
PS-NET - A Predictable Typed Coordination
Language for Stream Processing in
Resource-Constrained Environments

Raimund Kirner, Sven-Bodo Scholz, Frank Penczek, Alex Shafarenko
Department of Computer Science

University of Hertfordshire
Hatfield, United Kingdom

{r.kirner, s.scholz, f.penczek, a.shafarenko}@herts.ac.uk

Abstract— Stream processing is a well-suited application
pattern for embedded computing. This holds true even more
so when it comes to multi-core systems where concurrency
plays an important role. With the latest trend towards more
dynamic and heterogeneous systems there seems to be a shift
from purely synchronous systems towards more asynchronous
ones. The downside of this shift is an increase in programming
complexity due to the more subtile concurrency issues. Several
special purpose streaming languages have been proposed to help
the programmer in coping with these concurrency issues. In this
paper, we take a different approach. Rather than proposing a
full-blown programming language, we propose a coordination
language named PS-Net. Its purpose is to coordinate exist-
ing resource-bound building blocks by means of asynchronous
streaming. Within this paper we introduce code annotations
and synchronisation patterns that result in a flexible but still
resource-boundable coordination language At the example of a
raytracing application we demonstrate the applicability of PS-Net
for expressing the coordination of rather dynamic computations
in a resource-bound way.

Keywords-stream processing; embedded systems; multi-core;
resource-constrained;

I. INTRODUCTION

Stream processing is an apt metaphor of embedded com-
puting. Indeed, owing to the generally static nature of streams
connecting processing nodes, a higher degree of predictability
may be achieved in representing embedded systems as stream-
processing networks than with the dynamism of imperative
and object-orientated milieux, where control and data can be
passed from any point in the program to a given program unit
provided that it is visible in that point’s name space. Tradi-
tionally, stream processing is understood through the prism of
the single-instruction multiple-data (SIMD) perspective. The
paradigm itself is seen as a version of the latter with a different
connectivity principle (streams instead of shared memory).
This understanding is upheld by a number of projects, notably
Stanford-based Merrimac [1] and Brook [2]. As an extreme
form of this approach, one should mention strictly time-
controlled synchronous solutions such as Giotto [3], [4], [5]
and Scade [6], [7]. Here, the trade-off between predictability
and efficiency is tilted towards predictability.

Generally, stream processing need not to be SIMD or even
synchronous. In the most abstract sense, it is a representation
of a program in terms of a static network of entities, each
completely encapsulated and interacting with the rest only via
its input and output streams. When streaming is to be used as
a construction principle for larger systems, an asynchronous

approach would usually be favoured, i.e., apriori unknown
production rates and message arrival times. An example of
this can be found in the language StreamIt [8], which has
asynchronous messages and bounded nondeterminism. The
most recent offering of an asynchronous streaming language
comes from the project WaveScript [9] whose aim is essen-
tially to integrate the network view and the local, synchronous
view within one language with streams as first-class entities.
Since this is a general-purpose streaming language, here, too,
application programming concerns (i.e., algorithm correctness,
ease of software evolution and accommodation of a continually
changing specification) are intertwined with a whole spectrum
of distributed computing concerns, such as work division,
synchronisation, and load balancing, within a single level of
program representation.

In our view, a more productive approach to applying the
stream processing paradigm to embedded computing is to keep
the concerns separated, with predominantly computational
parts of the application represented as black boxes being
written in a conventional programming language and with
stream communication, data synchronisation and concurrency
concerns being taken care of by a coordination language. We
specifically focus on S-Net [10], [11], where we believe the
above programme has been realised to the fullest possible
extent.

The ground level of S-Net comprises stream-processing
nodes represented as C-functions (or functions written in an
array processing language, such as SAC [12]). These com-
putational entities are called “boxes” and they communicate
with the S-Net world via a single input and a single output
stream. Data elements on these streams are represented as non-
recursive record structures.

In a way, the set of boxes for a given application represents
the nodes of a specialised virtual machine. The coordination
program can abstract from the box functionality, the more so
that the records streamed between boxes are being completely
encapsulated as well: all the coordination level can see is field
labels and some auxiliary integer-valued tags. This opens up
an avenue towards sensible software engineering of embedded
systems, where subject experts could be engaged in writing
box code and describing the computational process informally
in terms of record structures and box connections, and where
concurrency engineers could be in a position to write, debug
and optimise the coordination code with the experts’ minimum
assistance. That is the most attractive feature of the coordina-

tion approach compared with the competing strategies cited
earlier.

However, this is not without some new problems either.
The fundamental assumption of S-Net is that the application is
not resource bounded. While not unreasonable in a large-scale
distributed computing domain, this assumption is completely
unrealistic in most embedded systems, where, if coordination
has a chance, it must be essentially resource driven. This
means that the placement of boxes on the system must be
governed by the availability of cores and a predictive estimate
of their load, which in turn means that the coordination layer
must be in possession of accurate information about how much
processing and communication is required for the completion
of each task. By contrast, S-Net achieves its separation of
concerns by relying on asynchronous dynamic adaptation:
nondeterministic stream mergers, for instance, are assumed to
merge in the order of record arrival, thus economising buffer-
ing space and reducing latency. Worse still, more dynamic
features of S-Net namely its serial and parallel replication
facilities, are not even a priori bounded since the boxes are
not assumed to have the knowledge of, or the ability to
communicate, the overall application design.

We set ourselves the challenge of finding a way to reconcile
the need for dynamic behaviour and with the necessity to
project tight enough bounds on the platform as far as the
resource requirements. The S-Net facilities must therefore be
curtailed to allow for static specification of various com-
putational bounds, such as the maximum unfolding of the
replicators, the maximum production rate of the boxes, the
maximum correlation between the output rates dependent on
a single input stream, etc.

In this paper we examine the relevant coordination facilities
of S-Net in Section II and work out in Section III what needs
to be modified and how so that S-Net may become usable with
embedded applications. The result is a new language, called
PS-Net, which is described in Section IV. Section V shows
an example of how to write resource-bounded programs in
PS-Net. Section VI concludes the paper.

II. STREAM-PROCESSING WITH S-NET

In order to present a specialised variant of S-Net that is
resource-boundable, we first give a very brief overview of the
language. A detailed description of S-Net can be found in the
literature [10], [11].

The central philosophy of S-Net is to separate the coor-
dination of concurrent data streams from the computational
part. Computations on data are not expressible in S-Net as
such, but are written in a conventional programming language.
These pieces of “foreign” code are embedded into boxes
and are given an extremely simple API to communicate
with the surrounding S-Net. The API allows them to receive
data from a single input stream via the normal parameter-
passing mechanism, and which provides a small number of
library functions for outputting data down the single output
stream, both streams being anonymous. Boxes may not have
a persistent internal state and consequently can only process
input data individually. Nor can they access each other’s
state in any way during the processing: there are no global
variables or inter-box references. Instead, the output records
are streamed by the coordination layer of S-Net according to a
coordination program that defines the streaming topology, how

the streams are split and merged, and how individual records
are split, merged and routed to their intended destinations.

In order to guarantee interoperability of computational
entities and all different parts of a streaming network, the
coordination of data flow in S-Net is analysed by means of
a type system and inference mechanism. The type system of
S-Net is based on non-recursive variant records with record
subtyping. Each record variant is a possibly empty set of
named record entries, where a record entry is either a field or a
tag. The values of fields are only accessible by the box imple-
mentations, while the tags are integer variables whose values
can also be accessed and manipulated by both, the S-Net
program and the box implementations. To separate tags from
fields, the tag names are surrounded by angular brackets, e.g.,
<a>. Tags allow to use some logic operations to control the
flow of data. The following is a variant record type that encom-
passes both rectangles and circles enhanced with a tag <id>:
{x,y,dx,dy,<id>} | {x,y,radius,<id>}. Each S-
Net network or subnetwork has a type signature, which is a
non-empty set of variant record type mappings each relating
an input type to an output type. For example, a network that
maps a record {a,b} to either a record {c} or a record
{d} or maps a record {a} to a record {b} has the following
type signature: {a,b}->{c}|{d}, {a}->{b}. S-Net also
supports subtyping. For example, {a,b} is a subtype of {a}.

As with conventional subtyping, in S-Net a network or box
also accepts input data being a subtype of the network’s or
box’s input type. Those record entries of the subtype that do
not match a record of the box’s input type simply bypass the
network or the box and are joined with the produced output.
Thus, an S-Net box with the type signature {a}->{b},
for example, also accepts input data of the type {a,c},
like a type signature {a,c}->{b,c} but where the record
field c simply bypasses the box. This feature is called flow
inheritance.

A. Stream-manipulation with Filter Boxes
In S-Net, so-called filter boxes are used to perform

manipulations of the data stream, like elimination or
copying of fields and tags, adding tags, splitting records,
and simple operations on the tag values. Filter boxes
are expressed in square brackets and consist of a
semicolon-separated list of filter actions on the right side
of the transformation arrow. For example, the filter box
[{a,b,c} -> {a};{b,<t=1>};{b=c,<t=2>}] takes
records of type {a,b,c} and splits them into three output
records: one with the field a, one with the field b extended
by a tag <t> with the value 1, and one with the field c
renamed to b and extended by a tag <t> with the value 2.
Though the last two output messages contain the same field
name b, they can still be processed differently at S-Net level
due to their different value of tag <t>.

B. Network Combinators in S-Net
S-Net consists of the following four combinators to combine

networks or boxes. For the description of them we assume that
we have two networks net1 and net2 that we want to combine.

1) Serial Composition (net1 .. net2): This allows
to combine two S-Net networks or boxes in a se-
quential fashion. Though sequential in its dataflow, in
the context of stream-processing this provides parallel

processing in the form of pipelined execution. The code
net1 .. net2 essentially forms a pipeline with the
stages net1 and net2.

2) Parallel Composition (net1 | net2): This allows
to combine two S-Net networks or boxes in a parallel
fashion, providing concurrent execution. The code net1
| net2 describes a split of data flow between the routes
of networks net1 and net2. If net1 and net2 have
different type signatures then the type system of S-
Net will route the data to the best-matching input type,
otherwise the choice is non-deterministically.

3) Serial Replication (net1 * {out}): The serial
replication (subsequently also called star operator) cre-
ates a pipeline dynamically by replicating the given
network along a series composition till the output is
a (sub)type of the exit pattern, where in this case the
output is forwarded as the output of the replication op-
erator. net1 * {out} means that the data flow through
a series composion of replicas of the network net1 till
the type of the output is a (sub)type of {out}.

4) Parallel Replication (net1 ! {<id>}): The par-
allel replication is the dynamic variant of parallel exe-
cution, where a given network is replicated dynamically
controlled by the value of a tag in the data records.
net1 ! {<id>} means that for each different value
of the tag <id> of the incoming data records an
exclusive path through a replica of the network net1
is dynamically created.

Note that the combinators |, *, ! have an out-of-order
semantics on data routing, while ||, **, !! are their order-
preserving variants.

C. Synchronisation with Synchro-cells

Above S-Net operations are all asynchronous and stateless
operations, allowing for an efficient concurrent processing of
data streams. To synchronise the arrival of different message
types, the so-called synchro-cell is used, which is the only
stateful box in S-Net. The synchro-cell is the only means in S-
Net to combine two records into a single record. The synchro-
cell consists of an at least two-element comma-separated list of
type patterns enclosed in [| and |] brackets. For example, the
synchro-cell [| {a}, {b,c} |] composes two records
{a} and {b,c} into a single output record {a,b,c}. As
its state, a synchro-cell has storage for exactly one record
of each pattern. When an arriving record finds its place free
in the synchro-cell, it is stored in the synchro-cell, otherwise
it is simply passed through. The synchro-cell is a one-shot
operation, i.e., once all record patterns are filled, the composed
output record is emitted and the synchro-cell from now on
behaves like a simple connector passing all further messages
through. To use synchro-cells in a continuous way on the
input stream, it has to be nested within replication operators
as described above.

III. DISCUSSION OF PREDICTABILITY

In the following, we discuss what features of S-Net are hard
to bound for their resource consumption and we discuss how
we address this problem in PS-Net to ensure boundability of
resources. The following mechanisms of S-Net are hard to
bound without doing an exhaustive whole-program analysis:

• The computational part of S-Net programs is imple-
mented in boxes. Regarding the boundability of the dy-
namic resource allocations, it is, of course, necessary, that
the box implementations are simple enough to bound their
resource requirements. However, the box implementation
is outside the scope of our design of the resource-
boundable coordination language PS-Net.

• In S-Net a network or box may write an arbitrary number
of output messages as the type signature does not restrict
them. Thus it is not know how much system load can be
created within the network. This makes it hard to bound
extra-functional properties such as execution time. Our
solution for PS-Net is to extend the type signature with
the multiplicity of the different output messages.

• The parallel composition in S-Net (|,||) features a non-
deterministic choice, whose behaviour cannot be analysed
precisely at language level, which makes it challenging to
bound extra-functional properties such as execution time.

• The number of parallel replications in S-Net (!,!!) de-
pends on the possible values of the replication-controlling
tag value, which is hard to bound in general. In order to
bound the number of dynamically created replicas for the
parallel replication operator, we have to know the possible
value range of the index tag. For PS-Net we extend the
parallel replication combinator with an annotation about
the maximum range of the index tag.

• The number of serial replications in S-Net (*,**) de-
pends on the dynamic creation of the exit type, which is
hard to bound in general. In order to bound the number
of dynamically created replicas for the serial replication
operator, we have to know when latest the exit pattern
is produced. For PS-Net we extend the serial replication
operator with an annotation of the maximal number of
created replications.

A. Synchronisation Mechanisms
The synchronisation issues deserve a special discussion.

On the one side the synchro-cell of S-Net has a single-
shot semantics which is no problem at all to account for
its maximum resource usage. However, as already said, the
synchro-cell is typically embedded into a serial replication
with infinite replications. This infinite replication is not a
problem in S-Net, since every replica with a synchro-cell that
has already shot is automatically discarded and automatically
replaced by a direct stream connection.

However, our general solution of making the serial repli-
cation boundable by adding an annotation about the maximal
number of created replications, is unfortunately not compatible
with the use of the S-Net synchro-cell, as this would rely on
an infinite replication count.

Our solution for PS-Net is to avoid the combination of
synchro-cell and serial replication and instead use special
synchronisation constructs for use patterns of synchro-cells.
We have actually identified two major use patterns for synchro-
cells. They stem from the need to either synchronise a stati-
cally fixed number of records or to synchronise a dynamically
varying number of records, respectively.

In the former case, the records that are to be combined
can be encoded by different types. This facilitates an imple-
mentation of the synchronisation as a cascade of synchro-cells
embedded in serial replications.

Figure 1 shows an example for such a synchronisation.

{a}	

{b}	

{a}	

{b}	

{} → {}	

{a}	

{b}	

*{a,b}
{a}	

{b}	

{a}	

{b}	

{a,b}	

{c}	

*{a,b,c}

([|{a},{b}|]*{a,b} | []) .. [|{a,b},{c}|]*{a,b,c}

Fig. 1. Synchronising records of type {a}, {b}, {c}.

There, three records are being synchronised each, one record
of type {a}, one of type {b}, one of type {c}. The first
synchro-cell within a star combines records {a} and {b}. Any
records that are neither {a} nor {b} are bypassed by means
of the identity filter which is parallel to the synchroniser for
{a} and {b}. Subsequently, the bypassed records of type c
are synchronised with the combined records of type {a, b}.
Again, this second synchro-cell is directly embedded into a
star to enable repeated synchronisation.

In the second case, i.e., when we deal with a statically
not determined number of records to be synchronised, a
type encoding of the individual components of the record
to be combined is no longer possible. Instead, a stepwise
synchronisation needs to be applied to a substream of records
of the same type. The emerging result record needs to be
propagated from one synchronisation to the next similar to
an accumulator within a folding operation. When to terminate
such a folding process needs to be determined either by the
folding operation itself or by the use of ”separation records“
of different type in the stream. Figure 2 shows an example
for such a multi-synchronisation. Here, the folding box itself

{a, acc} → {acc}	

 | {out}	
{a}	

{b}	

{a}	

{b}	

{a}	

{acc}	

*{out}

{} → {}	

net multi_sync {
box fold((a, acc) -> (acc) | (out));

} connect ([|{a},{acc}|] .. (fold | []))*{out};

Fig. 2. Synchronising multiple records of type {a}.

determines when to emit a value by producing a record with a
field out rather than acc. This network furthermore assumes
that the initial value for each synchronisation comes in as
a record containing acc. Note, that the empty filter that is
parallel to the fold box serves as a by-pass for subsequent
records of type {a} or type {b} so that they can be fed into
subsequent unfoldings of the star combinator.

Within a range of S-Net applications [13], [14], [15], we
could observe various different formes of synchro-cell uses
within serial replication. However, it turns out that all of them
adhere to one of the two use cases above and can be expressed
by nestings of these two pattern. Therefore we capture those
two pattern as two new building blocks in PS-Net, named
syncq and fold, respectively.

IV. RESOURCE-BOUNDED PS-NET

In this section we introduce new language constructs
that are boundable. Further we introduce annotations for
existing S-Net language constructs to make them boundable.
These annotations might be written by the programmer
or being automatically derived by program analysis. All
the annotations have the form <| AnnotExpr |>
where AnnotExpr can be of the following forms:

Num . . . specifies a constant value
Num : . . . specifies a lower bound
: Num . . . specifies an upper bound

Num : Num . . . specifies an interval

A. Multiplicity of Box Messages

For PS-Net we extend the type signature with an
annotation about the multiplicity of messages. For
example, the following box signature declaration
box foo ((a,b) -> (c)<|2|> | (d)<|1:3|>);

specifies that for each processing of on input record {a,b}
the box creates exactly two output records of type {c} and
between one and three output records of type {d}. Note that
the records of box signatures are written in round brackets to
distinguish them from network type signatures, since for the
box signature the order of record entries matters.

B. Bounded Parallel Replication

The range of the index tag determines the number of
different dynamically created parallel replicas. Assuming
that an index range will always start from zero, we
extend the parallel replication with an annotation of the
upper bound of replications k, resulting in an index range
from 0 . . . k−1. replication index range. For example,
to specify that a network can be at most replicated
four times (i.e., index range 0 to 3), we can write:

network ! <tag><|4|>;
Note that the total number of replications can be higher if the
network is nested within another network that is replicated as
well.

C. Bounded Serial Replication

We extend the serial replication operator with an anno-
tation of the maximal number of created replications. For
example, to specify that a network can be at most replicated
three times (i.e., a pipeline of length three), we can write:

network * {out}<|:3|>;

D. Synchronisation with the syncq operator

The first use case of synchronisation (Figure 1) can be
abstracted by means of a synchro-queue, which repeatedly
synchronises records of two flavors defined by means of two
type pattern.

Provided that the synchronic distance [16] between the two
flavors is bounded, such an operator can be implemented as
a finite queue whose length does not exceed that bound. We
introduce synchro-queues as a new operator

syncq[| p1, p2 |]<| sd |>
where p1 and p2 denote type pattern to be synchronised,

and sd denotes an upper bound for the synchronic distance
between the pattern p1 and p2 on the input of this operator.
For example, if we want to synchronise records of type {a}

and {b} knowing that the synchronic distance between them
is at maximum 4, then we can write:

syncq[| {a}, {b} |]<|4|>
Formally, the semantics of the syncq operator is defined

by the following equivalence:
syncq[| p1, p2 |]<| sd |> ≡

[| p1, p2 |]*{p1, p2}
Note here, that the star version on the right hand side

of the equivalence potentially requires unbounded resources.
Only the annotated synchronic distance sd ensures bounded-
ness of the operator. Interestingly, a finite synchronic distance
also implies that all the synchronised patterns have the same
average arrival rate.

E. Synchronisation with the fold operator

The second use case of synchronisation (Figure 2) can be
abstracted into a generic folding operation. Here, we introduce
a network combinator, which transforms a folding network
with a signature (a, acc) -> (acc) into a network that
subsequently synchronises a record of type {acc} with an arbi-
trary number of records of type {a}, until a new record of type
{acc} arrives which triggers a new series of synchronisations.

Syntactically, we denote the fold combinator by
fold[| a, acc, N, Fold|]

where a and acc denote the two different kinds of type
pattern, N denotes a network with a type signature ⊥ ->
(acc)<|1|> that provides the initial value for acc and Fold
is a network of type (a, acc) -> (acc)<|1|> which
implements the folding operation itself. For example, if we
want to collect partial results of type {d} of a concurrent
computation into result messages of type {res}, with Init
being the network to create the initial {res} message and
Collect being the network name of the fold operation that
merges a partial result of type {d} with the current result
message of type {res}, then we can write:

fold[| {d}, {res}, Init, Collect |]
The semantics of a network fold[| a, acc, N,

Fold|] then is defined by the S-Net shown in Figure 3.
The main complexity of this network stems from the ne-

cessity to “restart” the folding process upon arrival of a new
record of type {acc}. To achieve this, all incoming data is
tagged with <val> upon arrival. In the core of the network,
this data, i.e., either records of type {a, <val>} or of type
{acc, <val>} are synchronised with the current state of
the folding operator which is kept in an internal accumulator
field iacc. Depending on the type of the synchronised record,
either the Fold network is applied and the internal accumula-
tor is updated accordingly, or the current result is emitted via
a record of type {out} and the internal accumulator is reset
to the new value from the input field acc. Note here, that the
overall fold combinator needs to be initialised with a record
of type {acc} provided by the network N. Its value serves as
initial state for the internal accumulator.

A key observation of this network is that for each incoming
record the synchro-cell of the first incarnation of the star op-
erator synchronises which transforms the entire inner network
effectively into an identity function for the subsequent records.
In combination with a multiplicity of 1 for the Fold network,
this guarantees that the fold operator can be implemented in
constant space.

{<val>}	

{iacc}	

{a, iacc, <val>} 	

→ 	

{a, acc=iacc}	

{acc, iacc, <val>}	

 → 	

{iacc = acc}; 	

{out = iacc}	

{out} 	

→ 	

{acc = out}	

{} 	

→ 	

{<val>}	

{} 	

→ 	

{}	

{a, acc} 	

→ 	

{acc}	

{acc} 	

→ 	

{iacc = acc}	

⊥	

→ 	

{acc}	

{acc}	

→ 	

{iacc = acc}	

*{out}

Fold

N

((N .. [{acc} -> {iacc = acc}])
|| [{} -> {<val>}]

)
.. ([| {<val>} , {iacc} |]

.. (([{a, iacc, <val>} -> {a, acc=iacc}]
.. Fold .. [{acc} -> {iacc=acc}]

)
| [{acc, iacc, <val>} -> {iacc = acc};

{out = iacc}]
| []

)
) * {out}

.. [{out} -> {acc = out}]

Fig. 3. Network implementing the fold operator

V. EXAMPLE

We evaluate the presented approach by applying it to the
well-known fork-join pattern that many image processing
applications expose. An image is broken down into smaller
chunks and an application specific processing algorithm is
run on each chunk independently in an SIMD-like fashion.
A merging stage collects all processed chunks, i.e. the sub-
results, and reassembles a global result image.

Where previous experiments using S-Net in its standard
form have shown that this class of applications lends itself
nicely to the advocated programming model we are now in a
position to reformulate existing code to guarantee resource-
bounded execution in PS-Net. As a representative problem
of this class we implemented a ray-tracing image processing
application for which we have developed an implementation
in standard S-Net with performance results that compete with
hand-tuned C code [13].

The implementation of the original application is intended
to run on general-purpose hardware and is specified as follows:
net raytracing {
box splitter((scene, <rr_upper>, <tasks>)

-> (scene, chunk, <rr>, <tasks>, <fst>)
| (scene, chunk, <rr>, <tasks>));

box solver ((scene, chunk) -> (sub_res));
net merger ((sub_res, <fst>) -> (pic),

(sub_res) -> (pic));
box genImg ((pic) -> ());

} connect splitter .. solver!<rr> .. merger
.. genImg;

The splitter divides the scene into smaller sub-scenes
(chunks) and tags all chunks with the number of overall

produced sub-scenes. Each data element also carries an <rr>
tag. This implements a round-robin scheduling using the
! combinator on the solver by tagging data elements with
increasing integer values from 0, ...,<rr_upper>−1 for
<rr>. The first output is tagged with <fst> to initiate the
merging process after the sub-scenes have been computed
by the solver. The merging process is implemented as a
sub-network of the following form:
net merger {

box init ((sub_res, <fst>) -> (pic));
box merge ((sub_res, pic) -> (pic));

} connect ((init .. [{} -> {<cnt=1>}]) | [])
.. ([| {pic}, {sub_res} |]

.. ((merge
.. [{<cnt>} -> {<cnt+=1>}])

| []))*{<tasks> == <cnt>};

The init box is followed by a filter which adds a flag <cnt>
initialised by the value 1. This flag is used to count the number
of sub-scenes that have been incorporated into the result image
already. Since only the first sub-scene needs to be processed
by the init box, we also provide a bypass to the initialisation
path for all the other records containing further sub-scenes.

After the initialisation, a star implements the merging with
the remaining sub-scenes. In each unfolding (iteration) of
the star the synchro-cell synchronises the accumulator held
in {pic} with yet another sub-scene. The resulting joint
record, containing the accumulated picture and a sub-scene
to be inserted, is presented to the merge box which outputs
the combined picture. The insertion of a new sub-scene is
reflected in an increment of the flag <cnt> as defined by
the subsequent filter. Once the counter equals the overall
number of tasks, which is kept in another, flow-inherited flag
<tasks>, the accumulated picture is output from the merger
network.

In order to guarantee resource-boundedness of this imple-
mentation, we replace the parts of the application that make
use of the general * and ! combinators by legal PS-Net
constructs.

The splitting stage of the application is almost straight-
forwardly transformed. As we are not targeting general-
purpose hardware, we use the ! <rr><|n|> combinator and
annotate the maximum number n of computing resources the
combinator is allowed to bind for solver instances. Because of
the way we are implementing the merging process, which is
detailed below, the splitter is not required to output the number
of produces sub-scenes. Additionally, it also does not tag the
first element. Instead, the splitter outputs the accumulator as
first record for each decomposed scene.

With the PS-Net fold combinator we are able to re-
implement the merging stage of the original application.
The combinator’s behaviour resembles the functionality of
the merging stage when supplied with the merger box of
the original application as fold-net argument. An initialiser
network is not required, as we chose to have the splitter output
all pic accumulators including the first one.

Putting it all together, the resource-bound version of the
application is defined as follows (we chose 7 as an arbitrary
resource limit for the ! combinator for illustration purposes):
net raytracing {
box splitter((scene, <rr_upper)) ->

(scene, chunk, <rr>) | (pic));
box solver((scene, chunk) -> (sub_res));

box merger((sub_res, pic) -> (pic));
box genImg((pic) -> ());

} connect splitter
.. (solver!<rr><|7|> | [(pic) -> (pic)])
.. fold[|{sub_res},{pic},_,merger|]
.. genImg;

This network behaviour resembles that of the original im-
plementation. The splitter outputs a variable number of sub-
scenes and the solver is applied to these in parallel. The
merging stage is wholly implemented by the fold combinator.
But this implementation is guaranteed to be resource bound:
The parallel replication is limited by an annotated upper
bound. As the fold combinator is statically resource bound,
we do not require multiplicity annotations on the splitter box.

This example has shown how the proposed coordination lan-
guages for stream processing can be used to model resource-
constrained embedded applications. The stream-processing
model itself has the benefit that it naturally combines the
flexibility of asynchronous computation with a separation of
concern between coordination and algorithmic programming.

VI. CONCLUSION AND FUTURE WORK

In this paper we have shown the development of the
resource-boundable coordination language PS-Net for stream
processing, starting from the S-Net language, which has been
designed for the high-performance computing domain. On
the one side we had to add annotations to certain language
constructs, to make them resource-boundable. Such annota-
tions might be written directly by the developer or may be
derived automatically by program analysis. Further, we have
introduced the synchro-queue and the folding combinator as
resource-boundable synchronisation constructs. The resulting
language allows to program dynamic stream-processing ap-
plications in a resource-bound way. As a future work we
will implement PS-Net within the S-Net compiler, which is
quite suitable for this implementation, since the new resource-
boundable constructs introduced for PS-Net can be imple-
mented with S-Net constructs. These S-Net constructs would
be non-resource-boundable in the general case, but become
resource-boundable for the specific patterns derived from PS-
Net constructs. Further, evaluations of resource consumption
are planned to demonstrate the suitability of the PS-Net
programming paradigm for embedded computing.

Acknowledgments
The research leading to these results has received funding

from the IST FP-7 research project ”Asynchronous and Dy-
namic Virtualization through performance ANalysis to support
Concurrency Engineering (ADVANCE)”.

REFERENCES

[1] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labont, J.-H. Ahn,
N. Jayasena, U. J. Kapasi, A. Das, J. Gummaraju, and I. Buck, “Merri-
mac: Supercomputing with streams,” in Proc. ACM/IEEE Conference
on High Performance Networking and Computing (SC’03), Phoenix,
Arizona, USA, Nov. 2003.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: Stream computing on graphics
hardware,” in Proc. ACM SIGGRAPH International Conference on
Computer Graphics and Interactive Techniques, Los Angeles, USA,
2004, pp. 777–786.

[3] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” Proceedings of the
IEEE, vol. 91, no. 1, pp. 84–99, Jan. 2003.

[4] T. A. Henzinger, C. M. Kirsch, and S. Matic, “Composable code
generation for distributed Giotto,” in Proc. ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES). ACM Press, 2005.

[5] A. Ghosal, D. Iercan, C. M. Kirsch, T. A. Henzinger, and A. L.
Sangiovanni-Vincentelli, “Separate compilation of hierarchical real-time
programs into linear-bounded embedded machine code,” in Online Proc.
Workshop on Automatic Program Generation for Embedded Systems
(APGES), 2007.

[6] F.-X. Dormoy, “Scade 6: A model based solution for safety critical soft-
ware development,” in Proc. 4th International Conference on Embedded
Real Time Software (ERTS), Toulouse, France, 2008.

[7] E. Technologies, “SCADE suite,” web page (http://www.
esterel-technologies.com/products/scade-suite/), accessed in Jul.
2010.

[8] B. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language
for streaming applications,” in Proc. 11th International Conference on
Compiler Construction (CC’02). London, UK: Springer Verlag, 2002,
pp. 179–196.

[9] R. Newton, L. Girod, M. C. abd Sam Madden, and G. Morrisett,
“WaveScript: A case-study in applying a distributed stream-processing
language,” Massachusetts Institute of Technology Computer Science and
Artificial Intelligence Laboratory, Cambridge, USA, Technical Report
MIT-CSAIL-TR-2008-005, Jan. 2008.

[10] C. Grelck, S.-B. Scholz, and A. Shafarenko, “A Gentle Introduction
to S-Net: Typed Stream Processing and Declarative Coordination of
Asynchronous Components,” Parallel Processing Letters, vol. 18, no. 2,
pp. 221–237, 2008.

[11] A. Shafarenko, S.-B. Scholz, and C. Grelck, “Streaming networks
for coordinating data-parallel programs,” in Perspectives of System
Informatics, 6th International Andrei Ershov Memorial Conference
(PSI’06), Novosibirsk, Russia, ser. Lecture Notes in Computer Science,
I. Virbitskaite and A. Voronkov, Eds., vol. 4378. Springer Verlag, 2007,
pp. 441–445.

[12] C. Grelck and S.-B. Scholz, “SAC: A functional array language for
efficient multithreaded execution,” International Journal of Parallel
Programming, vol. 34, no. 4, pp. 383–427, 2006.

[13] F. Penczek, S. Herhut, S. Scholz, A. Shafarenko, J. Yang, C. Chen,
N. Bagherzadeh, and C. Grelck, “Message driven programming with s-
net: Methodology and performance,” in 3rd International Workshop on
Programming Models and Systems Software for High-End Computing
(P2S2’10), San Diego, USA, 2010, to appear.

[14] F. Penczek, S. Herhut, C. Grelck, S.-B. Scholz, A. Shafarenko,
R. Barrere, and E. Lenormand, “Parallel signal processing with s-net,”
Procedia Computer Science, vol. 1, no. 1, pp. 2079 – 2088, 2010,
iCCS 2010. [Online]. Available: http://www.sciencedirect.com/science/
article/B9865-506HM1Y-88/2/87fcf1cee7899f0eeaadc90bd0d56cd3

[15] C. Grelck, J. Julku, and F. Penczek, “Distributed S-Net,” in Imple-
mentation and Application of Functional Languages, 21st International
Symposium, IFL’09, South Orange, NJ, USA, M. Morazan, Ed. Seton
Hall University, 2009.

[16] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, Apr 1989.

