In the Glimpse of an Eye: Decision Making and Vision

Diana Eugenie Kornbrot Psychology Department University of Hertfordshire

Outline: Vision & Decision Making

■ Visual search has no memory?

- Key Search Task by Wolfe & Horowtiz
- Key Empirical Findings

Psychophysical Model

- Information Accrual Model
- Includes Decision Making
- Models errors and reaction time

The Search Task

#Letter Display on Screen

- Refreshed every 111 msec
- Contains either E or N among other letters
- Participant response with 'E' or 'N' key press

#Display Types

- Static: letter arrangement same on each presentation
- Random: letters randomly rearranged for each presentation

Visual Attention Lab at Harvard

- http://search.bwh.harvard.edu/
- Beautiful work on early visual processes
- Striking and important results, although I disagree with one conclusion

The Search Task: Demo

20-Oct-04 Fechner 2004. In the Glimps of an Eye Kornbrot© University of Hertfordshire, UK

4

Manipulated Variables

Display type:

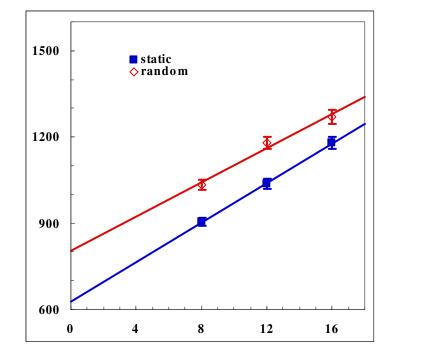
Static or Random

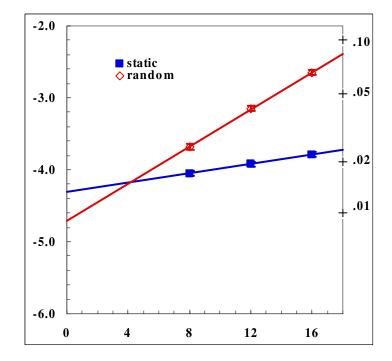
■ Set Size

■ 8, 12, 16 letters in display, including E or N

Eccentricity

Location of target relative to centre


• On 'ring' 0, 1, 2, or 3


Design and Measures

All participants performed in all conditions

- Repeated measures design
- 11 participants
- **480** Trials per condition
- Measures taken on each trial
 - 1: Reaction Time in msec
 - 2: Response is correct or error

Results: Effect of Set Size

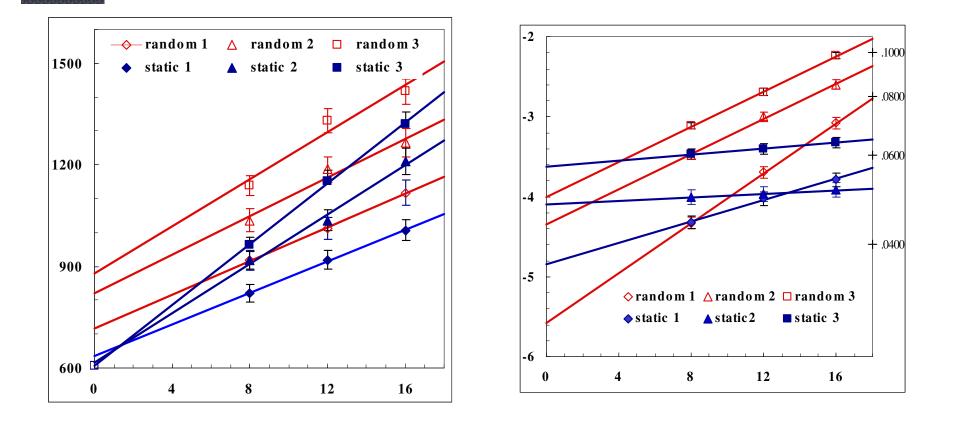
I Reaction Time: Msec

Errors: logit left, prob right

20-Oct-04 Fechner 2004. In the Glimps of an Eye Kornbrot© University of Hertfordshire, UK

Results: Display Type

Reaction Time


•Static: t = 624 + 34.7s

- Random: t = 806 + 29.6s
- Slope:random-static= 5.1 msec/itemp = .1103Intercept : random-static= 188 msecp = .0015

Logit Error

- ■Static: lgt = -4.31 + .03s
- ■Random: lgt = -4.71 + .13s
- Slope:random-static= +.13 /itemp = .0042Intercept:random-static= +.04p = .3197

Results: Effect of Set Size & Eccentricity

H Reaction Time: Msec

Errors: logit left, prob right

Results: Display and Eccentricity

- **I** Reaction Time Slopes: All increase with set size
- Static: Increases with eccentricity
 Random: No effect
 Reaction Time Intercepts

 Static: No effect
 Random: Increases with eccentricity

 # Errors as measured by logit(p(error)) Slopes
 - Static: No effect, flat with sets size
 Devidence of the set of
 - Random: Increases with eccentricity
- Errors as measured by logit(p(error)) Intercepts
 - Static: Increases with eccentricity
 - Random: Increases with eccentricity

Summary

There is whacking effect of display on memory

- Random 188 msec slower
- Errors higher for random
- Random, only, shows effect of set size on errors
- **#** RT Intercepts matter
 - Similarity to classic present-absent effects
- **#** Errors Matter
 - Different pattern to RTs
 - Need logistic regression

Problems for Theory of Visual Search

- RT slopes can be <u>lower</u> for random than static presentations
- RT intercepts are always <u>higher</u> for random than static presentations
- Error rates are independent of set size for static presentation
- Error rates increase with set size for random presentations only

A Model for Visual Search

IInformation Accrual

- Observers accumulate information for each of two possible responses in location independent accumulators, by a process such as a random walk.
- The rate of information accumulation is inversely related to set size, *s*.
- Consequently the time needed to achieve a fixed criterion, *C*, will be *C*s*, giving the standard linear RT versus set size function.
- **#** Decision Criteria
 - People set a criterion for each response, and make whichever response first reaches criterion.

Decision Heuristic 1: Maintain Accuracy

\blacksquare Increase criteria by amount S_V proportional to set size

- Causes an RT *slope* increase of S_V
- **#** BUT more distractors may ALSO mean more 'noise'
 - So greater increase in criterion for distractors.
 - Causes higher *slopes* when targets are absent
 - Often observed, but absent not necessarily 2* present slopes
- Set size *dependent* increases in criteria *may* cause set size *independent* error rates.
- Increases in decision criteria for more difficult tasks, slower information accrual, may not be able to maintain accuracy
 - So speed and accuracy *may* decline together.

Decision Heuristic 2: Fixed Criterion Increase

- **\blacksquare**: Increase criterion by I_v, independent of set size.
 - Causes an RT *intercept* change of I_V .
 - Occurs when there is loss of information over time,
 - Masking
 - Random relocation of targets
- Leads to fixed, set size independent, increase in RT, that is an increase in *intercept*

Speed-Accuracy Trade-Offs

Perfect accuracy rare Loss of information with time **^{^{¹**} Semi-voluntary} • Neutral' trade-off depends on task difficult Law of diminishing returns ■ Voluntary control within limits \blacksquare Model in terms of S_v, I_v ■ S_v set size dependent criteria

• I_v set size independent criteria

Actual Decisions

- **Compromise between Heuristics**
- **\blacksquare** Heuristic 1: Set size dependent criteria S_v
 - RT linear with set size
 - Errors set size independent, if successful
- **\blacksquare** Heuristic 2: Set size independent criteria I_v
 - RT intercept changes
 - Errors *increase* with set size

Ultimate Modelling Goals

Decision Parameters from Empirical Data

- Reaction Time Summaries, Error Rates
- Mean, Variance, Skew, Kurtosis
- **H** Modelling Goals?
 - Not there yet!
 - Closed form solutions not possible
 - Will need simulation

Final Summary

- Visual Search DOES have a memory
- Need RT *intercept* as well as *slopes*
- Need to model *errors* as well as *RT*s
 - Logistic Regression is Key Tool for Errors
- **H** Modelling must include Decision Criteria
 - General approach promising
 - The devil is in the detail

Final Glimpse

20-Oct-04 Fechner 2004. In the Glimps of an Eye Kornbrot© University of Hertfordshire, UK