DIVISION OF COMPUTER SCIENCE

COGNITIVE AND ORGANISATIONAL ASPECTS OF DESIGN

To be presented at The Safety Critical Systems Symposium '94, Birmingham, February 1994

Martin Loomes
Donald Ridley
Diana Kornbrot

Technical Report No.171

December 1993




Cognitive and Organisational Aspects of Design

Martin Loomes, Donald Ridley and Diana Kornbrot
The University of Hertfordshire, Hatfield, UK

Abstract

Research into the software design process currently centres on a particular model of
the software design which is based on a number of assumptions that are rarely
tested, and have little theoretical grounding. This paper attempts to highlight some
of these assumptions and to suggest ways in which they might be limiting current
research activity. It identifies the life-cycle as the core of the existing paradigm, and
introduces an alternative model that may be more fruitful for the discussion of
cognitive and organisational aspects of the design process.

Background

The risk of failure has always been recognised as an inherent part of design,
particularly when new technologies are being applied to novel problem domains [1].
This failure may manifest itself as visually unattractive buildings that ruin a city
centre, stylish chairs that are impossible to sit in, or railway systems that grind to a
halt whenever leaves fall onto the track. Systems that involve software are also
designed, of course, so it should come as no surprise that they too are liable to fail.
What is surprising, however, is the myth that seems to be developing around
software design that we can find ways of avoiding these failures. One possible
cause of this is the belief that because software is not a "real physical entity" there is
no excuse for systems failing due to software errors. Whilst we can accept that metal
fatigue may cause an aircraft to crash, there seems to be the suggestion that failure
due to faulty software is more easily avoided. The assumption seems to be that we
can construct software that is "correct”, if we find and apply the "correct” methods
for the task. We seem reluctant to recognise that the cause of system failure is not
metal fatigue or software errors per se, but the designer’s decision to use metal or
code that is prone to fail: it is the designer that causes the failure, not the materials.
Rather than seeing failure and errors as things that exist, but can be avoided with the
right methodology, we can view them as things that the designer brings about, and




ask what behaviour causes this. If we understood better why designers make
mistakes we might be able to suggest ways they can adjust their behaviour to
minimise errors, or contain their impact on the process as a whole.

It has been suggested that primitive societies are reluctant to allow designers to
experiment with new approaches, as they live the sort of hand to mouth existence
where any unforeseen cost might be catastrophic. As a result

"... primitive societies are very conservative. Tribal customs prescribe

exactly how everything shall be done, on pain of God's displeasure. An

inventor is likely to be liquidated as a dangerous deviationalist." [2]
Although we cannot describe our western civilisation as primitive, it might be
suggested that we are now so dependent on our designed systems, and they are so
complex and all-embracing, that we are demonstrating similar attitudes. The
consequences of failure are catastrophic not because of the poverty of the
environment in which they occur, but because of the richness of the role the systems
play in our lives. This poses very real problems for software designers: the systems
they are being called upon to design are often very complex, and need innovative
approaches, but the environment in which they are working is reluctant to allow
them the freedom to take the necessary risks. System failures that do occur usually
serve to reinforce the intuition that more control, rather than less, is required.
Moreover, the usual prejudice that control implies rules, and centralisation, and
cannot be an emergent property of the design process itself, is usually applied, so
that responsibility is removed from the designers to higher agencies such as
departments, companies, authorities and governments. When failures occur,
however, as they surely will, they are usually seen as local to a project, rather than a
product of the culture within which the design is taking place. The fixes that are
applied are local, ad hoc, solutions to an immediate problem, and rarely percolate
through to inform the wider society in which design is occurring. Software
engineers are constantly being told that they should not simply fix bugs at the code
level, but should address the higher levels of design too: this does not usually
include addressing the problems with the methodology and tools which led to the
problem! They may debug the artefact, but not the process.

Responsible, Self-conscious Design

Alexander has suggested that a crucial component of modern design is the
realisation that the designer must be self-conscious, and be prepared to discuss and
change the process of design as well as the artefacts produced [3]. This is because
modern design is, in general, not carried out to solve problems of immediate
concern to the designer, but on behalf on others. Moreover, it is usually carried out
by teams of designers rather than by individuals. Thus communication of ideas is
crucial to the process. Primitive man, however, can proceed "unconscious of the
fact that among his faculties there is one which allows him to refashion nature




according to his desires”" [4]. He can apply the tried and trusted methods of his
ancestors to the everyday problems he encounters, and, should they fail him, he can
deviate slightly and gain immediate feedback as to whether or not the deviation is
helping or hindering the process of solving the problem. The computer hobbyist, of
course, can use very similar approaches to "hack" solutions to problems on a home
computer. Many computer scientists would have it that this is a "wrong" approach to
software design: in fact, of course, it is simply a technique that does not scale up
beyond the single-designer, immediate-feedback, paradigm. One of the
consequences of accepting that software design must be self-conscious is that the
designer must accept the loss of innocence that this entails [5]. Alexander cites two
reactions from designers who are unwilling to accept this loss of innocence,
particularly when faced with complex tasks that they feel unable to handle: the
refuge in genius and the refuge in style.

Refuge in genius might be viewed as acceptance of the idea that there is a Muse of
design who provides the inspiration behind the process: this is an escape from the
loss of innocence because clearly the designer cannot be held to blame if the Muse
gets it wrong! Although few people would admit to holding this view, there are
certainly many who see intuition or inspiration as central to the design process, and
would argue that attempts to be scientific in design are dangerous because they
cause designers to inhibit their intuitions (to close their minds to the Muse).

The refuge in style identified by Alexander is the attempt to carry out design within
a particular style or school. The designer who adopts an ."art nouveau" or
"Georgian" style, for example, and creates a monstrosity, can seek refuge amongst
like-minded designers, and argue that it was the style that failed, not the designer.
This is a far more worrying trend amongst software designers! Top-down design,
stepwise refinement, formal methods, object oriented design, and many more, can
all be seen as styles that designers might work within and try to escape the loss of
innocence. If they choose to work within a style, of course, they are not escaping at
all, but should be accepting responsibility for the choice of style as part of the design
process. Unfortunately, education often legitimises this escape route by introducing
"methodologies” in such a way as to suggest that they are useful without careful
consideration of the task for which they are being selected.

If we put together the apparent reluctance of the software design community to take
risks when developing systems, and the use of refuge in style to escape the loss of
innocence, we have a potentially disastrous situation. Industry wants designers to
use "tried and tested" methods and designers are often only too happy to abrogate
responsibility for the choice of method and work within a house style. Moreover, to
make the designer more "efficient” the style is often buried deep in the workings of
a CASE tool, so that the designer does not even have to be aware of the processes
involved. Unfortunately, the tried and tested methods we have are only useful for




technologies and problem domains which are well understood. Although there are
still many design tasks to be carried out in these areas, the real challenges are in
areas where there are no such aids.

We are currently deeply wedded to a culture in which the true nature of design is
buried beneath the quest for the methods we need to avoid failure. Companies that
have recognised the severe limitations of such methods for most real problems dare
not say so too explicitly, for the software house that advertises with the slogan
"We don't use any particular method or tool"

will certainly find itself upstaged by the company who uses OOD and the most
trendy CASE tools. Individual designers who constantly question a house style may
well find themselves promoted to "design consultant” positions, where they can be
isolated as deviationalists if necessary, or put in charge of "special projects”, but will
rarely be made project managers for mainstream developments. We would argue
that while the quest for such methods dominates research, and their application
dominates practice, we will never significantly improve the ways in which we
design software systems. We may well "polish the shiny bits", making aspects of
design we choose to see rather more acceptable, but we will not tackle the messy
problems that lie beneath the surface.

Technocentrism

This sort of global criticism is nihilistic, of course, unless we also take the bold step
of putting forward some alternative ways of proceeding. We have denied ourselves
the easy route of simply proposing another methodology, or encapsulating existing
ones into more powerful tools, and so we need something rather more radical. The
avenue we wish to explore is to see what insights can be gained by rejecting the
notion of a development life-cycle as the dominant feature of the paradigm in which
we work. Rejecting the life-cycle as the foundation upon which we want to build
effectively eliminates most existing methodologies at a stroke, for most of these are
prescribed routes and notations for navigating around a life-cycle of some form.

Moreover, we suggest that concentrating on code as the end-product of software
design may be placing emphasis in the wrong place, allowing the technical aspects
of the problem to determine the paradigm within which design will take place.
Papert uses the term "technocentrism" to capture to the idea that we refer all
questions to technology [6]. Adopting a life-cycle model epitomises the way in
which technocentrism is the norm in software design. It suggests that the life-cycle
is an emergent property of some naturally occurring phenomena. The quest for more
accurate models appears to be interpreted by many as the search for a better
understanding of this essential property. In fact, as Papert notes, technology does not
have to be considered in this way: we can, if we choose, recognise that we control
the technology. Rather than asking questions such as "how does inheritance work in




object oriented design" we can ask "how do we want to use the notion of inheritance
when we design systems". If we want to consider not only the technical problems,
but also wider issues such as how software designers might be made more effective,
how users should be integrated into the design task, what organisational structures
should we put in place that will have a beneficial effect on the task, and what
cognitive processes are involved in design, we must adopt less technocentric views
of the process. If we do not adopt such views we sacrifice control over how the
questions are posed, and we often have to accept that some questions cannot be
expressed at all. We should note that the term "safety-critical systems" itself invites
a technocentric view, for it is often taken as the classification of systems that are
safety-critical, rather than systems which we are making safety-critical by the way
we intend using them.

It is important to note that we are not advocating replacing one model of the process
with another: rather that we should be encouraging researchers to choose new ways
of viewing the design process to supplement and stimulate the current models.

The Theory-Building View

One model that deserves more detailed analysis is the Theory Building Model. Here
we do not refer questions to the technical product of the design task, but rather we
anchor discussion in the production of theories, which have the desired system as a
model. Exactly what comprises a "theory” in this context, of course, is an essential
part of the exploration, and not something that can be given a glib answer here. We
should note, however, that blind acceptance of the dated view that theories are
implicit in nature, and the scientist's task is to discover them, will lead us straight
back to technocentrism: rather we will assume that theories are the attempts of
mankind to impose some order onto phenomena. They are thus designed artefacts in
their own right.

This idea is not new. It has been proposed by at least two other sources. Burstall and
Goguen, for example, suggested that we can put theories together to make
specifications, where the theories are captured in a suitable logical system [7]. Naur,
on the other hand, suggested that programming can be viewed as theory building,
where the theories are in the minds of the designers [8]. It is interesting to note,
however, that these two ideas are rarely seen cited in the same literature. The former
in now seen as part of "formal methods" (although it originally appeared in the Al
literature), whilst the latter is more closely associated with the "softer" aspects of
system design. The current paradigm within which Software Engineering research is
being carried out makes it very difficult to reconcile these two views. Formal
methods and intuition are seen as opposite poles in some implicit construct. We
would argue that they are both essential tools to be used by a software designer, but
that we need to explore how they can be reconciled.




Cognitive and Organisational Processes

Consideration of the theory-building view raises some very interesting, and
important, questions. In this section we will outline some of these, and suggest
possible avenues of research that might be used in the quest for answers.

If primary outcomes of the software design process are theories we should consider
the relationship between software design and science, which also has theories as a
major goal. A "scientific approach” to software design has been advocated in many
places before, but usually the benefits claimed for such an approach seem
undeliverable. The approach has been presented as a way of ensuring "correctness”.
In fact modern science has given up all claims to be discovering correct theories,
recognising that all theories, if scientific, are potentially refutable. The scientific
approaches suggested for software design certainly can deliver "correctness”, when
the term is given a severely limited meaning that divorces software systems from the
real world, but most designers recognise that this avoids the really interesting issues
and areas where failures usually occur. Unfortunately, this has caused many
designers to reject any discussions of science as relevant to the design process, as
they assume that similar simplifying assumptions will be made. We would argue
that a genuine attempt to relate scientific practice to software engineering practice
will provide some powerful insights that might lead to real improvements in the
design process. This can be achieved by examining, and rationalising, the ways in
which scientists work in practice: an endeavour which has been carried out by
philosophers of science for many centuries. Viewing design projects in the context
of Kuhnian paradigms [9], for example, provides a way of discussing the interaction
between projects, something that cannot be achieved in most models of the software
design process. Extending Kuhn's ideas to those of Lakatos [10] allows us to
recognise hard cores of the design process that serve to form paradigms: areas that
will rarely be challenged by those working in specific problem domains.

This leads us to question the source of such paradigms and hard cores. Some of
these are explicit, being axiomatic in the problem domain or in the methodology that
the designers have been told to adopt. Many more are implicit, however, being
hidden in the tools used for the job, the education of the designer, or the culture the
designer in working within. Examining such issues is a difficult task, and it is easy
to see why technocentrism is often the preferred route, as we only have to ask "hard"
technical questions, rather than these "soft" questions which we don't expect to have
satisfactory answers. It is also easy to see why many institutions and companies
would prefer technocentric answers: it is much easier to accept that you need to buy
anew tool or impose a new methodology, than to risk asking why your company
organisation is such that the designers are making a mess of so many projects.
Never-the-less, if we want to do more than "polish the shiny bits" we believe that




such difficult questions need asking. There are approaches to the systematic
investigation of these sort of questions that may be fruitful, typically those drawn
from occupational and organisational psychology. The cultural audit [11], for
example, may provide a way of carrying out the type of holistic study of a design
team that is necessary to start exploring the human causes of error. No doubt it will
need tailoring in order to extract the right sort of information, but early studies
suggest this might be feasible [12].

Once we have taken the bold step of realising that software design is a human
process, rather than a purely technical one, we can also start to ask questions about
how individual designers interact and make decisions. The life-cycle model assumes
that there is a single specification and a single design, whereas in reality we must
assume that each designer will place different interpretations on these, even if
document control is sufficiently draconian to ensure only one written form is
permitted. Current approaches attempt to impose highly structured notations and
diagrammatic forms on the process, so that we limit what can be said. The implicit
assumption seems to be that this will reduce the problems of different theories in the
heads of individual designers. There appears to have been little or no research into
such claims, and little research into the extent to which the imposition of notations
reduces the ability of designers to communicate the theory that is being constructed
effectively. There has also been very little research into how designers make
judgements in the course of a design project. Clearly a good understanding of this is
essential if we want to improve the process by suggesting ways in which we might
help them to avoid judgements that lead to system failure. Achieving this is a
nontrivial task, but to ignore it because it is difficult is to avoid the crux of the
problem.

It is important to recognise the interaction between the cognitive and organisational
aspects of the problem. We hope that by integrating both aspects in one research
programme we can achieve a constructive tension between the two, making
hypotheses in one area that we can test in the other,

Conclusions

In this short paper we have attempted to raise the question of the wisdom of centring
all research into software system design on a single paradigm, the life-cycle model,
which seems to have arisen with little supporting empirical or theoretical evidence.
We have also introduced another model that we believe opens up the possibility of
exploring a number of research questions which are currently not sufficiently
represented in Software Engineering research. In particular, by taking a less
technocentric view we are able to discuss the cognitive and organisational aspects of
design in a way that makes them central to the human activity of design, rather than
relegating them to peripheral issues that hang from the life-cycle of the artefact.




References

(11

(5]

(6]

(7]

8]

(9]

(10]

[11]

(12]

Petroski H. To engineer is human, Macmillan, 1982
de Camp L S. Ancient engineers, Tandem, 1977
Alexander C. Notes on the synthesis of form, Harvard University Press, 1964

Ortega y Gasset I. Thoughts on technology. In: Mitcham C and Mackey R
(ed) Philosophy and technology, The Free Press, New York, pp 290-316, 1972

Loomes M. Selfconscious or unselfconscious software design?, Journal of
Information Technology, 5(1): 33-36, March 1990

Papert S. A critique of technocentrism in thinking about the school of the
future, E&L Memo No. 2, Massachusetts Institute of Technology Media
Laboratory, September, 1990

Burstall R M and Goguen I A. Putting theories together to make
specifications, In: Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, 1977

Naur P. Programming as theory building, Microprocessors and
Microprocessing, 15, pp 253-261, 1985

Kubhn T S. The structure of scientific revolutions (second enlarged edition),
University of Chicago Press, 1970

Lakatos I. Mathematics, science and epistemology, Philosophical Papers 2,
CuP, 1976

Fletcher B. The cultural audit, an individual and oganisational investigation,
CPI, 1989

Crimes M. The safety culture audit, MSc Thesis, The University of
Hertfordshire, 1992.




