
Automatic Calculation of Coverage Profiles for
Coverage-based Testing ?

Raimund Kirner1 and Walter Haas1

Vienna University of Technology, Institute of Computer Engineering,
Vienna, Austria, raimund@vmars.tuwien.ac.at

Abstract. Code-coverage-based testing is a widely-used testing strat-
egy with the aim of providing a meaningful decision criterion for the
adequacy of a test suite. Code-coverage-based testing is also used for
the development of safety-critical applications, as the modified condi-
tion/decision coverage (MCDC) is proposed by the DO178b document.
One critical issue of code-coverage testing is that they are typically ap-
plied to source code while the generated machine code may result in
a different code structure due to code optimizations performed by an
compiler. In this work we describe the automatic calculation of coverage
profiles describing which structural code-coverage criteria are preserved
by which code optimization. These coverage profiles allow to easily ex-
tend compilers with the feature of preserving any given code-coverage
criteria by enabling only those code optimizations that preserve it.

1 Introduction

Testing is an established and accepted technique to increase the confidence in
the correctness of a computer system. In contrast to formal verification, testing
is not aimed to cover the full behavior of the system. But in contrast to for-
mal verification, testing has the strong advantage that it operates on the real
operation, including all low-level system details and physical behavior. Formal
verification on the other side allways resides at a certain abstraction level, al-
lowing the full behavioral coverage at this abstraction level. Thus, testing and
formal verification are complementary approaches, both are necessary for the
development of safety-critical systems.

Within this paper we focus on the testing part of verification, addressing
the challenges towards portable test-data generation. Derivation or generation
of test data is preferably done at the same level where the program is developed,
typically a high-level programming language or any modeling environment with
automatic code generation. First, this is the preferred way to do if the test
data are written manually. Second, this is also beneficial for automatic test-data

? The research leading to these results has received funding from the Austrian Science
Fund (Fonds zur Förderung der wissenschaftlichen Forschung) within the research
project “Sustaining Entire Code-Coverage on Code Optimization” (SECCO) under
contract P20944-N13.



calculation, as it allows to reduce complexity by taking benefit of the abstract
program representation. Thirst, this is preferred for portability issues, like cross-
platform testing.

We assume that test-data generation is guided by structural code coverage,
for example, statement coverage, condition coverage, or decision coverage. Struc-
tural code-coverage on its own is not a very robust coverage metric for software
testing, but it is a useful complementary metric that indicates program locations
of weak coverage by test data.

Using source-code based derivation of test data, it is the challenge to ensure
that the test data fulfill an analogous structural code-coverage metric at the
machine-code level as they achieve at source-code level. We call it analogous
code-coverage metric, because several structural code-coverage metrics make no
sense at machine-code level, because, for example, the grouping of several condi-
tions to a decision is a source-level concept that is not available at machine-code
level. If a compiler performs complex code optimizations that, for example, in-
troduce new paths or change the reachability of some statements [1], this may
disrupt the structural code coverage achieved at the original program.

We propose an approach toward the preservation of structural code coverage
when transforming the program [2, 3]. For this we use a so-called coverage pro-
files, i.e., a pre-calculated table that specifies for each structural code-coverage
metric which code transformations of the compiler guarantee to preserve it. Such
a coverage profile can be easily integrated into a compiler such that only those
code transformations are enabled that preserve the chosen structural code cov-
erage. The conceptual integration of coverage profiles into a compiler is shown
in Figure 1. In this paper we focus on the abstract specification of code trans-
formations and on the calculation of the coverage profiles.

Besides the functional software testing, the preservation of structural code
coverage is also of high interest for hybrid timing analysis, i.e., an approach
to determine the timing behavior of a program based on the combination of
execution-time measurements and program analysis [4, 5].

2 Structural Code Coverage for Software Testing

Structural code-coverage criteria are testing metrics to quantify the control-flow
coverage of the program for a given set of test data. In this section we describe a
few exemplary structural code-coverage metrics to show the calculation of com-
pilation profiles. Formal definitions of some additional structural code-coverage
metrics can be found in [3, 6].

2.1 Basic Definitions

In the following we give a list of basic definitions that are used to formally
describe properties of structural code coverage and conditions for preserving
structural code coverage:



Optimization X
Code Coverage

Profile X

Code
Intermediate

Code
Intermediate

Object Code

Source Code Selection
Coverage

Coverage Preservation Guard

Coverage−Preserving Compiler

Fig. 1. Application of a Coverage Profile

Program P denotes the program before (P1) and after (P2) the transformations
for which we want to preserve structural code coverage.

Control-flow graph (CFG) is used to model the control flow of a program [7].
A CFG G = 〈N, E, s, t〉 consists of a set of nodes N representing basic blocks
(see below), a set of edges E : N ×N representing the control flow (also called
control-flow edges), a unique entry node s, and a unique end node t.

Basic block of a program P is a code sequence of maximal length with a single
entry point at the beginning and with the only allowed occurrence of a control-
flow statement at its end. We denote the set of basic blocks in a program Pi as
B(Pi).

Decision is a Boolean expression composed of conditions that are combined by
Boolean operators. If a condition occurs more than once in the decision, each
occurrence is a distinct condition [8]. However, the input of a decision is the set
of its conditions without duplicates. A decision is composed of one or more basic
blocks. We denote the set of decisions of a program Pi as D(Pi).

There are programming languages, where decisions are hidden by an implicit
control flow. For example, in ISO C due to the short-circuit evaluation the follow-
ing statement a = (b && c); contains the decision (b && c). The short-circuit
evaluation of ISO C states that the second argument of the operators && and
|| is not evaluated if the result of the operator is already determined by the
first argument. The correct identification of hidden control flow is important, for
example, to analyze decision coverage. See [3] for further details with respect to
code coverage.



Condition is a Boolean expression. We consider only lowest-level conditions,
i.e., conditions that do not contain operators with Boolean arguments [8]. A con-
dition is composed of one or more basic blocks. We denote the set of conditions
of a decision d as C(d). The set of all conditions within a program Pi is denoted
as C(Pi).

Input data ID defines the set of all possible valuations1 of the input variables
of a program.

Test data TD defines the set of valuations of the input variables that have been
generated with structural code coverage analysis done at source-code level. Since
exhaustive testing is intractable in practice, TD is assumed as a true subset of the
program’s input data space ID: TD ⊂ ID. If we would aim for exhaustive testing
(TD = ID) there would be no challenge of structural code-coverage preservation.

Note that a test case consists, besides the test data, also of the expected
output behavior of the program. Since we are primarily concerned with the
preservation of structural code coverage with consider only the test data.

Reachability valuation IVR(x) defines the set of valuations of the input vari-
ables that trigger the execution of expression x, where x can be a condition,
decision, or a basic block.

Satisfiability valuation IVT (x), IVF (x) defines the sets of valuations of the
input variables that trigger the execution of the condition/decision x with a
certain result of x: IVT (x) is the input-data set, where x evaluates to True and
IVF (x) is the set, where x evaluates to False. The following properties always
hold for IVT (x), IVF (x):

IVT (x) ∩ IVF (x) ⊇ ∅
IVT (x) ∪ IVF (x) = IVR(x)

Consider the following example of C code to get an intuition about the mean-
ing of the satisfiability valuations:

void f (int a,b) {
if (a==3 && b==2)

return 1;
return 0;

}

For this code fragment we assume

IVR(a==3) = {〈a, b〉 | a, b ∈ int}
1 Valuation of a variable means the assignment of concrete values to it. The valuation

of an expression means the assignment of concrete values to all variables within the
expression.



From this assumption it follows that

IVR(b==2) = {〈3, b〉 | b ∈ int}

(and not the larger set {〈a, b〉 | a, b ∈ int} due to the hidden control flow caused
by the short-circuit evaluation of ISO C [3]). It follows that

IVT (b==2) = {〈3, 2〉}

Only those input data that trigger the execution of condition b==2 and evaluate
it to True are within IVT (b==2). With 〈3, 2〉 the conditions a==3 and b==2 are
both executed and evaluated to True. Further, it holds that

IVF (b==2) = {〈3, b〉 | b ∈ int ∧ b 6= 2}

The definitions of IVR(x), IVT (x), and IVF (x) depend on whether the pro-
gramming language has hidden control flow, for example, the short-circuit eval-
uation of ISO C [9].

2.2 Statement Coverage (SC)

Statement coverage (SC) requires that every statement of a program P is exe-
cuted at least once. Statement coverage alone is quite weak for functional testing
[10] and should best be considered as a minimal requirement. Using above defi-
nitions, we can formally define SC as follows:

∀b∈B(P ). (TD ∩ IVR(b)) 6= ∅ (1)

Note that the boundary recognition of basic blocks B(P ) can be tricky due to
hidden control-flow. A statement in a high-level language like ISO C can consist
of more than one basic block. For example, the ISO C statement f=(a==3 &&
b==2); consists of multiple basic blocks due to the short-circuit evaluation order
of ISO C expressions.

Remark 1. Source-line coverage is sometimes used as an alternative to SC in lack
of adequate testing tools. However, without the use of strict coding guidelines,
source-line coverage is not a serious testing metrics, as it is possible to write
whole programs of arbitrary size within one source line.

2.3 Condition Coverage (CC)

Condition coverage (CC) requires that each condition of the program has been
tested at least once with each possible outcome. It is important to mention that
CC does not imply DC. A formal definition of CC is given in Equation 2.

∀c∈C(P ). (IVT (c) ∩ TD) 6= ∅ ∧ (IVF (c) ∩ TD) 6= ∅ (2)



Remark 2. Above definition of CC requires in case of short-circuit operators
that each condition is really executed. This is due the semantics of IVT (),IVF ().
However, often other definitions are used that do not explicitly consider short-
circuit operators (as, for example in [11]), thus having in case of short-circuit
operators only a “virtual” coverage since they do not guarantee that the short-
circuit condition is really executed for the evaluation to True as well as for the
evaluation to False.

2.4 Decision Coverage (DC)

Decision coverage (DC) requires that each decision of a program P has been
tested at least once with each possible outcome. Decision coverage is also known
as branch coverage or edge coverage.

∀d∈D(P ). (IVT (d) ∩ TD) 6= ∅ ∧ (IVF (d) ∩ TD) 6= ∅ (3)

3 Preservation of Structural Code Coverage

The challenge of structural code-coverage preservation is to ensure for a given
structural code coverage of a program P1 that this code coverage is preserved
while the program P1 is transformed into another program P2. This scenario is
shown in Figure 2. Of course if a program will be transformed, also the sets of
basic blocks B or the set of program decisions D may get changed. As shown
in Figure 2, the interesting question is whether a concrete code transformation
preserves the structural code coverage of interest.

(PS 1, B1, D1)

Program P1

(PS 2, B2, D2)

Program P2
transformation

?

coverage(P1,TD) ≡ coverage(P2,TD)

Fig. 2. Coverage-Preserving Program Transformation

When transforming a program, we are interested in the program properties
that must be maintained by the code transformation such that a structural code
coverage of the original program by the test-data set TD is preserved to the
transformed program. Based on these properties one can adjust a source-to-
source transformer or a compiler to use only those optimizations that preserve
the intended structural code coverage. These coverage-preservation properties to
be maintained have to ensure that whenever the code coverage is fulfilled at the
original program by some test data TD then this coverage is also fulfilled at the
transformed program with the same test data:



∀TD. coverage(P1,TD) =⇒ coverage(P2,TD) (4)

In the following we present several coverage preservation criteria taken from
[3]. We use these coverage preservation criteria together with abstract descrip-
tions of the code transformations for the calculation of the coverage profiles.

3.1 Preserving Statement Coverage (SC)

Equation 5 of Theorem 31 provides a coverage preservation criterion for state-
ment coverage. Equation 5 essentially says that for each basic block b′ of the
transformed program there exists a basic block b of the original program such
that reaching b with a given test vector implies that also b′ is reached with the
same test vector.

Theorem 31 (Preservation of SC) Assuming that a set of test data TD
achieves statement coverage on a given program P1, then Equation 5 provides a
sufficient - and without further knowledge about the program and the test data
(there is now knowledge about the test data or the program assumed), also neces-
sary - criterion for guaranteeing preservation of statement coverage on a trans-
formed program P2. (Proof given in [3])

∀b′∈B(P2) ∃b∈B(P1). IVR(b′) ⊇ IVR(b) (5)

3.2 Preserving Condition Coverage (CC)

To define a coverage preservation criterion for CC (Theorem 32) we use the
auxiliary predicate touches ID(x, ID) given in Equation 6.

The predicate touches ID(x, ID) is only True if the set of input data ID
includes at least the true-satisfiability valuation IVT (x) or the false-satisfiability
valuation IVF (x) of expression x, where x is either a condition or a decision. The
predicate touches ID(x, ID) is used for the coverage preservation criterion of CC
(and also DC) to test whether the evaluation of any expression x of the original
program to both, True and False, implies that the test data include at least
one element of ID , needed for the coverage of an expression in the transformed
program.

touches ID(x, ID) ⇒ (IVT (x) ⊆ ID) ∨ (IVF (x) ⊆ ID); (6)

Equation 7 states that for each condition c′ of the transformed program there
exists at least one condition of the original program whose coverage implies that
c′ evaluates to True and there exists at least one condition of the original
program whose coverage implies that c′ evaluates to False.



Theorem 32 (Preservation of CC) Assuming that a set of test data TD
achieves condition coverage on a given program P1, then Equation 7 provides a
sufficient - and without further knowledge about the program and the test data,
also necessary - criterion for guaranteeing preservation of condition coverage on
a transformed program P2. (Proof given in [3])

∀c′∈C(P2). ∃c∈C(P1). touches ID(c, IVT (c′)) ∧
∃c∈C(P1). touches ID(c, IVF (c′)) (7)

3.3 Preserving Decision Coverage (DC)

To define a coverage preservation criterion for DC (Theorem 33) we use the
auxiliary predicate touches ID(x, ID) given in Equation 6, which is also used for
preserving CC.

Equation 8 of Theorem 33 provides a coverage preservation criterion for de-
cision coverage. Equation 8 essentially says that for each decision d′ of the trans-
formed program there exists at least one decision of the original program whose
coverage implies that d′ evaluates to True and there exists at least one decision
of the original program whose coverage implies that d′ evaluates to False.

Theorem 33 (Preservation of DC) Assuming that a set of test data TD
achieves decision coverage on a given program P1, then Equation 8 provides a
sufficient - and without further knowledge about the program and the test data,
also necessary - criterion for guaranteeing preservation of decision coverage on
a transformed program P2. (Proof given in [3])

∀d′∈D(P2). ∃d∈D(P1). touches ID(d, IVT (d′)) ∧
∃d∈D(P1). touches ID(d, IVF (d′)) (8)

4 Automatic Calculation of Compilation Profiles

This section discusses the concepts and implementation behind automatic cal-
culation of coverage profiles.

4.1 Program Model

For modeling control flow, the sequence of execution is defined by a set of labeled
CFG edges R : E × Λ × ∆, where E : N × N are the CFG edges with N :
B ∪C ∪ {s, t}, Λ : {T, F} × {T, F, X}, and ∆ : {δ1, . . . , δ|R|}. The special labels
Λ and ∆ are used to include information about control flow that depends on
condition/decision evaluations and influence of input valuations.



Condition/decision labels ` ∈ Λ are used in case of condition nodes to de-
termine the path a program uses when the control flow forks depending on the
result of a condition evaluation. For flexibility in assigning condition results to
different decision outcomes the condition/decision labels are two-parted. The
first part defines the condition evaluation result using the symbols T and F for
true and false. The second part of the label determines the decision result cor-
related with the condition result accumulated so far. It can be T , F or X if the
decision outcome is not yet determined. Note that X is only allowed for edges
originating and destinating inside the decision hypernode. All outgoing edges of
a decision must carry a unique decision-label with T or F .

Each edge ei in the graph is assigned a valuation set δi ∈ ∆. This valuation
set represents all the valuations of the program input that trigger the execution
of a path going through edge ei. For each node v, except s and t, we have a
continuity relation of the form

⋃

ei∈IN (v)

δi =
⋃

ej∈OUT(v)

δj (9)

where IN (v) denotes the incoming edges of v and OUT (v) the outgoing edges
of v. In other words, execution paths entering a node must leave the node at
least on one outgoing edge. The only exceptions are the entry-node s being the
source and the exit-node t being the sink of each execution path.

4.2 Analyzing Code Optimizations

For analyzing the effect of code optimizations we model the valuation relations
between the original and the transformed code. Based on the continuity relation
(Equation 9) it is easy to obtain simple subset relations (⊆) between the valua-
tion sets on incoming and outgoing edges inside each program graph. This can
be done by walking through each node of the CFG and applying the continuity
relation in forward and backward direction. These subset relations are the basic
input for coverage preservation analysis.

A code transformation adds additional relations of valuation sets between the
original and the transformed code, characterizing how the transformation forms
the valuation sets of the edges in the transformed code based on the valuation
sets of the edges in the original code. These relations can be propagated along
the CFG based on the transitivity of subset relations.

4.3 The Mathematica Implementation

The implementation of the coverage-profile calculation was done using Mathe-
matica, a fully integrated environment for technical and mathematical computing
[12].

In a preparation-phase the control-flow graphs with the node sets B and C,
the decision set D and the edge set R must be converted to the internal data
structures of the program system. Each edge e in R is implemented as a tuple



〈v, w, `, δi〉 where v is the start- and w is the end-point of the edge. ` is the
two-parted condition/decision label as described above (or empty if the edge is
not originating at a condition node) and δ is a unique identifier for the valuation
set.

Reachability and satisfyability valuation are reproduced internally by collect-
ing the valuation sets on incoming and outgoing edges. IVR(x) is calculated as
abstract union of all valuation sets on the incoming edges of node x. To calculate
IVT (x) the union of all outgoing edges of x labelled with T are calculated and for
IVF (x) all edges with label F are mentioned. Dependent wether x is a condition
or a decision, the information is extracted from the condition or decision label.

We construct an auxiliary graph (derived from the CFG) for maintaining
the equality relations (=) or subset relations (⊆) between valuation sets. The
nodes of the auxiliary graph represent valuation sets or unions of valuation sets.
A directed edge δi → δj is included in the support graph iff δi ⊇ δj is true. In
case of δi = δj the auxiliary graph contains edges between δi and δj in both
directions.

After constructing auxiliary graphs for the original code as well as the trans-
formed code, these graphs are glued together by adding the additional relations
caused by the code transformation. These subset relations form the abstract
description of the code transformation that we use for the calculation of the
coverage profiles. Creating a graph-reconstruction language [13, 14] that records
the transformation relation while reconstructing the CFG is a possible extension
for the future.

So far we have implemented preservation analyses for statement coverage
(SC), condition coverage (CC), and decision coverage (DC). They get descrip-
tions of the original CFG and the transformed CFG. Beside documentary infor-
mation they output a verdict true or false about the ability of the transformation
to preserve the mentioned coverage. The correctness of this verdicts relies on pro-
viding a correct and precise abstract description of the code transformation.

5 Examples of Analyzing Coverage-Preservation

This sections shows the coverage preservation analysis for several code optimiza-
tions. To avoid confusion when relating the valuation sets of the original code and
the transformed code, we denote δi the valuation sets of the original code and %i

the valuation sets of the transformed code. The results on coverage preservation
are summarized in Table 1.

5.1 Condition Reordering with Short-Circuit Evaluation

Algebraic simplifications use algebraic properties of operators like associativity,
commutativity and distributivity to simplify expressions [1]. Although these sim-
plifications produce logically equivalent expressions, they may cause unexpected
changes in the flow of control. Under certain circumstances these changes can



disrupt structural code coverage if they change the order of conditions. This is
demonstrated in the following example of a branch with short-circuit evaluation.

The case study demonstrates condition reordering in an if-statement with two
conditions connected by a logical AND operator with short-circuit evaluation. In
a programming language the program code and the optimized code could look
similar as in the following C-styled example:

if ( A && B )
thenBlock

else
elseBlock

changed to

if ( B && A )
thenBlock

else
elseBlock

Additionally, short-circuit evaluation of conditions is assumed, a technique used
in several programming languages. In C/C++, e.g., logical expressions inside
an if-statement are evaluated from left to right. If evaluation of further terms
could not change the result anymore, evaluation stops and the branch is executed
immediately. In the example, the second condition is not evaluated, if the result
of the first condition evaluates to false.

Figure 3 shows the internal graph models for this use case with the original
program on the left side and the transformed program on the right side. As
a convention the symbols δ are used to note the valuation sets of the original
program and symbols % are used for the transformed program. In the original
program, the described short-circuit branch is implemented with the edge from
condition A to the else-block 4. In the transformed program the short-circuit
branch connects condition B with else-block 14.

=

=

=

⊇
⊇

⊆
⊆

t

3 4

s s

t

13 14

δ1

δ7

F,F

F,FT,T

δ4
δ5

T,X

δ6

F,F
T,X

F,FT,T

δ2

δ3

%7

%6

%4

%5

%3

%2

%1

A

B A

B

Fig. 3. Transformation Relation for Condition Reordering (with short-circuit
evaluation)

Changing the condition order by swapping the conditions will not change the
valuation-sets of the decision result. This is denoted by the equality relations (=)



between δ6, %6 and δ7, %7. Therefore, applying the preservation condition for DC
(Equation 8) and for SC (Equation 5) will give a positive preservation verdict.
But the distribution of the valuation sets of the conditions inside the decision
are changed. Condition B in the transformed code snippet will now decide on a
bigger valuation set than in the untransformed program while condition A in the
transformed program decides on a subset of the possible valuations. Applying
the preservation condition for CC (Equation 7) therefore results in a negative
preservation verdict.

The sample output of the implemented analyzing function in Figure 4 shows
how the function makes use of the preservation criteria to show, that statement
coverage is preserved. The tool walks through each statement node of the trans-
formed code. Using the continuity relation together with the additional subset
relations on the valuation sets it determines those valuation sets which are a
subset of valuation set IVR(x) of the currently investigated node x. Finally, it
searches for a node in the original code with a valuation-set that is member
of the related valuation-sets. In the first case this happens with node 3 and
it’s valuation set IVR(3) = δ4. The same principle is used to find node 4 as a
counterpart for node 14.

The last line of the listing gives as the function result the final decision, which
is true in this case. This result can be used to be included into a coverage profile.

** SC-Preservation **
B(P2): {13, 14}
B(P1): {3, 4}
→→→ 1
IVR( 13)== {ρ4} of P2 is related with
{{δ4} , {δ6} , {ρ4} , {ρ6}}
Nodes of P1 satisfying preservation condition: {3}
Accumulated scpf: True
→→→ 2
IVR( 14)== {ρ3, ρ5} of P2 is related with
{{δ3} , {δ5} , {δ7} , {ρ3} , {ρ5} , {ρ7} , {δ3, δ5} , {ρ3, ρ5}}
Nodes of P1 satisfying preservation condition: {4}
Accumulated scpf: True
True

Fig. 4. Sample Output Analyzing Statement Coverage for a IF-Statement with
Two Conditions (with short-circuit evaluation)

5.2 Loop Peeling

The transformation called loop peeling replaces the first k iterations from the
beginning of a loop and inserts k copies of the body together with increment
and test code of the loop index variable immediately ahead of the loop [1]. A



simplified example of this optimization is shown in Figure 5, where the compiler
has peeled out the first iteration of the loop, placing one copy of the loop body
and the loop termination test in front of the loop.

∪

=

=

⊇

=

s

t t

s

B′

A′

A

B

A

B

δ1

δ3

δ4

%1

%2

%3

%4

%5

%6

%7

F,F
T,T

F,F

δ2

T,T

T,T

F,F

Fig. 5. Transformation Relation for Loop Peeling

From point of view of code coverage analysis, this little change in code struc-
ture has severe effects on preservation of all coverage criteria. In the original
program SC, CC, and DC can be achieved by executing one iteration of the
loop. After application of the transformation, the same test data will not enter
the loop, because the first iteration has been executed in advance.

Formal analysis cannot prove coverage preservation, because the body of the
loop is only triggered by a subset %4 of the original valuation subset δ2. Therefore
SC will fail for b′ = “B”, because no statement b in the original program could
be found such that IVR(b′) ⊇ IVR(b). Proofing preservation of CC and DC fails
for similar reasons.

5.3 Loop Inversion

Loop Inversion, in source-language terms, transforms a while loop into a do-while
loop [1]. The loop closing test is moved from the beginning of the loop to the
end of the loop. In the simplest case this requires, that it is save to execute the
loop body at least once. Otherwise, a test has to be generated in front of the
loop to check the exit condition. This latter case is illustrated in Figure 6.

Although the relation of the valuation sets between the original and the
transformed code contains many equalities, only statement coverage is preserved.
This is, because the moved loop closing decision in the transformed program only
decides on a subset of the input valuations compared with the original program,



∪

=
s

t t

s

A

B

δ1

δ3

δ4

%1

%5

F,F

δ2

T,T

A

B

A′

T,T

F,F

%2

%3

%4

=

T,T

F,F
=

%6

=

Fig. 6. Transformation Relation for Loop Inversion

which is expressed by the union operation (∪) on the right side of the equality
relation. This relation is induced by the subset-relation between %1 and %2.

5.4 Condition Reordering without Short-Circuit Evaluation

This example goes back to the condition reordering example presented in Sec-
tion 5.1. The example presented in this subsection is a variation where all con-
ditions are executed independently of the outcome of the other conditions of the
decision. Besides SC and DC, also CC is now preserved. The main difference
here is, that each condition decides on the full valuation-set δ2 ∪ δ3 = %2 ∪ %3,
although the distribution between δ2, δ3 on one side and %2, %3 on the other side
may differ.

The CFG in Figure 7 also shows an application for the two-parted condi-
tion/decision label. Although condition “B” in the original code on the left side
can decide independently of the result of condition “A” for true, the decision re-
sult must be false if the result of evaluating condition “A” was false. The same
is true in the transformed program when condition “A” decides true but the
result of condition “B” was false.

Code Optimization Coverage Preservation
SC CC DC

Cond. reordering (without short-circuit) 3 · 3
Cond. reordering (with short-circuit) 3 3 3
Loop peeling · · ·
Loop inversion 3 · ·

Table 1. Calculated Coverage Profiles



=

t

3 4

s s

t

13 14

∪

∪

∪

∪

δ1

F,FT,T F,FT,T

%1

A

B A

BT,X F,F T,X F,F

=

=
δ3 %2

%3

%6δ6

δ7 δ8 %8

δ4
T,F

%4
T,F

=

%7

δ5 %5

δ2

Fig. 7. Transformation Relation for Condition Reordering (without short-circuit
evaluation)

6 Summary and Conclusion

In this paper we addressed the rather novel field of preserving structural code
coverage during program transformation. A code transformer that take care
of preserving structural code coverage has many interesting applications. For
example, this allows the realization of reliable and portable test-data generators.
Besides functional software testing, this is even interesting for measurement-
based timing analysis.

Our approach is based on the calculation of so-called coverage profiles, which
are tables that store the information of what code transformations guarantees
the preservation of which structural code-coverage metric. To calculate these
coverage profiles, we developed a formal coverage preservation criteria for each
structural coverage metric and infer it with the abstract descriptions of the
code transformations. We have calculated such coverage profiles for statement
coverage (SC), condition coverage (CC), and decision coverage (DC).

As future work, we are focusing on extending the calculation of coverage
profiles to more complex structural code-coverage metrics like the modified
condition-decision criterion (MCDC) or a scoped path coverage.

References

1. Muchnick, S.S.: Advanced Compiler Design & Implementation. Morgan Kaufmann
Publishers, Inc. (1997) ISBN 1-55860-320-4.

2. Kirner, R.: SCCP/x - a compilation profile to support testing and verification of
optimized code. In: Proc. ACM Int. Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES’07), Salzburg, Austria (2007) 38–42

3. Kirner, R.: Towards preserving model coverage and structural code coverage.
EURASIP Journal on Embedded Systems 2009 (2009) doi:10.1155/2009/127945.



4. Wenzel, I., Kirner, R., Rieder, B., Puschner, P.: Measurement-based timing analy-
sis. In: Proc. 3rd Int’l Symposium on Leveraging Applications of Formal Methods,
Verification and Validation, Porto Sani, Greece (2008)

5. Kirner, R., Puschner, P., Wenzel, I.: Measurement-based worst-case execution
time analysis using automatic test-data generation. In: Proc. 4th International
Workshop on Worst-Case Execution Time Analysis, Catania, Italy (2004) 67–70

6. Vilkomir, S.A., Bowen, J.P.: Formalization of software testing criteria using the z
notation. In: Proc. 25th Annual International Computer Software and Applications
Conference, Honolulu, Hawaii, USA (2001) 351

7. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles, Techniques, and Tools.
Addison-Wesley (1997) ISBN 0-201-10088-6.

8. Chilenski, J.J.: An investigation of three forms of the modified condition deci-
sion coverage (MCDC) criterion. Technical Report DOT/FAA/AR-01/18, Boeing
Commercial Airplane Group (2001)

9. ISO: Programming Languages – C. 2nd edn. ISO/IEC 9899:1999 (1999) Technical
Committe: JTC 1/SC 22/WG 14.

10. Myers, G.J.: The Art of Software Testing. John Wiley & Sons (1979)
11. Hayhurst, K.J., Veerhusen, D.S., Chilenski, J.J., Rierson, L.K.: A practical tu-

toral on modified condition/decision coverage. Technical Report NASA/TM-
2001-210876, National Aeronautics and Space Administration, Hampton, Virginia
(2001) available in pdf format.

12. Wolfram, S.: The Mathematica Book, 4th ed. Cambridge University Press (1999)
13. Lacey, D., Jones, N.D., Wyk, E.V., Frederiksen, C.C.: Proving correctness of

compiler optimizations by temporal logic. SIGPLAN Not. 37 (2002) 283–294
14. Lerner, S., Millstein, T., Chambers, C.: Automatically proving the correctness of

compiler optimizations. In: In Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation, ACM Press (2003) 220–
231


