
Paper presented at the Fechner Day 2004 - XXth Annual Meeting of the International 
Society for Psychophysics, Coimbra, Portugal. 

 

Kornbrot 2004   1 

IN THE GLIMPSE OF AN EYE: DECISION MAKING AND VISION 
 
 

Diana Eugenie Kornbrot 
Psychology Department, University of Hertfordshire.  d.e.kornbrot@herts.ac.uk.  

Abstract 

Rapid visual search, depending on iconic memory, is a core but controversial 
psychophysical topic. A key example is the claim by Horowitz & Wolfe (1998a) that 
‘visual search has no memory. Their evidence is the effect of increasing search set size in a 
letter identification task. Search time per item was unimpaired when all letters were 
randomly relocated during the search. This paper presents additional analyse showing 
strong deleterious effects of randomly relocating letters, on error rates, and on total reaction 
time.  Thus visual search does have a memory.  A psychophysical information accrual 
model is presented to account for these data and other key studies on visual search. The 
model includes decision criteria as well as sensory parameters. Criterion adjustments, 
which depend on numbers of distractors, predict the lower mean search times and the lower 
error, rates observed for non-random presentations.   
 
 Humans have evolved to be extremely effective visual searchers, whether for edible 
morsels in the forest, or for amusing titbits on the Internet.  Furthermore, many cognitive 
scientists have used visual search through physical space as a model for cognitive search 
through mental space.  Consequently, the mechanisms underlying visual search are of 
central psychological.  Generally, there have been three strands of research. The first 
examines easy tasks using reaction time as a measure of performance (Luce, 1986) for 
review. Sternberg’s classic work being an example (Sternberg, 1969). Error rates are 
generally noted, but frequently not analysed, (Horowitz & Wolfe, 1998b; Townsend & 
Roos, 1973; Treisman, 1988). Notable exceptions include Treisman and Gormican (1988) 
and some of Wolfe’s work (Wolfe, 1998; Wolfe, Butcher, Lee, & Hyde, 2003). The second 
strand examines hard discrimination tasks using measures based on errors, such as d’ from 
the theory of signal detectability or ln (η) from Luce’s choice theory.  The third strand 
brings together reaction time and error performance by modelling information accrual 
mathematically via processes such as random walks (Kornbrot, 1988, 1991; Laming, 1968; 
Luce, 1986; Usher & McClelland, 2001).  The first two strands have typically been 
concerned with understanding perception via stimulus features, such as colour or shape. By 
contrast, the mathematical modellers have been more interested in general decision making.   
Furthermore, their methods tend not to be taken up more generally because of mathematical 
intractability.  This is changing. One reason is the availability of techniques like logistic 
regression in statistics packages. Random walk models typically generate linear functions 
of logit (error) as key sensitivity and bias parameters. Another reason is that more 
sophisticated versions of random walks can now be analysed (Diederich & Busemeyer, 
2003; Roe, Busemeyer, & Townsend, 2001; Usher & McClelland, 2001).  Here the 
methods are applied to visual search. We aim to evaluate whether ‘visual search has no 
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memory’ (Horowitz & Wolfe, 1998a).  We also aim to show how information accrual 
models can account for both errors and latencies.  

Howrowitz and Wolfe’s Iconic Memory Experiment 

 In this ingenious paradigm, people are given the task of searching a display with a 
set of N letters for pre-specified target letter(s).  Response times (RTs) and accuracy are 
recorded.  As in numerous previous studies, mean RTs are found to be a linear function of 
set size, N.  The clever part is that there are two kinds of presentation of the display to be 
searched - static and random.  Presentations comprise several frames following one after 
the other.  For static presentations the target and distractor letter locations remains fixed.  
For random presentations, all letter locations change every 111 msec.  The ‘natural’ 
prediction is that the slope of the linear function relating mean correct RT to N for random 
presentations will be twice that for static presentations.  This is because if people remember 
where they have already searched, they will on average search only half as many items in 
the static condition.  However, the surprising finding is that the slopes for random and static 
displays are not reliably different.  Horowitz and Wolfe’s conclusion on the amnesiac 
nature of visual search is based on the assumption that not only, the search time per item, 
but also search efficiency per item is identical for both presentation modes.  They argue that 
although error rates are higher for random presentations, the lower than predicted slopes for 
random presentations cannot be due to speed-accuracy trade-offs, with guessing occurs if a 
target is not found by some deadline (Horowitz & Wolfe, 1998b).  
 
 Todd Horowitz kindly provided the raw data from Horowitz and Wolfe's 
Experiment 3 (1998a).  So it has been possible to further investigate the relationship 
between error rates and set size, and between RT and set size, for different presentation 
modes.  The results lead to the conclusion that search efficiency per item is substantially 
impaired for random presentations. An explanation is provided using a theoretical approach 
that explicitly describes the effects of presentation mode and set size on decision criteria. 

Analysis of Horowitz & Wolfe Results 

 Horowitz and Wolfe’s Experiment 3 has a within participants design with 2 
presentation modes (static, random); 3 set sizes (8, 12, 16) and 2 targets (E, N).  Error rates 
are analysed using logistic regression (Agresti, 1996; Agresti & Hartzel, 2000).  Figure 1 
shows the effects of presentation mode and set size on performance.  The dependent 
variables are mean RT in the top panel and logit (error rate) shows in the bottom with the 
(non-linear) scale for probability marked on the right axis.  For RT, the effect of condition 
on slope was not significant, F (1, 10) = 3.07, p = .110 with a mean slope of 32.1 msec/item 
(as described by Horowitz & Wolfe); the large difference of 188 msec in intercept was 
significant, F (1, 10) = 18.7, p  = .0015.  The logistic regression analysis of the error rates 
showed no effect of presentation mode, χ2 (1) = .99, p = .32; a main effect of set size, χ2 (1) 
= 20.8 for 1 df, p = .000005; and an interaction of set size and presentation mode, χ2 (1) = 
8.2 for 1 df, p = .0042.  Separate logistic regressions for static and random presentations 
showed no effect of set size for static presentations, χ2 (1) = 1.11, p = .292; but a strong 
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effect for random presentations, χ2 (1) = 38.1, p  < 10-6.  The set size effects on error rate 
evident in Figure 1 are thus highly reliable. 
 

 
Figure 1.  Performance as a function of set size for random and static presentations. Left 

panel mean RT msec.  Right panel errors: left axis logit scale, right axis 
probability scale. Dashed line static; solid line random. 

 The finding of a set size dependent error rate only in the random condition surely 
contradictsˆ the claim of equal ‘efficiency’ per item.  The difference in RT intercept of 188 
msec, equivalent to searching six more items, surely cries out for a theoretical explanation. 

Eccentricity 
 The pattern of higher intercepts of the RT versus set size function for random 
presentations; together with a reliable effect of set size on error rates for random 
presentations only is distinctive.  In order to see if this pattern would hold up when other 
variables were taken into account the effect of eccentricity (distance from the centre of 
visual fixation) in experiment 3 was also investigated2.  The results are shown in Figure 2. 
For static presentations, RT slope increases with eccentricity, F (2,10) = 15.1, p = .0001.  
For random presentations RT intercepts increase with eccentricity, F (2,10) = 7.66, p = 
.0034.  The slope for static presentations, 44.4 msec per item, is significantly larger than for 
random presentations, 32.3 msec per item, for the most eccentric stimuli, F (1, 10) = 7.54, p 
= .006.  The error functions in Figure 2 show the same pattern at each eccentricity, as do 
the aggregated results in Figure 1.  For random presentations, there is a large effect of set 
size on logit (error rate), χ2 (1) = 38.02, p < .00001.  Eccentricity has a significant effect on 
the intercept of the logit (error rate) versus set size function, χ2 (2) = 8.73, p  = .013; but no 
reliable effect on the slope, χ2 (2) = 3.70, p  = .157.  There is no effect of eccentricity, or 
indeed set size, on logit error rates for static presentations 
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Figure 2. Performance as a function of Set Size and Eccentricity for Random and Static 
Presentations.  Dashed static; solid random. Diamond eccentricity 0 or 1; triangle 
eccentricity 2; square eccentricity 3.  Top Panel mean RT msec.  Bottom Panel 
Logit (Errors): left axis logit scale, right axis probability scale.  

A Model of Visual Search 

 A successful model should account for the following salient features of the data. 
 RT slopes are sometimes lower for random than static presentations. 
 RT intercepts are always higher for random than static presentations. 
 Error rates are independent of set size for static presentation. 
 Error rates increase with set size for random presentations. 

 
 These features are present for each of the Horowitz and Wolfe experiments, and 
separately at each eccentricity in Experiment 3.  They may all be accounted for by a model 
where people make rational changes in their decision criteria in response to the 
manipulation of experimental variables. There is considerable work modelling error rates 
and latency intercepts as well as slopes in visual search. However only discriminability has 
been modelled explicitly (Bundesden, 1996; Duncan & Humphreys, 1989; Treisman, 
1988).  The present approach also models criterion setting. 
 
 The model postulates that observers accumulate information for each of two possible 
responses in location independent accumulators, by a process such as a random walk.  
People set a criterion for each response, and make whichever response first reaches 
criterion.  The rate of information accumulation is postulated to be inversely related to set 
size, N.  Consequently the time needed to achieve a fixed criterion, C, will be C*N, giving 
the standard linear RT versus set size function.  So how might people adjust their decision 
criteria when some variable, V, is manipulated to make a task more difficult? ‘More 
difficult' may be interpreted as lowering the rate of information accumulation.  The new 
feature is an explicit model of two heuristics for criterion setting. The first heuristic is that 
people increase their criteria by an amount SV that is proportional to the set size, in an 
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attempt to maintain accuracy. This causes a RT slope increase of SV.  Furthermore, if more 
distractors means more ‘noise’ as well as more locations, then the increase in criterion may 
be greater for distractors. This will generate the, frequently observed, higher slopes when 
targets are absent. Since the increases in decision criteria caused by more difficult tasks are 
usually not sufficient to maintain accuracy, speed and accuracy will decline together.  Set 
size dependent increases in criteria thus cause set size independent error rates. The second 
heuristic is to increase the criterion by a fixed amount Iv that is independent of set size. This 
causes an RT intercept change of IV. This heuristic may be used when there is a loss of 
information over time. So any manipulation that increases such loss, masking and random 
relocation of targets being prime examples, will lead to a fixed, set size independent 
increase in RT, that is an increase in intercept. 

Summary 

 People are both more accurate and faster at visual search for static than random 
presentations.  Maintaining equal-processing rates per item for random presentations incurs 
costs in increased error rates that rise with the number of items.  Thus, the static task is 
easier than the random task in terms of both speed and accuracy.  It is easier precisely 
because more information (either letter identity or location) is retained from each 
presentation frame than in the random task.  In any event, static presentation leads to 
enhanced performance, so the new conclusion is that visual search does have a memory. 
 
 Thus, considering intercepts as well as slopes may radically change important 
theoretical conclusions.  Also, using logistic regression, available in standard packages, 
enables efficient analysis of error rates, thus enabling further theoretical insights. 
 
 A new model shows how rational adjustment of search time decision criteria can 
account for the effects of random presentation, number of items and eccentricity.  An 
important feature of this model is that it distinguishes for the first time set size dependent 
criteria shifts that lead to changes in slope, from set size independent shifts in criteria that 
lead to changes in intercept.  This explicit modelling of decision making is unusual for 
visual search, and has the potential to account for the sometimes conflicting effects of other 
variables such as stimulus presence or absence, masking, duration, and search instructions. 
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