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Abstract 

New and old methods of analyzing two choice experiments with confidence ratings are evaluated.  

These include: the theory of signal detectability (TSD); Luce’s choice theory; “non-parametric” 

techniques based on areas under Receiver Operating Characteristic functions; and those based on 

S’ and Ω, proposed by Balakrishnan and his colleagues.  New methods for assessing the bias of a 

complete Receiver Operating Characteristic function are proposed, together with an additional 

area based measure of response bias.  Area measures of both sensitivity and bias proved the most 

consistent.  Response bias for a full ROC function was larger than bias at the cut-point, and also 

provided additional information. Participants showed voluntary control of bias for all measures 

except Ω.  Unequal variance versions of TSD and choice models gave similar fits to data, with the 

choice model closer to an equal variance version. Discrimination data from Balakrishnan (1999) 

formed the empirical test bed. 
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Signal Detection Theory, the Approach of Choice 

 The signal detection framework has been a cornerstone of discrimination research for more 

than half a century.  Its key feature is the provision of distinct measures for sensitivity and bias that 

underpin basic and applied research into sensory and decision making processes.  Within this 

general framework, there are two main approaches: model based and “non-parametric”.  The 

model based approach makes explicit, and testable, assumptions about the distribution of the 

sensory representations of stimuli.  By contrast, the “nonparametric” approach, which might 

preferably be termed distribution free, makes no assumptions about the form of sensory 

distributions.  This Ms. aims firstly to evaluate measures of sensitivity and bias from both 

approaches. These include: long established model based measures from TSD and Luce’s choice 

theory; some recent “non-parametric” measures suggested by Balakrishnan and his colleagues 

(Balakrishnan, 1998a; 1998b, 1999; Balakrishnan & MacDonald, 2002, 2003a); and. “non-

parametric” area based measures, with those for response bias presented here for the first time. 

The current work was prompted by the challenges posed by Balakrishnan and his 

colleagues (Balakrishnan, 1998a, 1998b, 1999; Balakrishnan & MacDonald, 2002, 2003a). They 

suggest that currently used TSD and choice measures of sensitivity and bias are fatally flawed.  

This is worrying because basic and applied researchers need to be able to choose appropriate 

measures of sensitivity and bias, secure in the knowledge that conclusions based on these measures 

are not flawed.  These challenges are addressed empirically using one of Balakrishnan’s own very 

comprehensive data sets (Balakrishnan, 1999).  In addition to evaluating existing measures of 

sensitivity and bias, we provide a new area based measure of bias and new methods for assessing 

bias that summarize all data points, in those paradigms that use confidence ratings.  We also assess 

the relative strengths of more and less constrained versions of Luce’s choice theory and TSD. 

 The Ms. has three main sections.  The theory section describes the key concepts, equations 

and criteria necessary for empirical evaluations.  The analysis section applies the criteria to 

empirical data from four individual participants making two choice visual discriminations with 

confidence ratings (Balakrishnan, 1999).  The final section discusses theoretical and practical 

implications of these analyses. 
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Theory, Equations and Criteria 

 This section starts with a brief overview of two choice experimental paradigms and the 

general signal detection approach, including an explication of the term “non-parametric”.  Then 

key equations of the model based approaches are provided.  This is followed by a description of 

distribution free methods, including the new area based measure of response bias. Then, a new 

procedure for measuring the bias of complete ROC functions is proposed.  Finally evaluation 

criteria for measures of sensitivity and bias and for model evaluation are summarized.  

 The most common experimental paradigm for discrimination in the signal detection 

framework is a simple two choice experiment with two possible stimuli, a, b, and two possible 

responses “A”, “B”.  For example, the stimuli might be a shorter line (stimulus a) and a longer line 

(stimulus b) with responses “short” (“A”) or “long” (“B”), as in the data analyzed here. This 

paradigm is also relevant to applied situations, where the stimuli might be healthy or diseased 

biopsy samples with responses “healthy” or “diseased”.  See Macmillan & Creelman, (1991), for 

an excellent review. The response “A” to stimulus a is termed a hit and the response “A” to 

stimulus b is termed a false alarm.  The probability of a hit, h, and the probability of a false alarm, 

f, constitute the raw data from which sensitivity and bias measures are constructed, whether model 

based or “non-parametric”.  In the confidence rating version of this paradigm, participants give 

their chosen “A” or “B” response together with a rating of their confidence in the accuracy of the 

response, given as c, on a scale from 1 to a maximum value of 100 (CMAX).  These values are 

combined by recoding the responses as follows. Response “A” with confidence c is coded with a 

negative value, as decision criterion k = -c, while the response “B” with confidence c is coded with 

a positive value, as decision criterion k = +c.  The decision criteria k, thus range from –100 (“A”, 

very confident) through -1 (“A”, very unsure) and  +1 (“B”, very unsure) to  +100 (“B”, very 

confident).  All equations and Figures are in displayed terms of the decision criteria k. Then at 

each criterion, k, one can calculate values hk, the probability of a hit given criterion k, and fk, the 

probability of a false alarm given criterion k.  This is done by labeling all responses less than or 

equal to k, “Ak” and all responses greater than k  “Bk” and calculating hk = p (response “Ak” 

|stimulus a) and fk = p (response “Bk”|stimulus a) There are thus 2CMAX (hk, fk) pairs.  These may 
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be used to generate a raw Response Operating Characteristic (ROC) function by plotting hk as a 

function of fk.  Figure 1 shows examples of experimental raw ROC functions.   

 Insert Figure 1 about here 

 For the model based approach (choice or TSD) one point sensitivity and one point bias 

measure may be calculated for each (hk, fk) pair.  The exact equations depend on the model. The 

area based approach also provides measures of sensitivity and bias for each (hk, fk) pair. The 

theory section shows how to calculate all these sensitivity and bias measures.  The confidence 

rating version of the two choice paradigm may also be used to generate ROC measures of 

sensitivity and bias based on several (hk, fk) pairs. Such measures are termed here ROC measures, 

and detailed equations for the different approaches are provided in the theory section. 

 Sensitivity measures are useful because they describe how effectively a particular participant 

performs a specified discrimination. A key feature of a sensitivity measure is that it is invariant 

with respect to changes in motivation due to changes in reward structure or a priori stimulus 

probability. It is posited to depend only on the current ability of the participant and the difficulty of 

the discrimination task. The invariance property of sensitivity measures can be tested by 

manipulating motivation, while holding person and stimuli constant. A very large number of 

perceptual and memory discrimination experiments from the separate condition paradigm show 

that model based sensitivity measures do not change with bias condition, (Macmillan & Creelman, 

1991). By contrast, sensitivity measures derived from the rating paradigm generally do show some 

dependence on confidence rating.  

 A key feature of a bias measure is that it is posited to be under voluntary control, but 

consistent across motivational conditions.  Motivational factors comprise rewards for being right, 

punishments for being wrong, the relative a priori probability of stimuli, and pressures towards 

speed or accuracy.  Another desirable property of a bias measure is that it should provide a 

measure of normatively optimal performance for any combination of a priori stimulus probability 

and payoffs.  For any participant, a given payoff matrix and a priori stimulus probabilities should 

generate the same value of the bias parameter.  This property can only be fully tested by tracing 

out an isobias function, that is holding payoff constant and manipulating sensitivity.  There are 
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relatively few such studies (Dusoir, 1975, 1983; Irwin, Hautus, & Francis, 2001; Kornbrot, 

Galanter, & Donnelly, 1981; McCarthy & Davison, 1981, 1984).  Most studies show rational 

conservatism.  People move their decision criteria in the normatively correct direction, but less 

than predicted by normative models. 

 In general, response bias parameters are more easily interpretable if symmetric about a 

predicted value of zero for a neutral condition. However traditional measures of response bias, 

based on likelihood ratios (often denoted β), have a value of 1 in a neutral condition, a value 

between 1 and infinity when biased towards response “A” and a value between 0 and 1 when 

biased towards response “B”.   All the bias measures, defined in the theory section as β values, 

have this property: including: βT for TSD (denoted βG by McMillan and Creeleman, 1991), βL for 

choice theory, and the newly defined area bias measure βK.   Such β values are not symmetric 

about the neutral value of unity. For example, if β = 1 is ‘neutral’, then favoring “A” twice as 

much as “B|” would give β = 2, which is a difference of 2 – 1 = 1 from neutral; while favoring “B” 

twice as much as “A” gives β = 0.5, which is a difference of 0.5 – 1  =  -0.5.  This is asymmetric, 

and gives the false impression that favoring “A” twice as much as “B” is further away from neutral 

than favoring “B” twice as much as “A”.  However, if one uses ln (β) as a measure of bias, then 

the neutral bias gives ln (β) = ln (1) = 0; favoring “A” twice as much as “B” gives ln (β) = ln (2) = 

+0.69; while favoring  “B” twice as much as “A” give ln (β) = ln (0.5) = -0.69.  Thus the 

advantage of any measure ln (β) is that it is symmetric about the neutral point, so its magnitude is 

less likely to produce false impressions. 

 All approaches within the signal detection framework share the assumption that the internal 

representation of a stimulus over many trials generates an internal distribution on an internal 

variable, X (Macmillan, 2002; Macmillan & Creelman, 1991). The mean of the stimulus a 

distribution is assumed to be displaced from the mean of the stimulus b distribution by a distance, 

d. A participant is assumed to set a cut point or criterion, c, on the X dimension.  On each trial, if 

the internal sensory representation is greater than c, then response “B” is given, otherwise response 

“A” is given.  The representation on dimension X depends on external properties of the stimulus 

and internal attributes of the participant, but is NOT under voluntary control.  By contrast, the 
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location of the criterion, c, is assumed to be under voluntary control.  More controversially, 

participants are also assumed to attempt to set their criteria ‘optimally’ so as to maximize rewards 

and minimize penalties.   

 Approaches in the general signal detection framework may be divided into two broad 

classes, often designated “parametric” and “non-parametric”. The  “parametric” class makes 

specific assumptions about the form of the stimulus and criterion representation distributions. It 

includes TSD (normal stimulus representation distribution) and Luce’s choice model (logistic 

stimulus representation distribution).  The “non-parametric” class makes no such distributional 

assumptions.  Because of the confusions surrounding the parametric/non-parametric distinction, in 

this paper parametric approaches are termed model based, while “non-parametric” approaches are 

termed distribution free (Macmillan, 2002; Macmillan & Creelman, 1991). In order to understand 

the reasons for this terminology it is desirable to specify what exactly is meant by “non-

parametric” in the signal detection context.  The term non-parametric is generally applied to 

statistical procedures if one or more of the following hold: (a) the variables are non-metric, either 

ordinal or nominal; (b) the distribution of the variables in the population is unknown.  If only (b) 

holds then the procedures may be more accurately termed ‘distribution free’.  Ordinal statistical 

procedures, i.e. procedures based on ranks, are also often termed “non-parametric”.  However, 

ordinal procedures are usually not distribution free when applied to metric (interval or ratio) data.  

Common procedures in this class including the Mann-Whitney, Wilcoxon and Kruskal Wallis, 

assume that all relevant distributions are of the same shape, that is have the same variance, skew, 

kurtosis and all higher moments.  However, no assumption is made about what that shape actually 

is.  In the signal detection framework the variables at issue are the representations, assumed metric, 

of the physical stimuli and criteria in the human brain.  Both TSD and choice models have 

sensitivity and bias measures that are distribution dependent.  So called “non-parametric” 

sensitivity and bias measures make no such distributional assumptions, and so are distribution free.  

This includes both classic measures, such as area under the ROC curve, and newer measures 

proposed by Balakrishnan and his co-workers.  Nevertheless, even the distribution free measures 

are metric parameters derived from the probabilities of hits and false alarms. Hence the contrast 
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‘model based’ versus ’distribution free’ is preferred to the contrast ‘parametric’ versus ’non-

parametric’. An important corollary is that it makes sense to compare arithmetic means of a 

sensitivity or bias parameter between groups.  

Model Based Approaches 

 In general terms, the sensitivity measure for either TSD or Luce’s choice model can be 

expressed as the distance, d, between the mean of the stimulus a distribution and the mean of the 

stimulus b distribution, divided by some estimate of variance from the stimulus b and stimulus a 

distributions. (Note that sensitivity in this signal detection sense is quite different to sensitivity of 

tests in the medical diagnostic sense).  If variances of the sensory distributions for the two stimuli 

differ (perhaps because stronger stimuli are more variable) there will be an additional sensory 

measure to describe the ratio of the variance of the stimulus a distribution to the variance of the 

stimulus b distribution.  A measure of bias is chosen that is some function of the cut-point c that 

would remain constant for different sensitivities, if – and it is a big if –, participants set c to 

maximize their objective rewards.  

Theory of Signal Detectability, TSD 

 The simplest version of TSD (Macmillan & Creelman, 1991; Swets, 1986) has a sensitivity 

measure, d’ and a bias measure βT (subscript T for TSD) that may be calculated from the 

proportion of hits, h, and proportion of false alarms, f.  The measure d’ is defined as the separation 

between the mean of the stimulus b normal distribution and the mean of the stimulus a normal 

distribution divided by their assumed common standard deviation (arbitrarily set to unity). 

     d’ = z(h) – z(f)    1, 

where z(p) is the inverse normal probability corresponding to cumulative probability, p 

(Macmillan & Creelman, 1991, equation 2..10).  

 The likelihood ratio bias parameter, βΤ,  is the ratio of the probability density (height of the 

curve) of the stimulus b distribution to the probability density of the stimulus a distribution at the 

cut-point criterion.  Ln(βΤ ), (Macmillan & Creelman, 1991, equation 2.10) is the TSD measure 

that is symmetric about a neutral value of zero:  

    ln(βΤ)  = .5[z(h)
2
 – z(f)

2
]    2.  
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Optimal values for βΤ�� and hence equivalently ln(βΤ�) when there are biasing manipulations due to 

different a priori stimulus probabilities or payoffs, are also easily obtained: 

β ���optimal = [πa/πb][payoff (A|a) – payoff(A|b)]/[payoff (B|b) – payoff(B|a)]  3, 

where π(a), π(b) are a priori probabilities of stimuli a and b respectively. 

 When one can obtain several points on an ROC curve, either from a rating experiment or 

from several conditions with different optimal biases, more information is available.  Then TSD 

predicts that z(correct|stimulus x) will be a linear function of  z(error|stimulus x), 

  z(h)  = +d’ROC +  (1/sT)z(f) for Response A  

     and z(m) = -d’ROC +  (1/sT) z(cr) for Response B  4, 

where  d’ROC is sensitivity at the mean of the b distribution; sT  = [σ(b)/σ(a)] the ratio of the 

stimulus b variance to the stimulus a variance;  cr is probability of “correct reject”, p(response 

B|stimulus b); and m is probability of a “miss”, p(response B|stimulus a).  Equations 4 represent 

the TSD normal transformed ROC functions. Estimates of the measures sT and d’ROC can be 

obtained directly from the slopes and intercepts of equations 4.  

 Obviously, given d’ROC and sT  , one can calculate d’ and ln(βΤ) corresponding to any other 

empirically determined value of z(f).  Furthermore, one may calculate whether βΤ is optimal for 

any experimenter determined bias condition.  If the ROC curve arises from separate experiments 

for each point, then the ROC obtained from the Response B form of equation 4 is completely 

determined by the conventional Response A form, because h + m = 1 and c + f = 1.  However, in 

a confidence rating experiment, there are independent measures for Response A and Response B 

for each confidence level.  In fact the measure d’e suggested by Egan (Egan, Schulman, & 

Greenberg, 1959) is more comparable to d’ at a neutral cut-point,  the parameter is the value of d’ 

where the TSD ROC line cuts the minor diagonal and is given by (Macmillan & Creelman, 1991, 

equation 3.8): 

 d’e = 2d’ROC[sT/(1+sT)]  5. 

 Equations 4 describe the TSD ROC in normal – normal co-ordinates and enable graphical 

and statistical evaluation of the TSD model.  One may obtain estimates of sT and d’ROC (and hence 

d’e) as the mean of the values obtained from the Response A and Response B versions of the 
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normal transformed ROC functions in Equation 4.  One may then test whether sT = unity, thus 

supporting the simpler equal variance version of TSD.  Obviously with unequal variances, d’ 

estimates at an arbitrary cut point are not predicted to be bias free. Note also that the stimulus 

variances, σB, σA actually include the criterion (confidence rating) k variances. This is because 

what is measured is the difference between the relevant stimulus mean and a criterion, and the 

variance of a difference var(x-y) is the sum of var(x) + var(y).  That is zh is generated from the 

cumulative distribution of the representation of the difference between the a stimulus and the 

criterion, and similarly for zf. In a simple two choice experiment there is only one criterion, and so 

only one criterion variance. Consequently, stimulus and criterion variance cannot be disentangled, 

and there is no point in considering the criterion variance separately. Rating experiments are more 

complex. There are several criteria and so, potentially, several different criterion variances. 

Equations 4 include the implicit assumption that all criterion variances are equal.  If variances of 

the extreme confidence ratings are higher than those for the less extreme confidence ratings then 

there will be systematic deviations from the linearity predictions of equations 4.  If all criterion 

variances are equal then the whole ROC function can be predicted with just two free parameters, 

d’e, and sT. These same arguments also apply to the choice formulation. 

Luce’s Choice Theory 

 Choice theory (Luce, 1959) can be cast in a very similar form to TSD.  The only difference is 

that the logistic distribution is substituted for the normal distribution.  For a single experiment the 

sensitivity parameter equivalent  to d’ is ln(η) and the bias parameter is ln(βL), subscript L for 

Luce, where for any probability, p, the logit of p, lgt(p) is given by: 

   

 lgt(p) = ln[p/(1-p)]  6.  

 The choice sensitivity parameter, ln(η), is then given by (Macmillan & Creelman, 1991, 

equation 2.13): 

    ln(η) = 0.5[ lgt(h) - lgt(f)] = 0.5[ ln(h) - ln(f) + ln(1-f) - ln(1-h)] 7. 
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 The bias measure, βL, is given by : 

βL= h(1-h)/[f(1-f)] 

  ln(βL ) = ln(h) + ln(1-h) – ln(f) – ln(1-f)  8. 

Ln(βL) in choice theory plays the same role as ln(βΤ) in TSD.  The optimal value of the criterion is 

thus also given by equation 3. 

 The choice model is also convenient because asymptotic standard errors, ASEs, of the 

measures are simple to calculate.  If some measure X is given by the ratio or product of two 

independent probabilities, then the asymptotic standard error, ASE, of ln(X) is given, by: 

   ASE(ln(X)) = √[1/n1 + 1/(N1 – n1) + 1/n2 + 1/(N2 – n2)], 

 where for i =1,2, pi = ni/Ni  are the independent probabilities given by ni criterion events from 

Ni attempts, (Agresti, 1996). Application of this result gives the ASE for the choice parameters:  

 ASE(2ln(η))= ASE(ln(βL)) = √[1/nAa + 1/nAb + 1/nBa + 1/nBb] 9, 

 where nJj is the number of Responses “J” to stimulus j; j  = a, b, J = A, B 

The equations for the choice ROC, equivalent to equation 4 for TSD are: 

   lgt(h) = +2lgt(η)ROC + (1/sL)lgt(f) for Response A 

   lgt(m) = -lgt(η)ROC +(1/sL)lgt(cr) for Response B  10, 

 where sL = ratio of variances for a  and b choice theory [stimulus – criterion] representations.  

Equations 10 represent a logistic or choice model ROC function.  As with TSD, one may obtain an 

average estimate of the slope as the geometric mean of the slopes from the A and B responses as 

lgt(η)ROC; and then obtain an estimate of the choice parameter at the cut-point as lgt(η)e, where 

    lgt(η)e = lgt(η)ROC[sL/(1+sL)]    11. 

 It is often claimed that the logistic and normal distributions are so similar that one cannot 

distinguish equations 4 and 10.  However, there are differences for extreme ratings because the 

normal density distribution drops very sharply, as exp(-1/x
2
) whereas the logistic density 

distribution only drops as exp(-1/x).  Another difference is the ratio of variances, sT or sL.  A 

variance ratio of unity indicates a simpler model with one less parameter.  For auditory 

categorization of loudness, Kornbrot (Kornbrot, 1978, 1980, 1984) found variance ratios much 

closer to 1 for the normal model than the logistic distribution.  
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Distribution Free Approaches 

 Distribution free measures of sensitivity attempt to estimate how ‘far away’ the observed h, f 

pairs of probabilities are from values corresponding to no discrimination at all (the major diagonal 

in Figure 1), without making any assumptions as to the distribution of the sensory representation.   

Area Based Measures  

 A widely used distribution free measure of sensitivity of this type is the area under the raw 

ROC function (i.e. h as a function of f), denoted here A.  If only one point is available then an 

estimate of  A, A’  is given by (Macmillan & Creelman, 1991, equation 4.8):  

 A’ = 1-1/4[f/h +(1-h)/(1-f)] 12. 

This is actually the average of the minimum and maximum possible area, given the observed 

values of f and h. (Craig, 1979; Macmillan & Creelman, 1996; Pollack & Norman, 1964). Clearly, 

A’ is a point measure that can be calculated at each confidence rating criterion.  The extent to 

which A’ changes with criterion is then an empirical question.  The extent to which A’ at any point 

is a good estimate of  A, the area under the full ROC curve, is also an empirical question. 

 There have been several suggestions of area bias measures, but all have been shown to be 

monotonic with one of the choice model bias parameters, and hence not distribution free (Craig, 

1979; Grier, 1971; Hodos, 1970; Macmillan & Creelman, 1996; Macmillan & Creelman, 1991). 

For this reason they will not be discussed further.  The area bias measure proposed here, βK, is 

defined as the ratio (KB/KA), where KB is the area between the ROC curve and the major diagonal 

to the right of the minor diagonal (shown striped in Figure 2), and KA is the area between the ROC 

curve and the major diagonal to the left of the minor diagonal (shown dotted in Figure 2).  In the 

same spirit as equation 12, one may then define estimated measures K’A, K’B as the average of the 

minimum and maximum possible areas between the ROC curve and the major diagonal to the left 

and right of the minor diagonals.  In the following equations, empirical areas are indicated by 

unprimed symbols, A, KA, KB; while estimates that are based on the mean of the maximum and 

minimum possible areas assuming a concave ROC function are indicated by corresponding primed 

symbols, A’, K’A, K’B, β’K.  Obviously, A =  KA + KB + 0.5 and A’ = K’A + K’B + 0.5.  Simple 

geometry (see Appendix) gives the following equations for K’A and K’B: 
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Insert Figure 2 about here 
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An approximate area based point bias measure is then given by: 
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Ln(β'K) can be calculated at any criterion value, k, and has the desirable property of being 

symmetric about zero, where the criterion indices k run from –CMAX through 0 to + CMAX. Neutral 

bias gives ln(β’K) equals zero, and equivalent biases towards responses A and B give equal and 

opposite values of  ln(β’K).  Consequently, ln(β’K) can be directly compared with the model based 

measures ln(β’T) from TSD and ln(βL) from the choice model.  Furthermore, ln(β’K) is not 

monotonic with any of the choice parameters. 

 When a several points on an ROC curve are available, the empirical estimates of the ROC 

area measures KA and KB can be obtained.  These can then be used to calculate the ROC area 

sensitivity measure, AROC = 0.5  + KA + KB and the ROC area bias measure, βΚ = KA/KB .  If 

participants can give confidence ratings between 1 and CMAX then the rating function has 2Cmax 

points indexed by the criterion k, ranging from 1 to 2Cmax.  Equations for KA and KB are given 

below.  Their derivation from simple geometry is given in the Appendix.  
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 Equations 15 can then be used to give a more accurate area bias measure at the “A”, “B’ cut 

point, denoted βK, analogous to the measure in equation 14: 

 βK = KA/KB 16. 
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The βK measure behavior at the ”A”, “B’ cut point, but use performance from the whole ROC. 

 Note that KA and KB are areas fully under the ROC function, not approximations to a smooth 

curve going through a very large number of points. Consequently KA and KB will depend on the 

number of criteria.  With a confidence rating scale from 1 to 100 the difference is negligible. 

However with a small number of criteria (e.g. just confident and unconfident, giving only 4 

possible responses) the underestimation would be substantial. Hence AROC and βΚ  should only be 

used to compare conditions with the same number of responses.  More accurate estimates of the 

average of the minimum and maximum possible areas are available from the author. However, 

they are tedious to calculate & show little or no advantage over K’A and K’B. 

Balakrishnan’s Distribution Free Measures for Full ROC Function 

 To obtain a sensitivity measure, Balakrishnan (1998b) considers the discrete function UR(j) 

defined over J possible rating criteria, defined as: 

UR(k) =  p(response ≤ k|stimulus a) - p(response ≤ k|stimulus b). 

UR(k) is the difference between the hit and false alarm probabilities at criterion k, which is of 

course the same as the difference between the probabilities of a correct and an erroneous response 

at criterion k. Balakrishnan (1998b) the defines the sensitivity measure, S’ as the sum of UR(k) 

over all criteria: 
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∑  17. 

When the number of criteria is small, as for example with a Likert scale where people rate 

responses, as ‘uncertain’, ‘moderately confident’, ‘very confident’, most (but not necessarily all) 

participants use all responses.  However, when the confidence is on a rating scale from 1-100 or on 

a continuous slider, then people rarely use all possible responses and the measure S’ is confounded 

by the number of different responses a person chooses to use. This measure is provided here as it is 

presented as an alternative to d’ by Balakrishnan and his co-workers, (Balakrishnan, 1998a, 1998b, 

1999). Balakrishnan himself  no longer promotes S’ (personal communication January, 2004). 

Instead, he and his co-workers suggest a measure γ0 that estimates unbiased performance 

(Balakrishnan, MacDonald, & Kohen, 2003).  Whether γ0 remains constant across conditions with 

different a priori stimulus frequencies and/or different payoffs does not appear to have been tested. 
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Hence γ0 is not considered here. 

 Balakrishnan and his co-workers, (Balakrishnan, 1998a, 1998b, 1999) also note that prior to 

their work, all measures of bias were what we have called here point measures.  Such measures in 

no sense assess the bias of a whole ROC function relative to neutral. This is an important insight. 

They suggest that a useful bias measure should assess both the shift of the whole ROC function  

and be independent of the distribution of the stimulus representation.  With these goals in mind, 

they define sub-optimal, in their terms biased, responses as responses where p(correct |R=k) < 0.5.  

For such a criterion, k, an estimate of bias ωk is equal to the total number of responses at that value 

of k divided by the total number of trials (Balakrishnan, 1998b, footnote to Table 5).   

 Then:  
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 where total number of trials is N, ΩΑ is a measures of bias on occasions when response “A” 

is given, and is negative; while ΩΒ is a measures of bias on occasions when response “B” is given, 

and is positive.  The total bias of the complete ROC function is then defined as 

ΩT = ΩΑ + ΩΒ.  Positive values of ΩT indicate bias towards “ B” and vice versa. Balakrishnan and 

his colleagues’ approach to sub-optimality and bias is thus different to that of the general signal 

detection framework.  Their approach first identifies adjacent criteria k that are suboptimal 

according to the criterion p(correct) < p(error) and then uses ωk as a measure the magnitude of that 

bias. The ωk are point measures based on simple probabilities, unlike either the area or the model 

based bias measures, in equations 8, 14 and 16, which are point based bias measures based on 

cumulative probabilities. Thus ΩT is different from other bias measures both because it is a whole 

ROC measure and because it is ultimately based on simple rather than cumulative probabilities.  
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So it is to be expected that ΩT  will behave differently from other bias measures. 

The ln(odds ratio) as a Distribution Free Bias Measures 

 A widely used distribution free point measure of bias is the ln(odds ratio).  It may be 

obtained by assuming that no matter how the independent probabilities h and f are generated, they 

remain constant throughout an experiment and hence both their sample estimates are generated by 

a binomial distribution.  The ln(odds ratio) is identical with the choice bias measure  ln(βL).  

Clearly, the ln(odds ratio) may be calculated  at any or all criterion values. 

New Measures of Bias from Rating ROCs 

 A key property for a bias measure is that it should be used consistently for any given set of 

motivational factors.  If the experimental situation is neutral, that is stimuli have equal a priori 

probabilities and equal rewards for correct responses and penalties for errors, then bias as 

measured by ln (β) for confidence c, given response A, should be the exact opposite of bias as 

measured by ln (β) for confidence c, given response B.  If the conditions are biased then the 

function should be displaced.  The general prediction is: 

 ln(βBmeasure) = - ln(βAmeasure����) + Gmeasure 19,  

where ‘measure’ can be  derived from TSD, choice or area procedures. 

 The constant should be zero for neutral conditions and negative for bias towards response B.  

The constants Gmeasure are new measures indicating how far a whole ROC function departs from 

being neutral, rather than how much the cut-point between “A” and “B” is displaced from neutral.  

Equation 19 can be tested for: βT from equation 2; for βL from equation 8; and for β’K from 

equation 14. (One might also use βK from equation 16, but it is so similar to β’K that a separate test 

is not worthwhile)  For model based approaches the optimal value of the constant is predictable 

from the payoff matrix and the a priori probabilities of stimuli, see equation 3. Equations 19 are 

important because they provide a way to evaluate the bias of the whole ROC function that depends 

on cumulative probabilities, unlike Ω that depends on simple probabilities. 

 A slope of –1 is implicitly predicted for the regression  of ln(βBmeasure) on ln(βAmeasure) in 

equation 19.  If the slope is  –1, then there is symmetry about the point Gmeasure, and one can state 

that participant is consistent in usage of criteria, but biased. Whether the bias is ‘appropriate’ or 
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optimal is then an empirical question that depends on the payoffs and a priori stimulus 

probabilities.  A slope different from –1 indicates that a participant has a different confidence scale 

for responses “A” and “B”. 

Evaluation Criteria 

 The evaluation criteria address three issues: performance of the sensitivity measures, 

performance of the bias measures, and assessment of fit of equal and unequal variance versions of 

TSD and choice models.   

Performance of the Sensitivity Measures 

 The first evaluation criterion for the sensitivity measures is invariance of the point measures 

as a function of criterion, k, within each condition, (k =–CMAX, –CMAX +1…. 0. CMAX-1, CMAX).  

This will be evaluated in three ways.  The first is visual inspection of a plot of relative sensitivity 

as a function of criterion k.  Relative sensitivity, Srel is defined by: 

 Srel  = (sensitivity at criterion k)/(sensitivity at the cut-point) 20. 

Visual inspection is obviously subjective, and so is used only to determine whether further analysis 

is useful.  Where two models are so similar that visual inspection is uncertain, any differences are 

unlikely to be important any way, even if they are statistically significant. The second criterion is 

the frequency of values of sensitivity more than an arbitrary x% from the value at the cut point. 

Analyses shown here use the criterion of x% =15%, but essentially the same conclusion would 

have been drawn with x% =5% or 10%. The third criterion is the minimum and maximum 

percentage overestimation and underestimation of sensitivity relative to the cut point sensitivity, 

where  

  Over estimate %   = 100(sensitivity at criterion k)/(sensitivity at the cut-point) –100 

  Under estimate % = 100 - 100(sensitivity at criterion k)/(sensitivity at the cut-point) 21, 

for over and underestimates respectively. The number of extreme criterion points included will 

affect all these criteria. Furthermore, both the number and the extremity of criterion use changes 

quite a lot across conditions and participants. For this reason, the variance (or coefficient of 

variation) of sensitivity measures is not a useful measure of consistency across criteria. These 

methods of evaluation may not be ideal, but they are explicit, so that other investigators can apply 
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them to their own data – or suggest better ones 

 It is also important to know whether the rating procedure has substantial advantages over the 

simpler two choice procedure. To evaluate this issue point measures are compared with their ROC 

equivalents for TSD, choice and area formulations. 

 Finally, the invariance of sensitivity measures across different bias conditions is tested. If 

people and stimuli are unchanged across conditions, there should be no change in sensitivity 

measures.  However, neutral conditions were always run first, so there might be practice effects. 

Performance of the Bias Measures 

 The first criterion is the consistency of use of point bias measures across responses “A” and 

“B”. This criterion may be evaluated by testing equation 19 for linearity and unit negative slope, 

separately for TSD, choice and area measures.   

 Then performance of point bias measures at the cut-point will be compared with equivalent 

ROC measures from equations 19.  

 The next issue is whether participants have control of bias. This is evaluated by testing 

whether the bias measures have different values in different motivational conditions. Once it has 

been established that a bias measure does indeed change, the next question is whether the actual 

values of bias measures are ‘optimal’.  In its strongest form this question only makes sense for 

model based approaches, since it is necessary to know the form of the stimulus representation to 

determine the optimal value according to equation. In a weaker form, one may ask whether the 

bias is in the ‘right’ direction, i.e. is response “B’ made more often if a correct response to stimulus 

b is more highly rewarded, or if stimulus b has higher a priori probability.  However participants 

may not behave optimally according to any measure.  Although it is still of interest to discover 

whether performance is in fact optimal according to each specific bias measure; and if not whether 

bias is at least in the normatively correct direction. 

The “fit” of equal and unequal variance versions of TSD and Luce’s choice model   

 This criterion will be evaluated via the TSD and choice ROC functions by testing the fit of 

equations 4 (TSD) and equations 10 (choice), separately for each participant in each condition.  

The more general models are satisfied if there is a strong linear trend and no significant higher 
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order polynomial trends. In addition, there should be no significant differences in parameter 

estimates obtained from the “A” and “B” responses. Finally, slopes not significantly different from 

unity indicate that the, simpler, equal variance version of a model is tenable. 

Analysis of Balakrishnan (1999) Data 

 The data analyzed here is described by Balakrishnan (1999), and is available on-line 

(Balakrishnan & MacDonald, 2003a).  It comprises individual data on four participants performing 

a difficult line length discrimination task, with confidence ratings. All four participants performed 

in both a neutral and a biased condition.  Experiment 2 was a frequency manipulation experiment. 

There were two participants, identified here as Afreq and Bfreq. Both performed in a neutral 

(equal) condition, with equal frequencies for stimulus a  and stimulus b; and a biased (unequal) 

condition where the frequency of stimulus b was 3 times the frequency of stimulus a.  Experiment 

3 was a payoff manipulation experiment. There were two participants, identified here as Cpay and 

Dpay. Both performed in a neutral condition, with payoffs that did not depend on the stimulus 

presented;  and a biased payoff condition where the rewards for the correct response and penalty 

for the wrong response, to stimulus b were 3 times the rewards and penalties for equivalent 

response to stimulus a. Optimal bias towards “A” is 1/3, in both the frequency and payoff biased 

conditions.  The neutral condition came first in both experiments.  Allowed confidence ratings 

were 1-100, derived from a slider scale.  All analyses are based on cumulative probabilities where 

the absolute frequency (numerator) was at least 5 and the number of stimulus presentations 

(denominator) was at least 640. 

General Description of ROC Functions 

 Figure 1 shows ROC functions for all participants in both conditions.  The solid line parallel 

to the minor diagonal shows the transition from response A to response B.  The theoretical TSD 

functions for the value of d’ at the cut-point are shown as the continuous curves through OCI in the 

eight panels of Figure 1.   

 The following features are evident in Figure 1.  The empirical ROC function shows 

performance lower than predicted by TSD (choice would be effectively identical).  Participants 

Bfreq and Dpay appear very close to unbiased in the neutral condition.  Participants Afreq, Cpay 
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and Dpay are all appropriately biased towards response “B” in the biased condition. However 

Cpay was just as biased towards response “B” in the neutral condition.  Thus, three out of four 

participants do show voluntary control of bias.  Two out of these three, Afreq and Dpay, appear to 

change their bias in the ‘optimal’ direction.   

 For all measures of sensitivity or bias, when an estimate is given followed by two numbers in 

parentheses, these numbers are the 95% confidence limits.  Exceptions to this convention are 

explicitly noted. 

Performance of Sensitivity Measures 

Invariance of point sensitivity measures as a function of criterion 

Insert Figures 3 and 4 and Table 1 about here 

 Figures 3 and 4 show d’, ln (η) and A’ at criterion k relative to their values at the response 

“A” to response “B” transition (as defined by equation 20) as a function of criterion, k, for 

Experiment 2 (frequency manipulation) and Experiment 3 (payoff manipulation) respectively. 

Relative sensitivity is defined by equation 20. The functions for relative A’ appear flatter than the 

other functions.  Table 1 summarizes the characteristics of the functions in Figures 3 and 4. For 

each participant and condition the 3 measures d’, ln (η) and A’ are compared according to three 

criteria.  The first numeric column gives the number of points evaluated.  For each such point the 

ratio of that point’s sensitivity measure to the same sensitivity measure at the cut point was 

calculated.  The next column in Table 1 gives a count of the number of points for which the 

deviation of this ratio from unity was more than 15%.  This count was considerably smaller for A’ 

than the other measures, for all participants except Dpay. For Dpay the choice model had fewer 

deviations greater than 15%, but the number for A’ was still small.  As is evident in Figures 3 and 

4, the sensitivity at the cut-point was near the maximum for all models. Furthermore the % 

deviations from cut-point values were much larger for underestimates than overestimates.  The 

final two columns of Table 1 show these % deviations separately for underestimates and 

overestimates, according to equation 21.  Here the A’ measure is numerically superior for all 

participants in all conditions. This superiority of A’ was a surprise, as there is no theoretical reason 

why A’ should be invariant with respect to confidence.   
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Comparison of point and ROC Sensitivity Measures 

 Figure 5 shows ROC sensitivity measure as a function of point measures for TSD, choice and 

area approaches. For TSD and choice the regressions are very close to the identity relation with 

adjusted r-squared greater than 99% and slope unity and intercept zero. For TSD: slope = 1.05 

(.98, 1.12), intercept = -.07 (-.19, .05). For choice: slope = 1.02 (.94, 1.10), intercept = -.07 (-.16, 

.05).  The area measure ROC and point measures were slightly less similar. Adjusted r-squared 

equals .971, slope = 1.25 (1.05, 1.45), intercept = -.24 (-.40, .057).  So overall this data shows 

almost identical performance for ROC and point sensitivity measures, and hence no advantage for 

the more complex confidence rating procedure. 

Insert Figure 5 about here 

Comparison of Sensitivity Measures between Neutral and Biased Conditions 

 Table 2 shows sensitivity measures for each participant in two different conditions, one 

neutral and one biased. All measures, except S’, show slight superiority for the biased condition 

for every participant except Afreq.  For the choice point sensitivity measure ln (η) and for the ROC 

measures d’e and ln (ηe), where standard errors are available, these effects are statistically 

significant at the 95% confidence level.  Thus three people performed better in the biased 

condition and one performed (very slightly) better in the neutral condition. Balakrishnan’s S’ 

shows a different pattern. It is larger, sometimes much larger, for the neutral condition for all 

participants.  The reason is simple.  Participants used fewer points on the rating scale in the biased 

conditions, so there were fewer values of (Uk – Uk-1) to sum over (Table 1 gives number of points).   

Insert Table 2 about here 

Performance of the Bias Measures 

 The behavior of ln (βK) and ln (β’K) are almost identical. For all four participants in both 

conditions, the adjusted r
2
 values of regressions of ln (βK) on ln (β’K) were more than .99; slopes 

were not significantly different from 1 and intercepts not significantly different from zero.  Hence 

only the more easily calculated ln (β’K) is used in most of what follows. 
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Consistency of point bias measures as a function of criterion across responses “A” and “B” 

Insert Figure 6 and Table 3 about here 

 Figures 6 and 7 examine the consistency of usage of the confidence level for the bias 

measures ln (βT), ln (βL), ln (β’K), by testing equations 19. Table 3 shows intercepts = Gmeasure, 

slopes and effect sizes (adjusted r
2
 values) for the functions in Figures 6 and 7. As might be 

expected, TSD and choice give very similar results. For the most part, there is a consistent linear 

relation, with a high adjusted r
2
. The exceptions are for Afreq in the biased condition for TSD and 

choice and for Cpay in the biased condition for all models. This indicates that the use of any 

criterion, given a “B” response, can be predicted from the use of that same criterion, given an “A” 

response.  Nevertheless, in most cases the slopes are significantly different from 1, indicating that 

the subjective spacing between confidence criteria is systematically different for responses “A” 

and “B”.  The poor fits for Afreq in the biased conditions may be due to the restricted range of bias 

used for both “A” and “B” responses, although the area function is an excellent fit (adjusted r
2
 =  

.997).  The poor fit for Cpay in the biased condition for all analyses is due to the very restricted 

range for response “A”.  

Comparison of point and ROC bias measures 

 Figure 8 shows ROC bias Gmeasures as a function of their equivalent point measures for area, 

choice and TSD formulations.  Two features are apparent from Figure 8 and from the numeric 

values of the bias measures in Table 4.  Firstly, for all participants and all conditions, ROC 

measures are considerably (at least 1.6 times) larger than the equivalent point measure.  Secondly, 

the behavior of Cpay in the biased condition is substantially different from that of the other three 

participants, as is also evident in Figure 7.  If one excludes Cpay in the biased condition, then 

regressions in Figure 7 all have intercepts not significantly different from zero at the 95% 

confidence level. The regression slopes are: area = 1.64 (1.37, 1.92); TSD = 2.18 (1.84, 2.51); 

choice = 2.13 (1.82, 2.45).  

Insert Figure 7 about here 

 Thus bias as estimated by an entire ROC is generally greater than bias estimated at the “A”, 
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“B” cut-point.  It is also evident that for some participants the behavior estimated from the ROC 

bias measure is different from the behavior estimated from the point bias measure.  In particular, 

Cpay shows a very large ROC criterion shift (much more than other participants) together with a 

rather small point criterion shift  (less than other participants).   

Comparison of Neutral and Biased Conditons: Voluntary Control of Bias Measures 

 Table 4 shows point measures of bias, ln (βT), ln (βL), ln (β’K), ln (βK) at the cut-point 

between responses “A” and “B”, together with ROC Gmeasures from equations 19 and 

Balakrishnan’s Ω for each participant in a neutral and a biased condition.   All measures except Ω 

show different behavior in the biased and neutral conditions, and hence voluntary control.  For the 

point measures, statistical tests of these differences are available for choice model using the ASEs 

in equation 9; and all differences are statistically significant at the 95% confidence level. For the 

Gmeasures standard errors are available from the regressions in equations 19. Again neutral and 

biased conditions show significant differences for all participants.  

Insert Table 4 about here 

Optimality of the Bias Measures  

 Table 4 shows little support for any strong version of optimality. The only person with a bias 

parameter not significantly different from 0 in the neutral conditions is Bfreq. The only measure 

not significantly different from normatively optimal value of –1.10 in a biased condition is ln (βT) 

for Dpay. 

 By contrast, the weaker proposition that participants move their criteria in the normatively 

correct direction has considerable support from all measures except Ω. Table 4 show the value of 

measures in the biased condition minus their equivalent values in the neutral condition. A negative 

value significantly different from zero, indicating a normatively correct move in bias towards “B” 

is present for participants Afreq, Cpay and Dpay for all ROC measures. Afreq, Cpay and Dpay also 

show a statistically significant move in the expected direction for the choice point measure ln (βL) 

at the “A” to “B” cut-point (where a test is possible because the ASE is available).  As noted 

above, Bfreq moves in the normatively wrong direction on all measures.  For point measures, the 

results for Cpay are equivocal, being small towards “A” for TSD and choice, but small towards 
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“B” for the area measure. 

 The values of Ω  are very low for all participants in all conditions, and so are uninformative. 

Furthermore, comparisons across conditions are not possible as the standard error of Ω is not 

known.  

Fit of TSD and Luce’s Choice Model 

 Figures 9 and 10 show three versions of ROC function for Experiments 2 & 3 respectively.  

Choice model (bottom panel) appears to be a better fit than TSD (middle panel), in the sense that 

slopes appear more similar across conditions and responses. This apparent superiority of choice 

model is evaluated more rigorously by testing the regressions posited in equations 4 and 10. The 

strong curvature apparent in most raw ROC functions rules out threshold models, which are not 

discussed further. 

 The fit of TSD and choice model is first evaluated by testing the linearity of their respective 

ROC functions separately for response “A” and response “B”, for all participants in both 

conditions.  There is little to choose between TSD and choice.  Both models had adjusted r
2
 greater 

than .88 for all functions and greater than .98 for 15/16 functions (the poor fit was for Dpay, 

response A biased)).  Both models showed some non-linear effects in terms of a quadratic 

component significant at the 99% confidence level for 6 out of 16 functions. The results gave small 

but significant differences in variance ratio (sT or sL) and/or sensitivity at the cut-point (d’e or ln 

(ηe)) from the stimulus a and stimulus b versions of equations 4 for all TSD functions except Dpay 

in the neutral condition (equation 4), and for all choice functions except Dpay in both neutral and 

biased conditions (equation 10). Thus on the grounds of linear fit and differences between stimulus 

a and stimulus b estimates of variance ratios and sensitivity at the cut-point, choice and TSD 

models give similar levels of fit.   

Insert Figures 9 and 10 and Table 5 about here 

 The question of equal variance was evaluated by testing whether average estimates of sT and 

sL from response “A” and response “B” regressions (equations 4 for TSD and 10 for choice) were 

reliably different from unity. Table 5 shows estimates of sT and sL, together with their standard 

errors (sT and sL estimates significantly different from unity are shown in bold).  Violations were 
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tested at the 99% confidence level to ensure that the simpler, equal variance, model was not 

rejected without good cause.  For TSD, all 8 estimates of sT are significantly less than unity, mean 

sT = 0.79, (99% confidence limits .72, .86).  So the equal variance version of TSD is emphatically 

rejected.  For the choice model, four estimates are not reliably different from unity, three are lower 

and one is higher than unity, mean sL is .99, (99% confidence limits.87, 1.10).  Thus the equal 

variance version of choice model is viable for some participants. The ANCOVA also show no 

evidence that slopes are different in biased and neutral conditions, for either TSD or choice. 

Discussion 

The Signal Detection Approach 

 Based on the analyses presented here, as well as the vast body of existing literature going 

back to the 1950s, the signal detection approach provides a useful framework for describing 

discrimination.  A distribution free version provides reliable measures of sensitivity, A’, and bias, 

ln (β’K), for simple two choice experiments, even without confidence ratings.  Given rating data, 

one can compare models based on different distributions. 

Sensitivity  

Consistency  

 All measures of point sensitivity showed an effect of confidence rating within conditions. 

Figures 3 and 4 show there is a substantial middle range of confidence ratings where sensitivity 

remains constant, and very similar to the value at the A to B cut-point. Sensitivity values estimated 

from very extreme confidence ratings are lower than those at the cut-point. Surprisingly, as 

documented by measures in Table 1, the A’ measure shows the least variation over different 

confidence ratings.  This might be an artifact of the fact that the range of A’ is limited from 0.5 to 

1.0, while ln (η) and d’ range from 0 to unlimited. 

Comparing Point and ROC measures 

 The values of point sensitivity measures are very similar to the values of equivalent ROC 

measures.  This is equally true for the area measure and the model based measures.  Consequently 

in terms of accuracy of sensitivity measurement, confidence ratings provide no advantages. This is 

useful information. There may well be a tendency to take confidence ratings under the erroneous 
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and time consuming hypothesis that accuracy will be improved.  

 The ROC measure S’ showed lower sensitivity in the biased condition for all participants, 

due to differential use of criteria. In fact, consistent with the present analysis, Treisman (2002) has 

already proposed that unequal use of criteria would invalidate the use of S’.  Although 

Balakrishnan argues that such unequal use does not make much difference (Balakrishnan & 

MacDonald, 2002), he no longer promotes use of S’ (personal communication). The flaw in using 

S’ is that of attempting to obtain areas from summing lines, with no width. 

Comparing Neutral and Biased Conditions 

 There were small, but statistically reliable, differences in sensitivity between the biased and 

neutral conditions for the area and model based measures. These favored the biased condition 

(performed second for all participants) for three out of the four participants.  

Bias  

Consistency 

 Figures 6 and 7, based on equations 19, provide a new way of measuring consistency of 

criterion use across different responses. Individual participants show substantial consistency as 

assessed by the adjusted r
2 

values in Table 3.  The area bias measure, ln (β’K), appears to be 

slightly more consistent than the TSD bias measure, ln (βT), or the choice bias measure, ln (βL). 

The adjusted r
2
 is highest for the area measure in 7 out of 8 comparisons. This is similar to the 

finding for sensitivity.  The slopes of the functions in Figures 6 and 7 are not equal to –1.  Thus 

participants typically impose a different scale for confidence for “A” and “B” responses. This is 

also a new and far from obvious finding. 

Comparing Point and ROC performance 

 Figures 6 and 7 also provide ways of measuring the shift of an entire ROC function via the 

values of Gmeasure.  Armed with this measure, one can compare point and ROC bias measures.  

Values of β’K from equation 14 and βK from equation 15 are very similar. So ratings give no 

advantage in terms of accuracy of measurement of bias at the cut-point. 

 By contrast, comparing Gmeasure for the entire ROC function with equivalent point measures 

gives a different picture.  As shown in Table 4, the ROC measures are always higher. Even the 
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neutral conditions show some degree of bias using Gmeasure. It thus appears that the full ROC is 

more sensitive to deviations form neutrality than the point measures. Furthermore, considering the 

full ROC function provides information not available from point measures alone. The large change 

in behavior between neutral and biased conditions for Cpay is only detectable in Figure 7, and by 

the high values of Gmeasure in Table 3. 

 By contrast, Balakrishnan’s Ω, also a full ROC measure, shows minimal bias for all 

participants in all conditions. It is not obvious what advantages there might be in a bias measure 

that does not actually change when people’s decision making does show a change in bias on a raw, 

and hence distribution free, ROC function, (see Figure 1).  

Comparison of Neutral and Biased Conditons: Voluntary Control and Optimality 

 All measures, except Ω show voluntary control of bias, in that values of at least some bias 

measures are different in the neutral and biased conditions. In terms of point measures, Afreq, 

Cpay (minimally) and Dpay all change their bias in the normatively correct direction, while Bfreq 

changes in the opposite direction. This pattern is observed for all measures.  Shifts are larger for 

the full ROC than for the “A”, “B” cut-point, as a necessary consequence of the finding that the 

deviation from neutrality is larger for Gmeasures than for point measures.   

 Equation 3 predicts an optimal value ln (βL) or ln (βT) of  -1.08 in the biased condition.  

There is little evidence to suggest that these participants choose this optimal bias.  In terms of the 

raw ratio of proportion of “A” response relative to proportion of “B” responses, people with lower 

sensitivities need to be more biased.  This is not happening, or not happening sufficiently, so the 

least sensitive participant, Afreq shows the weakest bias in terms of ln (βL) or ln (βT).  It may be 

possible to train people to set their criteria optimally, but most (like these participants) are sub-

optimal without such training.  

 In real world applications different situations may have both different a priori probabilities 

and different payoffs.  For example, malignant cells in screening conditions are less frequent than 

in biopsy conditions. The implications of errors are also different for different categories of 

response, such as definitely malignant, possibly malignant, probably benign, benign, etc.  Similar 

arguments apply to the probability and degree of threat of different kinds of military weapons, or 
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computer viruses, or of risk of different investments.  Most laboratory rating experiments, like the 

one analyzed here, do not have clear predictions of optimality away from the cut-point because 

there is no greater penalty for being wrong about an extremely confident “A” response than an 

extremely tentative “A” response.   Clearly, the behavior of bias measures as a function of criterion 

and motivation merits further exploration for both practical and theoretical reasons.  It would seem 

that both point and ROC measures would be required. 

Model Evaluation and ROC Functions 

 Balakrishnan (Balakrishnan, 1998a, 1998b, 1999; Balakrishnan & MacDonald, 2002, 2003b) 

suggests that the empirical ROC functions do not fit any signal detection model. Figures 9 and 10 

and Table 5 challenge this suggestion. Both TSD and choice model ROC functions are a 

‘reasonable’ fit to the model in terms of linear predictions of transformed ROC functions, with 

adjusted r
2 

values generally greater than .98.  The different variance ratios from stimulus a and 

stimulus b do not invalidate the models. Nevertheless, the fit of both TSD and choice does show 

systematic deviations from theory.  Thus neither the logistic nor the normal distribution provides 

an ideal representation of the effects of repeated presentations of the stimuli. The vindication of the 

signal detection approach arises from the finding of consistent estimates of sensitivity, dependent 

on people and stimuli, and consistent measures of bias, under voluntary control.  Sub-optimality of 

bias measures suggests further avenues for investigation rather than a flaw in the approach. 

 For the line length discrimination task analyzed here, the equal variance version of the 

choice model cannot be rejected because the choice variance ratio measure sL is so close to unity.  

By contrast, the TSD variance ratio measure, 0.79, is substantially less than unity, suggesting that 

the stimulus a distribution has higher variance than the stimulus b distribution.  Choice model is to 

be preferred to TSD for this line length discrimination because the simpler version with a single 

sensitivity measure is acceptable. 

Model Based and Distribution Free Approaches 

 The distribution free approaches have the advantage of making fewer assumptions than the 

model based approaches.  Furthermore, area based measures both old and new, have been shown 

to have clear advantages of robustness and consistency, and are thus to be highly recommended.  
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No advantages for either S’ or Ω emerge from these analyses.    

 Nevertheless, model based approaches are clearly essential for deeper understanding of 

underlying processes.  For example, TSD or choice measure of bias and sensitivity should be 

derivable from information accrual models, such as a version of the random walk model (Green & 

Luce, 1973; Heath & Fulham, 1988; Kornbrot, 1988; Laming, 1968, 1979; Link, 1975; Luce, 

1986; Smith & Vickers, 1989; Stone & Callaway, 1964; Vickers, Caudrey, & Willson, 1971).  

Summary 

 The main findings may be summarized as follows. 

• The signal detection approach is successful and useful, not flawed as suggested by 

Balakrishnan and his colleagues 

• Area measures are the best distribution free measures.  The new area bias measure, ln 

(β’K), complements the well established sensitivity measure A’ 

• Area measures are at least as good as TSD or choice for practical purposes. 

• Point measures of sensitivity and of bias at the cut-point are just as good as ROC 

measures, and much simpler to obtain. 

• The new techniques for assessing the bias of complete ROCs are important and give 

more, and different, information to that from bias at the cut-point alone. 

• There are small but significant departures from the predictions of choice and TSD. 

• The simpler equal variance version of choice model is acceptable, while TSD requires 

an extra parameter for the ratio of stimulus a to stimulus b variance. 

 The time honored signal detection framework has been rigorously tested and emerged with 

flying colors.  Choice theory is rather higher up the mast than TSD.   
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 Table 1 

Performance of Point Sensitivity Measures as a Function of Confidence Criteria 

Participant Condition # Criteria Sensitivity  #  Outside 

15% 

Max % 

Overestimate 

Max % 

Underestimate 

TSD:     d' 33 2.5 82.9 

Choice:  ln (η) 29 2.4 74.6 Neutral 97 

Area:     A' 3 0.6 31.7 

TSD:     d' 22 0.3 91.7 

Choice:  ln (η) 20 0.4 86.1 

Afreq 

Biased 60 

Area:     A' 8 0.1 23.6 

TSD:     d' 20 10.4 38.8 

Choice:  ln (η) 16 46.1 29.1 Neutral 101 

Area:     A' -  0.5 11.8 

TSD:     d' 25 3.4 42 

Choice:  ln (η) 11 4.2 25.9 

Bfreq 

Biased 79 

Area:     A' -  0.1 13.6 

TSD:     d' 29 4.9 36 

Choice:  ln (η) 21 50.5 46.9 Neutral 97 

Area:     A' -  0.1 12.4 

TSD:     d' 18 0.5 48.2 

Choice:  ln (η) 12 1 24.9 

Cpay 

Biased 85 

Area:     A' 3 0.1 16.1 

TSD:     d' 16 0.2 30.6 

Choice:  ln (η) -  11.2 4.6 Neutral 119 

Area:     A' 4  < .05  15.8 

TSD:     d' 5 0.4 32.6 

Choice:  ln (η) 1 16 13.1 

Dpay 

Biased 38 

Area:     A' 2 0.1 15.9 
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Table 2 

Point and ROC Sensitivity Measures in Neutral and Biased Conditions 

Analysis Participant Point ROC 

    Neutral Bias Neutral Bias 

   d' d'e 

Afreq .67 .63 .65 .63 

Bfreq 1.24 1.45 1.21 1.43 

Cpay 1.49 1.73 1.41 1.80 

TSD 

  

Dpay 2.15 2.49 2.16 2.59 

  ln(η) ln(ηe) 

Afreq .54 .52 .51 .51 

Bfreq 1.01 1.18 .96 1.14 

Cpay 1.24 1.45 1.10 1.46 

Choice 

  

Dpay 1.81 2.18 1.79 2.18 

   A' A 

Afreq .71 .70 .64 .67 

Bfreq .82 .85 .78 .81 

Cpay .85 .87 .82 .86 

Area 

 

  
Dpay .92 .93 .92 .95 

     Ω 	 

Afreq   20.1 8.8 

Bfreq   37.6 32.4 

Cpay   37.8 31.8 

Balakrishnan 

Dpay     70.4 20.9 
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Table 3 

Testing equation 19:  Gmeasure slopes and adjusted r
2
 for regressions of bias measure for response B 

as a function of bias measure for response A shown in Figures 6 and 7. 

 

Participant Analysis Gmeasure Slope Adjusted r
2
 

  Neutral Bias Neutral Bias Neutral Bias 

Area .58 -1.36 -.48 -.64 .991 .997 

Choice .22 -.50 -.50 -.99 .895 .275 Afreq 

TSD .17 -.40 -.50 -.98 .895 .311 

Area .02 .36 -.68 -.98 .978 .994 

Choice -.14 .42 -1.29 -.87 .983 .987 Bfreq 

TSD -.11 .34 -1.28 -.88 .985 .988 

Area -1.04 -10.67 -.69 -19.15 .997 .776 

Choice -1.19 -9.16 -.84 -12.12 .994 .628 Cpay 

TSD -.92 -7.50 -.79 -12.31 .992 .641 

Area -.07 -.55 -.64 -.51 .981 .929 

Choice -.31 -3.05 -.96 -1.35 .989 .886 Dpay 

TSD -.25 -2.45 -.94 -1.29 .989 .893 
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Table 4 

Point and ROC Bias Measures in Neutral and Biased Conditions 

Analysis Participant Point  

at  "A","B" cut 

ROC  

at "A","B" cut 

Full ROC from 

Equation 19 

    Neutral Bias B-N Neutral Bias B-N Neutral Bias B-N 

 ln(βT)    GTSD 

Afreq .12 -.23 -.35    .17 -.40 -.57 

Bfreq -.01 .17 .18    -.11 .34 .45 

Cpay -.53 -.62 -.09    -.92 -7.50 -6.58 

TSD 

Dpay -.12 -1.08 -.96       -.25 -2.45 -2.20 

 ln(βL)    Gchoice 

Afreq .15 -.29 -.44    .22 -.50 -.72 

Bfreq -.01 .22 .23    -.14 .42 .56 

Cpay -.66 -.77 -.11    -1.19 -9.16 -7.97 

Choice 

Dpay -.14 -1.31 -1.17    -.31 -3.05 -2.74 

  ln(β’A') ln(βA) Garea 

Afreq .38 -.80 -1.18 .24 -.72 -.97 .58 -1.36 -1.93 

Bfreq -.02 .14 .16 -.12 .10 .22 .02 .36 .34 

Cpay -.62 -.56 .06 -.57 -.64 -.07 -1.04 -10.67 -9.63 

Dpay -.07 -.47 -.40 -.08 -.54 -.47 -.07 -.55 -.48 

Area 

              Omega 

Afreq       .06 .00 -.06 

Bfreq       .01 .02 .01 

Cpay       .04 .00 -.04 
Balakrishnan 

Dpay             .00 .00 .00 

Note a. B-N is value in biased condition – value in neutral condition. Negative values indicate a 

shift towards response B. 



P284 Signal Detection Theory, the Approach…  37 

Table 5 

Tests of equal variance versions of TSD and choice model 

Participant Neutral Bias 

  slope
a 

se(slope)
b 

slope
a 

se(slope)
b 

  sT  from TSD 

Afreq .79 .007 .81 .009 

Bfreq .87 .018 .78 .014 

Cpay .89 .012 .64 .013 

Dpay .76 .013 .79 .059 

Mean .83   .75   

LCL
c .77  .69  

UCL
c .89   .81   

  sL  from choice 

Afreq .85 .008 .87 .012 

Bfreq 1.08 .026 .99 .019 

Cpay 1.17 .021 .81 .013 

Dpay 1.03 .012 1.09 .072 

Mean 1.03   .94   

LCL
c .95  .86  

UCL
c 1.11   1.02   

Note a. Slopes not significantly different from 1 at the 99% confidence level are in bold. 

Note b. Standard errors of slopes are obtained by averaging standard errors obtained from the 

stimulus a and stimulus b regressions. 

Note c. Lower confidence levels (LCL) and upper confidence levels (UCL) are based on standard 

errors that are averages of the 8 values of (standard error)
2
 for the 4 participants in 2 conditions 

each. 



P284 Signal Detection Theory, the Approach…  38 

Appendix:  Equations for Point and ROC Area Measures 

Estimation of Areas K’A and K’B. 

 The top panel of Figure 2 shows a single cut-point, C with co-ordinates f, h, on an ROC 

function, together with the triangles needed to estimate K’A and K’B.   

 Then an estimate for K’A is the minimum area bounded by the major diagonal and the cut-

line XC below and to the left of the ROC function (triangle OXC), plus half the triangle OVC that 

would need to be added to OXC to obtain the maximum area.  This is the same pragmatic approach 

used by Pollack and Norman (Pollack & Norman, 1964), see also (Macmillan & Creelman, 1996).  

So, 

    K’A= area ∆OXC + .5 area ∆OVC. 

Similarly, an estimate for K’B is the minimum area bounded by the major diagonal and the cut-line 

XC below and to the right of the ROC function (triangle ∆IXC), plus half the triangle ∆IVC that 

would need to be added to IXC to obtain the maximum area, thus: 

    K’B= area ∆IXC + .5 area ∆IUC. 

To calculate these areas the distance x, y, u and v shown in top panel of Figure 1 are needed.  The 

values of x and y are the co-ordinates of the point C, when the f, h axes are rotated through 45° 

(using sin45=cos45=1/√2), so  

    x = (h + f)/√2, y = (h –f)/√2 

The value of u may be obtained from the similar triangles ∆OV’C, ∆OMU by noting that: 

   (1 – u)/f = 1/h, therefore u = 1 – f/h. 

Similarly, the value of v may be obtained from the similar triangles ∆IU’C, ∆IMV by noting that: 

   (1 – v)/(1-h) = 1/(1-f), therefore v = 1 –  (1-h) (1-f). 

Using these values for the distances x, y, u, v give the following equations  for K’A, K’B: 

 

  

K '
A

= area∆XOC + .5area∆VOC =
xy

2
+
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2
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h
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+
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Areas Under the Empirical ROC Curve, KA, KBx 

 When a full ROC function is available the actual areas to the left and right of the cut line 

CXc may be obtained.  If participants can give either of two responses and confidence ratings from 

1 to CMAX there are 2 CMAX criteria, k from 1  to 2 CMAX.  This is illustrated in the bottom panel of 

Figure 2.  KA, dotted on the figure, is the area bounded by the empirical ROC function, the major 

diagonal and to the left of the cut line CXc.  KB, striped on the figure, is the area bounded by the 

empirical ROC function, the major diagonal and to the right of the cut line CXc.  The kth point on 

the empirical ROC function, Pk, has coordinates fk, hk.  Then the areas KA, KB are obtained by 

summing polygons of the general form XkPkPk+1Xk+1.  The distance OXk along the major diagonal 

is denoted xk and the distance XkPk  parallel to the minor diagonal is denoted yk.  Then,  

 xk = (hk + fk)/√2;  yk = (hk – fk)/√2 24. 

The polygon XkPkPk+1Xk+1 is composed of the rectangle XkPkTXk+1 plus the triangle PkPk+1T, and 

so has an area given by: 

 area XkPkPk+1Xk+1 = yk(xk+1 – xk) + [(yk+1- yk)(xk+1 – xk)]/2 = [(hk+1- fk)
2
 -  (hk - fk+1)

2
]/2. 

The area KA is then given by summing all polygons from k = 0 to k = c; while the area KB is give 

by summing all polygons from c+1 to 2CR.  There are 2CMax criteria and hence 2 CMax polygons.  

The point P0 is the origin (0,0) and the point P2CR+1 is the point (1,1).  So  
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Figure Captions 

Figure 1. ROC function p(hit), h, as a function of p(false alarm), f, for all participants.  Top panel 

neutral conditions, bottom panel biased conditions. Filled triangles from response “A”, open 

squares from response “B”.  Top left panel shows key areas shaded, as an example, with ∆OCX = 

KA, dotted (corresponding to response “A”); ∆ICX = KB, striped (corresponding to response “B”). 

The point C represents the cut point between responses “A” and “B”. The line CX divides the 

region where response “A” is made from the region where response “B” is made. 

Figure 2. ROC plot of h as a function of f, showing areas required to calculate point area measures 

A’, K’A, K’B (top panel), and full ROC area measures A, KA KB (bottom panel).  Dotted areas 

represent response “A”, striped areas represent response “B”.  In top panel OCX is minimum area 

for response A, OCX + OCV is maximum area for response A, ICX is minimum area for response 

B, ICX + ICU is maximum area for response B.  In bottom panel the polygon PkPk+1Xk+1Xk 

represents a generic polygon contributing to a total area KA or KB. 

Figure 3. Frequency manipulation participants. Relative point sensitivity measures (as defined by 

equation 20) at criterion k relative to value at cut-point between responses “A” and “B” as a 

function of confidence rating. Left panels Afreq, right panels Bfreq. Top panels relative d’, middle 

panels relative ln(η), bottom panels relative A’. 

Figure 4. Payoff  manipulation participants. Relative point sensitivity measures (as defined by 

equation 20) at criterion k relative to value at cut-point between responses “A” and “B” as a 

function of confidence rating. Left panels Cpay, right panels Dpay. Top panels relative d’, middle 

panels relative ln(η), bottom panels relative A’. 

Figure 5. ROC sensitivity measures as a function of point sensitivity measures at the “A”, “B” cut-

point, for TSD, choice and area approaches for the frequency manipulation participants in the 

neutral condition (filled symbols) and biased conditions (open symbols). 

Figure 6. Response "B" bias measure as function of response "A" bias measure for frequency 

manipulation participants.. Top panels Area measure, ln(β’K); middle panel TSDmeasure  ln(βT), 

bottom panel choice measure ln(βL).  
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Figure 7. Response "B" bias measure as function of response "A" bias measure for payoff 

manipulation participants.. Top panels area measure, ln(β’K); middle panel TSDmeasure  ln(βT), 

bottom panel choice measure ln(βL). 

Figure 8. ROC bias measures as a function of point bias measures at the “A”, “B” cut-point, for 

TSD, choice and area approaches for four participants in two conditions each. Biased conditions 

have up pointing open triangles with dashed line; neutral conditions have down pointing filled 

triangles with solid lines.  The outlier point represents participant Cpay in the biased condition. 

Figure 9. ROC functions for frequency manipulation participants. G(h) as a function of G(f`). Top 

panels, raw probabilities, G is identity transformation; middle panels TSD, G is normal 

transformation; bottom panels Luce’s choice model, G is logistic transformation. 

Figure 10. ROC functions for payoff manipulation participants. G(h) as a function of G(f`). Top 

panels, raw probabilities, G is identity transformation; middle panels TSD, G is normal 

transformation; bottom panels Luce’s choice model, G is logistic transformation. 
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