
Automatic Timing Model Generation by CFG Partitioning and

Model Checking ∗

Ingomar Wenzel, Bernhard Rieder, Raimund Kirner and Peter Puschner
Institut für Technische Informatik

Technische Universität Wien
Treitlstraße 3/182/1, 1040 Wien, Austria

{ingo,bernhard,raimund,peter}@vmars.tuwien.ac.at

Abstract

In this paper we present a new measurement-based
worst-case execution time (WCET) analysis method.
Exhaustive end-to-end measurements are computation-
ally intractable in most cases. Therefore, we propose to
measure execution times of subparts of the application.
We use heuristic methods and model checking to gener-
ate test data, forcing the execution of selected paths to
perform runtime measurements. The measured times
are used to calculate the WCET in a final computation
step. As we operate on source code level our approach
is platform independent except for the run time mea-
surements performed on the target host.

We show the feasibility of the required steps and ex-
plain our approach by means of a case study.

1 Introduction

Due to the temporal constraints required for correct
operation of a real-time system, predictability in the
temporal domain is a stringent imperative to be satis-
fied. Therefore, it is necessary to determine the timing
behaviour of the tasks running on a real-time computer
system. Worst-case execution time (WCET) analysis
is the research field investigating methods to assess the
timing behaviour of real-time tasks.

A central part in WCET analysis is to model the
timing behaviour of the target platform. However,
hardware modelling is a time-consuming task for mod-
ern processor hardware [6]. In order to avoid this ef-
fort and address the portability problem in an elegant
manner, we developed a new hybrid WCET analysis
approach performing execution time measurements on

∗This work has been supported by the FIT-IT research
project “Model-based Development of distributed Embedded
Control Systems (MoDECS-d)”.

the instrumented application executable to obtain the
required hardware timing model [10]. From the ap-
proach presented in [10], two challenges arise: (i) the
granularity of the items subject to measurements has
to be determined and (ii) the measurement subsystem
has to force the corresponding measurements on the
target hardware.

The first contribution of this paper is the develop-
ment of an automatic control flow graph (CFG) par-
titioning method to identify the units subject to these
measurements (Section 2). Second, we introduce model
checking for generating test data that allows the sys-
tematic measurement of the selected paths. We show
that there exists a reasonable tradeoff between the
number of instrumentation points and the number of
measurements necessary in order to cope with the com-
plexity inherent in real-time program code (Section 3).
The practical applicability of our method is illustrated
by a case study from the automotive domain. It con-
sists of an application automatically generated by the
TargetLink code generator from dSpace [5] (Section 4).

2 Control Flow Graph Partitioning

In this section, we present our method for automati-
cally partitioning the control flow graph into these sub-
parts that will later be used as smallest granularity
items in our execution time model.

2.1 Basic Concepts

Before proceeding, we introduce some terms.

A basic block denotes a sequence of consecutive
statements in which flow of control enters at the be-
ginning and leaves at the end, without the possibility
of branching except at the end of the basic block [1].

The control flow graph (CFG) is a directed graph

that consists of linked basic blocks with one distin-
guished initial node (whose first instruction is the first
instruction in the program).

Due to the fact that it is impossible to use end-
to-end measurements covering all paths, we partition
the code using the notion of program segments (PS).
A PS is a subgraph of the CFG that can be entered
only via the transition of a single control edge, multi-
ple exit edges are possible. A structured program seg-
ment (SPS) is a PS that has only a single exit edge.

After partitioning the program into program seg-
ments, instrumentation points are introduced before
and after the program segments. Execution time mea-
surements of individual PS are used to calculate the
WCET bound of the whole program.

2.2 Partitioning the Control Flow

The CFG is partitioned into PS following the ab-
stract syntax tree. This partitioning is then used to
determine the necessary instrumentation points and
the number of measurements needed to evaluate the
program. During the partitioning step the CFG is tra-
versed hierarchically top-down. The decision whether
a PS is analysed as a whole (i.e., all paths of the PS
are measured by instrumenting the PS at its beginning
and end) depends on the number of paths inside the
PS. Whenever a PS is identified to be analysable as a
whole, no further analysis of subordinated PS is per-
formed.

The partitioning algorithm works as follows. As a
starting point, the whole function subject to the anal-
ysis process is considered as one PS.

Whenever the number of paths within a PS is less
or equal some given bound b, measurement points are
inserted at the beginning and the end of the PS. Thus,
the number of instrumentation points ip increases by
2 and the number of measurements m is increased by
the number of paths within that PS.

If the number of paths within the PS is higher than
path bound b then the PS is decomposed and the exe-
cution times of its constituents (nested PS; the smallest
unit of PSs are basic blocks) are measured.

Figure 1 presents an example code listing with its
associated CFG. The nodes in the CFG of Figure 1 are
labelled with the line numbers of the first instruction
of the respective basic block.

Table 1 shows the estimated measurement effort for
the analysis of the sample program. For bound b = 1
the number of instrumentation points equals 22 since
every single basic block is measured. For b = 2, an if

statement containing 2 paths is measured as a whole
PS. Thus, the four basic blocks having the id values

1 int main() {

2 int i;

3 printf1 ();

4 printf2 ();

5 if (i==0)

6 {

7 printf3 ();

8 if (i==0) {

9 printf4 ();

10 } else {

11 printf5 ();

12 }

13 }

14 if (i==0)

15 {

16 printf6 ();

17 printf7 ();

18 }

19 printf8 ();

20 }

start

4

15

9

16

21

18

end

11 13

14

Figure 1. Example listing with CFG

Bound b Instr. Points ip Measurement m

1 22 11
2 16 9
3 16 9
4 16 9
5 16 9
6 2 6
7 2 6

Table 1. Measurement effort with different path
bound b

6, 3, 4, 5 need not to be instrumented (this reduces ip

by 4 ∗ 2 = 8), but the PS between node 4 and 15 is
instrumented by 2 instrumentation points. Thus, we
get ip = 22 − 8 + 2 = 16. The number of measure-
ments equals m = 11 − 4 + 2 = 9 in this case. Finally,
when the path bound is increased to 6, all paths in the
function are covered by measurements. In this case,
only two instrumentation points and 6 measurements
are necessary.

2.3 Tradeoff between Instrumentation Points and
the Number of Measurements

We examined the relationship between the path
bound b, the number of instrumentation points ip and
the number of measurements m when using an existing
automotive application code which is generated by the
TargetLink code generator [5] out of Matlab/Simulink
models. The source files of this application, with all

2

include files resolved, have an average size of approxi-
mately 5000 lines of code, the analyzed functions have
around 800 basic blocks and about 300 conditional
branches.

Figure 2 outlines the relationship between the path
bound b and the number of instrumentation points
ip (note that the scaling of the x-axis is logarith-
mic). For b = 1 the number of instrumentation points
equals the doubled number of nodes in the CFG (i.e.,
857∗2 = 1714), which is due to the stand-alone instru-
mentation of each basic block. When incrementing the
path bound b, the number of instrumentation points
decreases. Considering the right tail of the line, even
huge increments of the bound b result only in minor
instrumentation point reductions.

It is important to bear in mind that this plot – as
well as all the subsequent ones – depicts the situation
for a specific piece of code.

Figure 2. Number of instrumentation points over
path bound b

The relation between the number of instrumenta-
tion points ip and the number of measurements m is
depicted in Figure 3. From higher to lower numbers
of instrumentation points an explosion in the number
of required measurements can be observed. End-to-
end measurements would be performed at the point
where ip = 2, increasing m to an computationally in-
tractable value. The arrows inside the diagram outline
the changing costs between instrumentation and mea-
surement.

Our first implementation of a simple code partition-
ing algorithm was able to keep the number of instru-
mentation points as low as 5001.

We are currently extending the CFG partitioning
algorithm to produce a general PS partitioning. This

1When using ”intelligent” instrumentation, this number
might be considered to be 500/2+1 = 251 by fusing two consec-
utive instrumentation points.

is expected to result in improvements in the number of
instrumentation points at low measurement cycle costs.

Figure 3. Measurement cycles and instrumenta-
tion points

3 Test Data Generation

From the static code analysis performed during the
control flow partitioning the paths to be measured are
known. To perform measurements of selected program
segments we need test data that lead to the execution
of the selected path segments.

A method of generating test data is model checking,
see [9]. If there exists a test data pattern that leads to
the execution of a distinct path it will always be found
with model checking. The drawback of model check-
ing is its calculation cost. For this reason a hybrid
approach has been chosen: first, test data are gener-
ated using heuristic methods (i.e. genetic algorithms)
until a given coverage bound is reached. A possible
bound could be that no new paths have been reached
with the last 106 generated data patterns. The bound
is necessary to stop calculation at a point where the
costs to find new paths with heuristic methods equal
the costs of finding new paths using model checking.
According to [11] we expect heuristic methods to gen-
erate more than 90% of the required test cases. In a
second step the remaining test data are generated us-
ing model checking. If no data pattern is found for a
selected path the path is deemed infeasible.

We use the SAL model checker from SRI Labs [4]
for test data generation. For this purpose, the C source
code is converted into the SAL Language.

3.1 State Space

An important goal for the C-to-SAL conversion is
to keep the state space of the model as small as possi-
ble. Assuming a model with n variables xi with domain
Di, the domain of the state vector ~x = (x1, . . . , xn) is

3

D = D1 × D2 × . . . × Dn. The reachable state space
DR is a subset of D. DR depends on the set of initial
values of the variables, which is denoted as DI . Ac-
cording to the communication from a developer of the
model checker SAL, the number of bits required to en-
code the state vector ~x should not exceed 700 to get
acceptable performance on currently available personal
computers.

Direct conversion without any semantic knowledge
is very inefficient: In C, boolean values are mostly en-
coded as 16 bit integers where a single bit would suf-
fice. If boolean values are encoded in the SAL model
in the same way, i.e. as integers, about 44 boolean
values would fill up the complete state space, whereas
700 booleans could be processed if a single-bit encoding
were used.

3.2 Optimisations to reduce the State Space

Basically there are two properties that affect the ef-
ficiency of a model: The size of the state space and
the number of transitions that are required to reach
the goal (i.e. to generate a counter example). We use
optimisations to reduce either of these values. The op-
timisations presented in this paper not only increase
the performance of the model checker but also allow
model checking of programs that would be too big oth-
erwise. The presented optimisations do not change the
model. Instead, we use these optimisations to make the
representation of the model more compact, thus reduc-
ing the state space and increasing the model checker
performance.

Some of the techniques presented here are also ap-
plied in compiler technology and are comprehensively
described in [1]. The majority of optimisation tech-
niques described in [1] introduce new temporary vari-
ables. When they are used for model checking this
would increase the state space and therefore degrade
the performance.

3.2.1 Reverse CSE

This optimisation is the contrary to Common Subex-
pression Elimination (CSE) known from compilers.

Temporary variables containing intermediate results
are replaced by the values that are assigned to them.
For instance, the sequence a=b+1; c=a+b; d=a*2;

is replaced by c=(b+1)+b; d=(b+1)*2; The perfor-
mance loss from recalculating the subexpression is
small compared to the gain from the reduced state
space.

3.2.2 Live-Variable Analysis

This is a common optimisation technique for compilers
that can directly be applied to model checking. Multi-
ple variables can share the same memory location if
they are not used at the same time. A variable is
“alive” if a value assigned by a declaration is used by
a subsequent statement (definition-usage-pairs). The
effect of this optimisation technique on model check-
ing depends highly on the structure of the source code
but it will always shrink the state space and improve
performance, unless the unlikely case occurs that no
variables can be reused. This optimisation technique
is also used to remove unused variables.

3.2.3 Statement Concatenation

The basic idea is to combine as many C statements
as possible into a single SAL block, thus reducing
the number of transitions to be executed by the model
checker. If a model contains two C statements in each
transition it requires only half the number of transi-
tions compared to a model of the same program that
contains only a single statement in each transition. The
prerequisite for this optimisation is that the variables
in the C statements are independent.

3.2.4 Variable Range Analysis

As mentioned above, analysing the value range of a
variable can be used to keep the number of bits used for
their representation small (1 bit vs. 16 bits for boolean
expressions). For this optimisation a semantic analysis
is necessary. This applies not only for boolean variables
but also for integer variables as the model checker does
not limit the variable size to multiples of eight bits.
For integer variables not used as booleans this might
require assistance from the user or, preferable, annota-
tions made by the code generator. The code generator
will have this information from the MatLab/Simulink
model in most of the cases.

3.2.5 Variable Initialisation

All variables contained in the model that are not input
variables are uninitialised. The model checker can as-
sign any value to them and therefore produces a large
set of DI . Assigning initial values to these variables
does not reduce the size of the state space |D| but
speeds up model checking by reducing |DR|.

3.2.6 Dead Variable and Code Elimination

Since we are not interested in the data flow but only
in the control flow, all variables that do not affect the

4

control flow directly or through assignments to other
variables can be removed. Even code segments that do
not affect variables involved in the control flow can be
removed, as long as we are not looking for test data
to reach these paths. This optimisation has a direct
impact on the state space since it reduces the number
of variables.

3.3 Evaluation of Optimisation Techniques

The current version of our C to SAL conversion
tool does not yet support all the described optimisa-
tions. The structure of the example optimisations had
to be manually applied to the generated SAL model.
As hand-optimising the generated SAL model is a la-
borious and error prone task we used a short example
code for this experiment instead of our real case study.
The C source code for the evaluation consists of 105
lines without comments and empty lines, four boolean
and thirteen byte variables from which three can be
substituted by “Reverse CSE”, three are not affecting
the control flow and three are not used at all.

Table 2 shows the impact of the individual opti-
misations on the simulation time and on the memory
footprint of the model checker. The last column shows
the number of simulation steps that were performed.
All evaluated optimisation methods except “combi-
nation of subsequent statements” and “initialising of
undefined variables” reduce the state space directly
by reducing the number of bits used for variable
representation. It can be seen that reducing the state
space has the strongest impact, especially the variable
range analysing. By default all variables created by
our C to SAL translator are 16 bit signed integers
and therefore the usage of 8 bit signed integers or
booleans, which are expressed with a single bit, cuts
down the bits used for variable representation down
to less than the half.

optimisation technique
simul.
time [s]

memory
use [kb] steps

unoptimized 283.4 229,360 28
all optimisations used 2.2 26,580 13
Variable Initialisation 172.7 173,334 28
Variable Range Analysis 12.7 59,492 28
Reverse CSE 25.3 71,620 26
Statement Concatenation 22.5 61,444 18
Dead Variable Elimination 44.2 99,444 28
Live-Variable Analysis 10.8 41,856 28

Table 2. Impact of optimisations on model check-
ing time and memory usage

Combining subsequent statements reduces the num-
ber of necessary transitions to about 65% of the orig-
inal value, thus the model checker can find the results
faster. This is an explanation for the lower time ef-
fort but not for the smaller memory footprint. The
smaller memory footprint seems to be based on inter-
nal optimisations of the model checker. Obviously, the
SAL model checker can reduce the state space when
transitions are combined in the model.

From other experiments we have seen that the sim-
ulation time and memory footprint rises exponentially
with the number of variables. Therefore, we expect
the effect of these optimisations to be even more sig-
nificant with larger programs. On the other hand, all
optimisations in this evaluation are done by hand. It is
reasonable to expect the optimisations done by a tool
not to reach the same quality as when done by hand.
This will result in a little degradation of the optimisa-
tions.

Other projects researching model checking for
ANSI-C programs that should be mentioned for the in-
terested reader are CBMC [3], the BOOP Toolkit [12],
BLAST [7], SPIN [8], and SLAM [2].

4 Case Study

Mainly, we investigated the concepts of our approach
on several real-sized industrial applications. The most
important results we gained from this work have been
incorporated in Section 2 and Section 3. However, due
to intellectual property issues we cannot publish these
applications. To provide a convenient view on the big
picture of our approach, we use a case study that is a
magnitude smaller but has a similar structure to the
original application. Also an almost identical design
process and the same employment background as the
industrial applications is used.

Our case study is an automotive wiper control ap-
plication. The controller inputs are a two-step speed
selector (off, slow and fast) for the wipers, a button to
switch on the water pump and an end position switch
to indicate the neutral position of the wipers.

Figure 4. Case Study

The design flow is illustrated in Figure 4. We mod-
elled the application in MatLab/Simulink . The State-
flow chart has 9 states, the complete MatLab/Simulink

5

model contains around 70 blocks. Using the TargetLink
code generator we created the application code auto-
matically. The whole functionality is encapsulated in
a single function wiper control. This function is sub-
ject to our analysis method.

We instrumented the application with instructions
starting and stopping an internal cycle counter regis-
ter. Basically, the code consists of nested switch and
if statements. Using the generated test data we en-
force the execution of particular paths and measure the
execution time of each case statement block.

Then the application is compiled and linked for the
Motorola HCS12 platform and uploaded to the eval-
uation board. To enforce our test data on the input
parameters and the state of the application we use
the glue code functionality of MatLab/Simulink and
TargetLink involving minimal user interactions for the
transfer of the obtained execution time values.

Due to the small input space we could also evalu-
ate the WCET to 250 cycles in exhaustive end-to-end
measurements. But we partitioned the application so
that each case block equals one PS and calculated a
WCET bound of 274 cycles using the measured execu-
tion times and a simple timing schema approach. We
did not apply any optimisations like semantic analysis
or considering hardware effects to obtain this level of
quality. One advantage of our method is that even if no
semantic analysis is attached to the analysis process,
many semantic dependencies are covered implicitly by
the systematic partitioning.

5 Conclusion

In this paper we presented the results of the applica-
tion of our measurement-based WCET analysis method
described in [10].

We have shown that it is possible to reduce the high
complexity inherent in real-sized application code by
applying a simple partitioning algorithm (Section 2).

We showd how model checking can efficiently be
used to generate test data to execute individual paths
of an application and can guarantee that test data pat-
terns can be found to reach all feasible paths. This
method can be used for testing because various struc-
tural code coverage criteria may be satisfied using this
approach. Driven by the huge state spaces arising from
the analysis of complex applications we introduced a
number of new highly efficient optimisation techniques
and presented a detailed evaluation of their capabili-
ties.

Finally, we investigated a number of real automotive
applications (Subsection 2.3) and illustrated the com-
plete application of the WCET analysis method in a

clearly arranged case study (Section 4).

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers
- Principles, Techniques, and Tools. Addison-Wesley,
1986.

[2] T. Ball and S. K. Rajamani. Automatically Vali-
dating Temporal Safety Properties of Interfaces. In
Workshop on Model Checking of Software, SPIN 2001,
pages 103–122, 2001.

[3] E. Clarke, D. Kroening, and F. Lerda. A Tool
for Checking ANSI-C Programs. In K. Jensen and
A. Podelski, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2004),
volume 2988 of Lecture Notes in Computer Science,
pages 168–176. Springer, 2004.

[4] L. de Moura, S. Owre, H. Ruess, J. Rushby,
N. Shankar, M. Sorea, and A. Tiwari. SAL 2. To be
presented at CAV 2004, jul 2004. Available at http:

//www.csl.sri.com/~rushby/abstracts/sal-cav04.
[5] dSpace GmbH. dSpace TargetLink. Available at http:

//www.dspace.com.
[6] R. Heckman, M. Langenbach, S. Thesing, and R. Wil-

helm. The influence of processor architecture on the
design and the results of WCET tools. In Proceedings
of the IEEE, volume 91:7, pages 1038–1054, July 2003.

[7] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Lazy Abstraction. In Proceedings of the
29th Annual Symposium on Principles of Program-
ming Languages, pages pp. 58–70. ACM Press, 2002.

[8] G. J. Holzmann. The Model Checker Spin. In IEEE
Transactions on Software Engineering, Vol. 23, No. 5,
pages 279–295, 1997.

[9] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and
H. Ural. Data Flow Testing as Model Checking. In
IEEE 25th International Conference on Software En-
gineering, pages 232–242, 2003.

[10] R. Kirner, P. Puschner, and I. Wenzel. Measurement-
Based Worst-Case Execution Time Analysis using Au-
tomatic Test-Data Generation. In WCET’04 Proceed-
ings, 2004. To appear.

[11] N. Tracey, J. Clark, J. McDermid, and K. Mander.
Systems Engineering for Business Process Change:
New Directions, chapter A search-based automated
test-data generation framework for safety-critical sys-
tems, pages 174 – 213. Springer-Verlag New York,
2002.

[12] G. Weißenbacher. An Abstraction/Refinement Scheme
for Model Checking C Programs, 2003.

6

