from a cloud of scanned points. 

For better orientation the polygon mesh is added by relevant grid sections. The area 

that has to be developed is “divided” in mind into primary surfaces and secondary 

surfaces. Primary surfaces are those surfaces that are used as the principal or basic 

surfaces for the adaptation of further geometry e.g. offset surfaces or character 

curves. Secondary surfaces are those surfaces which are based on primary surfaces 

or which add further details to the primary surfaces, such as bent portions, blend 

surfaces or fillets. 

 

E.g. contact points on each of the primary surfaces are used to hustle surface 

patches of low order (see figure 5.10) onto the primary surfaces. By careful and 

equal manipulation of the polygon points the surface patch will closely resemble the 

scanning data. The primary surfaces (patches = unbounded surfaces) are larger than 

the styling surfaces. Character curves can be achieved and smoothened from the 

scanning data or intersection curves can be gained in combination with other primary 

surface patches. The patches (unbounded surfaces) are bounded by the curves and 
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become faces (bounded surfaces). Any discrepancies in the scanning data or in the 

styling model at hand will be interpreted by the Class A surfacing engineer to 

harmonise them with the aesthetic design. Surface data the Class A surfacing 

department provides includes all visible surfaces including first bent portions and first 

radii. 

 

 
Fig. 5.10 Bézier surface patch of low order (Schreiber, 2007) 

 

 

 
Fig. 5.11 Comparison of surface and gap definition AUDI 100 (1986) and  

A6 (2006) acc. to Großjohann (2007) 
 

 

The visible surfaces of the interior and the exterior are interrupted by gaps where 

ever component parts meet. Gaps are an import stylistic element for an aesthetic 

designer. While designing the gaps, functionality of movable components and 

highlights on surfaces have to be taken into account. The unbounded visible surfaces 

and the curves defined by the aesthetic design and safeguarded by technical design, 
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are the basis for the Class A design of the gaps. For the development of a gap (see 

figure 5.11) the visual constant appearance of the gap, seen from the customer’s 

typical point of view, is to be defined instead of defining a theoretically constant gap. 

In critical areas the surface position in the area of the gap is moved within height 

(displaced) and/or the theoretically arranged gap varies in breadth. 

 

 

Surface Normals 
Light Beams 

Highlight 

 

Fig. 5.12 Quality control of surface definition with highlights (Isopodan, Lines of 
constant brightness) (Petersen, 2003) 

 

 

 
 

Fig. 5.13 Quality control of surface and gap definition with panel of parallel light 
sources LHS in VR (Gegalski, 2003) and RHS in laboratory (Dehn, 2001) 

 

 

The virtual world offers a multitude of possibilities to evaluate the quality of Class A 

surfaces. Highlights are a common method used (see figure 5.12). In theory light 

sources are reflected under various angles to the free form surface. Lines of constant 

brightness (highlights, isopodan) are the geometric positions where the angles 
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between light beams and surface normals are identical. A further virtual and even 

practical used method is the projection of a panel with parallel light sources onto the 

free form surfaces (see figure 5.13). 

 

The Class A department starts with its work as soon as the aesthetic design reduces 

the number of the possible styling concepts to two. The styling models are milled and 

modelled in precise detail in Plastilin in scale of 1:1 for the first time. To be able to 

evaluate the models virtually and to make the surface data available to the following 

departments as quickly as possible, the two models are scanned. Within the Class A 

surfacing process concept surfaces are created out of the 3D cloud of points from the 

scanning. The concept surfaces do not yet comply with the final requirements 

because of their quality, curve progression and continuity. These first CAD models 

primarily act for the judgement and confirmation by the department of aesthetic 

design. Though the departments of technical design use these concept surfaces as 

the foundation for the assembly group design already.  

 

The criterions to evaluate the Class A surfaces are: 

 

• producibility, 

• optical quality, 

• compliance with package dimensions, concept coherence, carry 

  over part (COP) concepts and design variants. 

 

With the choice of the styling model (model selection) (see figure 5.7) by the 

management the number of exterior and interior models decreases to one. Shortly 

after that the design confirmation, including the incorporation of all open points and 

leadership issues into the model, takes place. The current development status is now 

harmonised regarding to package, concepts of technical design, aerodynamics, 

ergonomics and occupant safety. Hence the technical stage of maturation has 

proceeded to the point where the development of the final Class A surfaces begins. 

Therewith a process of virtual and physical data control models and master gauges 

begins which conducts the PEP till the SOP and which shall safeguard Class A 

surfacing and the following technical design of components (prototype parts as well 

as mass production parts). In an automotive project between 600 and 800 interior 
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and exterior components, which are relevant for visible surfaces, get processed in 

Class A surfacing. Gray zone surfaces, which can’t be seen until the customer opens 

a door or a lid, and a lot of surfaces of the interior are designed as functional 

surfaces within the concept development phase and are at last finished in Class A 

surfacing. 

 

 
Fig. 5.14 Virtual validation of the interior at the power wall (BMW, 2003) 

 

 

The design confirmation (see figure 5.7) means to “freeze” the current aesthetic 

design model. From now on it is no longer possible for the styling department to 

shape on the physical model and the design subject is completely assigned to the 

follow up CA processes. Class A surfacing is the leading department to make 

modifications and to visualise. At this stage all styling subjects are completely 

displayed. This includes for instance all mounting parts of the exterior, e.g. handles or 

trim strips as well as panels or electric components of the interior. Furthermore a 

detailed gap plan is defined which can be adjusted to a minor degree. Even so the 

stylists still have the possibility to place change requests within Class A surfacing. 

Henceforth the areas of aesthetic design and Class A surfacing closely work together 

with the aid of visualisation (see figure 5.14, 5.15) and CA tools. 

The design freeze (see figure 5.7) is the next milestone within the Class A process. 

At that time the aesthetic design area has finished a styling adventure model (see 
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figure 5.8) which contains interior and glass surfaces. All open issues, which were 

detected at the confirmation of aesthetic design, are incorporated in the Class A 

surfaces. This is the base for the digital data control model which assures the design 

and the visible surfaces within the virtual process. The digital data control model 

describes the final condition of the visible surfaces in every detail, for example 

varnished metal sheet areas, coloured and textured interior components or 

configuration variants. Thus it can also be used to safeguard the match up of colour 

 

 
Fig. 5.15 VR validation of Class A surfaces (Haasis & Grebner 2007) 

 

 

and material combinations (see figure 5.14). Weeks before the completion of the first 

physical data control model the virtual evaluation and the certification of all visible 

components takes place. Parallel to the Class A surfacing process a digital 

controlling of functions continuously takes place in all development areas.  Functions, 

such as kinematics or over push effects of lids, the air distribution of the air vents or 

the head impact zones of the instrument panel and many more are checked in detail 

(see next sub chapter). 

 

The result of the first physical Data Control Model (DCM = Feasibility Cubing) is a 

complete and full-scale milled model on the basis of CAD surface data. The DCM or 

else master pattern controls the Class A surfaces, it resembles the design model and 
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represents the decision made by executive committee. Today the DCM is created by 

high-performance milling machines which allow varnish capable surfaces. The 

assembling takes place on basis of synthetic wood block material (Uriol) supported 

by aluminium beams. Final surface refinements demand accompanying Class A 

surface design operations and lead to the point of release for the last milling loop of 

the final DCM. 

 

 
 

Fig. 5.16  Functional Cubing model interior (Beutenmüller, 2008) 
 

 

The functional cubing models of exterior and interior (see figure 5.16) complete the 

safeguarding of all Class A surface data. The body in white (BIW), all mounting and 

trim components of interior and exterior are displayed as a build-up which is 

geometrically equivalent with the final product. All exterior and BIW components are 

made from aluminium. The interior is displayed by Uriol or laminated components. 

Like on a real car doors and lids can be opened by using realistic kinematics. Also 

the original boot is displayed. Cubing models of mounting parts of exterior and 

interior are fixed the same way than in mass production. For example the functional 

cubing interior is verified to check if the mounting and assembly components are able 

to be installed at their fixing points, at the clips holes and if these fit together. The 

executive committee affirms the complete field of visible surfaces of the automobile 
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including secondary surfaces as well as visible grey zone surfaces between interior 

and exterior. 

 

 

 

5.4 Digital Prototyping and Digital Mock Up (DMU) 
 

The development of a product roughly takes place within the phases of design and 

simulation, laboratory work on physical models and road testing (Figure 5.17). 

Calculation and simulation leads to an early safeguarding of design data. It also 

allows physical prototypes with a high maturity and an optimised testing. Alongside 

the early safeguarding by simulation, the testing of physical prototypes within the 

development process is indispensable (Breitling, 2007). 

 

Digital Mock Up or DMU is a technology that allows product design engineers to 

replace physical prototypes with virtual ones, using 3D computer graphics techniques 

and configure complex products and validate their designs (Wikipedia 2007:3). 

 

The term DMU, the digital build of prototypes, does no longer describe the full bredth 

of tasks for the support of visualisation and simulation within the PEP. Within 

automotive industry terms like Digital ProtoTyping (DPT) or else Digital Engineering 

Visualisation (DEV) are in use. 

 

In automotive body design several verifications of the 3D Geometry take place. In 

former times verifications were performed under support of extensive 1:1 mock ups 

(e.g. seating mock up for ergonomic examinations or mock ups built from deep drawn 

plastic sheets to verify the assembly of BIW parts). Today we find a mixture of CAD 

driven, PDM driven and special isolated applications for DMU. These DMU 
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Fig. 5.17 Mixed Reality for the Validation of Passive Safety (Kötteritz, Daimler) 

 

 

 
Fig. 5.18 Building set for early structural evaluations  with sub and main assemblies 

(Hänschke, 2007) 
 

 

supported technologies evaluate diverse development concepts of the early phase 

and often can early validate different design variants. Today the following fields 

among the application areas of visualisation and simulation are important for the 

safeguarding of body design: 

• package lay out and homologation (see figure 5.19) 
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• visualisation of design data and Class A surfacing (see figure 5.15), 

• aerodynamics (see figure 5.20), 

• structural load cases,  

• kinematic functions of mounting parts,   

• deformation of parts within production or in common handling,  

• tolerance management with its effects on surface and gap design as well as 

within the production (see figure 5.22), 

• assembly, disassembly and handling / filling of assemblies, 

• all crash load cases, 

• durability of load-bearing components, 

• noises, vibrations and harshness (NVH) a passenger feels, 

• thermal functions of the heating/ventilation and air conditioning unit (HVAC),  

• thermal comfort inside the car (see figure 5.21) 

• loads caused by cataphoretic painting process   

• and many more.  

 

 
 

Fig. 5.19 CAVA-Software for package and homologation (Potthoff, 2007) 
 

 

Forsen (2003) classifies the activities of DMU into four main areas: 

 

• “GI: Geometrical Integration: All CAD-driven and powerless verifications 

belong to the area of steric geometric applications, such as: Interference 

Checking, Available Space Analysis, Cinematic Clearance Checks, Tolerance 

Simulations, and Ergonomic Examinations etc.”(Forsen 2003) The 

Geometrical Integration already includes several functional integrations such 
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as ergonomics examinations, kinematics of closures and other adjustable 

body assemblies, lighting etc.  

 

 

 
 

Fig. 5.20 CFD analysis (Breitling, 2007) 
 

 

• “FI: Functional Integration: The area of functional integrations includes all 

power integrated calculations in the field of DMU, such as: Crash Simulations, 

Stiffness Calculations, Aerodynamic Simulations, and Driving Dynamics 

Calculations etc. 

 

• PTI: Production Technology Integration: The term of production technology 

integration includes all verifications to safeguard manufacturing processes, 

such as Installation and Dismantling Studies, Deep Draw Simulations, 

Simulations of Jigs and Fixtures or Spot Welding etc. 

 

• EI: Electronic Integration: A strongly growing rate of electronic components in 

vehicles intensifies the poor design of mechanical components up to the 

handling of complex functional contexts, controlled by electronic devices. DMU 

therefore must be enhanced by simulation methods for electronic integrations.” 

(Forsen 2003) 
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Very important subjects within development and analysis are the design stages 

(status management) and design variants (variants management) which can only be 

organised for the digital calculation and simulation process under support of 

intelligent CAD software (PAD) and/or PDM systems. It is typical to analyse and rate 

a large number of alternatives within the early project phase. The main part of DMU 

data is taken over from 3D CAD data. The DMU simulations listed under Geometrical 

Integration (GI) can be verified in the CAD programmes themselves.  Visualisation 

and rendering of large assemblies or dynamic cross sectioning often is handled 

within PDM systems. PDM integrated applications also support verifications in a 

development process with multi-CAD use. The special solutions of the functional 

integration (FI) often have special data formats which may course problems with the 

feed back of data into the design processes (Hagenah & Klar 2006). 

 

 
Fig. 5.21 Analysis of air and temperature distribution under different weather 

conditions using virtual imagery (Breitling, 2007) 
 

 

All times the amount of data confines the actionability of design and simulation. The 

DMU data format JT (Siemens – Unigraphics PLM Solutions) has asserted the behalf 

of the digital development process (Pütz, 2007). Besides tessellated data with 

several levels of detailing, e.g. to visualise design data effectively, the JT format 

delivers exact geometric data (NURBS), e.g. for measurement aspects, after the 

conversion. It also delivers metadata such as the product structure or attributes like 

dimensions, tolerances, (Reference Point System) RPS points or welding spots. Thus 

it is possible e.g. to represent the complete environmental geometry within JT format 

while designing an assembly unit in a complex environment. The transmission of 
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design history between OEM and system suppliers or different design departments is 

not needed. 

 

 
 

Fig. 5.22 Statistical Tolerance Analysis (Pütz, 2007) 
 

 

Analysis of the complete vehicle with configuration and creation of DMU data in real 

time is not possible nowadays because of the high volume of data and different data 

formats. For these verifications DMU data are collected external from data collected 

and converted over night into JT or other exchange formats. The preparation of FEM 

meshes takes based on this exchange formats cannot be done completely 

automatically and takes another one to three days for an assembly up to several 

weeks for a complete vehicle. The results of these verifications can therefore not be 

up to date and often not deliver all versions (Hagenah & Klar 2006). The evaluation of 

constructed space in “Design in Context“-applications requires a connection between 

DMU and BOM-systems (PDM). Modern parametric associative CAD systems with 

connection to PDM system took over main duties from DMU: to safeguard the 

continuous consistent management of versions and the mainly interference free 

development of assemblies. 
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5.5 Concept Development / Design of Closures 
 

The design of geometry and safeguarding of functions in concept and detail 

development is performed in several phases and interrelated in diverse ways (see 

figure 5.23). According to the product vision (catalogue of goals) declared, design 

and simulation work is divided from the whole vehicle into the single part of the 

vehicle body and reassembled several times. 

 

For the concept and package phase as a general rule specialist from the different 

areas of the vehicle body development, from package, styling, design and simulation 

are concentrated in a project team to develop, organise and decide about 

development work for the basic approach within a short distance and to inform their 

centres of competence directly. Innovative concepts and new technologies developed 

independent from a special project are adapted to the new project in this phase. For 

every goal several alternative concepts are explored and developed to one optimum. 

While the suppliers and engineering suppliers were involved in the detail 

development in former years only, they are often integrated from the early phase of 

concept development now. Project management of design and simulation volumes of 

work is often performed by experienced body designers of the OEM. 

 

Detail development takes place under supervision of the centres of competence 

responsible for the special areas of vehicle body. Most part of the engineering work is 

done by engineering suppliers and suppliers. During this phase parts and assemblies 

are developed in detail and their detail functions (of e.g. weight, producebility, 

comfort, crash etc.) are further optimized. While in concept phase simulation for the 

safeguarding of functions is executed on the basis of unripe CAD models, analogues 

models or CAE modelled geometry in the detail phase simulation safeguards the 

development on basis of ripe CAD data. But even in this phase new cognitions (laws, 

competition situations, mistakes in early phase etc.) can lead to a switchback into 

concept development. As the project steps are appointed definite until SOP 

expenditures are multiplicated in such situations. 
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Fig. 5.23 Interrelated vehicle development 
 

 

The activities described in chapter 5.1 – Package, 5.3 – Class A surfacing and 5.4 

digital prototyping will be interpreted in this chapter on the example of side doors. 

Even here the explanations can deliver only a small view into the multifarious field of 

closure development. 

 

Side doors as well as front and rear lids belong within the system “vehicle body” to 

the sub system “mounting components exterior” (see figure 5.24) while the structural 

parts of the vehicle body define the sub system “body structure”. In the organisational 

structures of some OEM the interior trim of closures is also part of closure 

development. 
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Fig. 5.24 Sub system “Exterior” in major system “Vehicle Body” (Haslauer, 2006) 
 

 

• A closure is a device that allows access to a compartment. 

• E.g. the access to the passenger compartment, the boot, engine 

compartment etc. 

• A door protects the passenger compartment against climatic influences, 

noise, unauthorized access etc. 

• Important elements of e.g. a swinging door are, besides the door structure, 

the hinges, the latch and the sealing gaskets. 

 

The side door is one of the most complex assemblies of the vehicle body and must 

fulfil lots of requirements. In this chapter requirements are described which can be 

categorized as follows: 

• Handling functions, 

• Passive Safety, 

• Quality impressions, 

• Misuse and 

• Durability 
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Side doors are designed according to different concepts. During the last years the 

frame door concept was established in mass production (see figure 5.25). 

 

Handling functions are functions which have to be guaranteed for the daily use of the 

door. Nowadays handling comfort and safety play an increasing role. 

 

 
 

Fig. 5.25 Frame door concept in steel layer built design (Leinweber, 2007) 
 

 

Legal requirements, directives and specifications (e.g. ECE, FMVSS), the crash test 

procedures defined by consumer organisations (e.g. Euro NCAP, IIHS), (CARHS, 

2007) as well as in-house rules and regulations for Passive Safety are multifaceted 

and influence the design of side doors and side wall structures extensively. Side 

doors must support the safety of passengers at both side and front impact. And in all 

cases side doors must guarantee the rescue of the passengers after an accident. As 

examples from a multitude of designs the waist rail of the door which defines a load 

path for frontal impact (see figure 5.26), the side impact beam, the side airbags in the 

doors or padding arrangements in the door trim can be appointed. A lack of quality 

comes up when e.g. during polishing, the elastic deformations of the outer door panel 

lead to a noisy oil canning tendency. This effect and plastic deformations are not 

allowed. Other examples for quality issues are the stiffness of the arm rest and the 

map case or the door closing noises. 
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Fig. 5.26 Load paths in door and side wall structure due to front impact (Schulte-
Frankenfeld et al, 2002) 

 

 

Misuse loads are defined as soon as normal handling loads exceed the expectations. 

Doors must bear misuse loads up to certain limits. Examples of such conditions are  

 

• the load case door sag. Here, a load is defined that represents a heavy person 

leaning on the door body. 

• When a third person tries to get into the car by forced pull on the partially 

opened door window (see figure 5.27). 

• When door is slammed with partially opened door glass with up to 30g. 

• When the open door is over pulled, this extremely stresses hinges, door stop, 

door panels and pillar. 

 

        A   B      

 

Fig. 5.27 Load cases at drop window:  A: Forced entry; B: Opening and closing with 
/ without stopper (Badri, 2008) 
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If the occurring loads do not exceed regular working loads, but occur in a great 

amount of cycles during the vehicle life span durability load investigations are 

necessary. Typical examples are the endurance tests “door opening and closing” or 

“window opening and closing” where wearing parts like sealing gaskets, latch, 

hinges, door stop etc. are examined. 

 

The following examples show some design requirements in more depth: 

 

 

5.5.1  Hinge Axis Positioning 
 

The hinge axes of passenger cars are positioned within the side wall. This leads to 

the situation that a part of the door turns into the side wall while the door is opened. 

The depths of turn in amount depend on the distances between outer surface and 

hinge axis as well as front corner of door and hinge axis (see figure 5.28). 

 

 
Fig. 5.28 Conflicts during gap and hinge axis definition (Picture LHS: Fischer, 2006) 
 

 

The hinge axis is inclined marginally to lift the lower rear corner during opening and 

to allow comfortable opening and closing moments. The position of the hinge axis is 

defined by the curvature and inclination of the outer surface, the size and distance of 

the hinges, the general design of the door panels and connections and the adjusting 

ranges for tolerance compensation. The hinges used are mainly Carry Over Parts 

(COP). The mounting of the hinges parallel to the planes of the vehicle axis system 

allows the adjustment within all three directions of the coordinate system. This is 

necessary to adjust flush outer panels and parallel gaps. 
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Doors are nowadays often reassembled after painting, to enabling separate final 

assembly of the door. Hence in most cases the hinges are designed according to a 

two shear connection to unhinge and hinge the door. The travel needed for the 

unhinge operation has to be taken into account when the door gap is defined. 

 

 
 

Fig. 5.29 Triangular corridor for positioning of hinge axis (Brockmeyer, 2005) 
 

 

 

The door gap in the hinge axis area has to be safeguarded several times during the 

development process. As soon as the first 3D styling surfaces have been defined the 

studio engineers can check in critical positions on basis of principle sections if the 

gap defined by the stylist allows opening the door. Or the studio engineer defines 

limiting points and curves for the stylist to show a bandwidth for the definition of the 

gap. The first limiting curve and possible front corner of the door is defined when the 

outer surface of the opened door intersects the outer surface of the closed door at a 

defined opening angle (see figure 5.28). The second limiting curve for shaping and 
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positioning of the outer pillar surface is defined by the front corner of the opened 

door. The more the stylist stays away from the first limiting curve the more the front 

corner of the door turns into the side wall and prevents a suitable side wall structure. 

 

In the concept development the hinge axis is safeguarded again on basis of Class A 

surfaces and gaps. Under consideration of the parts mentioned above and critical 

tolerance positions a three dimensional corridor for the final position of the hinge axis 

is defined by three limiting surfaces on basis of the styling gap (see figure 5.29). 

From the first concept development stage of the door to the completely detailed door 

the designs of the parts will be optimized in several loops. This will lead to several 

adjustments for the safeguarding of hinge axis and gap. 

 

 

5.5.2  Latch Positioning 
 

For a low noise emission and wear out of the latch positioning the latch plane has to 

be defined normal to the turning circle of the door (see figure 5.30). The second 

angle of inclination of the latch plane is defined parallel to breadth (XZ) sections of 

the basic slanted surface connecting the inner and outer side wall in the latch area. 

While in former designs the latch often was positioned perpendicular to the plane 

view this is the best way to allow the smallest possible constriction of the pillar. 

 

The basic slanted surface of the door connecting the inner and outer surface of the 

side wall is defined by the travel line of the door glass and the slanting angle 

necessary to open and close the door. While this functional surface is defined planar 

at the beginning of concept design all surfaces of the grey zones except mounting 

surfaces have to be designed slightly convex at a later stage for manufacturing and 

aesthetical reasons. 

 

The height of the latch depends on the question whether the door outer handle 

directly or indirectly fits the latch. The latch and all its components are positioned 

within the lower door case. For the operation between latch and striker a slot is 

necessary in the corner between inner door surface and basic slanted surface of the 

door inner panel and in some designs in the inner door trim as well. 
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Fig. 5.30 Positioning of latch tangential to turning circle of closure  
 

 

 
 

Fig. 5.31 Interaction between pull down (travel) line of drop window and recess of 
inner panel in latch area 

To allow the movement of the door glass there must be a recess in the basic slanted 

surface (see figure 5.31). The size of modern latches with all their comfort functions 

need large recesses on the doors and corresponding pillar surfaces constricting the 
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pillar structure. Some OEMs define the recess and its slope surfaces defined in figure 

5.31 local only from the waist line down to the sill. 

 

Optimisations of the side wall structure according to Passive Safety requirements 

often lead to changes and redesigns in the latch area. 

 

To guarantee the hinge and latch functions dependent from the locking position of the 

latch legal requirements define longitudinal and transverse forces. These forces are 

simulated in designed position in a ridged portal and door environment as soon as 

first concept geometry for hinge and latch position is defined. 

 

 

5.5.3  Drop Glass 
 

When the side door area is defined in styling it must be approved whether curvature 

and inclination of the green house area correspond with the dimensions of the lower 

door case. On basis of longitudinal sections (cross sections, ZY) and principle sec-

tions of the package the size, shape and positioning of the door glass is safeguarded 

(see figure 5.32). 

 

Has the door glass of former cars been plane or curved cylindrical most door glasses 

are part of a large rotational surface nowadays. Two or more longitudinal sections 

through the measured data of the styling model are the basis to define the rotation 

axis. As the rotational surface made from more or less elastic glass must pass the 

slot between the waist rails, limit ranges and combinations for the curvatures of the 

glass normal (R 1000 to R2500)  and radial (R 20000 to R 150000) to the rotation 

axis are defined from experience (Pusilo et al, 2001). Modern CAD programmes 

allow the mathematical optimization of the door glass according to points of interest 

on the styling model. 
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Fig. 5.32 Definition of rotational surface and four-side-trim of drop window acc. to 
Sonnenberg (2006) with principle sections acc. to Pusilo et al (2001) 

 

 

The door glass of front and rear door is guided along the B pillar. The inclination of 

the front and rear corner of the B pillar defines a movement of the door glass 

combined from rotation and translation. The daylight area of the door is enlarged in 

the waist area by supporting and adjustment surfaces. Form and positions of the 

door glass must match up with the panels of the door e.g. in the sill area and the 

mounting parts such as door stop movement, side impact beam, latch etc. Minimum 

distances between rigid, flexible or moving parts have to be considered. 

 

When the first concept design of the door panels is finished the door can be 

simulated and optimized with the following load cases: 

 

• Door glass opening and closing with and without stopper in opened position, 

• door slam with door glass partially opened with an acceleration of more than 

30g (Daimler 60g) or 

• forced entry through the window with a pulling force of 1000N on the slightly 

opened door glass (see figure 5.27). 
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5.5.4  Door Frame 
 

The door frame defines the upper corner of the door. The nearly flush door glass is 

guided and sealed on the door frame. The sealing gasket situated on the welding 

flange of the side wall structure seals against the seal surface of the door frame. The 

sealing gasket situated on the door frame seals against the seal surface on the side 

wall structure. 

 

The door frame of the frame door concept (see figure 5.25) is build by a deep drawn 

door inner panel designed from sill to roof rail and includes the cut out for the door 

glass. Combined with a deep drawn closing panel reaching from roof rail to the upper 

hinge / latch area a stiff box section for the door frame is defined. 

 

Contrary to the design concept with a constant e.g. extruded or rolled frame profile 

the deep drawn inner panel can be designed with variable profile depths. Even here 

most OEM keep the frame constant in the directly visible area of a-pillar and roof rail 

and define the variable profile depth in the area of the b-pillar only. 

 

In the front the door frame ends in the mirror triangle and in the rear the door frame 

ends in a blunt corner with the waist rail. Additional panels may reinforce the change 

over from frame and lower door case in the area of waist line. 

 

The aerodynamic pressure distribution under driving conditions leads to a high 

vacuum in the joint area of a-pillar and roof rails. The load level can be increased by 

separate excitations of road and engine. The sealing gaskets and the corresponding 

surfaces on body or door frame must always overlap each other and only reduced 

relative deformation of the structures are expected. Otherwise loud wind noises in the 

area of the passengers head would occur when the air leaves the car through short 

term gaps. 

 

The stiffness of the door frame and its connection to the door case must be defined 

in a way that preloads of the sealing gaskets, wind loads and other excitations are 

over compensated. Many OEM therefore over bent the doorframe in the joint area of 

a-pillar and roof rails. When the door glass lies on the door frame the door glass is 

over bent too. The disadvantage of this design is that the closing loads of the door 
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and door glass is increased for the customer as the over bent door frame must be 

pressed back into its styling position when door is closed. 

 

“Usually, complex dynamic loads affect the closures and therefore the doors of a 

vehicle body. Reducing this complex real time behaviour to the most important 

factors and defining appropriate load cases is usually a great challenge for any 

simulation engineer. The static linear simulation of the window frame stiffness is an 

example of such degradation. Here, the aerodynamic wind loads, as well as the road 

 

 
Fig. 5.33 Stiffness of door frame (Bekemeier, 1999) 

 

and engine excitations, lead to complex vibration during the vehicle operation. These 

dynamic events can be reduced to a static load case, in which forces are applied to 

the front and rear window frames. From experience, the resulting stiffness required 

for satisfactory behaviour is known. The method allows fast and reliable identification 

of information needed for the designer to dimension the door structure (Lauterbach & 

Dick, 2007) (see figure 5.33). “ 

 

 

5.5.5  Waist Rail 
 

The waist rail covers an important part of the stiffness of a door and safeguards the 

passive safety during frontal, rear and side impact (see figures 5.26 and 5.34). 
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Especially for cabriolets the waist rail defines an important load path for frontal 

impact. For the local reduction of gaps between doors and pillars in the load paths 

beads are designed or crash pads are mounted. The window regulator system 

(WRS) is pivoted to the inner waist rail to allow the improvement of sealing and 

guidance by adjustment of the door glass and door frame in Y direction by 

adjustment screws between WRS and inner panel in the sill area. Inner and outer 

seal are supported by the inner or outer waist rail to protect the inner door from water 

and dust. The stiffness of the outer waist rail must protect the door from forced 

opening through the waist line. 

 

The door glass divides the waist rail into an inner and outer profile. The sophisticated 

design of the front and rear joints under consideration of door functions, 

producebility, stiffness and safety is complex. The inner panel and the one-piece 

inner waist rail panel easily define a closed profile because welding operations are 

mainly covered by the inner door trim. The outer waist rail must be defined e.g. by 

two separate panels as it is not possible to define a force fit between a single panel 

and the visible outer panel. So at the outer waist rail assembly order and definition of 

the contacts between rail panels, inner and outer door panels are a lot more 

demanding than inside. 

 

The nonlinear dynamic simulation of the whole vehicle is ambitious and time 

consuming. It is the goal to optimize one of certain variants modelled in different 

ways to an optimum. So it is not useful to start with the simulation of the whole 

vehicle. The early layout of the body structures often is carried out under support of 

partial structures like the door inner panel combined with inner and outer waist rail. 

The geometry of these separate models can be easily defined, meshed and 

optimized. According to Lauterbach & Dick (2007) and Hänschke (2007) this 

approach reduces development time considerably and leads to reliable complete 

vehicle models. As there are no or only incomplete CAD geometries in the early 

phase of the product development CAE engineers model their partial structures 

themselves or use body structure libraries of former body structures or work with 

parametric structures defined in special CAE tools (see figure 5.18), (Hänschke, 

2007; Zimmer & Schumacher, 2007). 
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Fig. 5.34 Crash pads permit load paths through side doors (Lindermaier, 2006) 
 

 

5.6 Concept Competition and Supplier Integration 
 

“After mass production in the 1920s and "lean production" in the 1980s, the 

automobile industry is undergoing a new revolution. By 2015, automotive suppliers 

will have taken over large parts of R&D and production from the automobile 

manufacturers, achieving total growth of 70% in this process. During the same 

period, the auto makers will give up 10% of their current value creation, even though 

their output will increase by 35%. “(Wyman, 2004) (see figure 5.35) 

 

The cooperation between OEM and suppliers has changed dramatically. The early 

integration of systems suppliers in the vehicle concept phase, distribution of 

responsibilities and partnership between all partners involved, concept competitions, 

target prices set by the OEM, focus of OEMs on core competences and related 

reduction of development depth for supplier components have defined a completely 

new qualification profile for suppliers during the last ten years. 

 

Hundreds of OEM – supplier relations from concept development to delivery of 

components for mass production takes up a subordinate role in a vehicle 
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development process. Besides OEM and systems suppliers the engineering suppliers 

take over most of the design work and a lot of simulation work. According to the 

master process (PEP) of the OEM they all follow the same goal and have to be 

coordinated from the technical and commercial stand points of the OEM. Basis for 

most technical communications and simulation processes are 3D CAD models which 

always have to be kept up to date and described precisely according to the 

requirements and maturity defined. Failures in sub processes endanger the overall 

goal (SOP) and lead sometimes to superheated catch-up games. 

 

 
 

Fig. 5.35 Change of added value between OEMs and suppliers acc. to Wyman 
(2004) and Binder (2007) 

 

For the promotion of the number of technical ideas, creativity and innovation OEMs 

define concept competitions at the start of a new project. In every competition several 

competitors are invited to apply their technical product proposals. Basis for the 

proposals are according to the enquired assembly a list of requirements defined by 

the OEM as well as package space restrictions and concept surfaces. 

 

For the OEM this proceeding requires an extensive supplier management with 

assessment, development and risk management measures. The suppliers need to be 
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integrated efficiently in suggestion gathering, creativity workshops, and concept 

competitions and at last in the concurrent engineering process. 

 

  
 

Fig. 5.36 Dynamic cooperation between OEM and suppliers 

 

 

The technical cooperation between OEM and suppliers is a stringent dynamic 

process on a high level of outsourcing for engineering work. Otherwise the reduction 

of time in the development processes would not be possible. The commercial 

administrative process usually is neglected and often leads to depressive moods in 

technical cooperation. At the moment therefore OEMs and suppliers think about a 

restructuring of processes in form of strategic partnerships (see figure 5.36). 

 

For systems supplier the reorientation of the OEMs leads to a new development 

strategy. While the former development of the systems suppliers was the realization 

of the product developed by the OEM, nowadays besides the actual system 
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development innovation management, fundamental research and the independent 

pre development of sub and standard components belongs to their responsibility. The 

independent pre development may start 6 and more years before the component is 

produced in mass production. The development of project defined assemblies will be 

started with the concept competition of an OEM about 3 years before start of 

production. According to the complexity of the assembly about 6 to 12 month are 

needed to launch and guarantee a safeguarded mass production. 

 

In context of concurrent engineering of vehicles and their necessary components an 

OEM expects from his suppliers at least the same competency and professionalism 

than the own R&D centre. Additionally a high level of communication ability is 

expected. These abilities not only include the CAD-, CAE- and data management 

systems but also up to date testing and analysing equipments as well as a high level 

of technical competence and performance.  As long as the capacity of a systems 

supplier is insufficient, engineering suppliers are assigned to completely or partially 

develop components in a close coordination with the systems supplier and OEM. 

Besides engineering suppliers the systems supplier engages sub suppliers for the 

development and delivery of sub components. Further suppliers of a systems 

supplier are companies specialized on production equipment and machines. These 

suppliers play an important role when the product is launched before SOP. The 

cooperation between all sub suppliers has to be carefully managed and synchronized 

by the systems supplier in cooperation with the OEM. The systems supplier takes 

over all the responsibility for the results of product development, product launch and 

delivery, and the absolute fulfilment of the list of requirements and target costs 

defined by the OEM. 

 

 

 

5.7 Summary 
 

This substantial chapter gives a small insight into the various development works of 

stylists, design, CAE engineers and related partners. Every unit of the automotive 

body will be developed with several variants with the objective of improvement 
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towards one optimum. Every single development step of every variant of every unit 

needs the design of 3D geometry for evaluation. 

 

 
Fig. 5.37 Product knowledge and cost responsibility in PEP acc. to Wozny (1992) 

 

 

It is the goal of this investigation to upgrade the product knowledge in the early phase 

of product development (see figure 5.37) by improvement and systematization of the 

design of 3D geometry under support of parametric associative design (PAD) and 

improvement of the distribution of design work within the concept phase. 

 

 

In the following chapters the investigation will concentrate on the two central themes: 

 

• Sections or profiles are the basis of surface and solid design. There for 

recommendations for the design and the application of profiles throughout 

different areas of automotive body design will be developed. 

 

• For the distribution of design work in concept development it is useful to 

organise the design work of assembly components and their environment not 

according to the single parts of the assemblies but according to a zone based 

approach. Advantages and limits of zone based design will be investigated.
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Chapter 6  Distribution of Design Work 
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6.1 Introduction 
 

Distribution of work can be allocated according to detail parts, assemblies, modules 

or body zone location. The distribution depends on size, level of detail, the 

development phase and development time. During the early phase of product 

development engineers often design assemblies or modules with a low level of detail 

while in mass production (detailing) phase the design work is focused on single parts 

and is shared between many engineers. In the early phase of development several 

design variants and different approaches are investigated under support of the 

options within PAD. In the detailing phase key decisions are already concluded and 

fewer modifications are made which leads to lesser use of parametric approaches.  

 

The early concept work on large assemblies i.e. closures can be distributed 

according to the single parts of the assembly and its mating geometries, according to 

design zones or a mixture of both. In the past layouts of large body assemblies were 

worked out on drawing tables and drawing boards. Car body designs were drawn in 

scale of 1:1, requiring drawing tables 7 metres long and 1.5 metres wide. Several 

engineers worked on one large layout e.g. side panels and side doors. The 

distribution of work was done according to their zone. One purpose of this research 

work is to apply the proven method of collaborative manual design work on large 

design tables to the methodical creation of PAD models hence permitting complete 

assemblies to be designed simultaneously in a zone-based approach. 

 

For concept development according to detail parts approach independent of size or 

complexity, all the parts of an assembly are distributed between design engineers 

(see Figure 6.1). For reference all part specific parameters, Class-A surfaces, contact 

or distance surfaces of mating parts, joining points etc. are necessary. From this it 

follows that the design effort per part can vary a lot and every CAD-model is tailored 

especially for the individual part. Often design engineers of OEMs are forced to work 

according to this method because the corresponding parts of the assembly belong to 

different areas of responsibility such as BIW, closures, interior trim, passive safety, 

electrical systems etc.  
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For the zone based approach the automotive body is divided into several design 

zones (see Figure 6.1). With this approach design engineers share the design work 

for the side wall including closures, while they develop BIW, closures, corresponding 

surfaces of interior trim, control surfaces for passive safety, space for electric 

systems etc simultaneously. Firstly every design engineer designs the surface areas 

of all parts included in his zone. From this it follows that all design engineers must 

share and coordinate all references for the parts involved in the zones. It must be 

clearly identified which part functions control other part functions as well as positions 

and shapes of corresponding parts. The parameters and reference surfaces of all 

parts involved must be defined in every CAD-model of the mating zones as well as 

the transitions (e.g. planes) between the zones. Structuring and nomenclature used 

in the CAD-models must be organised. Once the single zones are completed 

trimming of parts and joints between single zones are designed as follow up. Then all 

zones must be brought together to derive the single parts from the zone based 

models. As a last step parts are detailed. For the zone based approach it is 

necessary to define project teams with designers from all disciplines. 

 

           
Fig. 6.1  Comparison of part based approach LHS and zone based approach RHS 

on the example of a tailgate (Aldag et al 2006) 
 

Experience with several projects has shown that typical mechanical assemblies such 

as the sunroof system or the heating/air conditioning unit are more suitable for the 
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part based approach while typical body parts like body structure, body panels, 

closures, exterior or interior trim panels are more suitable for the zone based 

approach. In this chapter the zone based approach is explained with its 

requirements, advantages and disadvantages. 

 

 

6.2 Zone based Design in brief Examples 
 

In 2004 the author use the zone based method on a side door design. The project 

was defined by the engineering supplier IVM, Munich and the OEM BMW and was 

carried out at the university (HAW Hamburg) with six students under the author’s 

supervision. The results were poor due to the lack of experience with file based link 

management. A new project of a tailgate and its environmental geometries in 

cooperation with Volkswagen was carried out in 2006. Another project based on a 

side door was designed and investigated in cooperation with AUDI in 2007. 

 

Volkswagen was interested to compare the Volkswagen part based approach with 

the zone based approach defined by the author. It was agreed a team of students 

would work out a tailgate and its mating geometries zone based from concept phase 

to detailing phase under the author’s supervision. Volkswagen decided to share the 

design work in their parallel project in a part based approach from concept to 

detailing phase. 

 

The results of the Volkswagen tailgate project are mentioned briefly in the 

introduction (Aldag et al, 2006; Reuter, 2007; Tecklenburg, 2006; Vickers et al, 

2007):  

 

The unequal complexity of the parts involved offer very different design requirements 

and resources. Every part oriented CAD model contains the design work from 

concept to detailing phase and is especially tailored for that part, modelling methods 

and details. Adapter models (containing all the references) and corresponding design 

models are closely constrained and therefore very unstable when it comes to larger 

changes and variations. 
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In the zone based approach the corresponding zones use a common adapter model 

which defines parameters and reference geometries as well as geometry for the 

transitions between the zones (for example construction planes). In addition to 

references used in zones the same definitions for the denomination of sub surfaces, 

attributes and publications for the common design of every single part surface have 

to be allocated. Construction models (kits) with designed zones showing different 

variants of the same body area can be combined to different variants of assemblies. 

Zone-based design models have a much higher degree of reusability than that of 

highly specialised part models. The side effect is that a team leader must be 

responsible for the entire model with all corresponding design zones. For the update 

sequence of the zone models involved in the project model and for all single parts 

that are included in the zones a good working group of different disciplines has to be 

established. 

 
 

Fig. 6.2  Area of side doors with position of package-sections AUDI A8 (D4) (Nikol, 
AUDI) 

 

Another brief example of two zones taken from the AUDI side door project explains 

more details about the zone-based design approach: Figure 6.2 shows the side of a 

passenger car. The complex functions of the side doors drive the design of the 

corresponding body structures. 

 

The zone of the upper A-pillar between waist and roof area includes sub zones of the 

circumferential glass bed of the front screen, the A-pillar and the front door. The 

distribution of design work can either be organised according to the single parts and 
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sub assemblies or according to design zones of the front door and its corresponding 

parts (for example inner or outer door panel, inner or outer side wall etc.). In the 

concept phase of the design of a front door functional detail investigations are also 

needed which are integrated in the zone-based design directly or which are prepared 

in separate concept models. All parts have to be developed in context with 

corresponding parts (see list below). 

 

For the example of a complete front door development the distribution of design work 

in a zone based approach could be organised in the following CAD models 

(Tecklenburg, G. (2008:1): 

 

(I) layout body-in-white (BIW) door opening flange (flange door entrance 

between inner and outer side wall) 

(II) layouts glass barrel3, trimming door glass, window regulator 

(III) lower A-pillar zone with layout of hinge axis and door gap 

(IV) layout door check  (see Figure 6.3) 

(V) upper A-pillar zone 

(VI) upper roof rail zone 

(VII) lower B-pillar zone with integration of door latch and seat-belt retractor 

(VIII) upper B-pillar zone with the inclusion of belt height adjustment 

(IX) door belt and side mirror zone 

(X) side impact carrier zone 

(XI) door sill zone. 

 

Due to time constraints the entire scope of the project could not be undertaken by a 

team of seven students during one semester. Thus, the projects had to be limited to 

the area below the waist line. 

 

                                            
3 Glass barrels are surfaces of revolution defined to fulfil the functions of door glass and window regulator as 
well as styling requirements. Trimming door glass means to cut out the shape of the door glass from the 
unbounded glass barrel surface. 
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Fig. 6.3  Layout for kinematics of lever of the door check trap (lower picture 
Franzen, 2007) 

 

 

 
 

Fig. 6.4  Turned in front door with crash profile, hinge and lower A-pillar (Fischer, 
2006) 
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The second example briefly describes the approach adopted for the development of 

a lower A-pillar zone (see Fig. 6.4) with hinge axis layout and door gap. In general 

side door hinges are arranged to turn the door tip into the side wall as turn-in 

arrangement. Dependent upon the current reference geometry (for example door gap 

and outer surface, A-pillar) an envelope for the positioning of the hinge axis must be 

designed (see workbench example Appendix 2). Then the door gap can be designed 

and on the basis of the front corner of the door and the outer surface of the A-pillar 

can be derived. The lower A-pillar zone shows three prismatic profile areas (design 

methodologies see Chapter 7): 

 

(a) The door gap with first slope surface of the front wing and the crash-flange  

  with its hemming flange of the door. 

(b) The body side door seal flange of the BIW and its opposite seal surface on the 

  door. Results of the BIW flange layout would be approved and updated in the 

  zone model. 

(c)  The door’s side door seal with its seal surface on the corresponding pillar is 

  positioned as far outside as possible inside the hinge axis. 

 

The inner and outer door frame in the hinge area (hinge frame) and the opposite 

hinge surfaces of the pillar are defined as planar surfaces relative to the hinge axis. 

The door function does not necessarily need an inclined inner and outer hinge frame 

but for tooling purposes the surfaces are inclined relative to tooling directions of the 

parts involved. 

 

The mounting surfaces of the hinges are positioned in the directions of the main axes 

system. This allows an easy hinge adjustment for a flush outer panel and parallel 

door gap. The results of the separate layout of the door check are included in the 

zone model of the lower A-panel. 

 

The following sections describe the distribution of work with zone based approach in 

more detail. 
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6.3 Zone based Approach for the Development of a Glass House 
 

6.3.1  Introduction to the Project 
 

In winter semester 2009 and part of summer semester 2010 in cooperation with 

AUDI, the engineering supplier GFI, both Neckarsulm, and HAW Hamburg the 

student team AUDI was instructed to design the body structure of the AUDI A8 (D4) 

(see Figure 6.2) in the area of the glass house in aluminium shell construction 

method (joining technique: punch riveting and in exceptional cases Metal Inert Gas 

(MIG) welding). Reference data were the body structure designed according AUDI-

Space frame construction, the outer side frame including side doors, the inner trim 

panels and mounting parts such as curtain-airbags, handles, sun blinds etc. 

 

Parallel to team AUDI the team GFI was instructed to design a new sunroof-system 

for the glass house of team AUDI. Team GFI used the same reference data. For 

further orientation they got package sections and exploded drawings of an old 

sunroof-system.  

 

Both teams were asked to emulate the typical collaboration between an OEM and an 

engineering supplier and to update their concept development work regularly. 

Change scenarios for both teams were: a) a change of the Class-A shape of the roof, 

b) changes of sheet thicknesses, c) changes of airbag position and d) changes of 

shape and position of the opening line of the sunroof. 

 

Because of the character of the assemblies team GFI was asked to distribute their 

concept design work according to the parts involved in the sunroof-system while 

team AUDI was asked to distribute the concept work in a zone based manner.  

 

At the beginning of the project work a common product structure had to be defined. 

The contact zone where the supporting frame of the sunroof is riveted to the roof rails 

and the order of the overall assembly had to be discussed in detail. The first idea to 

rivet the supporting frame onto the roof rails side from underneath had to be rejected 

because of problems of space requirement for the water management in the corners 

of the sunroof. In the final order of assembly the supporting frame is riveted onto the 
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roof rails from the top. The outer sidewall is applied in Y-direction and riveted to the 

roof rail and at least the roof is applied in Z-direction and laser-soldered to the outer 

side wall (see Figure 6.5). 

 

 
 

Fig. 6.5  Package section 111 - Roof rail side with curtain airbag, interior panels, 
sidewall outer and roof (compare with figure 6.2) (Bode et al, 2010) 

 

 

6.3.2  Common Project Organisation of Teams AUDI and GFI  
 

 
 

Fig. 6.6  Reference geometries for team GFI 
 

 

As there is no Product Data Management (PDM) system available at Hamburg 

University of Applied Sciences (HAW) both teams were requested to define a file 

based project structure. The common project file contains the shared reference 
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Fig. 6.7  File based project-structure for collaboration of teams AUDI and GFI acc. to 

Bode et al, 2010 and Untiedt et al, 2010
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geometries such as package sections, Class-A surfaces, opening lines, contact 

surfaces and joining points (see Figure 6.6). In addition common design guidelines 

have been defined as well as a common CAD - start model (basic structure) and 

design templates. The final assembly (CAD-file) is the last but most important 

element of the common project file. 

 

For every team, a team file with sub-files for the project and every single designer 

were defined. The respective team leader had writing and reading access for all files 

of the team while the normal team members had writing access only for their own file 

and reading access for all files of the team (see mind map Figure 6.7 and file in 

addendum).  

 

Figure 6.8 shows the structure of the assembly and part models with main focus on 

team AUDI. In the assembly model (ASSY) of team AUDI two design phases for zone 

based and part design steps are defined. In the first phase the surfaces of all parts 

involved in the zone are designed as well as the transition zones (joints). In the 

second phase trimming of the parts is defined, surfaces are filleted and trimmed and 

parts are derived. Small additional parts such as stiffening plates are designed in this 

phase. In a further step of this phase parts are detailed (e.g. swages and recesses 

for mounting parts are added) and solid models are derived from the surface models. 

For FEM calculation mean (mid) surfaces of the structural parts and geometries for 

planned joining techniques are designed and placed in the structural tree.  

 

It was agreed to use view links as well as manual links between all project phases. 

View links are automatically updated as soon as the reference in the adapter is 

exchanged or altered. View links inform the designers about changes of the 

reference geometries but are not used for the follow up design. Manual links are 

isolated copies of the reference geometries or view links used for the follow up 

design (explained in detail in chapter 4.2). As soon as the designer decides to take 

over the change he has to make an isolated copy of the view link, exchange the copy 

with the current design reference and update the design. For further detail 

information regarding the data management see mind map Figure 6.8 and file in 

addendum. 
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Fig. 6.8  CAD-model structure for collaboration of teams AUDI and GFI acc. to 
Bode et al, 2010 and Untiedt et al, 2010 
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Figure 6.9 shows the distribution of working zones and parts between five design 

engineers and one team leader of team AUDI. To get an understanding of the overall 

work Figure 6.10 shows the results of the part-phase of team AUDI. 

 
Fig. 6.9  Distribution of working zones and parts in team AUDI (Bode et al, 2010) 

 

 

 
Fig. 6.10 Results of the part design at the end of the AUDI project (Bode et al, 2010) 

(Labels see figure 6.9) 
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6.3.3  Design Guide Lines 
 

The execution of several team projects intensified the comprehension that a 

collaborative design work is only possible with clearly defined design guide lines. The 

guidelines developed and approved in the team projects for AUDI and GFI are 

presented in full detail in the addendum. 

 

 

6.3.4  Start Model 
 

The start model is a part defined with a hierarchical structure mandatory for all 

members of a design team. Only the consequent use of the start model combined 

with the project structure, the IDO-principle (Input, Design and Output - principle) and 

the guidelines lead to a continuous information flow and update safe behaviour of the 

CAD-models defined. Detailed information is presented in the addendum. 

 

 

6.3.5  Manufacturing Requirements 
 

It is the main challenge of product development to develop a successful and 

innovative new product for the international markets. In doing so new styling, new 

functions, fulfilment of future legal requirements and quality rules are essential. 

Manufacturing should produce high quality product but cost effective. Therefore well 

known manufacturing methodologies, controllable processes and production facilities 

are the goals of manufacturing strategy (Braess, Seiffert, 2007:1). Under support of 

PAD the requirements of both manufacturing and product development can be 

integrated in the early stages of concept development in material selection, product 

design and tolerancing towards the requirements of manufacturing (Brockmeyer, 

2010). 

 

In concept development production methodologies should already be taken into 

account, e.g. design of parts and assemblies under consideration of part size, tooling 

direction and sequence of assembly, position and style of fixation points for mounting 

and measurement, width of mating flanges and accessibility of flanges by weld or 

rivet guns or other devices. The start model defined for team AUDI specifies the use 

Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 165 



Chapter 6 
 

 

of tooling direction and release angles. Other topics relevant for manufacturing such 

as sequence of assembly, width of flanges, distance of weld spots etc. must be 

determined early. 

 

Besides the demands mentioned team AUDI had to take into account two different 

rivet guns for self piercing rivets delivered by AUDI in form of 2D silhouette and 3D 

skin CAD geometries (see Figure 6.11). Accessibility of flanges and unobstructed 

operation of the rivet devices had to be checked within the assembly development at 

any time. For the two different rivet guns in 2D and 3D four power copies (see 

glossary) were defined. Input-geometries are the flange surface, flange corner and 

the rivet point defined. The rivet direction (from thin sheet towards thick sheet) and 

the rotation angle around the normal axis are adjustable under support of 

parameters. The segmented envelope of the rotated silhouette and a clever definition 

of extreme points for contact allow the control of accessibility and guarantee the 

clearance between the rivet gun bracket and the flange in a certain angular range. By 

these power copies demands of manufacturing could be approved at an early phase 

of concept development and after completion of part phase. Nevertheless these 

proceedings must be approved by manufacturing under consideration of further 

demands at a later stage. 

 

 
 

Fig. 6.11 Rivet guns with different bracket sizes (mouth widths) (Bode et al, 2010) 
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6.3.6  Process Chain from Concept Section to derived Parts  
 

6.3.6.1 Zone-Phase 
 

The zones shared by the five designers are divided by transition planes. On these 

planes shared concept sections are defined. These true most sections called 

Master_Sketches in the start model show the whole cross section. Often the concept 

section is not true and can not be used for surface derivation. The main purpose of 

the concept section is to show the complete constructed space and to control the true 

sections of prismatic profile areas. The process chain of sections is linked up in a 

way that all definitions of segments and parameters are made in the (radial) concept 

section but the surfaces are derived from the controlled true (compound radial) 

sections. For the update safe design of fillets in the part- phase the surfaces are 

designed with excess width. A detailed description of the process chain from package 

section via true (radial) section to true (compound radial) sections is presented in the 

next chapter. 

 
 

Fig. 6.12 Concept section 1 C-pillar LHS and 2 RHS (acc to Bode et al, 2010) 
 

For the consistent cooperation between the designers of the team and mating teams 

it is necessary to clearly define who is responsible for controlling geometries. The 

person responsible develops the shared concept section and hands over the surface 

bands and its spine and guide curves derived from the design process to the other 

dependent designers. After discussions of the boundary conditions the teams made 
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the following decisions: roof rail side controls the A-pillar, roof rail front controls the 

joint integrated into the A-pillar zone, the B-pillar controls the joint integrated in roof 

rail side, the roof rail side controls the supporting frame of the sunroof, and roof rails 

side and rear together with C- and D-pillar control the joint side wall rear. 

 

On the basis of guidelines such as sequence and direction of assembly or minimum 

distance towards Class-A surface interior first concept sections of the C-pillar are 

designed on a plane perpendicular to the spine and guide curve flange BIW outer 

side frame. As both spine and guide curves of flange BIW outer side frame and 

opening line side window differ less than 3° from a parallel direction surface bands 

are directly derived from the concept section and its spine and guide curve because 

the break down into true sections is not necessary from the geometrical stand point. 

The inner surfaces (punch side) of the pillar are designed (see Figure 6.12). 

 

Alternative to concept section 1 a second concept section of the C-pillar is developed 

which shows a simpler outer panel because the panel does not follow the steps of the 

door bedding defined on the outer side frame. To compare both variants a linear 

calculation is carried out in CATIA (see Figure 6.13). For the load case chosen 1mm 

sheet thickness, a force of 100N on the upper corner, material aluminium and 

realistic restraint conditions are defined. As expected the distribution of tension is 

better in the multistage panel. As additional corners will increase buckling stiffness 

the concept section 1 is chosen for the further design. 

 

The design approach for the D-pillar is more complex than for the C-pillar. At first a 

true most concept section is designed on the transition plane to joint side wall rear 

perpendicular to the theoretical intersection curve of rear and side walls (see Figure 

6.14). Two true local sections for the prismatic profile areas of window beddings side 

and rear windows are designed and linked to the concept section. From the true 

sections surface bands are derived under support of associated spine and guide 

curve. Between the two prismatic profile areas warped surfaces are designed under 

consideration of Class-A surfaces exterior and interior. In addition for the inner panel 
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the contact surface of the curtain airbag4 for the rear passengers had to be taken into 

account. 

 

 
Fig. 6.13 Comparison of two different outer panels C-pillar (Bode et al, 2010) 

 

 

 
 

Fig. 6.14 Concept section D-pillar (acc to Bode et al, 2010) 
 

 

                                            
4 Curtain airbag is an airbag system mounted to the pillars or roof rail side. In case of an accident the airbags 
define a cushin system hanging down inside the side windows to protect the heads of the passengers. 
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For the design of joint side wall rear it was decided to control the surfaces of the joint 

by all it’s mating profile zones. The references for the joint are the external 

references of Class-A surfaces interior and exterior and the transition planes as well 

as the internal references of all concept surfaces and associated spine and guide 

curves of the mating zones (see Figure 6.15). 

 

In zone-phase the design of the joint side wall rear takes place in file 

Sheet_Metal_Part under support of the input data mentioned (see Table A.4.1). Most 

of the design steps are performed in file Part_Geometry_Untrimmed which is 

structured further according to the IDO (Input, Design and Output) principle. The file 

Part_Geometry_Trimmed_Non_Pierced is only used to prepare the output data. In 

the input sub file of file Part_Geometry_Untrimmed the Class-A surface of side wall 

outer and the new transition planes for the two sheet metal shells of the rear roof rail 

as well as all surface bands and associated spine and guide curves of the mating 

zones are stored. All surfaces are checked according to their designed side and 

material vectors and trimmed by the bounding box. In addition the input file contains 

the intersection curves between the transition planes and corresponding surface 

bands (see Figure 6.16). 

 
 

Fig. 6.15 References for the zone-phase of rear joint sidewall upper (Bode et al, 
2010) 
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Fig. 6.16 Prepared Input-data for design of rear joint sidewall upper (Bode et al, 
2010) 

 

 

 
 

Fig. 6.17 Concept geometries inner shell rear joint sidewall upper (Bode et al, 2010) 
 

 

The design sub file is structured further according to the outer and inner shell of the 

joint. These sub files are structured further according to the single transitions of the 

mating parts. At first spine and guide curves for concept surfaces of the joint are 
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designed. Afterwards continuous transition surfaces are derived from these curves 

and the input geometries (see Figure 6.17). Under support of bounding surfaces 

designed for the areas of roof and rear window concept surfaces of the joint are 

trimmed evenly. 

 

The output sub file contains all “Invert”-geometries of the isolated concept surfaces 

and curves. The “Invert”-geometries are published for the use of the data in the part-

phase. 

 

6.3.6.2 Part-Phase 
 

In the part-phase trimming geometries for the parts are definitely defined and all parts 

are derived from the concept geometries of the zone-phase. Parts are detailed e.g. 

with recesses, stiffening swages and holes. Small additional parts such as stiffening 

plates are designed in this phase. Designers now are responsible for the parts of 

their zone, but it is possible that large parts are extended over several zones. 

 

Generally an adapter is placed at the head of the structural tree of part-phase to 

collect all input-geometries necessary. In this adapter all “Invert”-geometries of the 

isolated concept geometries would be stored. Team AUDI decided to define one 

model structure for zone- and part phases so that the model structure of the part 

phase has no phase adapter and can not be opened separately. All individual 

geometries necessary for one part are copied directly from the output-data of the 

zone phase into the adapter of the individual parts. 

 

On the example of inner panel rear joint sidewall upper the design work in the part 

phase is described. Figure 6.18 shows the completed parts of inner and outer panels 

of rear joint sidewall upper. Besides the concept surfaces of the joint developed in the 

zone phase concept surfaces from the mating zones roof rail side and C-pillar are 

necessary for the part design (see Figure 6.19). 
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Fig. 6.18 Completed parts inner (green) and outer (blue) panels of rear joint sidewall 

upper (Bode et al, 2010) 
 

 

 
 

Fig. 6.19 Input data for part-phase of joint sidewall upper (Bode et al, 2010) 
 

 

The design of the part inner panel joint sidewall upper is performed in the file 

“Sheet_Metal_Part”. According to the guidelines defined on the basis of the design 

methodologies of the OEM´s start model first off all the basic surface assembly with 

untrimmed outer edges is designed in file “Part_Geometry_Untrimmed” (see figure 

6.20). The example of the opened file “Inner_flange”makes clear that several design 
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steps are necessary to supplement and assemble the primary surfaces of the zone-

phase for one subassembly of surfaces. 

 

 
 

Fig. 6.20 Basic surface assembly of inner panel rear joint sidewall upper (acc. to 
Bode et al, 2010) 

 

 

This methodology specifies that always again a new subsurface or a subassembly of 

two new sub surfaces is designed and integrated into the previous assembly under 

support of features like “Join” or “Fillet”. Because of the high number of 

subassemblies the design work in the part-phase is substantial. In doing so the basic 

guideline to keep the structural tree traceable and legible stands in the foreground. 

 

After the basic surface assembly is completed the detailing work starts with the 

design of recessed surfaces for the connection with the C-pillar and is proceeded 

with the design of several recesses (e.g. for the fixation of the supporting frame of the 

sun roof or the deformation elements of the handhold roof rail) (see figure 6.21). 
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Fig. 6.21 “Part_Geometry_Untrimmed” of inner panel rear joint sidewall upper (acc. 
to Bode et al, 2010) 

 

 

After completion of eighteen recesses in file “Part_Geometry_Untrimmed” the part is 

trimmed under support of trimming geometries defined in the zone-phase for the roof 

and rear window area as well as planes on the transitions to C- and D-pillars and roof 

rails side and rear. The file “Outer_Trim_Contour” contains all the geometries 

necessary for trimming of the outer edges. The trimmed part is stored in file 

“Part_Geometry_Trimmed_Non_Pierced”. Under support of positive geometries for 

every hole (extruded surfaces) the necessary holes are designed. The file 

“Hole_Feature” contains all extruded surfaces to be subtracted from the non pierced 

part to design the holes. In file “Part_Geometry” the completed surface model (punch 

side) of the inner panel is designed and stored (see Figure 6.22). 

 

To conclude the design work of the part all contact surfaces to mating parts (e.g. 

fastener water hose and supporting frame of sun roof) are stored in form of linked 

and isolated geometries. “Invert”-geometries of the isolated geometries are defined 

and published for transfer to other designers. In the file “Output_FEM“ all relevant 

data for FEM calculations are defined such as the mean surface of the part, the 

seventeen rivet points and the glue line for the connection with roof rail rear. These 

geometries are exclusively stored in a linked format and published for the further use 
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of other designers. Under support of “Thick surface”-feature a solid model of the part 

is defined and added to Part Body (final part) in the structural tree by a Boolean 

operation (see Figure 6.23). To complete the part the material is defined in the Part 

Body, material and its density are defined and volume and weight of the part are 

calculated in the set of explicit parameters. All other large parts are designed and 

structured accordingly. 

 
Fig. 6.22 Completed surface model inner panel rear joint sidewall upper (acc. to 

Bode et al, 2010) 
 

 

6.3.6.3 Assembly Glass House with Sun Roof 
 

In the part-phase the parts and subassemblies of team Audi are structured zone-

based using an adapter for every zone (designer). For the total assembly of glass 

house with sun roof a separate CAD-model is built showing the parts and 

subassemblies according to the sequences of assembly. The separate CAD-model 

administrated in the common project file is necessary because of the different 

reading access of both teams. The separate CAD-model can be read by all team 

members of both teams. In the total assembly the manufacturing subassemblies 

ASSY Body in white, ASSY Sun roof module, ASSY Mounting parts exterior and 

ASSY Mounting parts interior are defined. Parts and subassemblies designed by the 

team members as well as Carry Over Parts (COP) are structured in context. 
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Fig. 6.23 Completed solid model inner panel rear joint sidewall upper with 

connecting elements (acc. to Bode et al, 2010) 
 

 

 

6.4 Conclusion 
 

At the university the emulation of the cooperation’s between development partners 

such as OEMs and engineering suppliers is restricted because of the lack of PDM 

system. Nevertheless most of the questions regarding collaborative parametric 

associative design of assemblies of the automotive body can be investigated and 

optimised. In industry the file based approach used at the university is used in the 

concept phase. Under support of final projects (bachelor and master thesis) worked 

out in industry where students of the university assist the elaboration and verification 

of interrelated product development the author’s findings were applied and verified. In 

this chapter the requirements of collaborative work for concept design with zone 

based approach have been discussed in detail. For the development of automotive 

body parts the use of sections is essential. Next chapter will describe and verify 

methodologies and principles of this subject. The addendum will deliver a selection of 

CAD-model examples which have been necessary to work out and verify the 

knowledge described so far. 
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7.1 Introduction to the Chapter 
 

Parts of an automotive body can be classified according to their material, their 

manufacturing method, function or their geometry. 

 

When an automotive body part is analysed according to its geometry it is noticed that 

parts are curved in one or two planes and have a common position in design space. 

Areas of body parts designed for shell construction or complete parts designed for 

space frame construction are of constant profiles (prismatic). Figure 7.1 shows a true 

most (radial) concept section of an A-pillar with three prismatic profile areas.  

 

Profiles without constant cross section are designed with production intent in mind 

i.e. according to the manufacturing technology employed. As automotive body parts 

are designed in post assembly (carline) and not in manufacturing position specific 

design methods are necessary to develop prismatic and non prismatic profile areas. 

 
Fig. 7.1  Example of use A-pillar: True most concept section of prismatic profile 

areas bedding front screen, inner and outer bedding side door.  
 

In this section most important design methods are explained and evaluated on basis 

of three different case studies. The three case studies (workbenches) have been 

defined to represent three different degrees of difficulty. 
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All common design methods use the same references such as a reference surface, a 

spine and a guide curve. For prismatic profile areas a secant surface (surface band) 

must be designed according to the projected width of the prismatic area to become 

the reference surface. In most cases a true (compound radial) section normal to 

reference curve is designed, to define the dependencies of the new geometry in 

relation to the reference surface and subsequent control surfaces. When the profiles 

route is expected to be prismatic, spine and guide curves must be identical. For 

Computer Aided Design (CAD) modelling the guide curve must be tangent and the 

spinal curve curvature continuous.  

 

Manual body design applies three design methods to design prismatic profile areas. 

a) In the “normal plane method” the profile cutting plane is defined in 3D on the basis 

of two intersecting lines. Then in two different views a straight line is defined in the 

same intersection point normal to the reference curve. b) In the “projecting and the 

tangential plane methods” the profile cutting plane is defined in true view of the 

reference curve. To obtain the true view of the reference curve under the support of 

the projecting plane method, a projecting plane (normal to view plane) is defined 

tangential to the reference curve in its 'true most'' view. In the 'true' view of this plane 

the reference curve is to be seen partly true. c) In the tangential plane method a 

tangential plane to the reference surface is defined in any point of the reference 

curve. In the true view of the tangential plane the reference curve can be seen partly 

true. All above manual methods have in common one spine and guide curve, a 

normal plane and a reference surface. 

 

In CAD design methods are established on the basis of profile surfaces or surface 

bands. Surface bands can either be generated on the basis of true radial compound 

sections (“True section”) or on the basis of the design features of the CAD-software 

without using a true section (“Surface band”). Circumferential constant prismatic 

surfaces are modelled from profile curves which when drawn include all required 

radii. Generally most prismatic surfaces end up in a 'joint design' as they are 

designed zone the basisd. Therefore the prismatic profile of the true compound radial 

section without consideration of any radius representations is separated into 

segments. Every single segment is  generating a curve for the development of a 

surface band. It is necessary to define generating curves of appropriate length to 
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allow a precise delimitation or enable filleting between the two surface bands. This 

prolongation of surface bands in width also supports the definition of planar control 

curves for the modelling of surface blends in the 'joint' area. The necessary 

prolongation of the profile segments can be delimited under support of boundary 

boxes (rectangles) or boundary circles which can be defined on the section plane of 

the profile. 

 

In this chapter the design process from design of early package and concept sections 

up to the method of true (compound radial) sections which are used to derive surface 

bands and parts is discussed. The analysis of the several principles and practices 

used in CAD for the design of prismatic profile areas and the profile areas designed 

according to functional demands is presented. Reproducing such surfaces and 

curves for reliable and safe updates by other users of well established CAD models is 

also investigated and analysed. 

 

 

 

7.2 Design Process and Application of Profile Surfaces 
 

During the concept development stage of automotive body assemblies there are still 

several occasions where breakage of the links in the associative process chain can 

occur. One of these breakages is generated by the use of isolated package sections. 

Thus an objective of this work is to define a design process from package section to 

surfaces and individual components/parts without breakages. 

 

In the early phases of Product Evolution Process (PEP) the package process 

optimises the space allocation for the various parts (see chapter 5). To describe 

these space allocation cross-sections, previously defined section developments and 

competitors’ data are used. These sections are often distorted in terms of their 

geometric integrity and therefore can not be utilised for dimensioning and surface 

derivation and extraction. Sections are mainly grid sections (cut on a plane parallel to 

the vehicle XYZ-coordinate system). Often these sections are taken over from 

another OEMs vehicle concept or are designed on the basis of demands of 

competition. The sections are often not true, and do not exactly fit the styling of the 
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new car. Therefore they cannot be used for the development of surfaces and parts of 

the new car. Their only purpose is to give the concept engineers an idea what kind of 

parts and geometries are involved in the various package spaces. OEMs often use 

the same design principle in packaging components for several models and variants 

of the brand. Profiles will only have to be adjusted from car to car according to their 

shape and dimensions. 

 

Sections needed for the development of surface or solid geometry components need 

to be true compound radial sections. This means that the section is defined on a 

plane situated perpendicular to a spine curve (reference geometry). 

 

Most concept sections contain more than one true profile with different reference 

surfaces (e.g. A concept section of an upper A-pillar contains a bedding profile for the 

wind screen, a bedding profile for the front door, Class A surfaces to the outside, 

functional surfaces to the inside of the car etc. (see figure 7.1)). This means that a 

concept section has to be subdivided in several true profiles. Several true profiles 

result in several primary surfaces which are completed to create parts by trimming or 

filleting operations.  

 

To allow the variation of references and safe handling in updating the profiles the 

surface generating segments have to be designed longer by a factor of 2 to 3 than 

shown in the concept section. The development of true sections from the concept 

sections is a long cumbersome process. Therefore it is necessary to develop 

methodologies and principles within a process chain which facilitate an update safe 

environment for automotive body parts. In this chapter the process chain for the 

design of body parts from true most concept sections to true sections is investigated. 

The core area of development is the design of prismatic profiles. The true most 

(radial) section and true (compound radial) sections are used to design a specific 

zone (i.e. the upper A- or C-pillar) to prove both the legal and functional requirements 

of the concept. With the aid of specific case studies this chapter describes the 

following methodologies: 

 

 “True section” methodology developing true most radial section and true radial 

compound sections for the design of surface bands and body parts 
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 six principles for the extension of surface generating segments in true sections  

 “Surface band” methodology developing true most radial section and design of 

surface bands and body parts without support of true radial compound 

sections 

 methodology for designing profile surfaces for production intend parts i.e. to 

fulfil tooling demands 

 methodology for creating parametric associative package sections  

 

Figure 7.1 shows an example of a simplified model for an upper A-pillar with front 

door and front screen beds in a radial section. This parametric associative section 

was designed having as a basis a distorted package section (principle section). The 

upper A-pillar is built from Class-A, prismatic and functional surfaces of glass barrel 

(retractable window, door) or control surfaces of binocular obstruction. Figure 7.2 

shows a C-pillar with its concept section and three prismatic profiles on each side. 

These are the bedding profiles on sidewall outer, the reinforcement C-pillar and the 

sidewall inner for the rear door and the rear window. 

  

 
 

Fig. 7.2  Example workbench “C-pillar” with true most concept section and two 
prismatic bedding areas. 
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7.3 Methodology – Prismatic Surfaces “True Section” 
 

7.3.1  Introduction 
 

A surface area is prismatic (of constant cross section) as long as both spine and 

guide curve are identical and its cross section does not change along the route of the 

spine and guide curve. Joints are often developed after the prismatic surfaces have 

been designed. Therefore surface bands are derived which allow individual joint 

designs. For closed spine and guide curves or for the design of prismatic swages true 

profiles with all radii representations can be used to design prismatic surface areas. 

 

Prismatic surface areas are differentiated according to bedding, collar and swage 

surfaces.  Bedding surfaces (see figure 7.1) are surface areas where two or more 

parts define a prismatic area and the parts are connected to each other e.g. window 

bedding: flanges with bent portions of sidewall outer, inner and A-pillar inner define 

the BIW flange. Glass, adhesive, trim strip, gaps and flange profiles of BIW define the 

bedding; inner door bedding: flanges with bent portions of sidewall outer, inner and 

A-pillar inner define the BIW flange. BIW flange, weather strip, door inner panel and 

gaps define the bedding. Collar surfaces are mostly one segment bent portions of 

surfaces designed to reinforce the rim of a part. Swage surfaces (see figure 7.3) are 

used to avoid drumming noises of sheet metal construction, for the local 

reinforcement of sheet metal parts (deep draw technology) and sometimes for styling 

purposes 

 

Position and shape of bedding profiles depend on their individual installation. Class A 

surfaces and curves, glass barrel, functions of mating parts etc., collar and swage 

profiles depend on the manufacturability of a single part. The manufacturing method 

and the necessary demould angle are have to be taken into account (e.g. sheet 

metal construction St requires 3°, Al requires 7°). Collar and swage surfaces differ if 

surfaces are designed according to manufacturing principles or are modelled as 

prismatic surfaces. Collar and swage surfaces can only be prismatic as long as their 

profile keeps constant, has a constant angle to the reference surface and their spine 

and guide curves are identical. 
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Bedding profiles defined by two or more parts, with two ore more segments for each 

part are designed by their bedding functions. Besides the bedding functions bedding 

profiles must be manufacturable. Therefore the bedding function determines the 

appropriate tooling angle in such a way to achieve tool release and avoid expensive 

tool slides. 

 

 
 

Fig. 7.3  Example of use trapezium swage with rounded run out according to 
Volkswagen standard 01080 

 

 

Very often prismatic designs of trapezium or round swages are used for stiffening 

purposes. While the trapezium cross section with its slope angles at 45° or 60° is 

easy releasable, the circular cross section of the round swage with its small end 

tangent angles on the border between swage and reference surface may cause local 

release problems (see figure 7.4). 

 

All automotive body part surfaces which are not directly involved in bedding 

functions, must fulfil the technical specifications of tooling without slides. Therefore 

they should not be prismatic. Surfaces designed to facilitate tool release are 
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modelled by a spine curve on the tooling plane and the guide curve on the reference 

surface. These surfaces do not have a constant cross section and are not prismatic. 

 

 
 

Fig. 7.4  True section of a prismatic round swage with corresponding local release 
angles. 

 

 

For prismatic surface design according to the “true section” methodology firstly a true 

(compound radial) section is developed (see figure 7.4). The modelling of this section 

in CATIA is either carried out in 3D modelling space (Work-on-Support) or in the 

workbench Sketcher. Every surface generating segment of the section must be ex-

tended as much as possible to ensure delimitation or filleting of its generated surface 

with adjoining surfaces. 

 

The prismatic bedding profile normally consists of two to three segments. Generally 

these segments are straight lines and the surfaces generated from these segments 

are skewed surfaces. Sometimes special tooling or styling requirements produce 

curved segments which generate arched surfaces. 
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7.3.2  Design of true (compound radial) Section 
 

To model a true section first of all a normal plane is defined in any point of the spine 

and guide curve of the prismatic area. A true most concept section point for the 

normal plane could be the intersection point of the true most section plane and the 

spine and guide curve of the true section. If there is no true most section, the position 

of the true section should be chosen in a way that the whole width of the true section 

intersects with the reference surface. In CATIA the true section can be designed in 

3D modelling space (e.g. with Work on Support) or within the workbench Sketcher. In 

3D modelling space the true section is defined under support of a local axis system in 

the workbench Generative Shape Design (GSD). In workbench Sketcher the true 

section is positioned according to the local axis system (see figure 7.5). 

 
Fig. 7.5  The local axis system is the basis for the true section 
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7.3.2.1 Secant Surface (Reference Surface) 
 

The projecting width of the prismatic profile (true section) defines the distance 

between the two parallel curves, spine and guide curve and a parallel curve, defined 

with the equidistant distance on the Class-A surface provided as input of the design. 

At the end of both parallel curves, a straight line (secant) connects both curves. The 

straight line and the two parallel curves generate the secant surface (reference 

surface) for the design of a prismatic surface. 

 

 

7.3.2.2 Local Axis System 
 

All methodologies utilise a local axis system (see figure 7.5) for the positioning of the 

true section. For the definition of the X-axis the section plane is intersected twice with 

the spine and guide curve as well as with the parallel curve of the secant surface 

(reference surface). The two intersection points define the X-axis (H-axis, horizontal 

axis of the section) which determines the width of the section. The Y-axis (height and 

vertical axis, V-axis, of the section) is defined perpendicular to the X-axis on the 

section plane. The Z-axis (generating direction of the prismatic surface area) is a 

tangent to the spine and guide curve. 

 

 
 

Fig. 7.6  The separate design of the outer profile is completed with auxiliary lines 
before it is linked to the local axis system 
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7.3.2.3 Positioning of the prismatic Profile 
 

In 3D modelling space or in workbench Sketcher the true section is positioned 

utilising the local axis system (see figure 7.6). The outer bedding profile (e.g. door 

bedding, sidewall outer plus gap plus window frame door) defines the projecting 

width of the prismatic bedding. This profile first is designed without regard to the local 

axis system. Two auxiliary lines parallel and perpendicular to the flange segment 

complete the open profile to a trapezium. The prismatic L-profile generally is 

constant. In a second step the profile is connected to the axis system of the Sketcher 

(local axis system). 

 
 

Fig. 7.7  Completely dimensioned true sections (Workbench Sketcher, principle 
“Boundary box (surface)” of door bedding, sidewall outer, reinforcement C-pillar, and 
sidewall inner. Bent portion, reinforcement C-pillar is extended under support of dim. 

150. All other segments are not extended. 
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After positioning of the first prismatic profile the next profiles of bedding are designed 

according to the first profile (see figure 7.7- e.g. door bedding, sidewall outer, 

reinforcement C-pillar and sidewall inner). All dimensions are defined relative to the 

local axis system (fully constrained). When the true section is designed in workbench 

Sketcher the consistency of the section must be checked by Sketch Analyse during 

the design and after completion. 

 

Important control parameters (e.g. secant length, flange length, sheet metal 

thickness) are explicit parameters defined in the hierarchical tree of the CAD-model 

and linked to the true section and the design features. All other dimensions of the 

true section are linked to the corresponding constrains of the true most concept 

section. First of all in the design of the section only one side (design side) of the 

sheet metal, the Class-A side for all visible body parts and the punch side for invisible 

body parts is designed and constrained. The sheet thickness to be shown in the true 

section is defined by parallel curves and radii (manager section). Only two design 

principles ((2) and (6) of the list stated in Section 7.2.3) allow the representation of 

sheet thickness in the true section. If the true section is designed in this order the 

design of surfaces and fillet operations will not lead to errors in updating. 

 

 

7.3.3  Principles for the Extension of Surface Generating Segments  
 

To assure update safe parametric associative design of the surfaces it is necessary 

that the corresponding surface bands of every part designed allow a precise 

delimitation or enable filleting between two surface bands even after any possible 

alteration of reference geometries and parameters. Therefore the surface generating 

segments of the true section have to be extended in 3D modelling space or in 

workbench Sketcher before surface bands are generated. 

 

Apart from two principles where the extension is carried out in 3D modelling space or 

in workbench Sketcher by dimensioning, three more principles are investigated which 

work under support of auxiliary geometry. Apart from these five methods it is possible 

to carry out the prolongation by extrapolation in 3D modelling space. In most cases it 

is necessary to design auxiliary geometry for the prolongation to avoid the use of 

BRep elements. Figure 7.7 shows a prismatic profile consisting of two segments, a 
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flange and a bent portion. A flange is only extended on the side where it is to be 

filleted with the bent portion. Bent portions are extended on both sides. 

 

The following principles for the design and extension of surface generating segments 

were investigated: 

 

(I) The true section as well as the extension of the segments is designed in 

3D modelling space. 

 

(II) The true section is designed in workbench Sketcher. The extension takes 

place in that workbench by constraining.  

 

(III) The true section is designed in workbench Sketcher. The extension takes 

place in that workbench by boundary circles. 

 

(IV) The true section is designed in workbench Sketcher. The extension takes 

place in that workbench by a boundary box (wire frame). 

 

(V) The true section is designed in workbench Sketcher. The extension takes 

place in 3D modelling space by a boundary box (surface). 

 

(VI)  The true section is designed in workbench Sketcher. The extensions take 

   place in 3D modelling space. 

 

In addition the prismatic design of swages where investigated. Examples of swage 

design are described in chapter 8. For the extension of the swage segments the third 

of the above listed principles is used. 

 

The detailed evaluation of the methods is presented at the end of the description of 

all methodologies and principles. 
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7.3.3.1 Design of true Section and Prolongation in 3D Modelling Space 

 

For this principle the whole design takes place in 3D modelling space (see figure 

7.8). All design features used are visible in the hierarchical tree including their nu-

merical parameters. 

 
 

Fig. 7.8  Complete design of true section and prolongation of segments by 
extrapolation in 3D modelling space (example: door bedding, sidewall outer) 

 

 

On basis of the local X- and Y-axes of the local axis system the single segments are 

designed consecutive in the form of straight lines, circles, 3D splines; offset curves 

etc. on plane true section. In CATIA Work-on-Support can be used. Length of 

segment and prolongation can be defined in the pull down menu of the single design 

feature. 

 

A design of the segments in their original length and a prolongation by extrapolation 

is possible. To avoid the use of BReps points are defined on the ends of the 

segments where an extension is necessary. This principle is possible for straight as 

well as for curved segments. 
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The test to replicate the principle from bedding profile to bedding profile was not 

successful. The effort in time to adjust the replicated design features is as high as the 

redesign process as requirements may be different from profile to profile.  

 

7.3.3.2 Design of True Section in Workbench Sketcher – Prolongation by Con-
straining in Workbench Sketcher 
 

Firstly all the bedding profiles are designed in their original lengths. At the end of 

every segment needing extension a point is defined. A geometrical constraint 

(coincidence) is defined to position the point onto the direction of the segment. A 

dimension between the new point and the end point of the segment is placed to 

describe the required extension. A trim-operation for the segment results in the 

expected prolongation (see figure 7.9). 

 

 
 

Fig. 7.9  Prolongation of segments under support of auxiliary points defined with 
distance to the endpoints of segments 
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Curved segments are designed by three points as an arc. For prolongation parallel 

auxiliary lines to the local axis system are defined in the required distance to the 

original end point of the segment. A trim-operation for the segment results in the 

expected prolongation. 

 

A test to replicate the complete principle of profile design, prolongation and design of 

surface bands carried out for the door bedding in order to generate the window 

bedding was update safe and repeatable. 

 

 
 

Fig. 7.10 Using of boundary-circles defined in intersection or end points of 
segments, the profile segments are extended. In the centre only one of three 

intersection points was chosen to avoid complexity. 
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7.3.3.3 Design of true Section in Workbench Sketcher – Prolongation by 
“Boundary Circles” in Workbench Sketcher 
 

At every end of a segment required to be extended a circle is defined. The radius of 

the circle satisfies the expected prolongation length. As a flange and a bent portion 

intersect each other only one circle is designed in the intersection point in order to 

extend two segments. Flanges are not extended at the flange end. Bent portions are 

extended on both sides. A trim-operation between segment and auxiliary geometry 

results in the expected prolongation. 

 

 
 

Fig. 7.11 Using of a rectangular boundary-box defined relative to flange end and 
local axis system the segments are extended. 
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Theoretically in the example of figure 7.10 a door bedding with three pairs of flange 

and bent portion six auxiliary circles are necessary to prolong the segments. As the 

intersection points of flanges and bent portions are very close to each other only one 

intersection point is chosen to avoid unnecessary complexity. 

 

This principle can be used for straight as well as for curved segments. For extensive 

profiles many auxiliary circles have to be designed which results in unnecessary 

complexity. The geometrical constraints defined by the trim-operations results in 

another form of complexity when segments are very close to each other. Updates 

tests have shown that the geometrical constraints defined with the trim operations 

are not always update safe. For this reason this principle is only recommended for 

simple profile situations. 

 

 

7.3.3.4 Design of true Section in Workbench Sketcher – Prolongation by 
“Boundary Box (Wire Frame)” in Workbench Sketcher  
 

In this principle auxiliary lines define a rectangle in the true section (see figure 7.11). 

The lines are defined at the end of flange of the outer profile and parallel to the local 

axis system. The auxiliary geometry can also support the design and the 

dimensioning of the profiles involved.  Therefore it is necessary to design the 

rectangle directly after design and positioning of the first profile (see figure 7.6). Trim-

operations between segments and auxiliary geometry lead to the expected 

prolongations. This principle can be applied to straight and curved segments. In the 

example shown in figure 7.11 the principle is clearly arranged and reproducible. 

Update tests have shown that geometrical constraints defined with the trim 

operations are not always update safe. 

 

 

7.3.3.5 Design of true Section in Workbench Sketcher – Prolongation by 
“Boundary Box (Surface)” in 3D Modelling Space  
 

Similar to the principle above the true section is defined according to its original 

parameters. A rectangle defined by auxiliary lines and positioned relative to the 
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flange and local axis system is the foundation of this prolongation approach. In 3D 

modelling space a bounded surface (face) is designed by a trim operation between 

plane true section and rectangle. Planes are positioned perpendicular to the plane 

true section on every straight segment. The intersections between the bounded 

surface and the normal planes are the extended segments (see figure 7.12). 

 

This principle allows extending straight segments without the use of unstable 

geometrical constraints. Curved segments must be extended according to principle 

“boundary-box (wire frame)”. As all segments will be extended by this principle 

flanges must be shortened again with additional effort. The principle provides 

dressing up the true section with sheet thickness illustration (manager section) by 

parallel curves and radii. 

 
 

Fig. 7.12 Using a boundary surface segments are extended in 3D modelling space. 
 

 

At first glance this principle seems to be very complex. As several design operations 

reoccur, a lot of design effort can be reduced by replication of defined operations. For 
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easy replication design operations must be composed in usable files (Geometrical 

sets).  

 

 

7.3.3.6 Design of true Section in Workbench Sketcher – Prolongation in 3D 
Modelling Space 
 

The design of the bedding profiles in their original lengths takes place in workbench 

Sketcher (2D) Segments and endpoints defined in the true section are used to ex-

trapolate the segments in 3D modelling space. This approach needs clearly arranged 

denominations and attention not to mix up points and segments for the extrapola-

tions.  

The principle allows dressing up the true section with sheet thickness illustration 

(manager section) by parallel curves and radii (as in 7.2.3.5). 

 

The design of the true section and the prolongation can not be reproduced as the 

single design steps are inherently different.  

 

 

7.3.4  Design of Surface Bands and Completion of Design Zone 
 

From every extended segment curve, a surface band is generated under support of 

identical spine and guide curve and reference surface (in most cases the secant 

surface). While in manual design a number of true sections according to the length 

and curvature of the spine and guide curve are necessary to display prismatic 

surfaces in the form of sections and connecting curves (wire frame geometry), in 

CAD design only one true section is necessary to sweep the entire surface band. 

 

For a typical bedding situation the design of surface bands has to be repeated with all 

segment curves. A lot of effort can be reduced when the first swept surface is 

replicated by replacement of the generating segment curve. To prepare the surface 

bands for follow-on operations such as filleting, the direction of the surfaces is 

controlled and inverted. In the example of an upper C-pillar (see figure 7.13) the door 

bedding consists of three body parts involved in the bedding. The same parts need 

prismatic window bedding profiles on the rear side of the upper C-pillar as well as the 
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complete design of door bedding is replicated for the design of the window bedding in 

order to reduce the effort of a complete new design. For the replication it is only 

necessary to alter parameters, denominations and some surface directions and to 

renew the links defined between design features and explicit parameters or the 

dimensions of the true most concept section. 

 

The bedding profiles of the sidewall outer of the example in figure 7.13 are filleted 

with the Class-A surface (purple). For the reinforcement C-pillar an offset of the 

Class-A surface is filleted with its bedding profiles (blue-grey). On the bent portions of 

the inner sidewall profiles parallel curves to the flanges are the basis for the 

development of the closing surface between door and window bedding. A skewed 

surface between these curves is designed and filleted to complete the zone (green). 

 
Fig. 7.13 Example zone C-pillar, upper with door bedding on the left and window 

bedding on the right 
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7.4 Methodology – Prismatic Surfaces “Surface Band” 
 

7.4.1  Introduction 
 

With this methodology the prismatic profile surfaces are designed without the 

previous design of a true (compound radial) section. This methodology can be often 

found in the design works of automotive body designers. Starting from a reference 

surface (secant surface) all surface bands are designed one after another using the 

last surface band as reference (see figure 7.14). The secant surface is based on a 

parallel curve (Curve 1) on the Class A surface. The flange is generated by an offset 

from the secant surface and bounded by two parallel curves (Curve 2 and 3) to the 

projection of Curve 1. The recessed surface (slope) is designed as Sweep under 

support of Curve 3 and the Spine. The position of the successive surface band 

depends on explicit parameters, distances and angles defined in the hierarchical tree, 

in the true most concept section or in a simple sketch on a piece of paper. The 

parameters used can be reproduced on the basis of the result of the single design 

features used which are displayed in the hierarchical tree. Updates after alteration of 

parameters may lead to erroneous results because of the different directions of 

curves and reference surfaces. CAD-models designed according to this methodology 

are not easy to use as parameters and generating segment curves are not presented 

in a true section but kept hidden in the design features and their pull down menus. In 

this methodology the true (radial compound) section is the last design step – the 

result of the design efforts. 

 

7.4.2  Design of Surface Bands 
 

On the basis of the reference surface (secant surface) and the spine and guide curve 

surface bands are designed one after another as offset or inclined swept surfaces. 

When one surface band is designed it becomes the reference surface for the next 

surface band. Intersection curves of completed surface bands or parallel curves on 

surface bands deliver the spine and guide curve for the next surface band. Surface 

bands are trimmed by parallel curves. The pure 3D design work may lead to user 

errors by selection of BRep-elements instead of designed curves and surfaces. The 

control of parameters such as flange lengths or angles of inclination is performed in a 

mixture of explicit parameters, dimensions of the true most section and the values 
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defined in the pull down menus of the design features. The width of the secant 

surface which controls the position of all surface bands of prismatic bedding is 

defined in the true most concept section. 

 

 
 

Fig. 7.14 Step by step designed surface bands of a door bedding C-pillar, upper 
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Fig. 7.15 Controlling of end result by true section compared to the true most 

concept section (upper C-pillar) 
 

 

The length of every surface generating segment curve must be defined in the pull 

down menu of the single design feature, to make sure that any alteration of 

parameters or geometry in the designed bedding is always allowing automatic filleting 

or delimitation.  In the pull down menus these lengths are defined according to points 
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of the chosen spine and guide curve. A similar situation occurs with the definition of 

angles of inclination relative to directions of previous surface bands and a point on 

the spine and guide curve. The directions of curves and surfaces must be controlled 

during first design and after any subsequent alteration. Otherwise this methodology 

easily results in unwanted update results. 

 

To control position and width of the designed surface bands compared to the true 

most concept section a true section is cut when all surface bands and prismatic 

bedding profiles are completed. This is very useful to avoid unintended deviations 

between the surface band and the concept section (see figure 7.15). 

 

The update stable design of a CAD-model according to this methodology takes a lot 

of time because of the necessity to check and invert every surface band and curve 

direction involved to generate or trim surface bands. All design steps and their 

parameters are visible in the hierarchical tree, and apart from the use of dimensions 

of the true most section it is not necessary to switch from one workbench to another. 

Profile alterations by third parties (designers) are not easily undertaken because the 

dependent design steps used to develop the design model the first time can not be 

easily identified in the hierarchical tree. 

 

 

 

7.4.3  Workbench Example 
 

A prismatic design of the door bedding of an upper C-pillar is explained (see figure 

7.16). Utilising the door opening line and the secant surface the prismatic sub zones 

of sidewall outer, reinforcement C-pillar and sidewall inner are designed.  

 

As the design for the C-pillar and sidewall inner repute similar reinforcement the 

design of the reinforcement is replicated for sidewall inner under adjustment of 

parameters, denominations and links. The same approach of replication is used to 

design the complete window bedding of the upper C-pillar after the door bedding is 

completed. 
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Firstly for the design of the door bedding the secant surface (reference surface) is 

designed. Therefore similar to the principle used in Section 7.2.2 a parallel curve to 

the door opening line and a connecting straight line of the curves is defined to design 

the skew reference surface (see figure 7.14) .  

 

Utilising a constant angle to the secant surface the recess surface of the door 

bedding, sidewall outer is designed. Based on the door opening line, the length of the 

generating segment is defined in the sweep-feature using dimensions of the true 

most concept section plus the parameter of extension. An offset of the secant surface 

defines the flange surface of the door bedding. 

 

 
 

Fig. 7.16 Prismatic profiles of door bedding and window bedding 
 

 

For the door bedding, reinforcement C-pillar firstly the flange surface is defined as an 

offset of the secant surface. The parallel curve of the secant surface is projected onto 

the offset. To shorten the flange according to the dimensions of the concept section 

another parallel curve is designed on the offset. A second parallel curve to the first 

with distance “flange width” (explicit parameter) is the new spine and guide curve for 
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the bent portion. Under support of an angle constraint to the flange surface linked to 

the concept section the bent portion is designed. 

 

As the door bedding, sidewall inner is going to be a similar design the modelling 

steps for the reinforcement C-pillar is replicated. After the alteration of parameters 

and colours, denominations and regeneration of links to the concept section two 

more prismatic surface bands are completed. Once the six surface bands of the three 

parts are designed, flanges and bent portions are filleted. A true section is cut 

through the generated profiles to compare the results in (position and dimensions) 

with the inputs of the concept section.  

 

The profiles of the door bedding are replicated to design the window bedding. Once 

the alteration of parameters, directions, denominations and regeneration of links to 

the concept section the design of the window bedding is completed with minimal 

effort (see figure 7.16). 

 

 

 

7.5 Methodology – Profile Surfaces for Production Intent (Tooling 

Requirements) 
 

7.5.1  Introduction 
 

In the early phase of concept development the breakdown of an automotive body into 

parts, sub-assemblies and assemblies is not completed. Often it is not possible to 

decide in this stage which parts belong to which zone. Therefore common definitions 

such as sidewall outer, reinforcement sidewall or sidewall inner are used instead of 

part denominations like side panel outer, side panel inner front or A-pillar inner upper. 

Similar to the denominations the dimensions of a new part may not be fully defined. 

As the tooling direction is defined by the dimensions and shape of a part the surfaces 

of the prospective part cannot always be designed according to tooling requirements. 

 

As long as constant profile zones (prismatic surface areas) are designed imaginary 

part dimensions and tooling directions are sufficient. Using parametric associative 
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methodologies the design can easily be modified to new conditions. But as soon as 

the design of joint areas is started the breakdown into single parts and the definition 

of tooling directions is necessary for the configuration of the joints. 

 

If inside a prismatic surface area an adjustment of an angle of inclination for a bent 

portion is required the angle can easily be changed e.g. in the menu of the design 

feature or be replaced by a law which abolishes the prismatic design but allows the 

gradual change of the angle from one value to another. Contrary to the pure design 

of prismatic profiles this methodology allows the design of surfaces which may vary in 

width and/or angle of inclination utilising individual explicit or implicit laws in 

combination with Sweep and Parallel-Curve features. Sometimes this is necessary 

when prismatic profiles in parts are not demouldable or must be adjusted to fit a joint 

design. 

 

 

7.5.2  Part Definition and Tooling Direction  
 

The breakdown of an automotive body into its single parts depends on several 

factors such as availability of manufacturing methods, capacity of deep drawing 

presses, manufacturability, order of assembly, accessibility of connecting flanges for 

the joining technology etc. 

 

The C-pillar of a 3 series BMW has three parts involved in the assembly of the pillar 

outer side panel, reinforcement C-pillar and inner side panel, C-pillar upper, have 

different sizes and positions in 3D space. 

 

The outer side panel involves the A-pillar on its front end and reaches as far back as 

the rear lamps. At its upper end the outer side panel is connected with the roof panel 

and at its lower end it defines the sill and is connected to the floor panel. The tooling 

direction is the Y-Axis of the car axis system and the tooling plane is equivalent with 

the XZ-plane. The outer side panel represents the Class-A surfaces of the design. 

The size and shape of the outer side panel and the contradiction of terms for tooling 

and functions such as prismatic beddings for rear window or roof panel often lead to 

undercuts which have to be formed under using slide operations. The outer surface 
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of the outer side panel is a Class-A surface. Sheet metal thickness is built from 

outside to inside.  

 

 
 

Fig. 7.17 Topology of inner side panel, upper C-pillar (BMW 3series) 
 

 

The reinforcement C-pillar meets at its front end the upper end of B-pillar and at its 

rear end it is part of the rear window bedding. At its upper end the reinforcement is 

part of the lateral roof rail and at its lower end a circumferential bent flange is welded 

to the wheel arch. Topology and size of the part define the tooling direction and 

plane. The tooling plane is necessary to design surface bands with constant or 

variable release angle. The punch surface of the reinforcement C-pillar is designed. 

The topology of the part defines the punch side on the inside of the part, to which the 

sheet metal thickness is built from inside to outside. 

 

The inner side panel, upper C-pillar meets at its front end the upper end of B-pillar 

and at its rear end it is part of the rear window bedding. At its upper end the 

reinforcement is part of the lateral roof rail and at its lower end the part is welded to 

the upper flange of the wheel arch. Topology and size of the part define the tooling 

direction and plane. The punch surface of the inner side panel is designed. The 

topology of the part defines the punch side on the outside of the part, to which the 

sheet metal thickness is built from outside to inside (see figure 7.17). 
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In the early stage of concept design only the prismatic surface areas are completed 

when the breakdown of the body into single parts and the definition of their tooling 

directions are identified. As the definition of the tooling direction depends on the 

shape and size of a part the definition must be carried out under support of the 

prismatic surface areas and placeholder geometry. 

 

The definition of the tooling direction for symmetrical parts such as roof, front lid, tail 

gate etc. is not very complex. On the symmetry plane the extreme points regarding 

the size of the part are connected with a secant. Its perpendicular bisector of the side 

is the tooling direction of the symmetrical part. A normal plane to the tooling direction 

is the tooling plane. 

 

On the example of the inner side panel, upper C-pillar (see figure 7.17) it is shown 

how the shape and the common position of the part is taken into account to define 

tooling direction and plane. Firstly the extreme points of the imaginary part regarding 

its size are connected by a first secant on the basis of the Class-A surface. In the 

centre point of this secant a first normal plane is defined (see figure 7.18). 

 

 
Fig. 7.18 Extreme points of the size of the imaginary side panel inner are connected 

by a secant and added with the first normal plane in its centre point. 
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The first normal plane is intersected with the concept surfaces (Class-A). At the end 

of the intersection curve points are defined and connected by a second secant. In the 

centre point of the second secant a second normal plane is defined (see figure 7.19). 

 
Fig. 7.19 The first normal plane is intersected with Class-A surfaces. The second 

secant results in the second normal plane. 
 

 

 
 

Fig. 7.20 The intersection line between the first and second normal plane defines 
tooling direction and plane 

The intersection line of first and second normal plane is the tooling direction of the 

inner side panel, upper C-pillar. As the intersection line of two planes is infinite two 
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interchangeable points are defined to allow an exchange of points for an alteration of 

the tooling direction according to tooling requirements in the later stage of the 

development. The two points are connected by a straight line which is defined to be 

the tooling direction. A normal plane to the tooling direction is the tooling plane used 

for the design of joint surfaces and approval of the prismatic surfaces (see figure 

7.20). 

 

 

7.5.3  Design of Profiles according to Tooling Requirements 
 

Surfaces of an automotive body which do not strictly have to fulfil certain functions 

such as bedding functions do not have to be designed prismatic. For these surfaces 

the manufacturability is essential. 

 
 

Fig. 7.21 Collar surface designed prismatic (left hand) and with constant release 
angle (right hand) 

 

 

A comparison of two collar surfaces (see figure 7.21) shows that the collar surface 

designed according to the prismatic principle can be released from tool without any 

problems. In this example a release angle of 75° between flange and tooling plane (= 

15° release angle between flange and tooling direction) does not fall below the 
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expected angle of 75°. As long as the true most concept section controls the angles 

of bent portions which are much bigger than the minimum release angles (St 3°, Al 

7°) the sloped surfaces can be designed prismatic without concerns. 

 

As soon as it is necessary to design a surface with constant release angle or with 

changing release angle controlled by a law, other reference geometries have to be 

taken into account. For the design of a prismatic surface spine and guide curves are 

identical and the generating curve or profiles are constant. 

 
Fig. 7.22 A release cone perpendicular to the tooling plane moves along the 3D 

guide curve of the reference surface and generates a surface with constant release 
angle. 

 

 

The reference surface in most cases is a secant surface (skewed surface) designed 

on the basis of another reference surface and the width of the prismatic profile.  For a 

surface with constant release angle the reference surface is the tooling plane. The 

guide curve is an element of the reference surface while the curvature continuous 

spine curve is a projection of the guide curve onto the tooling plane. Under support of 

a cone with a point angle equivalent to the release angle which is moved with its tip 
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along the 3D guide curve and is arranged perpendicular to the tooling plane the gen-

eration of a sloped surface with constant release angle can be easily understood (see 

figure 7.22). 

 
Fig. 7.23 Preparation of spine and guide curves for bent portions with constant re-

lease angles 
 

 

Once the prismatic design of the door bedding, sidewall outer, C-pillar upper and the 

flanges of reinforcement C-pillar upper and sidewall inner C-pillar upper of the 

example C-pillar described above the further surfaces of door and window bedding 

are to be designed according to tooling requirements. These surfaces are the bent 

portions of reinforcement C-pillar and inner side panel, the part description and the 

tooling demands are defined according to the 3 series BMW. 

 

Flange and recess surfaces of the outer bedding profile (outer side panel) as well as 

the flanges of the other two parts involved are designed prismatic. The bent portions 

of reinforcement C-pillar and side panel outer, upper C-pillar have to be designed 

with a constant release angle measured between surface band and tooling plane. 
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Therefore the opening line (in this case the door opening line) has to be projected 

onto the tooling planes of both parts to get spine curves for the surface bands under 

consideration of tooling requirements (see figure 7.23). 

 
 
Fig. 7.24 The release angles of the bent portions are adjusted according to the de-

mands of the true most concept section 
 

 

The guide curve for the bent portion is the intersection curve of the prismatic flange 

and the bent portion and can be designed by projection and offset of existing curves. 

The spine curve of the releasable bent portion is the projected opening line. The 

minimum release angle for deep drawn steel shells is a predefined explicit parameter. 

The release angle used for the design of the two bent portions has to be adjusted 

according to the true most concept section. As spine and guide curves of these de-

signs are not identical the surface bands of the two bent portions are not prismatic. 

That is to say that the angle between tooling plane and bent portion is constant but 

not the angle between bent portion and flange (see figure 7.24). 
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Once the flanges and bent portions of all three parts involved have been rounded the 

design of the door bedding has been completed. As the door bedding and window 

bedding are very similar the door bedding can be replicated and adjusted for the win-

dow bedding with definitions, directions and dimensions. All links of the replicated 

design have to be redefined. The design steps to complete the C-pillar and derive 

parts are similar to the description in section 7.2.4. 

 

 

 

7.6 Methodology – Parametric associative Package Sections 
 

This new approach closes a circle. In the past isolated package sections where and 

in some cases still are the basis for the composition and dimensioning of the true 

most concept section of a body zone (see section 7.2). The true most concept 

section is the prerequisite for the true radial compound sections which are necessary 

for the design of surface bands and profile surfaces. A package section of the 

completed body zone controls and/or documents certain specifications and/or legal 

requirements of the body zone. Its isolated copy could become prerequisite for the 

next car line project. The parametric associative package section is the reusable 

model of the body zone including the whole design approach which can be reused 

and adjusted as necessary. 

 

In this important design application the use of update safe designs under support of 

the methodologies and principles described above is shown. The main idea is not to 

hand over isolated package sections (see figure 7.25) from car line to car line but to 

define 3D design zones including 2D package sections which can be automatically 

derived from the 3D approach once the design is completed.  

 

In the concept development of a typical automotive body about 100 package-sections 

are developed and enhanced. Every package-section represents a zone or a sub-

zone of the body (see figure 7.25). A package-section describes the composition and 

number of body parts involved in that zone. With the support of package-sections 

functions and legal requirements are verified and/or documented. In an early stage of 
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concept development package-sections are often taken over from similar car lines of 

the OEM or his competitors. These sections often are distorted in the new design 

approach with respect to position and size. In the course of concept development, 

these sections are often updated to allow the effective verification and documentation 

of functions and legal requirements (see section 7.1). At the end of a car line project 

these package sections can be handed over to the next project. 

 

 
 

Fig. 7.25 Isolated Package section (true most radial position) of an A-pillar (AUDI) 
 

 

Package sections are often neither true most nor true sections (see figure 7.26). 

Therefore these sections cannot be used for the design of surfaces and parts. In this 

chapter a methodology is described which combines development and enhancement 

of package-sections and the design of the zones of the automotive body. Every zone 

and associated package-section is defined in a continuously parametric associative 

configuration. This automated zone and section configuration can be reused from 

one development project to the next. 
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Fig. 7.26 Upper A-pillar package section 105 – section (top) and positioning  

(bottom - Nikol, AUDI) 
 

 

According to (EG) 77/649 the package section of the upper A-pillar is a section on the 

height of the eye-points. For the design of parametric associative package sections a 

body segment with package sections can be derived from the workbench example 

“design zone upper A-pillar” (see figure 7.27). The segment is limited at the top and 

bottom by the two planes which are defined in EU directive (EG) 77/649 for the 

design of viewing beams. On the height of the eye points a third plane is defined for 

the approval according to the current legislation as well as to the former stronger 

legislation regarding ergonomics and geometry. See figure 7.27 shows that a 

binocular obstruction of 2.586° is achieved and the current legislation is fulfilled. But 

figure 7.28 shows that the real allowed binocular obstruction of 6° is exceeded by 

2.176° and the concept design has to be adjusted. Still the most German OEMs use 
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this former legislation. The binocular obstruction not only depends on the size of the 

cross-section of the A-pillar (true radial section) but also on the inclination and 

bending of the A-pillar as well as on the distance between eye points and pillar. 

 

 
Fig. 7.27 Parametric re-usable 3D approach and package-section with current 

binocular obstruction according to (EG) 77/649  
 

 

The new parametric associative design approach described allows the exchange of 

reference geometries such as Class A surface, spine curves etc. changes of the 

seating position of the driver or of the dimensions of the section or alterations of 

explicit and implicit parameters at any time. 

 

As shown in this chapter the update safe development of a body zone combined with 

the derivation of the parametric associative package-section consequently allows the 

automatic adaptation of new requirements and approval of e.g. the binocular 

obstruction. Compatibility for new references and flexibility for new requirements 

results in a high degree of re-usability of the CAD-model. 
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Fig. 7.28  Parametric associative package section with current binocular obstruction 

according to OEM specification 
 

 

 

7.7 Evaluation of Methodologies and Principles 
 

To improve the seven methodologies and principles for the design of prismatic 

surfaces described above three automotive body zones (work benches) have been 

allocated and designed. These are the zones of a) a rear roof rail with prismatic 

flanges at its front plus prismatic window bedding, b) a lateral roof rail with prismatic 

roof and door bedding, and c) the zone of an upper C-pillar with prismatic door and 

window bedding. With the three test benches design environments are available with 

two prismatic profile areas each and a different depth of complexity. 

 

These work benches have been designed seven times each (21 CAD models) to 

evaluate the methodologies and principles under different conditions and to achieve 

conclusive evaluations for the methods. 
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7.7.1  Description of the three Work Benches 
 

7.7.1.1 Roof Rail rear 
 

Along the intersection curve between the Class A surfaces of roof and rear wall the 

roof rail rear is positioned. The sections necessary for the product evolution process 

(PEP) such as package section, concept section and true compound radial sections 

for derivation of prismatic surface areas are identical. The rear roof rail is symmetrical 

according to the vehicle centre plane (ZX plane) and all the sections are positioned 

on the symmetry plane ZX (see figure 7.29). 

 

 
 

Fig. 7.29 Sectional view Y0 rear roof rail  
 

 

The roof rail is defined from requirements in horizontal vision, head clearance rear 

and stiffness of body structure. The roof rail consists of a lower and an upper shell 

connected along two prismatic spot welding flange areas. Along the rear flange the 

roof is spot welded to the roof rail and the rear window is bonded to the spot welding 

flange. 

 

7.7.1.2  Roof Rail side 
 

Perpendicular to the intersection curve between the Class-A surfaces of roof and side 

wall the concept section for the definition of the roof rail side is defined above the rear 
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door (see figure 7.30). The positions of the true radial concept sections for the 

prismatic roof and door beddings are defined perpendicular to the door opening line 

and the water management line roof. The planes are defined at the intersection 

points of the concept plane and the two spine and guide curves. Shape and position 

of the roof rail define two compound radial planes which are similar to the radial plane 

of the concept section. From the true sections surface bands are derived which are 

the basis for the definition of the junction between roof rail rear, roof rail side and C-

pillar upper and the determination of body part sections. 

 

 
 

Fig. 7.30 Roof rail side 
 

The roof rail side is defined according to specifications of side impact, body stiffness, 

head clearance and access comfort. The prismatic bedding of the roof shows a step 

between roof surface and sidewall to lead water along the step into the rear area of 

the car. Both parts are laser soldered along this step. Behind the B-pillar the roof rail 

side is build from side panel outer, reinforcement C-pillar upper and side panel inner, 

C-pillar upper. The parts are spot welded to each other along two prismatic bedding 

areas. 
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7.7.1.3 C-Pillar upper 
 

In the middle of the intersection curve between the Class A surfaces of rear wall and 

sidewall the true most radial concept section for the design of the upper C-pillar is 

defined. The planes for the true compound radial sections for the development of the 

prismatic door and window beddings are defined perpendicular to door and window 

opening lines. The planes are defined at the intersection points of the concept plane 

and the two spine and guide curves. Due to the shape and position of the C-pillar the 

positions of the concept plane and the two normal planes for the true sections are 

very different (see figure 7.31). 

 

 
 

Fig. 7.31 C-pillar upper with true most radial concept section and two true 
compound radial sections of prismatic bedding areas 

 

 

From the true sections surface bands are derived which are used for the design of 

the junctions C-pillar/roof rail and C-pillar/wheel arch upper or the determination of 

body part sections using surface bands from other body zones. 
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The C-pillar upper is build from side panel outer, reinforcement C-pillar and side 

panel inner C-pillar upper. The three parts are spot welded to each other along the 

two bedding flanges. 

 

 

7.7.2  Scenarios of Variations  
 

In the completed 21 CAD-models (3 work benches and 7 different methods and 

principles) different variations of references and explicit parameters are conducted to 

check and compare their update-stability (see tables 7.1 to 7.3). Besides update 

stability the update time was measured. Variations are carried out on the different 

characteristics of the segments of profiles itself as well as on the reference 

geometries. The scope of variations includes realistically once as well as overdrawn. 

 

 

7.7.3  Validation of Design Methods and Principles 
 

First of all it is necessary to check whether all CAD-models are designed with zero 

defects and whether the hierarchical tree is structured in clearly arranged design se-

quences. All methods and principles are reviewed and compared according to the 

same evaluation scheme. The design effort and number of features until completion 

of the CAD-model and the analysis of update stability under different variations are 

considered. The evaluation criteria are classified in four categories: ease of use, 

traceability, update stability and effort reduction by replication. 

 

The weighting of the evaluation criteria is carried out in a matrix according to Kepner, 

Tregoe, 1965 (see table 7.4). For the utility analysis according to Kepner, Tregoe, 

1965 (see table 7.5) the single criteria are marked from 1 to 6, at this mark 1 stands 

for the best and mark 6 stands for the worst rating. The marks are multiplied with the 

weighting factors of the first table. The total of the weighted marks decides on the 

ranking of the different design methods. The update times measured for all variations 

are not taken into further account as there are only small differences.   

 

According to the criteria ease of use the complexity of the profiles, the effort to edit 

the extension of the segments and the design features is taken into account. If a 

Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 223 



Chapter 7 
 

 

simple profile is to be designed that is to say a small number of straight segments 

with a small number of segment extensions the ease of use must be quick and easy. 

This is often the case when a rough layout in the early stage of concept development 

is elaborated. In later stages of concept development the designs and the profiles are 

more detailed and more complex. In these stages the number of segments and seg-

ment extensions gets less important. More important for these stages is the effort for 

a well structured design composition of the particular method, the traceability and the 

update stability. 

 

Scenario A (Roof rail rear) Old New 

  Reference geometries 
Roof:   1700X (roof height) 1300mm 1350mm 
Roof:   0Y (roof height front) 1300mm 1200mm 
Rear Wall Upper Class A:   800Z (Position rear window) 3370mm 3450mm 
Rear Wall Upper Class A:   0Y (Position rear window) 38° 45° 
   

  Explicit Parameters (Profile) 
Length Flange Window Bedding Outer 20mm 18mm 
Depth Recess Window Bedding Outer 9mm 10mm 
Angle Flange Recess Window Bedding Roof 80° 110° 
Angle Window Bedding Roof Rail Upper Shell 140° 110° 
Parallel Roof 30mm 40mm 
Length Flange Prismatic Area Roof Rail Upper Lower 
Shell 

21,5mm 25mm 

Bent Portion Prismatic Area Roof Rail Upper Shell 15mm 12mm 
Bent Portion Prismatic Area Roof Rail Lower Shell 12mm 15mm 
 

Table 7.1 Variation roof rail rear (Scenario A) 
 

 

Scenario B (Roof rail side) Old New 
  Reference geometries 

     Side Wall Class A:   800Z (Vehicle width) 850mm 900mm 
     Side Wall Class A:   1750X (Position side wall) 1150mm 1250mm 
     Roof Class A:   1750X (Roof height) 1350mm 1250mm 
     Roof Class A:   0Y (Roof height rear) 1300mm 1600mm 
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  Explicit Parameters (Profile) 

     Angle Door Bedding Roof Rail Side Wall Inner 130° 160° 
     Angle Door Bedding Roof Rail Reinforcement 110° 130° 
     Length Flange Door Bedding Side Wall Inner 22mm 25mm 
     Sheet Thickness Reinforcement C-Pillar 1,2mm 1,6mm 
     Distance Roof Bedding Reinforcement 18mm 20mm 
     Length Prismatic Profile Roof Bedding Side Wall Inner 20mm 18mm 
     Angle Roof Bedding Side Wall Outer 132° 150° 
 

Table 7.2 Variation roof rail side (Scenario B) 
 

Scenario C (C-pillar) Old New 
  Reference geometries 

     Rear Wall Upper Class A:   800Z (Position rear window) 3370mm 3450mm 
     Rear Wall Upper Class A:   0Z (Position rear window) 45° 50° 
     Side Wall Class A:   800Z (Vehicle width) 850mm 900mm 
     Side Wall Class A:   1750X (Position side wall) 220mm 200mm 
   

  Explicit Parameters  (Profile) 
     Length Flange Door Bedding Side Wall Outer 25mm 27mm 
     Length Flange Door Bedding Reinforcement 27mm 29mm 
     Length Flange Door Bedding Side Wall Inner 22mm 25mm 
     Sheet Thickness Reinforcement C-Pillar 1,2mm 1,6mm 
 

Table 7.3 Variation C-Pillar upper (Scenario C) 
 

For the evaluation of the segment extensions according to the single principles the 

design effort, the type of auxiliary geometry and the traceability of the result is 

examined. One important element is the workbench Sketcher. If the extension design 

is carried out in the Sketcher incorrect, results may appear when geometrical 

constraints are used. When an update safe CAD-model is expected geometrical 

constraints must be defined carefully. Is the segment extension carried out in the 3D 

modelling space the use of Boundary Representing Elements (BReps) must strictly 

be avoided. 
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Table 7.4 Weighting of evaluation criteria acc. to Kepner, Tregoe, 1965 
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The number of design steps for the definition of the profile, the segment extension 

and derivation of surface bands is another element. The proceedings are different 

from principle to principle. When the true section and the auxiliary geometry for 

segment extension are defined in workbench Sketcher the design effort can be kept 

low. If the true section is designed in 3D modelling space, it is necessary to design a 

section for every segment. When the surface bands are developed without a true 

section, a control section for every surface band has to be designed and compared 

with the concept section. 

 

The traceability is the criterion for the clear arrangement of the design model. For 

third parties every single design step must be traceable and the design features must 

be legible. This allows the easy and time-saving reuse or completion of the CAD-

model.  When a true section is designed the traceability of the true section including 

the auxiliary geometry for segment extension is controlled. Too much auxiliary 

geometry often results in an intransparent section. Another important issue is the 

clear arrangement of the hierarchical tree. The tree should reflect the systematic 

design approach. Every single design step should be legible and editable without 

long winding selections of hierarchies.  

 

The most important criterion for the evaluation of parametric associative design 

criteria is the update stability. Design variations and changes of parameters very 

often take place in the concept phase. As parametric associative design delivers the 

most benefit in this development phase the update stability is of paramount 

importance. One bad influence is in the use of geometrical constraints in the 

Sketcher. If the auxiliary geometry for the extension of segments is defined in 

workbench Sketcher and geometrical constraints are used, the geometrical 

constraints must often be edited after the update. For every design principle the effort 

for editing is rated to a complete update without failures. The update time including 

editing operations often depends on the number of sketches and design features 

which have to be chosen and opened for editing.  

 

The design work is easier when all important parameters for the profiles are 

visualised in a true section which is not crowded with distracting auxiliary geometry. 

In addition a very good section shows the influence of parameter variations on the 
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whole profile. It is important to safeguard the consistency of the section by Sketch 

Analysis. On the other hand this analysis takes extra time when a section is 

developed or edited.  

 

The best update result is when the designed method can be updated without any 

failure. The shape and position of a body part will vary during the course of 

development process. Therefore it is particularly important that a design method is 

updating stable when reference geometries are altered or exchanged. 

 

The replication of design steps can reduce the design effort. For the replication the 

design steps must be sorted in a Geometrical Set. The advantage of replication 

occurs as soon as the effort for sorting and editing of nomenclature and links is 

smaller than the manual design of several similar design steps. 

 

 

7.7.4  Discussion of Results of Utility Analysis acc. to Kepner, Tregoe, 1965 
 

7.7.4.1 True Section Method - 3D only 
 

 
 

Fig. 7.32 Validation of True section method – 3D only 
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Table 7.5 Utility analysis of design methods acc. to Kepner, Tregoe, 1965 
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The design of the true section and the segment extension in 3D modelling space is a 

traceable and updates save method. For every single segment a true section is 

designed. The hierarchical tree is long but legible even for third parties. Every single 

design step can be followed directly. The exclusive work in 3D avoids the use of 

unsafe geometrical constraints in workbench Sketcher. As the segment extension 

takes place by extrapolation it is important not to use any BReps. 

 

The decision for this method depends on the complexity of the profiles. As soon as 

the profiles get more complex this method gets confusing because all interdependent 

design steps must be controlled in curve and surface directions, positions and 

expansions and be compared with the concept section. A simplification by replication 

is not suitable.  As the single design steps are often different, the effort for replication 

is higher than the repeated design steps. The high number of design steps affects 

the effort when references have to be edited. Even if every segment design is directly 

legible in the hierarchical tree every single segment must be selected and edited in 

case of extensive variations. 

 

With an overall score of 2.53 (1.36 is the score of the best design method) this 

method belongs to the centre span (2.59) of the methods evaluated (see figure 7.32). 

 

 

7.7.4.2 True Section Method – Extension by Dimensioning 
 

The method to extend the segments in workbench Sketcher by dimensions is easy to 

understand for third parties. The hierarchical tree keeps short and legible. The 

traceability of the sketch keeps obtained even when the segments are extended. This 

is essential even for complex profiles. 

 

All segment extensions are performed in the true section which saves design time. 

The replication of the completed design of the first bedding for the development of 

the second bedding is another time saving opportunity. As long as the profiles are 

simple this method is quite update safe. As the auxiliary points for the segment 

extensions are positioned by a geometrical constraint, a dimension editing failure 

may occur. All geometrical constraints have to be defined carefully. 
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When curved segments are defined by three points are involved the segments have 

often to be redesigned after the update cycle because the composition of curve 

defining points get lost. With this method the editing effort increases with the 

complexity of the profiles. 

 
 

Fig. 7.33 Validation of True section method – Extension by dimensioning  
 

 

With an overall score of 2.85 (1.36 is the score of the best design method) this 

method is below the centre span (2.59) of the methods evaluated (see figure 7.33). 

 

 

7.7.4.3 True Section Method - Boundary Circle 
 

The design of a true section and extension of its segments under support of auxiliary 

circles is an easy to understand design principle. For simple profiles this principle is 

time saving and legible. Design and extension work in the true section keeps the 

hierarchical tree short and traceable. As soon as profiles get more complex the 

number of auxiliary circles and geometrical constraints increase, hence making the 

sketch intransparent and leading to editing mistakes after updates. 

 

The replication of the completed design of the first bedding for the development of 

the second bedding is a time saving opportunity. 
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Fig. 7.34 Validation of True section method - Boundary circle 
 

 

With an overall score of 3.82 (1.36 is the score of the best design method) this 

method has the worst rating of the methods evaluated (see figure 7.34). 

 

 

7.7.4.4 True Section Method - Boundary Box (Wire Frame) 

 
 

Fig. 7.35 Validation True section method - Boundary box (wire frame) 
The design principle to extend the segments of a section in the workbench Sketcher 

under support of one auxiliary rectangle is suitable for straight and curved segments. 
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In contradiction to the boundary circle principle the single rectangular auxiliary 

geometry keeps the section legible even when the segments are extended. The 

extension of the segments in the Sketcher keeps the hierarchical tree short and 

traceable. The definition of geometrical constraints and the design and extension of 

curved segments needs special attention. The references in the short hierarchical 

tree and the legible sketch can easily be edited. The replication of the completed 

design of the first bedding for the development of the second bedding is a time 

saving opportunity. 

With an overall score of 2.09 (1.36 is the score of the best design method) this 

method has the second best rating of the methods evaluated (see figure 7.35). 

 

 

7.7.4.5 True Section Method - Boundary Box (Surface) 
 

This principle with its auxiliary geometry developed in workbench Sketcher and the 

extension of segments in 3D is only suitable for straight segments. Curved segments 

must be extended under support of the wire frame principle. The entire method from 

sketch to surface bands is applicable very good even for complex profiles. With the 

extension design in 3D the hierarchical tree gets very long. The method allows a 

good transparency as the design steps for every segment and its related surface 

band is sorted in a Geometrical Set. The true section is kept untouched by the 

extension principle. The section can be supplemented with sheet thickness under 

support of offset curves and radii (manager section) without interference of the 

extension principle. Failures by using geometrical constraints can be avoided. The 

only disadvantage of the method is that curved segments must be extended in 

workbench Sketcher. Apart from that there are no problems with updates and editing 

of references. At a first glance the high number of design steps may be irritating. But 

extension in 3D and design of related surface bands can easily be achieved by 

replication of the first design which reduces the design effort. 
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Fig. 7.36 Validation True section method - Boundary box (surface) 
 

 

With its overall score of 1.36 this method is the best of all methods evaluated (see 

figure 7.36). 

 

 

 
 

Fig. 7.37 Validation True section method - Extrapolation 3D 
 

 

 

Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 234 



Chapter 7 
 

 

7.7.4.6 True Section Method - Extrapolation 3D 
 

The design of a true section in workbench Sketcher and the segment extension in 3D 

by extrapolation is suitable for all kind of profiles. Auxiliary geometries for the 

extension of the segments are points already existing in the Sketcher which have to 

be diverted from the Sketcher into 3D. Afterwards the segments are extended in 3D 

by extrapolation under support of these points. The true section is completely 

untouched by the extension principle. The section can be supplemented with sheet 

thickness under support of offset curves and radii (manager section) without 

interference of the extension principle. The hierarchical tree is very long but still very 

good traceable as the number of design steps for each segment and related surface 

band is small. 

 

The designer must be carefully not to use any BReps for the extrapolation of 

segments. Only existing start and end points diverted from the Sketcher should be 

used for extrapolation. In this method only straight lines and segments of a circle 

should be extended by extrapolation. The evaluation has shown that the 

extrapolation of splines results in follow up failures in the surface design developed 

from the extrapolated segment. For the extension of segments no geometrical 

constraints are necessary. The small number of the geometrical constraints for the 

design of the section makes the method very update stable. The only problems are 

curved segments. Curved segments could not automatically be updated as the 

composition of curve designing points gets lost. Points and curves may have to be 

redesigned. 

 

With an overall score of 2.31 (1.36 is the score of the best design method) this 

method has the third best rating of the methods evaluated (see figure 7.37). 

 

 

7.7.4.7 Surface Band Method  
 

For simple profiles the surface band method can be used quickly and easily as the 

complete design takes place in 3D. The control of the curves and surfaces directions 

as well as the positions and expansions compared with the concept section to avoid 
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failures in the design can be done quickly. Another advantage of the method is the 

exclusive design in 3D which avoids the use of geometrical constraints in workbench 

Sketcher and allows high update stability. The single design steps of simple profiles 

can be easily edited. 

 
 

Fig. 7.38 Validation surface band method 
 

 

In spite of the advantage of update stability the use of this method is not 

recommended for complex profiles. Compared with the other methods the surface 

band method is less convincing. The control effort and the confusion grow 

enormously with the number of segments. A high number of interdependent design 

steps are necessary which require the control of the directions of curves and 

surfaces as well as the positions and expansions compared with the concept section 

after every update. The hierarchical tree gets long and less legible especially for third 

parties. Actually the sequential design steps are directly legible in the hierarchical 

tree the interdependencies get more and more inscrutable. Because the design steps 

and interdependencies are different for the single surface bands a reduction of 

design effort by replication is only possible in single instances.  

 

With an overall score of 2.98 (1.36 is the score of the best design method) this 

method is one of the less recommendable of the methods evaluated (see figure 

7.38). 
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7.8 Conclusion to the Chapter 
 

The chapter described a piece of research work regarding the design of profiled 

zones of automotive body parts and assemblies. Various CAD-models have been 

designed to improve existing and to test new methods. A detailed description and 

evaluation shows seven methods for the development of prismatic surface bands 

necessary for the development of body parts. 

 

The evaluation of the methods for the prismatic design of body surfaces shows that 

both boundary box methods by far are the best methods evaluated. Especially the 

boundary box (surface) method scores high with the two important criteria of update 

stability and traceability. The designer is able to perform the design of several 

variants without major editing problems. This saves time in the concept phase where 

lots of variations occur to optimise the designs (see figure 7.39). The necessity to get 

back to the boundary box (wire frame) method when curved segments are involved is 

not a problem for the designer. The effort for the many simple design steps can be 

dramatically reduced by replication of geometrical sets. Another important advantage 

is that the section is nearly not affected by the extension principle. With other 

extension principles the general view sometimes completely gets lost. 

 

 
 

Fig. 7.39 Comparison of best and worst method 
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For first quick designs in the early concept phase the method boundary box (wire 

frame) is recommended. This principle can quickly be designed and clearly 

represents the section and is updating safe. 

 

An alternative for simple as well as complex profiles is the principle “Extrapolation 

3D”. The extensions are quick and designed under support of existing points from 

workbench Sketcher and extrapolation in 3D as long as no curved segments are 

involved. The small number of design steps keeps a good traceability even for 

complex sections. Ingenuous designers may use BReps for this principle which will 

lead to update problems. 

 

As long as the designs are simple the principles “3D only” and “Extension by 

constraining” are alternatives to boundary box (wire frame). The principle “3D only” is 

more update safe as long the designer not uses any BReps. The boundary circle 

principle should not be used at all. The principle often induces failures during editing 

and with complex sections the section is not legible after the principle is applied.
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The research work for this thesis has been carefully completed after the evaluation of 

the last three of 25 team projects organised between the author, his students and 

companies of the automotive industry. The knowledge gained by the author has been 

completed by several final year projects (>70, duration 5 month) organised between 

the author, his single students and companies of the automotive industry. In 2008 the 

author took over a research project from AK 4.6 (collaborative work group of German 

OEMs) to support the implementation of the CATIA integrated Packaging software 

programme CAVA in the German automotive industry.   

 

The research of the author in this field of engineering will not end with this thesis. A 

lot of design and development processes need to be explored and improved. 

Therefore the author maintains his contacts to the automotive industry. 

 

The automotive industry is very much interested to permanently optimise their 

processes. A reduction of development time e.g. during concept or tooling phase 

under support of re-usable PAD models which define part geometries but also control 

the expected functions is nowadays undisputable. Instead of old 2D controlling 

processes defined by company regulations and legal requirements, the PAD models 

deliver 3D geometries to control e.g. the demands of ergonomics, passive safety, 

manufacturing intents etc. During the period the author worked on this thesis the 

Volkswagen Group reduced their master PEP from 60 to 48 months.  

 

As there is not very much literature regarding automotive body engineering and the 

application of PAD in this field the author went to several conferences and became 

member of the committees for two important conferences which take place every two 

years. He organised his own conference regarding PAD and invited people from 

industry to speak at small conferences at the university. Parts of the thesis were sent 

to specialists in automotive industry for their approval. Two books were published by 

the author in cooperation with his contact partners from industry. 

 

To understand the motivations and pressure of the automotive industry chapter 1 

describes the situation in this industry and the role a body engineer plays in his 

collaborative work in product development in automotive body engineering. A 

comparison of old and new design methods shows the chances of a new product 
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development under the support of Parametric Associative Design (PAD). The storage 

of knowledge in parametric design models is only possible once engineers give up 

their private specialised knowledge and make it applicable for general use. This leads 

to the research question of how these processes have to be organised and the 

explanation of aims, objectives and methodology which have been defined at the 

early stage of the research work and been slightly readjusted during the work.  

 

To show the differences between pure mechanical design and automotive body 

engineering basic methods and first examples of automotive body design are shown 

in chapter 2. These examples point out important features of body design which are 

prerequisites for a structured Parametric Associative Design (PAD).  

 

The field of PAD is very broad and complex (e.g. wire frame and surfaces versus 

subdivision modelling, Bezier – surfacing versus NURBS - surfacing, solid modelling 

versus functional mould design etc.). The large amount of work benches in a PAD 

software such as CATIA V5 or Siemens PLM NX can be compared with a complex 

language. To make everybody understand and use the language it is important to 

compare the advantages and disadvantages of the PAD software workbenches. 

Joined efforts of the German automotive industry led to a reduced range of functions 

to make the PAD software understandable and usable for a larger quantity of 

automotive body engineers. The research work of the author and his students in 

partial areas of automotive body design supported and supports the decision making 

process of the automotive industry regarding this subject.  

 

Chapter 3 describes fundamentals of PAD and the author’s consolidated findings. 

Different methodologies to define associated geometries and design features in CAD 

models of assemblies of an automotive body have emerged during the past few 

years. This was due to missing opportunities for the satisfactory administration of 

links between the parts of an assembly in Product Management (PDM) systems. As 

PAD offers its most advantages in the early phases of development cycle where 

many variants are approved and several changes appear this led to work with Multi 

Model Links (MML) method using Reference-to-Instance links in a file based 

environment at the university as well as in concept engineering teams of the 

automotive industry.  
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To keep the structural trees of the PAD neatly arranged, legible and traceable it has 

proved successful to structure the PAD models according to the development steps. 

In many cases several development steps can be structured according to production 

sequences. 

 

In chapter 4 a critical literature analysis of the general systematic approaches to 

engineering development and design, detailed partial methods of structured 3D CAD 

modelling as well as priciples of object-oriented design is undertaken. PAD is a type 

of object oriented design.  

 

The collaborative work group  AK 4.6 (CAD/CAM) of the five German automotive 

companies (AUDI, BMW, Daimler; Porsche, Volkswagen) has elaborated and issued 

a common “start part structure” in 2009 (AK 4.6, 2009). In the last three team projects 

the version of the OEM start part tested by AUDI was adjusted for the necessities of 

the project work in the concept phase to gain an insight of the use of the OEM start 

part for the structural tree of single parts (see addendum). For sub assemblies and 

assemblies the consequent use of the IDO (Input-Design-Output)-Principle on all 

hierarchical levels has proved to be successful.  

 

The design approach and definition of the hierarchical tree requires the consideration 

of all existing methods and strategies investigated for chapter 4. This approach 

guarantees the update safe exchange of reference geometry and parameter 

variations as well as the legibility and the reusability of PAD models of single parts, 

sub assemblies and assemblies. 

 

To understand the necessities for the application of the PAD methodologies it is 

essential to get an insight into the various collaborative development works of stylists, 

designers, CAE engineers and related partners. These are explained in chapter 5. 

Every unit of the automotive body will be developed with several variants with the 

objective of improvement towards one optimum model. Every single development 

step of every variant of every unit needs the design of 3D geometry for evaluation.  
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Most of the parameters regarding collaborative parametric associative design of 

assemblies of the automotive body can be investigated and optimised in the file 

based principle undertaken at the university (HAW). For the distribution of design 

work in concept development it is useful to organise the design work of assemblies of 

sheet metal parts and their interior and exterior environment not according to the 

single parts of the assemblies (bill of material) but according to a zone based 

approach. Advantages and limits of zone based design have been investigated and 

presented in detail with the use of examples in chapter 6. 

 

For the development of automotive body parts the use of sections is essential. 

Chapter 7 investigates the design of profiled zones of automotive body parts and 

assemblies. Various CAD-models have been designed to improve and to test existing 

and new methods. A detailed description and evaluation shows seven methods for 

the development of prismatic surface bands necessary for the development of body 

parts representative for most other design methods used.  

 

The original research questions were: 

 

1) How does the parametric associative design support the development of body 

 assemblies with distributed tasks?” 

 

This support comes in the form of well structured files of CAD models. Typical 

examples are described in the addendum (Original files can be found on the DVD). 

 

2) How could a parametric associative CAD model be clearly structured to 

 provide information for linked processes in the form of Knowledge Based 

 Engineering (KBE)? 

 

The investigation has shown that well structured PAD models are capable of 

containing the knowledge of both the designer and the related processes needed to 

develop the product.  

 

The original contribution of this research was the application of PAD to the process 

and design methods of automotive body engineering. The novelty in this approach 
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and contribution to knowledge was the application of PAD in the process chain of 

automotive body development where the combination of functions and forms of 

assemblies often is more complex than in mechanical engineering. 

This thesis defined structures where the explicit knowledge of the company and 

implicit knowledge of the engineers involved in the project, can be captured and 

transported between various process steps to improve the time and the quality of the 

output. Rules and standards were defined allowing consistent update safe PAD 

models which can be re-used in follow up processes and other projects. 

 

The thesis has shown that equal distribution of design work between design 

engineers in large assemblies can either be subdivided according to the bill of 

materials or subdivided into zones. The zone based approach was investigated and 

suitable rules were found specifying the degree of detailing needed in the zones to 

enable update safe models. Besides the distribution of work the zone based 

approach has a second advantage: In the past isolated 2D sections (about 180 at 

Volkswagen) have been taken over from former developments, adjusted and used to 

start the design of a new  automotive body. 2 D sections have been used to control 

the demands of company regulations and legal requirements. With the zone based 

approach 3D PAD models from former developments, containing adjustable 2D 

sections and control sections where necessary, can be taken over and can be 

adjusted by their parametric associative contents according to new demands. The 

outcome is not a collection of adjusted sections but an automotive body defined by all 

important primary surfaces, automatically controlled according to demands of 

company, legal requirements etc.  

 

To work out and verify the knowledge described in the thesis it was necessary to 

define lots of PAD models. The addendum delivers a small selection of CAD-model 

examples which are described in detail. 

Two important topics of the collaborative project work which did not play an important 

role in the projects approached at the university should all the same be observed: 

The topic of intellectual property protection in design and development becomes 

more and more important in the automotive industry. The know-how integrated in 

parametric associative CAD-models must be protected. The opposite safeguarding of 

own know-how affects OEMs, suppliers and engineering suppliers. For the handling 
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of confidential data between OEMs and university a simple way is chosen: The 

Class-A surfaces (sensitive styling data) are exchanged with existing old Class-A 

surfaces and internal parameters are manipulated. This way large parametric 

associative CAD-models can be handled over from OEM to university for further 

proceedings and project works. The collaboration between OEMs and general 

contractors or tier 1 suppliers down to engineering suppliers is much more complex 

and needs individual case studies. In this area highly specialised software companies 

develop tools for the individual elimination and reintegration of information in CAD-

models (Krastel, 2008; Slaby, 2008; Stjepandic, 2008). AUDI works on a process 

chain adapter, a CA-tool that automatically converts parametric associative CAD-

models into tailored models without knowledge. This way it is planned to supply 

process partners like simulation, external FEM calculation, manufacturing planning, 

tool making or quality control as early as possible with exactly the current data the 

partners need (Klem et al, 2008). 

 

OEMs today in the early phase of model validation in product development 

increasingly use more parametric associative templates to review reoccurring 

questions. Contrary to the old reactive operation principles these zone based 

templates are designed for the automatic proactive influencing of the product 

development to prove and assist the optimising process in terms of process partners. 

Most of these templates are very complex and need experts for their application. 

Examples for these templates are worked out for control of legal or package 

requirements or for safeguarding of intends of ergonomics, passive safety or 

manufacturing (Brockmeyer, 2010; Potthoff, 2007). The development of templates for 

early safeguarding of technical demands of process partners as well as the 

continuous improvement of the findings of the thesis are the essential scopes for 

future works in team projects in cooperation with automotive industry and other 

universities. 

 

For 2011 the author has planned to organize three more team projects in the Master 

programme with AUDI, BMW and Volkswagen. In the Volkswagen project a second 

university is involved which takes over the role of production planning. 
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Besides this three team projects a research project is organized for 2011 between 

AK 4.6 (AUDI, BMW, Daimler, Porsche, Volkswagen) and the university, called : 

“Investigation of the efficiency of structural design on basis of the OEM start part.”  

The main organisational points are:  

25 students work in five teams. The distribution of CAD-knowledge is approximately 

the same in all teams. 

Every single student designs the same typical body parts in its concept assembly 

environment (a sheet metal cross member, the inner trim (sandwich plastic part) of a 

tale gate, a cross member assembly made of extruded aluminium, a weather strip 

assembly (extruded profile) for a side door and a moulded (die casting) suspension 

leg turret). 

One team of five student’s works according to OEM start part regulations, another 

team according to BMW start part regulations and three teams of five students define 

their own structure in a standard CATPart. 

After generation of the five parts, typical modification scenarios, not known at the 

beginning, have to be implemented. Efforts, experiences and motivations for design, 

update and repair are carefully registered. The quality of the CAD-models is tested by 

different tools (e.g. QChecker, Validat) in several stages. The overall result is going 

to be assessed and published. 
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Introduction to the Addendum 
 

Throughout the work on this dissertation many CAD models have been developed to 

test and improve design and structuring methods. Methodologies of body design 

have been customised and optimised for the PAD process. The contribution of 

knowledge expected to arise from such studies is the robust integration of PAD into 

the complex body design scope with its varied relationships along the process chain. 

Explanations about the re-use and robustness of PAD models give an inside into the 

success in saving time and money associated with a higher quality of CAD data for 

the development process expected from the investigations. Three additional 

examples give a small overview about the methodologies of automotive body design 

investigated: 

 

 Appendix 1: The templates “Prismatic design of trapezium and round 

swages” exemplify how the design work for the high number of 

embossments on structural body parts can be easily repeated to save 

development time. These templates are used in the part-phase of 

concept development to apply stiffening swages to sheet metal parts 

(compare with chapter 6). 

 Appendix 2: The concept development “Layout hinge axis front 

door“shows an example for the layout work of a typical area of an 

automotive closure. This CAD-model is used for the layout of hinge axis 

in the zone-phase of concept development (compare with chapter 6). 

 Appendix 3: The template “From concept-section to true section and 

surface bands” shows an automated procedure which saves a lot of 

time for the development of typical surfaces of automotive body parts. 

Chapter 7 describes the methodologies of sections and derivation of 

surfaces. This template is automatically developing surface bands from 

true most concept sections and can be used in zone phase of concept 

development (compare with chapter 6). 

 Appendix 4: The execution of several team projects intensified the 

comprehension that a collaborative design work is only possible with 

clearly defined design guide lines. Guidelines applied in the projects 

presented in chapter 6 are presented in full detail this Appendix.
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A.1.1  Introduction 
 

Swages (beads) are hollow shaped embossments mainly in plane or flat curved 

sheet metal parts (see figure A.1.1) which enhance the stiffness and allow weight 

reduction by the use of thinner metal sheets. Sometimes styling and enhancement of 

stiffness is combined on visible body parts (e.g.  rear wall, cabin, pick-up or covering 

sheet, bumper, SUV). In deep draw process swages are used to reduce local wrinkle 

formations. 

 

 
 

Fig. A.1.1 Wheel arch FORD Mondeo 
 

 

From the geometrical or design point of view swages are only prismatic (of constant 

cross section) as long as their spine and guide curves are identical. The cross 

section does not change along the route of a swage. For swages designed according 

to manufacturing technology the spine curve is positioned on the tooling plane and 

the guide curve on the body surface the swage is applied to. These swages are not 

prismatic. The cross section changes its shape along the route of the swage. The 

design of prismatic round swages requires a special attention. The small angle at the 

end tangents on the border between swage and reference surface may lead to local 

undercuts (see figure 7.4 in chapter 7). 
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The profile shape and the dimensions of the cross section are depended on the sheet 

thickness, the number and position of necessary swages. These are investigated by 

simulation. In this chapter the design of trapezium (see figure A.1.2) and round 

swages according to Volkswagen standard is described. The high number of swages 

on structural body parts requires design methods which can be easily repeated (e.g. 

templates like Power copies and User Features). As the route of a swage can be 

straight or curved the templates are defined to fulfil both requirements. 

 

 
 

 Fig. A.1.2 True section (compound section) of a prismatic trapezium swage  
 

 

A.1.2  Design of Templates 
 
The structural tree of a template looks different than of a normal CAD-model. On the 

first hierarchical level there are two files, one for INPUT geometries and one for the 

design to be repeated (see figure A.1.3: Trapezium swage with rounded run out). The 

files for DESIGN and OUTPUT are defined on the second level below the file for the 

design to be repeated. 

 

The INPUT geometry always must be inserted isolated. It is important not to generate 

links or update loops with the geometry the template is applied to, especially when 

the template is developed on basis of the same CAD-model. In CATIA there are 

several possibilities to automate repeatable design applications. In this case by way 

of example Power copies and User Features are used to design swages. While the 
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structural tree of the repeated geometry of a Power copy is added to the structural 

tree of the CAD model the template is applied to can completely be edited. The 

structural tree of a User Feature is not available in the CAD model after the template 

has been inserted and cannot be edited. Therefore User Features are often used for 

designs according to standards where parameters are not allowed to be changed 

(e.g. VW-Standard 01080). As standards e.g. for material or semi finished products 

such as sheet metal used in automotive body construction are often not up to date it 

is advisable to develop a User Feature for standard applications as well as a Power 

copy for certain variations. 

 

 
 

Fig. A.1.3 Hierarchical tree of a template.  INPUT, DESIGN and OUTPUT files are 
positioned on different hierarchical levels.  

 

 

As the Volkswagen-standard allows several variations for the design of trapezium 

swages (Form B, see figure A.1.4) two Power copies are designed for these swages 

which show both shapes of run-out mentioned in the standard, round run out shape 

and straight run out shape. The Power copies are completed with a table of dimen-

sions and tolerances of the Volkswagen- standard. According to this table the Power 

copies can be edited manually if necessary. For round swages (Form A, see figure 

A.1.4) User Features are defined which automatically apply the dimensions of the 

standard according to the sheet metal thickness of the part the template is applied to. 
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For the application of round swages in sheet metal parts which are not according to 

the standard two more Power copies are designed. 

 

 
 

Fig. A.1.4 Table of dimensions and tolerances of swage cross sections according to 
Volkswagen standard   

 

 

 

A.1.3  Design of Power Copies for trapezium and round Swages1  
 

Firstly isolated geometries (see figure A.1.5) must be provided in the INPUT file of 

the template. For the reference surface any type of surface can be designed or taken 

over from another CAD-model. A tooling plane is added to the reference surface to 

                                            
1 Please see the following CAD-models: 

2010-02-04_PC_Trapezium_Bead_Rounded_run_out_Final_fillet 
2010-02-15_PC_Trapezium_Bead_Straight_run_out_Final_fillet 
2010-02-15_PC_Round_Bead_Rounded_run_out_Final_fillet 

  2010-02-15_PC_Round_Bead_Straight_run_out_Final_fillet 
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support the design of the next references. The plane will be deleted as soon as the 

references are isolated. The starting point and route of the swage have to be 

designed either on the reference surface or on the tooling plane of the reference 

surface. A straight line perpendicular to the tooling plane defines the direction of 

swaging operation. This straight line is positioned on the opposite side of the planned 

embossment.  

 

 
 

Fig. A.1.5 INPUT Power copy with isolated geometry of reference surface, start 
point, direction swage operation and route expansion swage 

 

 

The explicit parameters of the trapezium swage are defined on basis of Volkswagen 

standard (see figure A.1.6). The dimensions shown are valid for a sheet metal 

thickness of 2.5 mm. For the slope angle dimensions of 45° or 60° are specified. For 

the run out radius a value range from R25 to R40 is predetermined. For the straight 

run out the standard defines a slope angle of 12° and a fillet of R60. To make sure 

that the surface of the swage can be error free when filleted with the reference 

surface, a parameter for the extension of the segments of the cross section is 

defined. The explicit parameters for the round swage are defined in a similar way. 

For the integration of the table with the dimensions and tolerances of the 

Volkswagen-standard the KBE feature Reaction is chosen. Therefore first of all an 

explicit parameter of type String (switch) has to be defined to provide the two values 
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“Form A“and “Form B”. For this parameter a Reaction will be defined which shows a 

message as soon as the value is exchanged from “Form A“to “Form B” or contrary. 

The message is the table of dimensions and tolerances copied from Volkswagen 

standard (see figure A.1.4). 

 

 
 

Fig. A.1.6 Explicit parameters of trapezium swage with round run-out  
 

 

The explicit parameters defined will be applied by CATIA to the standard parameter 

set. As the parameters have to be placed in the DESIGN file of the Power copy an 

additional parameter set is defined, cut and pasted into the DESIGN file. The explicit 

parameters defined in the standard parameter set before are reordered into the new 

parameter set. 

 

After the start point and the route of expansion are projected onto the reference 

surface and the end point of the projected centre curve is designed, two local axis 

systems are defined in start and end point of the centre curve (see figure A.1.7). 

Therefore in both points normal planes are designed perpendicular to the centre 

curve and intersected with the reference surface. The X-axis (width of swage) will be 

defined on the normal plane as a tangent to the intersection curve. The Y-axis (depth 

of swage) will be designed on the normal plane perpendicular to the X-axis. The Y-

axis has to be positioned on the same side than the predefined direction of swaging 

operation. The Z-axis is a tangent to the centre curve. 
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Fig. A.1.7 Local axis system at start and end point of swage centre curve 

 

 
Fig. A.1.8 Round run out of swage 

 

 
Fig. A.1.9 Straight run out of swage 

 
 

Under support of the Y- and Z-axes of the local axis systems two planes are defined 

to design sketches for the round or straight run out (see figures A.1.8, A.1.9). The 

spine and guide curve of the swage now consists of three segments, the projected 

route of expansion and the plane run-out shapes on both sides. As it is necessary to 

design a curvature continuous spine and guide curve several design steps are 

required. At first the projected route of expansion will be extrapolated on both ends 

curvature continuous. Under support of the direction of swaging operation the 
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curvature continuous middle surface for the swage is extruded. The two run out 

shapes will be projected onto the middle surface and connected or filleted with the 

centre curve. In a Curve Smooth - operation a curvature continuous spine and guide 

curve is designed on basis of the prepared tangent continuous curve.  

 

On a normal plane in the start point of the centre curve a true section (compound 

section) of the swage cross section is designed (see figure A.1.2). For the round 

swage the cross section is a closed circle. The swage surface will be defined under 

support of the cross section along the curvature continuous spine and guide curve. 

 

There are two possibilities for the final result of the swage design. Either the swage 

surface is the final result positioned in the OUTPUT-file of the structural tree or the 

fillet between the swage surface and the reference surface is the final result. The last 

version should only be used if a single swage is to be implemented in a sheet metal 

part. To avoid conflicts with complex surfaces in all other cases (e.g. several swages 

in one part, crossing swages) the swage surface should be the final result of the 

swage template and the fillet work should be done manually. To avoid weakening of 

the sheet metal structure swages should preferably not cross each other. 

 

After a concluding in-depth investigation of the consistency of the three sketches 

involved the Power copy is defined. The combination of two different cross sections 

and two different run out shapes leads to Power copies for four different swages (see 

figure A.1.10). Spine and guide curve as well as cross section are kept visible. This 

allows to easily identifying one of several swages in the sheet metal part. When one 

of the two generating elements is selected the swage will be highlighted in the 

structural tree. When the name of the swage is selected in the structural tree the 

generating elements of the associated swage will be highlighted. After the Power 

copy is defined its application is tested in another CAD model2. 

 

                                            
2 Please see the following CAD-model: 

2010_02-04_Test_bench_for_PC_Bead 
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Fig. A.1.10 Trapezium- and round swages with straight and round run out 
 

 

A.1.4  Design of User Features for round Swages3 
 

 
 

Fig. A.1.11 INPUT_UDF with control parameter for screening the thickness of the 
sheet metal part the template is applied to 

 

The finished Power copies for the round swages will be changed and completed to 

configure User Features out of them. Therefore at first the Power copy and the 

Reaction are deleted from the CAD-model. The INPUT-file is be completed with a 

                                            
3 Please see the following CAD-models and MSExcel-file: 

2010-02-16_UDF_Round_Bead_Rounded_run_out_Final_fillet 
2010-02-16_UDF_Round_Bead_Straight_run_out_Final_fillet 
2010-02-16_Design_Table_UDF_Round_Bead 

Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 262



Addendum 
 

  

control parameter for the metal sheet thickness to enable the User Features to ask 

for the thickness of the metal sheet the User Feature is applied to (see figure A.1.11). 

 
 

Fig. A.1.12 Explicit parameters of round swages completed by a parameter for 
sheet thickness 

 

 

Based on the explicit parameters of the round swage (see figure A.1.12) a design 

table is defined (see figure A.1.13). According to the Volkswagen-standard eight 

parameter families (configurations) are organised on basis of the eight metal sheet 

thicknesses of the standard. The explicit parameters and the design table are linked 

to each other. As soon as a new parameter family from the design table is chosen 

the list of explicit parameters in the structural tree will be altered and the design 

geometry will be updated. 

 

 
 

Fig. A.1.13 Design table for control of parameter families depending on sheet 
thickness 

 

Under support of the rule editor a rule is defined in CAT Script (see figure A.1.14) to 

link the control parameter for the sheet thickness of the INPUT-file to the design 

table. When a standard parameter is selected for the control parameter the rule 
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automatically picks out the parameter family associated with, the explicit parameters 

in structural tree are synchronised and the design geometry is updated. If the chosen 

parameter does not suit to the standard the predefined error message will appear on 

the screen and the design sequence of the swage will be deactivated. 

 

 
 

Fig. A.1.14 Rule editor with rule for control of swage cross section according to 
thickness of sheet metal part the template is applied to 

 

 

After a checkout of the functions implemented the User Feature is defined and tested 

in another CAD-model (see figure A.1.15). The exemplary insertions show a Power 

copy on the left hand and a User Feature on the right hand sight. The structural tree 

of the Power copy inserted is fully accessible and editable. Spine and guide curve are 

visible and after insertion of several Power copies these elements support the 

allocation of geometry and structural tree of every single Power copy. The User 

Feature is shown in the structural tree only as a result with its Boolean parameter 

“Activity”. The structural tree and the spine and guide curve of the User Feature are 

not visible and editable. The identification of the User Feature can only be carried out 

from structural tree of the CAD-model and not from its designed geometry. 
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A.1.5  Summary 
 

In this chapter the design of templates for the replication of swages is described. The 

combination of two different cross sections (trapezium and circle) and two different 

run-out shapes (round and straight) leads to four basic types (see figure A.1.10). All 

four are fully editable Power copies. The two templates for round swages are 

upgraded to User Features which under support of a rule and a design table 

automatically change the dimensions of the cross section according to the sheet 

thickness of the sheet metal part the template is applied to. 

 

 
 

Fig. A.1.15 Work bench with Power copy and User Feature 
 

 

To avoid conflicts with complex surface geometries when more than one swage 

template is inserted the templates should only be applied as swage surfaces and 

filleted manually. From the four template variants described above another set of 

templates is provided which deliver as final result the swage surface only. The 

functions and shapes of all eight template variants could be combined in one 

template and its single functions e.g. could be switched “true” (on) and “false” (off) by 

their Boolean operator “Activity”. However for the development of templates it is 
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necessary to keep the complexity as small as possible to avoid conflicts during 

application especially when a User Feature is used which cannot be edited. 

Therefore it is better to provide a set of templates with low grades of complexity to 

cope any kind of application.  
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Appendix 2  Layout Hinge Axis Front Door4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                            
4Please see the following CATIA-model: 
 2010-04-20_Auslegung_Scharnierachse_vordere_Seitentuer (Laout_Hinge_axis_Front_door)_Tec 
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A.2.1  Introduction 
 

During design and early concept phase it is necessary to check the position of the 

door gap or to define a bounding curve for the position of the door gap in the hinge 

area.  The distance between the vertical hinge axis and the widest part of the 

sidewall and the relative position hinge axis are taken over from a previous carline 

(see figure A.2.1). 

 
 

Fig. A.2.1 Layout hinge axis design phase 
 

 

When during the concept phase more and more constraints and meeting parts such 

as pillar, hinges, door gap etc. are defined it is necessary to exactly define the hinge 

axis under consideration of meeting parts, explicit parameters and tolerances. There-

fore in most cases an envelope of bounding surfaces for the positioning of the hinge 

axis is designed. Alternatively a positioning envelope for the door gap can be de-

signed under consideration of a designed hinge axis, pillar and tolerances when the 

Class-A surface has been drastically altered (see figure A.2.2). 

 

In this appendix the parametric associative approach of the mostly used method for 

the design of a positioning envelope of the hinge axis is described (Brockmeyer, 

2005 and Fischer, 2006:2). 
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Fig. A.2.2 Positioning envelope door gap (Fischer, 2006:2) 
 

 

Side doors of passenger cars generally have a turn in arrangement for the hinge to 

door position. This means that parts of the door which are situated outside or in front 

of the hinge axis may turn into the sidewall while the door is opened. 

 

To allow the adjustability of the hinges in X-, Y- and Z-direction most hinges are fixed 

on the body in white side on a planar surface parallel to the ZX-plane and on the door 

side on a planar surface parallel to YZ-plane. When the door is opened the door 

corner may collide with the hinges in this arrangement. 

 

Hinge axes of side doors are often slightly inclined around X- and Y-axes. With 

angles of inclination up to 1.5° of the upper axis point to the rear and to the inside the 

rearmost lower corner of the door will be lifted up when the door is opened and the 

dead weight of the door will support the closing of the door.  

 

With the simple design method mentioned in introduction the early Class-A surface is 

turned around the hinge axis (see figure A.2.1). The intersection curve of the turned 

and unturned Class-A surfaces is the rearmost bounding curve for the positioning of 

the door corner in the area of hinge axis. When a door corner is chosen behind this 

bounding curve the outer panel of a front door will collide with the rear corner of the 

front wing. Therefore it is necessary to choose a door gap on or in front of the 
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bounding curve. After the door is opened the front corner of the opened door defines 

a bounding curve for the positioning of the outer surface of the pillar. 

 

For the design method discussed the following references (meeting parts, 

constraints) are already defined: Class-A surface with door corner, outer surface of 

hinge pillar, hinges and the shape of the door flange (crash profile or poor hemming 

profile). 

 

On basis of these references the following bounding surfaces are designed:  

 

• Rearmost bounding surface collision door corner with outer surface pillar 

• Rearmost bounding surfaces collision door corner with hinges  

• Foremost bounding surface collision door outer panel with front wing 

• Foremost bounding surface turn by corner door at front wing 

• Outmost bounding surface hinge axis to Class-A surface 

 

 

A.2.2  References 
 

The references are taken over from former theses (Brockmeyer, 2005 and Fischer, 

2006:2). The data of four different passenger cars are available in the CAD-model. 

The references of the 5 series BMW limousine (E60, 2003–2010) can completely be 

replaced by the references of one of the other passenger cars or by own references 

defined for a new project.  

 

The defined references of the four cars are: 

• Class-A surface in the area of the front door, 

• Front corner of the door,  

• Outer surface of the A-pillar. 

 

The complete outer Class-A surfaces of a new project must be reduced to the area 

between waist line and sill in height and between front wheel and B-pillar in length. 
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For three of the four reference cars the controlling references of the series hinge axis 

is available. The hinges are designed in this CAD-model. The designed hinges may 

be replaced by Carry-Over-Parts (COP). 

 

 

A.2.3  Design of the Positioning Envelope for the Hinge Axis  
 

The positioning envelope for the hinge axis (see figure A.2.3) is defined by a 

foremost, a rearmost and an outmost bounding surface. In addition the positioning 

envelope is restricted by the rearmost bounding surfaces regarding the collision 

surfaces of the hinges. 

 
 

Fig. A.2.3 Positioning envelope hinge axis and Class-A surface front door 
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There are two foremost bounding surfaces. If the door gap of a front door is relatively 

far back the outer door panel will collide with the rear corner of the front wing. In this 

case, from the two foremost bounding surfaces the surface “collision door outer panel 

with front wing” is chosen. In section A.2.3.5 of this chapter it is described how the 

selection between the two foremost bounding surfaces is worked out. The bounding 

surfaces are trimmed to each other to build the positioning envelope. 

 

 

A.2.3.1 Rearmost Bounding Surface Collision Door Corner with outer Surface Pillar 
 

The hinge axis of a door must be positioned in a way that the theoretical front corner 

of the door under consideration with defined clearances never collides with the 

hinges or the outer pillar surface. Firstly the collision with the outer pillar surface is 

examined. 

 
 

Fig. A.2.4 Reference section corner door with crash profile – Under consideration of 
door opening angle 70° and clearance (2mm) the minimum distance between 

theoretical door corner and outer pillar surface is 16.794 mm.   
 

 

Most side doors with turn in arrangement show a crash profile along the lower front 

corner of the door (see figure A.2.4). This shape of the door flange prevents the rear 

corner of the front wing at a front side door or the rear corner of a front door at a rear 

side door, to slip inside of the door flange in case of an accident. The door flange 

Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 272



Addendum 
 

  

always has to be inside the opposite flange, so in case of an accident allows the door 

flange to turn into the sidewall while the door is opened. As there are still cars on the 

market without crash profile (see figure A.2.5) the CAD-model allows the user to 

choose between the two versions. In the CAD-model an explicit parameter with 

switch function is defined allowing switching from one to the other version. A 

comparison of figure A.2.4 and A.2.5 shows for an identical door opening angle that 

the outer pillar surface must lie far more inside as soon as the crash profile is 

provided. If the outer pillar surface is already designed the hinge axis for a side door 

with crash profile must lie far more outside. 

 
 

Fig. A.2.5 Reference section corner door without crash profile – Under consideration 
of door opening angle 70°and clearance (2mm) the minimum distance between 

theoretical door corner and outer pillar surface is 2.764 mm. 
 

 

For the placement of the hinge axis between outer pillar surface and Class-A surface 

there are two theoretical borderline positions (see figure A.2.6):  

In horizontal sections the hinge axis can either be placed on the outer pillar surface 

or on the Class-A surface. A swept auxiliary surface is designed along the front 

corner of the door under the predefined opening angle. The swept surface intersects 

with the outer pillar surface along a bounding curve which describes the innermost 

position of the hinge axis (hinge axis 1). If the front corner of the door is turned in 

horizontal sections around points of this curve, the front corner of the door always will 

collide with the outer pillar surface when the defined door opening angle is achieved.  
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Fig. A.2.6 Theoretical investigations for borderline positions of hinge axis for collision 
of front corner door with outer surface pillar (Fischer, 2006:2) 

 

 

To define the second bounding curve for the outmost position of the hinge axis (hinge 

axis 2) the distance between front corner door and first bounding curve can be 

measured and turned onto the Class-A surface in many horizontal sections. It is 

much easier to design a second swept auxiliary surface on basis of the first bounding 

curve which intersects with the Class-A surface along the outmost bounding curve for 

the hinge axis (hinge axis 2). 

 

From a theoretical model with vertical planar outer pillar surface and parallel Class-A 

surface (see figure A.2.7) the complementary angle for the design of the second 

swept auxiliary surface can be determined. In several horizontal sections this com-

plementary angle can be proven in the CAD-model with its planar outer pillar surface 

and free-formed Class-A surface. At a door opening angle of 70° the complementary 

angle is 55° ((180° - door opening angle) / 2) used to design the second swept auxil-

iary surface and the second borderline position for the hinge axis. 
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Fig. A.2.7 Theoretical investigation for the angle of the rearmost bounding surface 
with planar outer surface pillar and parallel planar Class-A surface (Fischer, 2006:2) 

 

 

In the CAD-model a reference section is defined (see figure A.2.8) which controls the 

complementary angle in relation to the door opening angle. The second swept 

surface which connects the two borderline positions is the rearmost bounding surface 

for the collision of front corner door with the outer pillar surface. All hinge axes 

positioned along this surface will lead to a collision of front corner door with the outer 

pillar surface. 

 

Firstly all according to reference section of variant 1 (figure A.2.4 - door flange with 

crash profile) or reference section for variant 2 (figure A.2.5 - door flange without 

crash profile) an offset surface of the outer pillar surface is designed to be used for 

the follow up collision investigation described above. The reference of front corner 

door is extrapolated beyond the waist line of the Class-A surface to ensure that the 

extrapolated curve always can be trimmed by the offset surface of the outer pillar 

surface (see figure A.2.9). To make sure that Class-A surfaces can be used in the 

CAD-model which does not provide horizontal sections parallel to the outer pillar 

surface two more auxiliary surfaces have to be designed. The trimmed front corner 

door is projected in Y-direction onto the offset of the outer pillar surface. Between the 

trimmed front corner door and its projection the first auxiliary surface is defined. 

Perpendicular to the first auxiliary surface, a surface band is defined along the 

trimmed door opening line which runs in horizontal sections parallel to the ZX-plane. 
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Fig. A.2.8 Reference section to control complementary angles and distances 
 

 
 

Fig. A.2.9 Design of rearmost bounding surface 
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From the surface band the first swept surface is defined along the trimmed door 

opening line which intersects with the offset of the outer pillar surface. The 

intersection curve is the first borderline position for the hinge axis. From the ZX-plane 

another swept surface is designed along the intersection curve under the 

complementary angle (for 70° the complementary angle is 55°). The swept surface is 

the rear most bounding surface collision corner door with outer surface pillar. All 

hinge axes positioned behind this bounding surface will lead to a collision between 

door and outer surface pillar. 

 

 

A.2.3.2 Rearmost Bounding Surfaces Collision Door Corner with Hinges  
 

The hinge axis of a door must be positioned in a way that the theoretical front corner 

of the door under consideration of defined clearances never collides with the hinges 

or the outer pillar surface. Often the hinges are mounted to the outer surface of the 

pillar. From this it follows that the door flange first collides with the hinges or the 

mounting parts when the door is opened. 

 

 
 

Fig. A.2.10 Design of rearmost bounding surface hinge  
 

 

The design principle is similar to the design principle explained above. As the theory 

of the design principle has already been described in detail the description of the 
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design of the two rearmost bounding surfaces for the hinges are made in a shorter 

form for one hinge (see figure A.2.10). First of all the possible contact surface of the 

door flange with the hinge is designed. An offset of the contact surface is designed 

according to the variant of the door flange (with or without crash profile). The 

theoretical corner of the door is projected in Y-direction onto the offset surface. The 

length of the theoretical front corner of the door is trimmed according to the height of 

the offset surface. Trimmed front corner and projection of front corner are connected 

by a swept surface. From the swept surface another swept surface is designed under 

an angle of 90° - door opening angle along the trimmed front corner and intersected 

with the offset of the contact surface hinge. From the XZ-plane another swept surface 

is designed along the intersection curve under the complementary angle ((180° - 

door opening angle): 2) as described above. The last swept surface is the rearmost 

bounding surface collision door corner with hinge. 

 

 

A.2.3.3 Foremost Bounding Surface Collision Door Outer Panel with Front Wing 
 

With the simple design method mentioned in the first paragraph the early Class-A 

surface is turned around the hinge axis (see figure A.2.1). The intersection curve of 

the turned and unturned Class-A surfaces is the rearmost bounding curve for the 

positioning of the door corner in the area of hinge axis. When a door corner is chosen 

behind this bounding curve the outer panel of a front door will collide with the rear 

corner of the front wing (compare with foundation).  

 

In this detailed design method the positioning envelope for the hinge axis must be 

defined. Therefore two different foremost bounding surfaces must be designed and 

evaluated: 

 

• Foremost bounding surface collision door outer panel with front wing 

• Foremost bounding surface turn by corner door at front wing 

 

As visualised in figure A.2.8 the intersection point between opened and closed door 

(Class-A surface) lies 0.13 mm in front of the theoretical corner of the door under 

consideration of 70° door opening angle, minus tolerance of 0.8mm for the door gap 
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and clearance 2mm between outer panel door and corner front wing. When hinge 

axis points are defined with any distance to this point and the Class-A surface of the 

closed and opened door kite geometries (deltoids) appear (see figure A.2.8). The 

points are all positioned on the centre line of the kite while the Class-A surfaces and 

perpendicular lines from the hinge points onto the Class-A surfaces define the outer 

lines of the deltoids. Closed and opened door (Class-A surface) and the centre line 

show the opening angle plus two complementary angles (e.g. 70° door opening angle 

plus 2 x 55°, 80° door opening angle plus 2 x 50°). As soon as the door opening 

angle changes the distance between theoretical corner and intersection point 

changes as well as the complementary angles (see figure A.2.11).  

 
 

Fig. A.2.11 Reference section for the control of angle relations and distances  
 

 

In the CAD-model the first step is to develop a curve parallel to the theoretical door 

corner with the distance taken from the reference section for the control of distances 

and complementary angles (e.g. for 70° opening angle = 0.13mm (see figure A.2.8), 

for 80° opening angle = 0.747mm (see figure A.2.11)). Starting from the Class-A 

surface of the closed door a swept surface is designed along the parallel curve 
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according to the complementary angle of the reference section. The result is the 

foremost bounding surface which defines one of two different borderline positions of 

the hinge axis. If a hinge axis lies on this surface the parameters for the collision 

between door outer panel and rear corner of the front wing are fulfilled. If the hinge 

axis is located behind the surface no collision problems will occur. 

 

 

A.2.3.4 Foremost Bounding Surface “turn by” Corner Door at Front Wing 
 

The development for the foremost bounding surface (turn by) is performed on basis 

of bitangential circles (see figure A.2.12). The design is carried out under support of 

several horizontal sections. The centre points of the bitangential circles define the 

foremost bounding curve in every section. The radii of the circles which are tangential 

to the radius of the door flange as well as tangential to the radius of the front wing 

define the length of the foremost bounding curve and thus the width of the foremost 

bounding surface for the critical case of turn by. 

 

To take into account even very complex Class-A surfaces a lot of horizontal sections 

with short distance have to be developed to represent the outer surface of the door. 

In the CAD-model the height area is defined and supplied with 31 height planes with 

a maximum distance of 25mm each. The height area is designed on basis of the 

highest and the lowest points of the reference surface. Is the reference the complete 

Class-A surface of the sidewall extreme points for the height area must be chosen on 

waist line and lower corner of the door to delimit the Class-A surface. 

 

As the design of the bitangential circles and the resulting foremost boundary curve is 

identical for all horizontal sections the design is carried out only once in a reference 

section on the XY-plane. First of all in this reference section the details of the door 

gap are designed (see figure A.2.13). Under consideration of the negative tolerance 

for the door gap (4mm – 0.8mm) and the “turn by clearance” of the door corner 

(+1mm) bitangential circles between R6 and R100 are designed and associated with 

the radius of the door flange and the radius of the front wing under support of the 

geometrical constraint “tangential”. The centre curve of all radii is the foremost 

bounding curve for the critical case “turn by”. For a simplified design the centre point 
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of the smallest radius and the centre point of the largest radius could be connected 

by a straight line. The reference section is completed by reference X- and Y- 

distances for the start point of the foremost bounding curve (see figure A.2.12). 

 

Firstly each of the 31 height planes is intersected with the theoretical front corner of 

the door. Relative to this point the start point for the foremost bounding curve is 

designed. The foremost curve of the reference section is shifted to the particular start 

point. As the design intend is the same for each of the 31 horizontal sections, the 

modelling is only conducted for the first height plane and replicated for all other 30 

height planes. On basis of the 31 foremost bounding curves the foremost bounding 

surface for the critical case of „turn by“ is designed (see figure A.2.14). 

 

 

Foremost bounding curve turn of 
corner door at front wing 

 

Fig. A.2.12 Reference section: Design of foremost bounding curve by bitangential 
circles  
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Fig. A.2.13 Reference section: Dimensional detail in door gap area   
 

 

 
 

Fig. A.2.14 Several “Foremost bounding curves” define the “Foremost bounding 
surface „turn by“ and Class-A surface”  
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A.2.3.5 Selection Foremost Bounding Surface critical Case “turn in” or “turn by” 
 

Depending on the position of the reference door gap defined, the CAD-model must 

chose between “foremost bounding surface collision door outer panel with front wing” 

and “foremost bounding surface turn by corner door at front wing”. If the door gap is 

positioned relatively far back the door outer panel will collide with the front wing.  
 

As both bounding surfaces are designed in the CAD-Model a knowledge ware rule 

(see chapter A.2.6) chooses that surface which lies in X-direction the furthest back 

and narrows the positioning envelope for the hinge axis the most. 

 

 

A.2.3.6 Outmost Bounding Surface Hinge Axis to Class-A Surface 
 

To reduce the redundant forces on door and pillar a maximum moment arm should 

be provided by the distance between the two hinges of the door (in the CAD-model 

320mm). On the other hand will a big distance between the hinges increase the 

distance between the hinge axis and the curved Class-A surface (see figure A.2.15). 

This large distance will require additional space for the door flange turning into the 

sidewall while the door is opened. This arrangement does not allow enough space for 

the body structure in the finite thickness of the sidewall. 

 

When the hinge axis is inclined around X-axis the distance between Class-A surface 

and hinge axis could be reduced. To avoid the loss of the ease of use while the door 

is opened and closed, the angle of inclination should not be increased more than 

1.5°. 

 

The outmost bounding surface defines the borderline position between the straight 

hinge axis and the curved Class-A surface (see figure A.2.15). This distance is 

influenced by the distance between the hinges and the height of the hinge joints. The 

outer radius of the hinge joint plus the adjustment travel between hinge and door 

define an offset needed relative to the hinge axis. Along the door flange the sheet 

thicknesses of the inner and outer door panel plus a minimum distance for the 
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cataphoretic painting (min. 3mm) plus the minimum distance between the door inner 

panel and the hinge joint define an offset needed relative to the Class-A surface. 

 

 
 

Fig. A.2.15 Turned in door with crash profile, hinge and pillar (Fischer, 2006) 

 

 

For the design of the outmost bounding surface first of all an offset of the Class-A 

surface is designed according to the minimum distance required between Class-A 

surface and hinge joint, as explained above. This offset is moved horizontally to the 

inside of the car by the outer radius of the hinge joint plus the travel adjustment. The 

reference surface of Class-A is bounded by the theoretical door corner. Relative to 

the XZ-plane a new plane is designed at an angle about the X-axis according to the 

angle of inclination expected for the hinge axis. 

 

On the theoretical door corner the outmost and foremost point is modelled. In this 

point a normal plane to the XY-plane is defined. This foremost plane on the door 

corner borders the outmost bounding surface to the front. Parallel to the foremost 

plane two additional planes are defined with distances of 40mm. These planes define 

the centre and the rearmost border of the outmost bounding surface. The three 

Gerhard Tecklenburg       -       University of Hertfordshire       -       2010 284



Addendum 
 

  

planes are intersected with the inclined plane and the offset of the Class-A surface, 

which has been moved. On each of the three normal planes a positioned Sketch with 

a straight line is defined. This straight line has the distance of the length between 

hinges plus the height of both hinge joints. It is parallel to the intersection line of the 

normal plane and the inclined plane and its end points are coincident with the 

intersection curve of the moved offset of the Class-A surface. The three modelled 

and positioned straight lines define the outmost bounding surface (see figure A.2.16). 

 
 

Fig. A.2.16 Design of outmost bounding surface by three secants on the Class-A 
surface, that has been moved insight 

 

 

A.2.4  Tolerance Envelope for the chosen Hinge Axis 
 

On the endpoints of the centre line of the outmost bounding surface two planes are 

defined parallel to the XY-plane which are the bases for the hinge positioning. On the 

lower plane the start point of the chosen hinge axis is defined which must be adjusted 

manually in X- (H-) and Y- (V-) directions. On the upper plane the end point of the 

chosen hinge axis is defined which must be adjusted manually in X- (H-) and Y- (V-) 

directions. By (Knowledge Based Engineering) KBE the endpoint can be adjusted by 
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an optimising algorithm to calculate target values for the angles of inclination around 

the X- and Y-axes. Start and end point of the hinge axis are connected by the hinge 

axis.  

 

Based on the fact that the maximum angles of inclination are 1.5° around X-axis at 

the top to the inside and 1.5° around Y-axis at the top to the back a circular sector is 

designed on the upper plane to support the manual adjustment of the chosen hinge 

axis relative to the positioning envelope. The centre point of the circular sector is the 

projection of the start point onto the upper plane. The circular sector is bounded by 

two lines in +X- and +Y-directions and a circle. The radius of the circle is calculated in 

the CAD-model on basis of a trigonometric function by the angle of inclination and the 

distance of lower and upper plane (see figure A.2.10). If the angles of inclination 

around X- and Y-axes are both 1.5° the position of the end point is the intersection 

point between circle and bisecting line of X- and Y- direction in a projection 

perpendicular to the lower plane. 

 

Lower and upper plane, hinge axis, outer pillar surface and explicit parameters (see 

figure A.2.17) define the available space for the hinges. In the CAD-model hinges are 

defined because the contact surface between door flange and hinge is needed for the 

design of the positioning envelope. The designed hinges can at any time be replaced 

by Carry-Over-Parts (COP). Therefore the new hinges must be placed according to 

the available space and the hinge axis. The contact surfaces of the designed hinges 

must be replaced by the contact surfaces of the new hinges. The explicit parameters 

of the old hinges must be changed according to the parameters of the new hinges as 

the explicit parameters are also used for the design of the positioning envelope. If the 

explicit parameters for an angle of inclination or the tolerance area of the hinge axis 

in X- or Y-direction are changed, this angle or this tolerance offset must also be 

changed during optimisation. 

 

In the middle of the hinge axis a normal plane to the hinge axis and four different 

lines perpendicular to the hinge axis are modelled. This plane is then used for a 

control section. The four lines are used to check whether the chosen hinge axis lies 

in or outside the positioning envelope. 
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Fig. A.2.17 Explicit parameters for the design of hinge axis and hinges  
 

 

For the design of the tolerance envelope explicit parameters are defined for the 

tolerance areas in +/- X and Y-directions. Under support of this parameters four 

borderline positions of the hinge axis are defined which describe a rectangular 

envelope. 

 

 

A.2.5  Inspection of Door hang-out  
 

During manufacturing normally the closures are fixed to the body in white for the 

adjustment and painting processes. For the final assembly the closures are removed 

and then assembled on separate assembly lines. Often the bifid joints of the hinges 

are disconnected to enable to reproduce the door position after final assembly. In 

most cases the hinge bolts are dismounted and the door is removed in a 

perpendicular direction to the hinge axis. In some cases the doors are removed for 

the hang out in the direction of the hinge axis and as soon as the upper parts of the 

hinge joints are clear from the hinge bolts the door is removed perpendicular to the 

hinge axis. In the CAD-model it is checked whether the door hang out for this case is 

possible without interference between the partially opened door and the front wing. 

 

In the CAD-model the trimmed Class-A surface of the door is completed by the door 

flange. Therefore one of two true reference sections (crash or hemming profile) must 

be selected by KBE and moved to the theoretical door corner under support of local 
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coordinate systems to be designed in the reference sections as well as on the 

theoretical door corner. 

 

After the selection of the profile variant under support of a rule (knowledge ware) the 

prismatic door flange is designed. The designed door is opened partially and lifted up 

into the hang out position (see figure A.2.18). A check (knowledge ware) measures 

the distance between opened and lifted door and front wing and compares this 

distance with the explicit parameter for the minimum distance door hang out. 

 

 
 

Fig. A.2.18 Partially opened and lifted up door in hang out position 
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A.2.6  Application of Knowledge Based Engineering (KBE) 
 

For the layout of the positioning envelope and the examination and adjustment of the 

chosen hinge axis rules, checks and optimisations are defined. 

 

A.2.6.1 Rules  
 

For the control of the CAD-model three rules are defined: 

• Selection rule of profile variant of door flange (hemming or crash profile) to 

control an explicit parameter for a distance   

• Selection rule between foremost bounding surface turn by corner door at front 

wing and foremost bounding surface collision door outer panel ant front wing 

• Selection rule of profile variant of door flange (hemming or crash profile) for 

the design of the prismatic door flange 

 

Selection rule of profile variant of door flange (hemming or crash profile) to control an 

explicit parameter for a distance: 

 

Associated rule and parameters are placed in the main relations and parameter set of 

the structural tree. 

 

An explicit parameter with switch-function (parameter type “String”) allows choosing 

between two variants. In this case the parameter is called “crash profile” and with 

“Yes” and “No” the user can choose between crash and standard hemming profile 

(see figure A.2.19). According to the switch a second parameter (parameter type 

“Length”) gets offset information from one of the two reference sections. On the XY-

plane the two reference sections of the door flange with and without crash profile are 

designed. In both sections the distances between theoretical corner door and outer 

pillar surface including tolerance for the gap and clearance are dimensioned. Under 

support of the rule the parameter “Distance_theoretical_corner_door_vs_ 

pillar_geometry” is applied with the correct offset. The offset is measured by the rule 

with Measure Distance (Body\Body) between two output elements (3D geometry) of 

the chosen reference section. In this way instead of the complete design of the door 
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flange the distance between theoretical corner door and pillar geometry are taken 

into account which allows a simpler and update safe approach. 

 

Selection rule between “foremost bounding surface turn by corner door at front wing” 

and “foremost bounding surface collision door outer panel ant front wing”: 

 

The rule Selection_foremost_bounding_surface is placed in the structural tree in the 

set of the positioning envelope directly behind the design of the two different foremost 

bounding surfaces in a set called Selection_foremost_bounding_surface_ critical 

_case. This placement was chosen to allow the user a better traceability. 

 

 
 

Fig. A.2.19 Control of a distance parameter according to the profile variant 
 

 

Depending on the position of the foremost bounding surfaces the rule selects 

between foremost bounding surface collision door outer panel with front wing and 

foremost bounding surface turn by corner door at front wing. The rule selects the 

foremost bounding surface which is the furthest to the back and narrows the 

positioning envelope the most.  

 

Therefore it is necessary to design some auxiliary geometry: Both foremost bounding 

surfaces are intersected with the rearmost bounding surface. The two intersection 
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curves are projected onto the XZ-plane. The rule selects the foremost bounding 

surface whose projected intersection curve has in X-direction the bigger offset 

distance to the YZ-plane. 

 

For the development of the rule first of all an explicit parameter (parameter type 

surface) is defined. This parameter (this surface) is used for the following design of 

the positioning envelope. The rule measures the distance between the projected 

curves and the YZ-plane and allocates that foremost bounding surface to the 

parameter of type surface whose intersection curve lies the furthest to the back (see 

figure A.2.20). 
 

 
 

Fig. A.2.20 Selection between two different foremost bounding surfaces 
 

 

Selection rule of profile variant of door flange (hemming or crash profile) for the 

design of the prismatic door flange: 
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The rule Selection_profile is placed in the structural tree in the set of the 

“investigation door hang out” in a set called Selection_profile. This placement was 

chosen to allow the user a better traceability. 

 

For the investigation whether the defined door gap allows a door hang out the Class-

A surface must be completed with the prismatic door flange. One section must be 

selected for the surface design from two reference sections defined in the CAD-

model. 

An explicit parameter (parameter type “String”) allows choosing between two 

versions. The parameter “Crash profile” which allows choosing with “Yes” or “No” 

between a crash profile and a standard hemming profile is already known from the 

first rule. 

 

 
 

Fig. A.2.21 Selection of the true profile for the design of the door flange 
 

 

For the development of this rule first of all an explicit parameter of type „curve“ is 

defined. This parameter (this curve) is the profile which is used for the following 

design of the prismatic door flange. For the design the sketch outputs of both 
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reference profiles are shifted to a plane perpendicular to the theoretical door corner. 

Is the setting of the switch “Yes” the rule allocates the shifted output “crash profile” to 

design the flange surface, is the setting “No” the shifted output of standard hemming 

flange is chosen (see figure A.2.21). 

 

From the positioned true profile the flange surface is designed. The completed door 

is partially opened by the parameter Opening_angle_door_at_hang_out. Under 

support of a KBE check the distance between door and front wing is inspected. 

 

 

A.2.6.2 Checks 
 

  
 
 

 
 
 
 

 

 
 

Fig. A.2.22 Check door hang out: LH: door hang out possible, RH: door hang out 
not possible 

 

 

In the CAD-model four checks are integrated. The checks help the designer to find a 

reliable hinge axis position and answer the question whether the reference door gap 

allows a door hang out: 
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• Check whether door hang out for dismounting is possible. 

• Check whether the hinge axis with tolerance envelope intersects with the 

positioning envelope. 

• Check whether the hinge axis is positioned inside the positioning envelope. 

• Check whether the hinge axis with tolerance envelope intersects with the 

rearmost bounding surfaces of the hinges.  

 

Check whether door hang out for dismounting is possible: 

 

 

 

                         

 

 

Fig. A.2.23 Check whether hinge axis including tolerance envelope intersects with 
positioning envelope 

 

The Check Door_hang_out_possible controls whether it is possible to dismount the 

door under a defined door opening angle and whether the distance between opened 

and lifted up door and front wing does not fall below the defined clearance. The hang 

out travel in the CAD-model is half the height of the hinge joint plus 2mm clearance 

(see figure A.2.22). 

 

Check whether hinge axis with tolerance envelope intersects with positioning 

envelope: 
 

The check Hinge_axis_including_tolerance_envelope_clash_free_with_positioning_ 

envelope controls whether the hinge axis including its tolerance positions (designed 
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by lateral displacements of the hinge axis in X- and Y-directions) do not clash into the 

positioning envelope (see figure A.2.23). If the check shows a clash the chosen hinge 

axis must be moved manually. As it is possible that the check does not show a clash 

because the hinge axis lies completely outside the positioning envelope another 

check is necessary to ensure whether the hinge axis is positioned inside or outside 

the positioning envelope. 

 
 

                                  

  

 

Fig. A.2.24 Check whether the hinge axis is positioned inside the positioning 
envelope
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Check whether the hinge axle is positioned inside the positioning envelope: 
 
The check Hinge_axis_inside_positioning_envelope controls whether the centre of 

the hinge axis is completely positioned inside the positioning envelope. Four auxiliary 

lines are defined in the centre point perpendicular to the hinge axis. Only if all four 

auxiliary lines intersect the positioning envelope the centre of the hinge axis lies 

inside the positioning envelope. Only if both, this check and the check 

Hinge_axis_including_tolerance_envelope_clash_free_with_positioning_envelope 

show a green traffic light it is guaranteed that the complete length of the hinge axis 

and its tolerance positions are positioned clash free inside the positioning envelope 

(see figure A.2.24).  

 

 

Check whether the hinge axis including tolerance envelope intersects with the rear-
most bounding surfaces of the hinges: 
 

Similar to the check which controls the door hang out this check measures the 

minimum distance between the tolerance envelope of the hinge axis and the 

rearmost bounding surfaces of the hinges. These bounding surfaces additionally 

narrow the positioning envelope for the hinge axis. 

 

 

 

A.2.6.3 Optimisations 
 

Optimisation angles of inclination of hinge axis within the positioning envelope: 

 

The Optimizer is part of the CATIA-workbench “Product Engineering Optimizer”. The 

Optimizer is working on base of different mathematical algorithms such as the 

gradient algorithm or the stochastic simulated annealing algorithm. Under support of 

the Optimizer the following problems can be solved: A minimum or maximum of a 

target value can be calculated under consideration of several conditions and 

constraints. 
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For the definition of an optimisation the feature “Optimize” must be chosen. The pull 

down menu of the feature shows three tabs: “Problem”, “Constraints” and 

“Computations results”.  

In the Problem-Tab (see figure A.2.25) the user decides which kind of optimisation 

should be conducted (identification of a minimum or maximum target, alteration of 

target value or explicit parameter by constraints). In the CAD-model the target values 

for the angles of inclination around X- and Y-axes are defined. The Optimizer offers 

five different calculation algorithms. The two most important are the “Simulated 

Annealing Algorithm” and the “Gradient Algorithm”. 

 

 
 

Fig. A.2.25 Problem-Tab 
 

 

The “Simulated Annealing Algorithm” is a global stochastic search algorithm. Two 

executions of this algorithm one after another probably do not show the same result 

(Dassault Systémes, 2009). In the CAD-model this algorithm is chosen because of 
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the complex shape of the positioning envelope. The algorithm is used several times 

shifting between optimisation around X- and Y-axis. 

 

The “Gradient Algorithm” searches for a local minimum or maximum. Based on the 

calculation of the local gradient of the target function the algorithm uses a parabolic 

approximation and jumps step by step to its minimum or uses one iterative 

exponential step downward in the direction towards its minimum (Dassault Systémes, 

2009). The minimum found by this algorithm depends on the initial value. This means 

that the result is a local minimum. The local minimum is not mandatory the global 

minimum of the target function. This is the reason why this algorithm was not chosen.  

The calculation settings can be specified in the tab precisely. The convergence 

speed, the number of updates, the maximum number of updates without 

improvement and the calculation time can be defined. 

 

When the option “Save optimization data” is chosen the third tab “Computations 

results” is activated. An Excel-file will be produced and saved at a defined path. The 

tab communicates with this file. In case of a quick calculation optimisation data are 

not saved in the CAD-model. 

 

The bottom “Run Optimization” starts the calculations. 

 

The feature “Without Update Visualization” improves the calculation speed as none of 

the parameter optimisations will be visualised in the design model. When the 

optimisation is finished the update has to been done manually.  

 

In the Constraints-Tab (see figure A.2.26) the controlling conditions for the calculation 

are defined. In the CAD-model the minimum distance between hinge axis and 

positioning envelope / sqrt (0.5) > 2.5 mm is defined as “Constraint” according to the 

explicit parameter for the tolerance range for the hinge axis. The tolerance range of 

the hinge axis in X- and Y-direction is 2.5 mm. Multiplied with sqrt (0.5) result the 

radius for the tube of minimum distance. The feature “New” allows to define the 

constraint. In the Constraints-tab a value is shown which describes the difference 

between the constraint and the measured distance in the CAD-model (Distance to 
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satisfaction). The user can define the weighting for the value. Can the calculation not 

satisfy the weighted value a red traffic light will be shown. 

When the option “Save optimization data” is chosen the third tab “Computations 

results” is activated. After the calculation is finished the user has the opportunity to 

visualise and sort the calculation results either chronological or according to a rated 

value. Every single intermediate result can be chosen and used for a recalculation. In 

the CAD-model optimisation results are not saved on behalf of an expected quicker 

calculation. 

 

 
 

Fig. A.2.26 Constraints-Tab 
 

 

In the CAD-model the angles of inclination around X- and Y-axis are optimised 

iterative changing between optimisation around X- and Y-axis. Alternatively both 

parameter could be optimised together using the function U = √ X2 + Y2. 
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A.2.7  Summary 
 

Under support of the CAD-model a positioning envelope for a new optimised hinge 

axis position of a front door with turn-in arrangement can be developed under 

consideration of the reference geometries Class-A surface with door gap and outer 

surface of the A-pillar. The CAD-model provides proposals for the hinge axis and the 

hinges. Explicit parameters such as door opening angle, target values for the angles 

of inclination of the hinge axis around X- and Y-axis, dimensions for different door 

flanges and hinges as well as clearances and tolerance ranges can be adjusted 

individually. The provided hinges can be exchanged by Carry-Over-Parts (COP). 

 

After the complete exchange of the reference geometries and individual adjustment 

of the explicit parameters the provided hinge axis must be adapted in the positioning 

envelope manually in iterative steps. The adaptation is carried out in a view in the 

direction of the hinge axis. Firstly all the coordinates of the lower start point and the 

upper end point of the hinge axis are adjusted under support of auxiliary geometry. 

Checks provide information whether the expected position of the hinge axis inside the 

positioning envelope under consideration of clearances and tolerances is achieved. 

The exact positioning of the hinge axis is calculated in the CAD-model under support 

of an iterative optimisation algorithm. 

 

Under support of this reusable layout the quick definition of the optimum hinge axis 

position of a front door can be conducted. With small additional effort the CAD-model 

can also be used for the development of the hinge axis of the rear door.
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Appendix 3  Template “From Concept-Section to true Section and 
Surface Bands” 5,6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                            
5 Student Simon Maurer, head of group project team Porsche had the idea for this Powercopy                                
   in winter semester 2009  
6 Please see the following CATIA models: 
 2010-01-02_C-Pillar_Test_bench_Prismatic_areas 
 2010-01-06_POWERCOPY_Development_True_section_and_Surface_bands _Principle_Maurer 
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A.3.1  Introduction 
 
This Power copy (Figure 8.25) automatically develops a true (compound) section 

and surface bands of prismatic part areas on basis of a true most concept section. 

The true section of the segment is the foundation of every surface band.  

 

 
 

Fig. A.3.1 Power copy for the automatically development of a true (compound) 
section and surface bands from a true most concept section. 

 
 
Various tests with the Power copy have shown that angle variations of ≤1° between 

reference surface (secant surface) and flanges are possible. As the iterative separate 

design of the true section and all surface bands derived from this section is very time 

consuming small dimensional variations are accepted.   

 
 
 
A.3.2  Prerequisites for the Application of the Power Copy 
 
The basis for the design of assembly areas of automotive bodies are true most 

concept sections cut perpendicular to the theoretical intersection curve between 
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bounding primary surfaces (e.g. C-pillar: theoretical intersection curve between 

sidewall and rear wall, upper – see figure A.3.2).  
 

Concept sections deliver the construction method (e.g. shell construction with outer, 

reinforcement and inner panels) of a body assembly and the surfaces of 

corresponding parts including all dimensions. For every assembly area (e.g. C-pillar 

upper) only one concept section is designed. Prismatic areas (areas with constant 

cross section) are identified in the concept sections. Every prismatic area has its own 

guide and spine curve. 

 

 
 

Fig. A.3.2 True most concept section C-pillar with two prismatic areas 
 
 
Concept sections normally have a common position; the theoretical intersection curve 

and the guide and spine curve of the respective prismatic area are not parallel. 

Exceptions are concept sections positioned in grid position (e.g. 0Y) or concept 

sections cut in an area where both the intersection curve of primary surfaces and the 

guide and spine curve of the respective prismatic area are parallel. In both cases the 

concept sections are true sections which can directly be used to derive surface 

bands. The guide and spine curve of the respective prismatic area and the 

intersection curve can be in parts or completely parallel for the whole design area. 
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For these exceptional cases the Power copy is not to be used. In the present Power 

copy the angle between the planes for true most and true section is checked while 

Power copy is inserted (instantiated). Is the measured angle 0° or 180° a warning 

signal and a comment  are generated. 

 

In practice for every prismatic area of a concept section a true (compound) section is 

designed. The geometrical and numerical parameters of the compound section are 

linked with the parameters defined in the concept section. 

 

As a general rule joints (transitions) are designed between corresponding assembly 

areas. Therefore surface bands and in single cases profile bands are derived from 

corresponding compound sections which are connected by transition surfaces or 

intersected blunt and filleted in the junction area. 

 
 
A.3.3  Application of the Power Copy to the Concept Design of a Pillar 
 
For every prismatic area the template is used separately (see figure A.3.3). The 

template allows developing of six surface bands. When it is necessary to develop 

more than six surface bands the Power copy must be used again for the same 

prismatic area. If the prismatic area has less than six segments, single segments 

must be used twice and one of the double results must be deleted afterwards. 

 

The template first designs the secant surface (reference surface) on the basis of the 

Class-A surface and the guide and spine curve. In this case the secant surface is 

necessary to check the dimensional accuracy inside the template and soon after its 

application. It is recommended to compare important dimensions defined in concept 

section with the designs of the template. In the present Power copy an intersection 

line between plane true section and the secant surface is generated to control 

important dimensions. 
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Fig. A.3.3 Application of Power copy in the area of window bedding rear window 

 
 

Every straight as well as curved segment of the concept section is rotated from plane 

true most section onto plane true section. Therefore the plane of the true most 

section is intersected with the guide and spine curve of the prismatic area. In the 

intersection point the normal plane for the true (compound) section is defined. 

 

The intersection line between plane concept section and plane compound section is 

the rotation axis for the segments of the concept section. Every single segment is 

rotated onto the true plane of the compound section and is extended curvature 

continuous at its start and end point. A Boolean parameter asks the user of the 

present Power copy whether the segment is a flange. If the operator indicates the 

input “true” the segment will not be extended at the end of the flange. If the operator 

indicates the input “false” the segment is extended on both sides. 
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Fig. A.3.4 Control section with view cut through the completed C-pillar design, cut by 

the plane of the concept section 
 
 

From every rotated and extended segment a surface band is developed along the 

guide and spine curve of the prismatic profile area.  

 

The application of the Power copy necessitates the check of the directions of curves 

and planes used. Otherwise it is possible that a true section 180° away from the 

expected section (mirror image) is generated and surface bands are not in the 

expected quadrant. 
 
 
A.3.4  Tips for the progressive Design of Parts 
 
In a real development environment the surface bands are published in the develop-

ment phase for assembly areas and copied into the adapter of the development 

phase for single parts. In the new phase joints (transitions) between corresponding 

assembly areas are designed and the single body parts are derived. In this simplified 

example only the parts of the upper C-pillar are developed without any junction de-

signs or further detailing (see figure A.3.4). 
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Appendix 4  Design Guide Lines for collaborative Design Work 
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The design guide lines carefully developed and approved in several projects are col-

lected in this appendix. The appendix 4 shows design guide lines for team projects 

and a fully described start model: 

 

A.4.1. Guide Lines 
 

A.4.1.1 Handling of Start Model 
 

In the project structure in file Project-Data / 02Templates / 20 Current the common 

start model is stored (see chapter 6). The start model has to be opened with “New 

From”. After renaming the model can be saved in the individual file of the designer.   

 

A.4.1.2 Denomination of CAD Files 
 

The following denomination for CATProducts and CAT Parts for Part number, 

Instance name and file name is mandatory: 

KOB_AUDI_ADA___DENOMINATION_OF_PART________________ABC 

The denomination of parts and assemblies exactly has 50 characters. The 

denomination keeps always the same and is never changed. 

 KOB  Abbreviation of lecture (Konstruktion von Baugruppen = Design of           

    assemblies), 3 characters 

 AUDI  Name of team / customer, 4 characters 

 ADA  Type of model, 3 characters (for further types of models see legend   

     mind map  Figure 6.8 or list of abbreviations) 

 ___   Three underscores for division between type and denomination of part or 

     assembly, blank = underscore     

 ___   Minimum of three underscores for division between denomination and  

     abbreviation of designers name  

 ABC   Abbreviation of designer’s name. First character = first letter of first name. 

     Next two characters are the first two letters of the family name. 
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A.4.1.3 Definition of a new Version 
 

Every designer solely works on its own file “Current”. The file “Old” is only used for 

archival storage of old versions or variants. As soon as a new version has to be 

defined the part is opened in a new window to save the old version with the date of 

the day and “Save As” (“Save as new Document”) in file “Old”: 

KOB_AUDI_KIN_001___BENENNUNG_DES_BAUTEILS____ABC__20091030 

In this file the denomination of old versions or variants exactly has 60 characters.  

 

A.4.1.4 Use of Adapters 

 
Fig. A.4.1 Hierarchical information flow in Adapter-files (Untiedt, 2009) 

 

To uncouple the information flow within a CAD-model a hierarchical link-management 

is necessary (see Chapter 3.4). Every assembly-level therefore has one or more 

adapter files for the management of references (see figure A.4.1). Published 

references are copied with link into the lower hierarchical level (View-link). From the 

linked references isolated copies are generated which are the basis for the design 
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(Manual- link). For a clear arrangement internal references of the designer and 

external references are administrated in different files. 

 

A.4.1.5 Preparation FEM-Calculation 
 

Every designer must prepare his structural parts for FEM-calculation. In the start 

model a Geometrical Set (file) is defined where mean (mid) surfaces (controlled by 

the sheet thickness parameter) as well as joining elements are stored with defined 

denominations for function and position in single sub-files under support of the 

feature “Copy, Paste special with Link”. 

 

A.4.1.6 Denomination of geometrical Elements within CAT Parts  
 

The name of a Geometrical Set (file) and its last element always have the same 

name. Denominations of published elements at first contain information about the 

type of geometry: PT Point, LN Line, CV Curve, PN Plane, SF Surface, and PM Pa-

rameter. 

 

A.4.1.7 Publications 
 

Links are exclusively defined with published elements. Published elements are never 

cancelled, otherwise links become orphans (parentless). All elements provided for 

publication are stored in the Geometrical set (file) “To_Publish”. In this file the 

elements get their denominations and are “packed” (converted) with the following 

functions:  Points become “Affinity”-elements, Lines, Curves, Planes and Surfaces 

are converted with the “Invert”-feature. This is necessary for an easy “Replace” or 

“Synchronisation” of data within an update. 

 

A.4.1.8 Curve and Surface Directions 
 

Curve directions are defined on base of the main axes system. The true most 

mapping of a curve on a plane of the main axes system defines the axis which 

defines the direction of the curve. Closed curves are defined counter clockwise. As 
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Class-A surfaces are visible surfaces their direction vector always shows from the 

visible surface into the part. For all other part surfaces of sheet metal parts always 

the male mould surfaces are designed (inner side of the deep drawn part) and the 

direction vector shows into material thickness (towards the outer side of the deep 

drawn part). 

 

A.4.1.9 Multi-Model-Links (MML)  
 

Only Reference-to-Instance links (CATIA Import-links, KBE-links and Context-link) 

are used within the project. This means that both the file with the reference geometry 

(transmitter) and the file where the new link is stored (receiver) must be opened in 

the same window while the reference is copied and pasted to define the link. 

 

 
Fig. A.4.2 CATIA-standard colours to identify certain elements / surfaces 

 

A.4.1.10 Use of Templates 
 

It is the target of the project to use small templates to reduce the efforts for recurrent 

design work. The templates should be defined in a way which allows their easy 

application. Templates are defined by single designers of the two teams approved by 

one of the team leaders and provided in the project file for all other members. For 

every template under support of the “URL & Commands” feature brief instruction are 

provided stored in the project file as well. 
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A.4.1.11 Colouring of CAD Geometries 
 
CATIA-standard colours are used to distinguish CAD-geometries (see Figure A.4.2) 

 

A.4.1.12 Design Parameters  
 

For the common use within the projects carried out for AUDI and GFI (used as an 

example in chapter 6) some design parameters were defined at the beginning: 

Joining technique punch riveting: 

Minimum width of flanges: 16mm, rivet direction always from thin to thick metal 

sheet, maximum distance between two rivets: 60mm, the accessibility for specified 

rivet guns must be assured. 

The design must be built in a way that allows all optional sheet metal thicknesses 

between 1…2.5mm. Applicable sheet thicknesses (t) are: 1.0; 1.1; 1.2; 1.3; 1.5; 1.7; 

1.8; 2.0; 2.2; 2.4; 2.5. 

The minimum fillet radii are 2.5 to 3.0 * sheet thickness. 

The release angle for deep drawn aluminium sheets depending on the depth of the 

drawing has a minimum value of 7°. 

The minimum distances between interior Class-A surfaces and sheet metal parts is 

15mm, for supporting glue between structure and exterior panels 4…5mm. 

 

 

A.4.2  Start Model 
 

At the beginning of Parametric Associative Design (PAD) in automotive body 

engineering and still all around CAD-models are structured not at all or very individual 

which makes the models illegible for third people. It is necessary within an 

environment of designing groups to define regulations for the systematic proceedings 

for design, development and collection of geometries and information and for 

administration in the hierarchical structural tree of a CAD-model. 

 

In the first projects for the automotive industry the designers of the student teams 

could individually define their own methodologies and structures. They were only 

asked to use the hierarchical principle of IDO (Input, Design and Output). In the 
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meantime the author experimented a lot with the structural tree and the design 

proceedings combined with the structural tree (compare with Chapters 3 and 4). 

 

Except OPEL all OEMs located in Germany use the CAD-System CATIA. The CATIA 

work group AK 4.6 (CAD/CAM) of the German automotive industry has elaborated 

and issued a common regulation in 2009 (AK 4.6, 2009). A common CATIA V5 start 

model was verified in an OEM comprehensive work group with focus on CAD/ CAM 

strategy. This start part is based on verified design methods and intends a 

standardisation of CAD requirements and therefore a facilitation of CAD 

performances by engineering partners. Guidelines are established, documentations 

are developed and example models are generated. The OEM start model was 

validated in several passes together with engineering partners. Since May 2009, it is 

used in pilot approaches in AUDI. 

 
                        

  
Fig. A.4.3 Start model structure of teams AUDI and GFI acc. to Bode et al, 2010 and 

Untiedt et al, 2010 
 

Since 2009 the author uses a reduced OEM start model in his lectures in semester 2 

and 4 of the Bachelor programme. For the project teams AUDI and GFI the version 

tested by AUDI was adjusted for the necessities of the project work in the concept 

phase. The start part contains a common area plus special areas in its structural tree 
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for different manufacturing techniques such as deep drawing, tailored blanks, casting, 

plastic injection moulding, forging, extrusion (profiles) / extruding and hydro forming.  

Figure A.4.3 shows the structure of the start part and Table A.4.1 describes the 

content of the start model on the example of deep drawn sheet metal parts in detail:
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