
48

Ruth Barrett
Principal Lecturer, School of
Computer Science
r.barrett@herts.ac.uk, ext 4363

Anna L. Cox
Lecturer, Department of
Psychology, UCL.
anna.cox@ucl.ac.uk

James Malcolm
Principal Lecturer, School of
Computer Science
j.a.malcolm@herts.ac.uk, ext 4310

Caroline Lyon
Senior Lecturer, School of
Computer Science
c.m.lyon@herts.ac.uk, ext 4266

Plagiarism prevention is discipline specific:
a view from Computer Science

49
Summary
Many of the good-practice guidelines on
tackling plagiarism and collusion are primarily
relevant to essays and research projects. In
Computer Science, and particularly in
undergraduate first-year modules, there is an
emphasis on understanding basic principles
and standard techniques: students are often
assessed by being required to apply these
techniques to an example system. Constructing
suitable examples is time-consuming, and the
range of possible solutions is small, so we find
that collusion is as much a problem as
plagiarism. This is also true of Engineering and
Mathematical disciplines where there is a
foundation of laws and theories that must be
mastered and sometimes only one right answer
to a problem. We suggest guidelines for the
design of in-course assessments and the
procedures that accompany them that can help
to reduce the opportunities for plagiarism while
recognising the constraints imposed by limited
staff time and large student numbers.

Introduction
This paper reports on a study carried out in the
Computer Science department to examine ways
in which plagiarism and collusion on in-course
assignments could be reduced. A strategy to
tackle plagiarism can have many aspects. For
example:

1. Sound and open university procedures

2. Educating students in the use of
information resources and in correct
citation techniques

3. Factoring out opportunities for plagiarism

4. Plagiarism detection, including electronic
detectors

Recognising that all these are important, we
wished to follow the advice given by Carroll
(2001): ‘if you only change one thing on your
course, change your assessments’ and focus on
the design of in-course assessments. Our aim
was to create a document of good-practice
guidelines that would be of particular benefit to
the staff of our department. In order to achieve
this aim, we conducted four different activities: a
look at published guidelines on ways to minimise
plagiarism, an analysis of assignments set in the
previous year, a consideration of the type of
learning that is characteristic of Computer
Science and the students who choose to study
this subject, and a synthesis of good practice in
the department. The last two were initiated at an
internal staff workshop and followed up by
individual interview.

Journal for the Enhancement of Learning and Teaching – Volume 3 Issue 1

50

Plagiarism prevention is discipline specific: a view from Computer Science

Good-practice guidelines
The first activity was to look at the many good-
practice guidelines and to see how they could
be applied to typical assignments on a
Computer Science programme. Although many
guidelines were appropriate we found that they
were biased towards essay-type assignments
and concentrated on suggesting ways in which
assignments can encourage individuality. In
disciplines such as Computer Science,
Mathematics and Engineering, many
assignments need to be very specific about
what the students have to do and give little
scope for individuality.

There are a number of sources of good-
practice guidelines for dealing with plagiarism
and collusion, including (Carroll 2001, Culwin
and Lancaster, 2001, Harris 2001, Hricko 1998,
McDowell and Brown 2002, McInnis and Devlin
2003). Many of the guidelines describe good
practice in essay assignments: see, for
example, the suggestions by Harris (2001).
Others may concentrate on plagiarism from the
internet and give advice on student education in
citing references and paraphrasing. Hricko
(1998), in the context of student education, says
that ‘in most situations, plagiarism occurs as a
result of ignorance’. McDowell and Brown (2002)
advocate an assessment process in which
students are working towards divergent rather
than convergent goals, by the use of, for
example, individualised negotiated assignments.

However, when some of these guidelines
were presented in a plagiarism workshop they
gave rise to a general muttering to neighbours.
There were comments about suggestions such
as ‘design in assessment-tasks with multiple
solutions or set one that creates artefacts to
capture individual effort’ (Carroll and Appleton,
2001) and even ‘never reuse an old assignment
specification as previous submissions have a
habit of being handed in again’ (Culwin and
Lancaster, 2001). Consequently, we wished to

investigate which guidelines would be useful
to lecturers designing typical Computer
Science assignments.

A survey of assignments
We chose the thirty-six strategies to minimise
plagiarism by McInnis & Devlin (2003) as they
have been widely quoted and we considered
these a good and recent synthesis of other
published guidelines on this topic. We analysed
the previous year’s coursework assignments
from one of our M.Sc. programmes in Computer
Science in the light of these strategies. Although
at M level, the types of assessment used here
have also been used on many of the
undergraduate modules. This M.Sc. programme
is designed for graduates of disciplines other
than computing-related subjects and provided a
snapshot of many of the areas covered in typical
computing courses. For interest, we have named
the modules in which these strategies were
implemented because different topic areas lend
themselves to different types of assessment and
so to different strategies.

For each module, and each of the thirty-six
strategies, we picked out examples of
implementation of a strategy. We found the
following strategies were most common:

Strategy 9: ‘Randomise questions
and answers for electronic quizzes/
assignments.’ Used in the open systems
and networks module.

Strategy 10: ‘Ensure assessment tasks
relate to the specific content and focus of
the subject (and therefore the students) so
students are less tempted to simply copy
something from the web.’ Used in
programming, systems analysis and design,
computer architecture, databases, human
computer interaction, internet environments
and open systems and networks modules.

51

Journal for the Enhancement of Learning and Teaching – Volume 3 Issue 1

Strategy 12: ‘Use essay/assignment topics
that integrate theory and examples or use
personal experience. For example, a field
trip report, a task with no right answers or
a personal reflection on a task.’ Used in
human computer interaction, open systems
and networks and internet environments
modules.

Strategy 13: ‘Use assignments that
integrate classroom dynamics, field
learning, assigned reading and classroom
learning.’ Used in programming, systems
analysis and design, open systems and
networks, databases and human computer
interaction modules.

Strategy 14: ‘Use alternatives to the
standard essay, such as case studies,
which present more difficulties in locating
suitable material to plagiarise.’ Used in
open systems and networks, internet
environments, databases and human
computer interaction modules.

Strategy 27: ‘Make a virtue of collaborative
work in subjects with large student
numbers and common assignments.’
Used in systems analysis and design, and
internet environments modules.

What the department does:

Strategy 20: ‘Minimise the number of
assessment tasks – continuous
assessment and over-assessment
contribute to plagiarism.’

Strategy 34: ‘Use deterrence penalties.
For example, a first offence results in
failing the assignment, a second
means failing the subject.’

Strategy 35: ‘Request that all work outside
of examinations be submitted with a cover
sheet defining plagiarism and requiring
the student’s signature.’

What was more interesting in this sample of
modules was the number of strategies which
were not followed rather than the ones
which were. One of the reasons for this could
be that many of the strategies are not very
relevant to Computer Science programmes
and are biased towards disciplines which
normally assess through essays. Nevertheless,
there were recommended practices that could
be implemented.

There are a number that would help in
reducing plagiarism in major project work, but
are often not tackled until the project module
because many other modules do not require
students to acquire these skills:

Strategy 3: ‘Teach the skills of summarising
and paraphrasing.’

Strategy 4: ‘Teach the skills of critical
analysis and building an argument.’

Strategy 5: ‘Teach the skills of referencing
and citation.’

Strategy 6: ‘Include in assessment regimes
mini-assignments that require students to
demonstrate skills in summarising,
paraphrasing, critical analysis, building an
argument, referencing and/or citation.’

And one strategy that could be implemented to
a greater extent:

Strategy 7: ‘Design out the easy cheating
options, for example, using the same
essay/prac questions year after year.’

52
Characteristics of Computer Science
assessment and students
We were surprised to see that some obvious
strategies were so little used when other
aspects of good practice were adopted widely
in the department. There are a number of
characteristics of Computer Science that
appear to make the remaining strategies
difficult to implement:

• Understanding is often tested by
application of the theory to a specific
problem and as a consequence there is a
small solution space or even the possibility
of a ‘correct’ answer.

• The assignment is often to test skills that
are acquired by application and practice,
for example in programming and solving
numerical problems. Students who do not
keep up with the work cannot tackle the
assignment and a last-minute search of
the literature will not help.

• Some assessment regimes are
introduced to keep students working, for
example, a series of small programming
tasks or the use of lab-books. These
assessments are often small, attracting
few marks. The standard plagiarism
penalties for these small assignments
(which can be worth as little as 5%) may
be excessive but must be applied.

• Assignments are written by lecturers with a
complete solution, both to see if the
problem is do-able in the specified time
and to provide a detailed marking scheme.
Re-use of these assignments is a survival
strategy of many lecturers.

In addition, many Computer Science
courses are taught to large cohorts (~250) and

this exacerbates the problem of designing
assignments that allow the students some
leeway in originality. This is not a characteristic
unique to Computer Science programmes but
issues such as time to mark and consistency of
feedback do influence assessment design.

We did not include the major project in this
study. This requires students to undertake a
substantial piece of investigative work and is
assessed both on the artefact produced and
the project report. Many of the guidelines on
choice of topic, student education in the use of
sources, and regular meetings to discuss a
student’s work (Culwin and Lancaster, 2001,
McDowell and Brown, 2002) are appropriate to
this module.

Some reasons why students plagiarise
and collude
Lecturers in the department were asked why
they thought Computer Science students
plagiarise and collude in assignments. The
reasons given coincided with those reported by
students in Sheard et al (2002): not enough
time, will fail otherwise, too great a workload at
university, can’t afford to fail, assignments are
too hard, afraid of failing. Franklin-Stokes and
Newstead (1995) also found that the students
reported ‘time pressure’ and ‘to increase the
mark’ as the main reasons for all types of
cheating behaviour, and ‘to help a friend’ for
cheating on coursework. As many of the
assignments require students to work to a well-
defined specification, the likelihood of collusion
is increased. Research has shown that
students do not perceive this as a serious
crime in a range of cheating behaviours
(Franklin-Stokes and Newstead, 1995,
Dordoy 2002).

Additionally, from a lecturer’s perspective it
was felt that the previous educational
experience in schools and colleges may not
have helped students to take responsibility for

Plagiarism prevention is discipline specific: a view from Computer Science

53

Journal for the Enhancement of Learning and Teaching – Volume 3 Issue 1

their own learning. Examination-result league
tables may have led to over-coaching through
coursework and a leniency on deadlines.
The time-management skills of many students
are poor and they do not always do the
prerequisite work for an assignment. Of course,
from the students’ perspective, they may be
strategic learners. Some assignments require
writing skills and students do not know how to
summarise, paraphrase, or make use of
sources without directly quoting huge chunks.
This may be true in many disciplines, but in
general Computer Science assignments are
technical rather than discursive and so
students do not get many opportunities to learn
and practise these skills.

The typical student who is attracted to a
Computer Science course does not relish the
thought of reflecting on the learning process
and writing about how problems in their
assignments were solved. Investigations by
Chandler, Carter and Benest (2003) using a
Myers-Briggs personality questionnaire on 264
Computer Science students suggested that the
students: ‘mentally live in the present, naturally
use targets, dates and standard routines to
manage their lives, are motivated internally, are
cautious, quiet, diligent and conscientious’.
Consequently we should widen the range of
assignments we set in order to require students
to develop reflective skills and to think laterally.

Good practice in Computer Science
In this section, we report the scenarios given to
Computer Science lecturers during a
plagiarism workshop and a summary of the
good practice they reported. We suggest that
these would be of use to Computer Science
lecturers in other universities and to those
teaching similar subjects.

Problem: A lecturer sets the same assignment
every year. How can that assignment be

changed without requiring extensive work on
the lecturer’s part?

1. Many assignments are based on a case
study that requires the student to model
the problem and provide a solution (for
example those in Databases,
Programming, SAD, HCI and Web design
projects). It is possible to change the
scenario, for example from ticket-selling to
theatre-booking, car hire to holiday-cottage
hire, a book library to a video library, a
patient queue to a supermarket queue.
These case studies will often have a similar
data structure and operations to add,
delete, change and query the data. These
isomorphic systems will look very different
to students because, whilst the expert can
recognise the patterns, the novice will
focus on the surface details. It is
recommended that a module team should
build up a number of different case studies
to rotate over the years.

2. Variations on this theme include using
the same case study with different
questions or different requirements. The
assessment tasks can be swapped
around. For example one year students
may design an interface using HCI
principles and the next year evaluate an
interface.

3. Other ways of changing an existing
assignment include changing the
numerical values in questions, asking for a
critique of a ‘wrong’ answer, and changing
the assumptions the students are allowed
to make.

4. The assignment can have a unique
feature that cannot be copied from
previous years (such as ‘include a frog as

54
part of your system’), or one part that is
left to the student to devise, such as an
added requirement.

5. In addition, the mode of submission can
be changed, for example from a report to a
poster presentation.

Problem: A large number of students are
taking this particular module and are
consequently all completing the same
assignment. What can be built in to minimise
plagiarism and collusion?

1. Give the students some choice. Allow
the students to choose a topic and define
the assessment criteria quite tightly. For
example, in a level 1 programming course:
design a system to implement a
questionnaire, but the criteria could be
‘must use an array’, ‘must find an average’
etc. Give a range of requirements in the
same case study from which the students
have to choose. A successful piece of
coursework allowed the students to
choose the example for a semantic
network to illustrate their understanding of
a number of concepts. Marking was easy
because the students were given a
number of rules the network had to obey.

2. Include a written element, checked
electronically, that asks for personal
reflection or evaluation. For example: write
about the decisions you had to make in
the design process, evaluate the final
product against your own criteria, give
examples of where X is useful, show how
concept Y has been applied, evaluate the
modelling technique Z.

3. Assess students’ understanding under
test conditions. For example: a compulsory

examination question based on the
coursework, a time-constrained and
supervised practical assessment (in
programming, say) based on a piece of
coursework, or an objective test marked
using an optical mark reader.

4. Give help. Students may be tempted to
plagiarise or to collude with others
because they don’t know how to start the
assignment. Students are more likely to
cheat if they have left the work to the last
minute. Use tutorials to help students get
to the point where they can tackle the pass
level part of the assignment. Have a non-
assessed review point (for example, a
review of Z state schemas before the
operation schemas are written); regular
project meetings discussing a student’s
work. Build in milestones to break up large,
monolithic assignments. Use group work
with well-defined joint and individual work
so that students support each other. Allow
students to work in ‘optional pairs’ which
allows students to work collaboratively or
to choose to work alone. Optional pairs
work well in programming assignments
that do not contribute substantially to the
final mark.

5. Build in processes to deter and detect.
Use deterrence strategies such as adding in
a component of the assignment that is
assessed under test conditions such as an
oral or a demonstration, changing the test
data for different groups of students.
Conduct a session in which you demonstrate
the effectiveness of electronic plagiarism
detectors. Finally, use detection strategies
such as the same marker for each question
or topic or online submission so that work
can be submitted to plagiarism detectors.

Plagiarism prevention is discipline specific: a view from Computer Science

55
6. Use multiple instances of the same
problem with different variables. An
example from a course on computer
networks asked the students to do a Cyclic
Redundancy Check calculation on their
student record number expressed in binary.

Problem: It is considered appropriate that a
particular module is to be assessed by 100%
coursework. How can the assessment be
designed so that the lecturer can have
confidence that it is the person’s own work?

1. Use a graded set of tasks with
increasing levels of difficulty. An
assignment in which students accumulate
marks by doing a number of tasks of equal
type and difficulty will also be one that will
encourage students to copy from one
another. On programming assignments it
has been found that the most difficult part
needs very few marks to inspire the best
students and to deter the average student
from spending too much time on it or from
cheating.

2. Design assessments that involve
individual creativity by a student. For
example, in creating their own example
system to illustrate some principle as in
databases, systems analysis and design,
creation of web pages or interactive
systems. Do not over-specify the marking
scheme so that students notch up marks
rather than applying themselves to the
assessment criteria.

3. Use in-course tests as a reliable and
valid measure. However, this should not be
the only type of assessment.

4. Include a requirement to find and use
new information resources, for example,
an application of artificial intelligence or
neural networks.

5. Know your students. Check on drafts or
interim work. Ask students to keep a diary
or logbook.

Except perhaps under examination conditions,
we can never be certain that a piece of
coursework is a person’s own work, but what
we can do is design the assessments to
motivate the majority of students and deter
them from cheating. The deliberate cheaters
will still have to be detected and punished, but
adoption of the strategies discussed here
should help as part of a holistic approach to
the problem of plagiarism.

Conclusion
Assignments in Computer Science are varied in
type and assessment mode, but they tend to
be technical and practical rather than
discursive, especially in the undergraduate first
year. Very often, when there are definite skills to
be learnt, students are not required to read
widely around the subject but to concentrate
on understanding the principles and
techniques, often through a recommended
textbook. A typical assignment will then require
students to apply their knowledge,
understanding and practical skills to a
particular example system. Consequently there
is not a wide variety of possible solutions and
thus more potential for collusion from within the
student body than for plagiarism from literature
sources or the Web.

In this paper we have identified some
characteristics of Computer Science
assessment regimes and developed some

Journal for the Enhancement of Learning and Teaching – Volume 3 Issue 1

56

Plagiarism prevention is discipline specific: a view from Computer Science

specific guidelines to aid lecturers in designing
in-course assignments that minimise
plagiarism and collusion. The intention was to
improve rather than change existing practices
as we recognise that there is a great deal of
good practice currently employed by our
colleagues who were generally very positive
about what was possible, even within the
constraints of large student numbers and lack
of staff time.

Although we have focused on Computer
Science, the design of appropriate assessment
tasks to reduce the opportunities for plagiarism
and collusion is relevant to all disciplines. In
particular, we would recommend the following
guidelines: avoid an assignment that is too
similar to one set in previous years, require
some individuality in the student’s work such
as an evaluation, opinion or unique design, and
don’t give the student too much scope to find
the content elsewhere.

Acknowledgements
We thank members of the Computer Science Department for
their contributions. This work was supported by a grant from
the University of Hertfordshire’s Learning and Teaching
Development Fund 2002-2003.

References
Carroll, J. (2001) What kind of solutions can we find for
plagiarism? URL: http://www.ilt.ac.uk/1120.asp
(accessed 5 Dec 2002)

Carroll, J. and Appleton, J. (2001) Plagiarism, A Good
Practice Guide. URL: www.jispas.ac.uk (accessed
Sept 2003)

Chandler, J. & Carter J, Benest I, (2003) Extrovert or
Introvert? The Real Personalities of Computing Students.
4th Annual LTSN-ICS Conference, NUI Galway.
URL: http://www.ics.ltsn.ac.uk/pub/conf2003/janet_carter.htm
(accessed 12 Jan 2004)

Culwin, F. and Lancaster, T. (2001) Plagiarism, Prevention,
Deterrence & Detection. URL: http://www.ilt.ac.uk/1108.asp
(accessed 21 May 2002)

Dordoy, A. (2002) Cheating and Plagiarism: Staff and Student
Perceptions at Northumbria. Proceedings of the Northumbria
Conference 2002 URL:
http://online.northumbria.ac.uk/faculties/art/information_
studies/Imri/Jiscpas/site/pubs_student.asp (accessed
September 2003)

Franklin-Stokes, A. & Newstead, S.E. (1995) Undergraduate
cheating: Who does it and why? Studies in Higher Education,
20, 159-172.

Harris, R. (2001) Anti-plagiarism strategies in research
papers. URL: http://www.virtualsalt/antiplag.htm (accessed
30 Aug 2002)

Hricko, M. (1998) Strategies to Deter Academic Misconduct.
URL: http://www.mtsu.deu/~itconf/proceed98/mhricko.html
(accessed 30 Aug 2002)

McDowell, L. and Brown, S. (2002) Assessing students:
cheating and plagiarism. URL: http://www.ilt.ac.uk/1144.asp
(accessed 5 Dec 2002)

McInnis, J.R. and Devlin, M. (2003) Minimising Plagiarism.
URL: http://www.cshe.unimelb.edu.au/assessinglearning/
03/plagMain.html#36 (accessed May 2003)

Sheard, J., Carbone, A. and Dick, M. (2002) Determination of
Factors which Impact on IT Students’ Propensity to Cheat.
Australasian Computing Education Conference (2003).
URL: http://crpit.com/confpapers/CRPITV20Sheard.pdf
(accessed Dec 2003)

This article was originally published as part of the JISC
Advisory Service 2004 Conference, Plagiarism: Prevention,
Practice & Policy and is included with the permission of
Northumbria University Press. The copyright of the article will
remain with Northumbria University Press.

Biographical notes
The authors are, or have been, lecturers in the School of
Computer Science. They have published widely in the area
of plagiarism prevention and detection. An electronic
plagiarism detector, called Ferret, has been developed in the
School and is available by contacting the authors.

