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Abstract

This thesis develops a trainable object-recognition algorithm. This algorithm

represents objects using their salient features. The algorithm applies an attention

mechanism to speed up feature detection.

A trainable component-based object recognition system which implements the

developed algorithm has been created. This system has two layers. The first layer

contains several individual feature classifiers. They detect salient features which

compose higher level objects from input images. The second layer judges if those

detected features form a valid object. An object is represented by a feature map

which stores the geometrical and hierarchical relations among features and higher

level objects. It is the input to the second layer. The attention mechanism is

applied to improve feature detection speed. This mechanism will lead the system

to areas with a higher likelihood of containing features when a few features are

detected. Therefore the feature detection will be sped up.

Two major experiments are conducted. These experiments applied the de-

veloped system to discriminate faces from non-faces and to discriminate people

from backgrounds in thermal images. The results of these experiments show the

success of the implemented system. The attention mechanism displays a positive

effect on feature detection. It can save feature detection time, especially in terms

of classifier calls.
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Chapter 1

Introduction

In this thesis, I present a component-based object recognition system combining

computer vision and machine learning technology. The attention mechanism is

one of its features. This system starts from understanding simple and isolated

objects, then learns how to recognise objects from a complex real-world back-

ground. It is first tested on learning to discriminate single faces from non-faces.

This is to test the system’s basic structure. Then it is applied to detect people

in thermal real-world images.

1.1 Problem Definition

Computer vision is the science that focuses on developing machines which can

see the world [39, 98]. It has long been a dream of computer vision scientists

to make such a machine with the ability of the human vision system. With

the development of computers, researchers have made solid progress towards this

dream. Nowadays, computer vision has developed into an integrated science and

technology, which has close relations with many subjects, such as artificial intel-

ligence, machine learning, mathematics, neurobiology, signal processing, and so

on. The development of related knowledge has given computer vision researchers

the chance of exploring how a machine can see like a human does in a variety

of ways. In particular, psychology and neuro-science provide clues on the limita-
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tions and capabilities of the human vision system. This thesis takes advantage

of some of these insights, and so connects up with these human-centred sciences.

A key and classical task in computer vision is object recognition, which de-

tects and locates specific objects from images. This can be done by humans

without much effort, but for a computer vision it is still a considerable challenge.

State of the art computer vision systems can process specific cases successfully:

certain objects in certain environments. However it is still not possible to create

a general computer vision system which can perform like humans in a wide range

of environments.

Many applications would benefit from better machine vision, including med-

ical diagnosis, safety inspection, daily life surveillance, military reconnaissance,

industrial measurement, and so on. Every progress towards robust object recog-

nition will make computer vision have a deeper influence, both on research and

daily life. There are many areas of research in the computer vision domain. I

will focus on object recognition by applying both computer vision and machine

learning algorithms.

An object recognition system is computationally intensive and its detection

performance is liable to be influenced by noise. This thesis aims to develop

algorithms which can focus limited computational resources on image patches

with a higher likelihood of containing target objects. By applying the developed

algorithms, less will be processed, therefore less noise will be input into the system

and less information will be processed. Object recognition speed will be improved

or with the same time consumed, a larger scene can be processed.

1.2 My Approach

This is a machine learning based algorithm. In this approach, an object is divided

into individual components. These components form an object, according to

a hierarchy. This algorithm learns to identify individual components and the

hierarchical and geometrical relations among them. The attention mechanism

emulates a characteristic of human vision that we look to gather information
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on what we expect to see. It is applied to improve object detection speed. A

dual-layer hierarchical system is created to verify the ability of this algorithm. It

aims to be a general object detection system, but in order to limit the research

effort within limited time, I chose only to detect a limited number of objects from

images.

1.3 Challenges

Machine vision is a challenging task, as different objects have different visual

properties. This thesis attempts to construct a dual-layer trainable system, and

the nature of the system adds its own challenges:

1. How to select key individual features to represent an object effectively;

2. The proper classifiers. It is important to choose suitable classification al-

gorithms to detect individual features;

3. How to organise individual classifiers together to recognise a compound

object effectively;

4. A proper training method to train this multi-layer system. It is straightfor-

ward to train a single classifier, but to train a multi-layer system requires

an effective connection between layers. The substance of this challenge is

how to generate proper training sets for each layer;

5. How to evaluate the performance of the system.

How to solve these challenges is crucial to the success of the proposed algo-

rithm and its application, an object recognition system. These challenges will be

addressed in the following chapters.

1.4 Contributions

This thesis focuses on discussing a novel object recognition algorithm and a train-

able object recognition system applying this algorithm. The completion of it
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makes several contributions to the computer vision domain.

• A component-based object recognition algorithm. A system applying this

algorithm is constructed. Several experiments have been conducted to ver-

ify and test the viability and performance of both the algorithm and the

system. This system already can discriminate faces from non-faces and de-

tect people in thermal images even when there is occlusion on the targets;

• Application of the attention mechanism to help locate features, therefore

speed up the detection of these features. The system learns the geometrical

and hierarchical relations among features composing the object and utilizes

these relations to locate other features when some features are found;

• Comparison between different algorithms. These algorithms include single-

layer classifiers, dual-layer classification system without attention mecha-

nism and dual-layer classification system with attention mechanism;

• An effective method of representing an object in a feature map;

• An effective training method of training the multi-layer object recognition

system;

• Another contribution is the databases created for the component based face

classification and person detection within thermal images;

1.5 Thesis Outline

I give the background of this thesis in Chapter 2 by introducing concepts, algo-

rithms, and related research.

The system created for this thesis is introduced in Chapter 3. This chapter

describes the structure and training method of my system.

Chapter 4 describes the experiments applying this system to discriminate

single faces from non-faces. The performance of the system will be investigated

by comparing it with traditional approaches and its different configurations. The
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multi-layer training method is applied to train the system and training sets for

this system to classify faces are created. The aim of this chapter is to verify the

viability of the proposed algorithm and system.

In Chapter 5, I apply my system to detect people in more complex infrared

images. This chapter aims to investigate the generality of my system. The system

will have the same basic structure like that face classification version introduced

in Chapter 4 but will have different feature search strategies.

The experimental results are analysed further in Chapter 6. I summarize what

has been achieved and what I have learned from completing this thesis. There

will be discussion about the performance of the system. There is always space

to improve a computer vision algorithm and the system applying it. I will draw

a conclusion and describe the future directions of improving the algorithm and

system introduced in this thesis in this chapter as well.

The databases used in this thesis are described in Appendix A and some key

source code are included in Appendix B.



Chapter 2

Background

The object recognition system developed in this thesis is built upon previous work

and knowledge by adding my contributions. In this chapter, I will review related

concepts, algorithms and methodologies with a discussion of other researchers’

applications which are relevant to this thesis. Through these reviews and discus-

sions, the background of the developed system will be explained and readers will

be clear about the inspiration and basis of this system.

2.1 Object Recognition

Object recognition is the technology of determining if an object exists in an

image or video sequence, if it does, the system should report its location and

measurement. In some parts of the literature, object recognition also refers to

detecting and naming the detected objects, for example, to detect a person’s face

from background and produce the name of this detected person [92, 115]. In

this thesis, object recognition has two main functions, indicating the existence

of an object and locating the object. It is the basis of a scene understanding

system where the general aim is to generate a reasonable explanation of an image,

reporting what objects are there and the relations, both spatial and logical, among

these objects. Obviously, the most important job of object recognition is to decide

whether an object exists within an image.
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For a human vision system, it seems effortless to discriminate and locate an

object within a visual source even when this object is viewed from different view

points, different distance, or even when the object is partially occluded by other

objects. More challenging, this object can be in different shapes, colours, or sizes

under different contexts [7, 89, 104]. In his PhD dissertation, Stanley [13] argued

that a robust object recognition system needs to compensate not only for changes

in the position, scale, and pose of the object, but also for variability in lighting,

possible occlusions, and especially for the changes in the particular example of

an object class.

Much effort have been made towards a robust object recognition system. Re-

searchers have been working in many different directions to achieve an improve-

ment in object recognition [47, 114, 88, 56, 93, 64]. Object recognition has been

developed into an interdisciplinary subject. It has strong links to machine learn-

ing, artificial intelligence, psychology, image processing, neurobiology as well as

mathematics. These different subjects contribute to the development of the ob-

ject recognition. For example, the research in psychology and neurobiology give

suggestions on how a biological vision system finds an object. Their theories may

help researchers of object detection develop algorithms having characteristics of a

biological vision system, such as neural networks [42, 35, 86]. In return, an object

recognition system may help researchers in biological disciplines have a deeper

understanding of biological vision theories by verifying them via computer mod-

els [84]. Image processing methods can help an object recognition system find

objects more easily by enhancing useful information and reducing noise, such as

edge detection, contrast enhancement between foreground and background, and

noise filtering [41, 98, 1]. Recently with the development of machine learning

algorithms, object recognition systems have gained significant improvement on

their classification performance [61]. Machine learning gives object recognition

systems the ability of learning the object from variety of its samples. This ability

is extremely useful when it is difficult or impossible to represent an object by

manually programming.

There are two main categories of object recognition systems, template match-
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ing and statistical classification. Early object recognition systems mainly adopt

template matching [19]. This approach finds image patches matching a template

image. It is relatively simple and straightforward, therefore easy to implement.

But there are several drawbacks. Because it is based on pre-collected sample im-

ages, it is difficult to cover all possible appearances of an object under different

environments, such as the different lighting. This can make the system need some

preprocessing to improve the quality of both input and template images, and of-

ten fails to cope with the rotational and scale variety. The result of this drawback

might be low efficiency and high complexity. The system may also fail when an

object is occluded. The robustness of this approach is therefore influenced by

these drawbacks. By contrast, most recent developed object recognition systems

use statistical classification [13, 56]. Statistical classification is a kind of classifi-

cation method based on quantitative and statistical information of a set of input

samples with discrete categories, i.e. positive or negative [48]. These categories

will be assigned to an unseen input based on a learned statistical model. These

systems take advantage of the rapid development of machine learning technology.

This approach provides a chance to learn and recognise an object without explicit

manual input. An object recognition system should learn key characteristics of

an object from a variety of samples. These samples provide the system a chance

to learn the properties of the object. Therefore the system performance will be

more robust on new object appearances.

2.2 Hierarchical Representation of Objects

The ultimate aim of computer vision is to construct a machine which has the

ability to automatically interpret the visual world in almost all kinds of situation

like a human being [75, 39, 9]. Robust object recognition is often the starting

point of a computer vision system. Without accurate object recognition, it will

be difficult to understand a scene correctly. A good detection strategy is vital

to the object recognition performance. Here, strategy means the structure of

the object recognition system and how the system organises useful information
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presented to it. It is about how to decompose a given scene using structured

knowledge which can include facts and ideas, understanding, and the totality of

what is known. The knowledge is mostly about the definition or description of

different objects and their possible spatial and logical combinations in the real

world. An effective object recognition system can utilize learned knowledge to

solve the problem of detecting objects from a target scene and combining them

to form a meaningful explanation of this scene. The detection strategy is the key

to achieve higher performance with less consumption of computation resources.

A general task of object recognition is to make useful decisions about real

physical objects and their key features based on sensed images [39, 29]. It aims

to help to generate a correct and effective representation of the real world [98].

The real world is composed of a variety of objects which are distinguished by

their salient features. A key property of many complex computer vision systems

that allows us to comprehend, analyze, and build such systems is their decompo-

sition into an hierarchy [101]. Such hierarchical representations have become an

important method to solve problems in computer vision [23].

This world can be described using hierarchical expressions [22, 3, 85]. There

are many hierarchies existing in this world. Whether we are concerned with

engineering and science research or economy research, we use hierarchical repre-

sentations to express different relations among objects. The human vision system

is one of the most sophisticated vision systems in the world [8]. It takes advantage

of representing scenes using hierarchies to get a very effective scene interpreta-

tion [12, 2, 69]. At the same time, it can use learned knowledge to help itself find

expected objects in the hierarchy. This mechanism is a closed loop. The hierar-

chical object detection system developed for this research is inspired by this fact

and I gave it a name ‘Cengji ’, which is the Chinese word for hierarchy.

The human brain stores knowledge of objects in a hierarchical structure [100,

38, 2]. This is the structural basis of the highly effective human vision system.

Figure 2.1 shows a hierarchy of a face (top left). The face is a structure composed

from a left eye, right eye, nose and mouth. This form of structure applies to

other scenes, for example, the office or the natural environment. Each node in
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the hierarchy represents knowledge about an individual object. The nodes are

organized by hierarchical knowledge to form a meaningful understanding of the

object.

Figure 2.1: Hierarchical structures of objects and scenes

The human vision system resolves scenes into components and learns the

relations among these components to form knowledge of a scene [12]. In the

same way, an object can be resolved into individual key components or features

and knowledge will be formed for this hierarchy. This knowledge helps the human

vision system to understand an object in two ways, bottom-up and top-down [34,

76, 4]. In a bottom-up approach, the individual features found in an object are

first detected. These features are then grouped together to form larger objects,

which then in turn are grouped, sometimes in many levels, until a complete

hierarchy is formed. In a top-down approach, an overview of the hierarchy is

formed first. This overview predicts which features form objects and how these

objects compose the scene. The object recognition system searches targets in

different levels until it reaches the basic features.

The visual process of the human vision system must attend to pieces of the

scene in turn, and the way in which each fixation point is selected is based on a

combination of information from different sources, including lower-level responses
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to visual stimuli [106, 112], and higher-level expectations of what objects may be

found in the scene [11]. Although recent computer-vision systems have incorpo-

rated component-based recognition processes, there are still few which integrate

the learning of compound objects with the attention mechanism which guides the

system to areas likely to contain relevant features.

The main benefit of adopting the hierarchical approach will be smaller area

to be processed by the system, which will speed up the system. This speedup

is achieved with the help of the attention mechanism. The attention mechanism

helps the system concentrate its calculation power only on areas of interests

without paying attention to other irrelevant areas. With the same computation

power, a system with the attention mechanisms can process the same input image

faster or process larger input with the same time. The hierarchical representation

is an effective way of describing an object. It reduces information to be processed

by the system by keeping key features of object. It also reduces the chance of

introducing noise because less areas are processed. Therefore the hierarchical

representation is a good choice for this research.

2.3 Attention Mechanism

The study of how machines may handle visual information has had a long history,

and combines information from several disciplines. Within psychology, vision

typically is seen as a way in which high-level knowledge is acquired about the

world around us. For example, Marr [73] proposed a model of visual perception

in which visual stimuli are processed in stages, leading from the raw visual input

to a final, high-level representation. However, it has long been recognised that

locating information in a visual scene requires a more active seeking of patterns

based on familiar patterns, or schemata [40, 66, 67].

Human perception relies considerably upon expectations of what may be

found in a scene. For example, in character recognition, an expectation that

letters are from a standard alphabet, or form words, can enable correct identifi-

cation of otherwise ambiguous data [81, 91]. Biederman [11] has also shown that
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objects are recognised more quickly and more accurately when they fall within a

familiar schema. Various cognitive models have been developed of these phenom-

ena [67, 91], but none has reached the level of performance required to perform

meaningful identification of objects in a complex application.

2.3.1 Associative Memory

When a human sees a part of a familiar object, a whole image of this object

can be formed in the human’s eye. A piece of component of this object helps the

human brain remember the object. Humans can also categorize the world without

explicit teaching. This mechanism can not only help humans rapidly detect or

recognise objects from a complex background but also give indication of relative

features of the detected feature. In computer vision, an autoassociator has the

similar mechanism. An autoassociator reproduces at output the same pattern

that was presented at input. It can store independent memories on the same set

of connections and it has the desirable property of ‘cleaning up’ incomplete or

noisy inputs [74].

2.3.2 Attention Mechanism

Attention is the cognitive process of selectively concentrating on one aspect of

the environment while ignoring other things [cited from en.wikipedia.org]. This

mechanism allows humans to concentrate on certain tasks without being dis-

turbed by irrelevant information [59, 87, 71, 58, 21, 37, 83]. Attention is one of

the most intensely studied topics by psychologists and neuroscientists, because it

is closely tied to perception. Attention mechanism has attracted much attention

from computer vision scientists. They hope it can improve efficiency of scene

understanding model.

Some of nowadays computer vision systems do not discriminate importance

of individual parts of image to the understanding of whole image. They pay the

same attention to each part and deal with them using the same methods and

procedures. This situation spends limited computation resource on some useless
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calculations. It wastes computation time and reduces the computer vision system

efficiency. The application of an attention mechanism can change this situation

clearly. It makes the computer vision system ignore irrelevant information and

concentrate on useful clues. This can save much time and computation resource.

Lane et al described the attention mechanisms in CHREST, a computational

architecture of human visual expertise [40, 66]. They summarised the role of

attention within CHREST as follows. First, an image is perceived, and, as the

eye has a limited field of view, a portion of the image has its features extracted.

These features are then used to sort through long-term memory, seeking a familiar

pattern. Any retrieved pattern is placed into short-term memory. The contents

of short-term memory, some high-level domain-specific knowledge, and any items

on the periphery of the field-of-view will all combine to guide the model’s eye

to locate a new point of the image to focus on. This process continues, and the

model will attempt to build up, in short-term memory, a set of pointers to fa-

miliar patterns in long-term memory which cover the image. When the attention

mechanisms are applied to an object recognition system, it can provide the sys-

tem useful information to search within areas with higher likelihood containing

a target object.

2.4 Machine Learning Algorithms

Machine learning is the research and application of algorithms and techniques

that allow computers to acquire information from data automatically or under

the supervision of a human being [77, 6, 78]. We can describe an object in two

ways: program a computer by explicitly telling it how an object looks or present a

computer with sufficient samples to teach it about the object. The first approach

needs a manual description which may not be feasible to cover all characteristics

or appearance of an object. For example, a human face can have a variety of

appearances. We do not have a formal description covering all possible faces.

But we do know there are some common properties existing which discriminate

faces from other objects. Therefore, the second approach presents samples of
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object to a computer and teaches the computer to find the common properties.

This approach avoids the tedious manual description of an object and has much

better generality [77, 6].

Usually, machine learning methods fall into two categories: supervised learn-

ing and unsupervised learning [48, 77, 6]. Supervised learning creates a learning

model from training data and uses this model to predict unseen data. There are

two parts in the training data, one is the input part, another is the output part

accompanied with the input. The input is often a vector and its output can be a

continuous value (regression), or a class label of the input object (classification).

Unsupervised learning generates a density model fit for the input training data. It

is distinguished from supervised learning in that there is no output accompanied

with the input data.

Machine learning has wide applications in modern science and technology. Re-

cently, it has been applied to computer vision successfully. It helps a computer

vision system achieve notable performance in object recognition, scene under-

standing and so on. Typical algorithms include Support Vector Machines, Neural

Networks, Haar like feature classifier, k -Nearest-Neighbour Classifier, K -means

Clustering and so on [26, 50, 108, 70, 109, 110, 48, 77]. There are three main

machine learning algorithms applied in developing my object recognition system,

support vector machine, feedforward neural network, and Haar like feature clas-

sifier. The support vector machine is used as the main classification algorithm

for its high classification performance. In this thesis, it is used to classify image

patches to find individual features. It will also be used to classify the structure

of the detected image patch to decide if it belongs to a target object. A feedfor-

ward neural network will act as an autoassociator to store an associative memory

of the object structure and its components [27]. The attention mechanisms will

use it to focus the attention of the proposed object recognition system. A Haar

like feature classifier is also applied in the experiments as a comparison. I will

describe these algorithms in turn.
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2.4.1 Support Vector Machines

Support vector machines (SVMs) are a relatively recent class of learning system

for data classification and regression which received significant development after

the 1990s [26, 50]. Much attention has been paid to the theoretical understanding

of SVMs and their implementation, with many SVM applications becoming used

to solve practical problems [32, 44, 50].

SVMs, based on the principle of structural risk minimization now form a well

established approach in the application of machine learning algorithms and are

proving to be particularly promising when used to construct accurate models

based on large feature spaces [78, 97, 50, 26]. Particularly, SVMs deliver state-of-

the-art performance in real-world applications [26]. They have some superiorities

over other approaches, especially: a) global minimum solution, and b) learning

and generalization in huge dimensional input spaces [26, 50]. Essentially they use

a hypothesis space of linear functions in a high dimensional feature space, trained

with a learning algorithm from optimization theory that implements a learning

bias derived from statistical learning theory. The aim is to find a hyperplane

which can classify two classes of data correctly, by maximizing the distance be-

tween the two classes of data and the hyperplane, in a space of higher dimension

(see Figure 2.2).

SVMs [20] perform pattern classification by determining the separating hy-

perplane at a maximum distance to the closest points in the training set. These

points are called support vectors. The decision function of the SVM has the form:

f(x) = sign[

N
∑

i=1

αiyiK(x, xi) + b], (2.1)

Where x is the data point to be classified, xi are support vectors, K is the

kernel function mapping inputs to a higher dimensional space, N is the number of

support vectors, b is a constant decided from training and yi ∈ {−1, 1} is the class

label of the support vector xi. The coefficients αi are the solution of a quadratic

programming problem. The margin, which is the distance of the support vectors
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Figure 2.2: Class 1 and class 2 can be separated by many hyperplanes. Only the

optimal hyperplane separates two classes with maximum margin. Margin b and

c are shorter than margin a. Those points lying on the margin generated by the

optimal hyperplane are support vectors.
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Kernel Type Kernel

linear xT

i
x

polynomial (xT

i
x+ τ)d

radial basis function exp(− ||x−xi||2

2σ2 )

sigmoid tanh(κxT

i
x+ θ)

Table 2.1: The most popular kernel types.

to the hyperplane, is thus given by:

M =
1

√

∑

N

i
αi

(2.2)

The margin is an indicator of the separability of the data within the dimension-

ality of the hyperplane (Figure 2.2).

The kernel function plays a key role for SVMs in solving real-world problems

because many such applications are not linearly separable in their original di-

mensional space (i.e. that of the input). By applying a kernel transform K, the

input data vectors are mapped into a higher-dimensional space. In this space,

the mapped data vectors could be linearly separable or have improved separabil-

ity [26, 97]. There are several popular kernel transforms shown in Table 2.1. The

Radial Basis Function (RBF) kernel is commonly considered as the most pow-

erful [97, 57] but linear kernels are best understood and simplest to apply [26].

Figure 2.3 depicts an exemplar classification problem in 2D together with the

application of linear and RBF kernels. The selection of a suitable kernel type

for a SVM classifier applied to a given problem will be discussed in Section 3.4,

Chapter 3.

There are many SVM packages available, such as mySVM , SVMdark,

winSVM , LibSV M , SVMstruct and so on. LibSV M , developed by Chang and

Lin [24], is selected as the SVM package for face classification experiment. SVM

implementation within OpenCV which is an open source computer vision library

is chosen for the person detection experiment. I used the approach of Chang and

Lin [24], to perform the grid search by providing two parameters to optimize a

SVM classifier: the cost C and a kernel parameter γ [24, 54]. The cost C is the
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Figure 2.3: Classification using linear kernel and RBF (radial basis function) ker-

nels. The linear kernel is suitable for solving linear separable problems. If target

classes are not linear separable, they have to be projected to a higher dimension

space where they are linear separable or easier to be separated. This process is

done using non-linear kernels, such as the RBF kernel. In this example, a linear

kernel can not separate two classes without misclassification; a class 1 point is

misclassified as class 2. By contrast a RBF kernel separates them correctly.

penalty parameter on the error [97, 94, 20, 26]. A bigger Cost C means giving a

heavier penalty on errors. γ is a parameter used to configure kernels; for different

kernel, γ has different meanings. For example, in the RBF kernel, exp(− ||x−xi||
2

2σ2 ),

γ is 1/2σ2. There is no γ for a linear kernel. A smaller value of γ will produce a

more general classification boundary [26].

2.4.2 Feedforward Neural Network

The artificial neural network is an algorithm inspired by biological neural net-

works [16, 86, 25, 77]. It has certain similarities to a biological neural network

in that it calculates in a parallel and collective pattern. The basic calculation

unit is the neuron which performs the function of a threshold. These units are

connected together according to certain structures, for example separated by dif-

ferent layers, then they can achieve different purposes. Figure 2.4 is an example

feedforward neural network.

The feedforward neural network is one of the simplest and most popular net-
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Figure 2.4: A fully connected feedforward neural network with one hidden layer.

The output node number is equal to the input node number. This kind of feedfor-

ward neural network is used to store associative memory in this research.

works. There can be several layers within a network. The first layer is input

layer. Following the first layer are several, mostly only one, hidden layers. The

last layer is the output layer. Each neuron is connected to the previous layer

by connections. These connections have different weights. Data are fed into the

input layer, then multiply weights and go through hidden layers until reach out-

put layer. There is no feedback connections. Hence this kind of network is called

feedforward neural network [86, 77].

Weights are calculated by using a supervised learning method. Backpropa-

gation is one of the most popular training methods for feedforward neural net-

work [96, 30]. It is an abbreviation for ”backwards propagation of errors”. During

training, this technique propagates errors from output layer to the input layer.

It calculates the differences between the outputs of each node with expected out-

puts, then uses these differences to adjust weights until the output error reaches

a chosen threshold or the training has reached a preset number of cycles. Here

is the procedure of backpropagation training method: 1. Input a training pair,

which normally includes an input vector and an output vector, to the neural net-
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work. 2. Compare the difference between the desired output, which is the output

vector, and the network’s output. Calculate the error in each output neuron. 3.

Calculate the local error for each neuron. 4. Adjust the weights of each neuron to

reduce the local error. 5. Backpropagate errors through the network to previous

layer. Adjust the weights of each neuron. 6. Repeat the steps until the input

layer is reached. 7. If the output error can not reach the desired value, repeat

these steps or stop according to criteria set by trainer.

The activation function used in this thesis is the sigmoid function which has

the form:

f(x) =
1

1 + e−x
(2.3)

The error is calculated as:

E =
1

2

P
∑

i=1

ei (2.4)

Where:

ei = (di − yi)
2 (2.5)

P is the total number of the output nodes of the neural network. Before

feeding training samples into the neural network, the value of each pixel should

be rescaled to between 0 to 1.

A feedforward neural network can act as an auto associator [82, 49, 72, 60].

For the simplicity of construction and training, it is chosen as an auto associator.

When training an auto-associative feedforward neural network, both input and

output are identical vectors. The trained feedforward neural network will learn

the input vectors and can restore it even when the input is a partial vector.

2.4.3 Haar Like Feature Classifier

The Haar cascade classifier was firstly proposed by Viola [108] and later im-

proved by Lienhart [70] with a primary application domain for the detection of
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faces within the visual surveillance domain. The concept is to use a conjunctive

set of weak classifiers to form a strong classifier - in this instance, a cascade of

boosted classifiers applying Haar-like features (Figure 2.5). These Haar features

are essentially drawn from the response of Haar basis functions to a given type

of feature at a given orientation within the image (Figure 2.5). Individually,

they are weak discriminative classifiers but when combined as a conjunctive cas-

cade a powerful discriminative classifier can be constructed capable of recognising

common structure over varying illumination, colour base and scale [108].

Figure 2.5: Haar-like features. A. Edge features. B. Line features. C. Centre-

surround features.

This cascaded Haar classifier is trained using a set of multiple positive object

(i.e. cell, face, car ...) and negative object images (i.e. no cell, face, car etc.). The

use of boosting techniques then facilitates classifier training to select a maximally

discriminant subset of Haar features to act as a multi-stage cascade. In this way,

the final cascaded Haar classifier consists of several simpler (weak) classifiers

that all form a stage in the resultant complex (strong) classifier. These simpler

classifiers are essentially decision-tree classifiers (with at least 2 leaves) that take

the Haar-like feature responses as input to the weak classifiers and return a

boolean 0,1 pass/fail response. A given region within the image must then achieve

a pass response from all of the weak classifiers in the cascade to be successfully

classified as an instance of the object the overall strong classifier has been trained

upon. Figure 2.5 shows the Haar-like features used as the basis for the weak

classifiers in this approach.

The Haar cascade classifier thus combines successively more complex classi-

fiers in a cascade structure which eliminates negative regions as early as possible

during detection but focuses attention on promising regions of the image. This

detection strategy dramatically increases the speed of the detector [108, 70]. It
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has been successfully applied to solve some challenging computer vision tasks,

such as real-time face detection [109] and pedestrian detection [110].

2.4.4 Cross Validation and Grid Search

A classifier has to be initially trained before use for classification. During training,

samples of two classes, positive and negative, are presented to the classifier. After

analysing these training data, the classifier learns how to classify these two classes.

For example, a SVM classifier finds the hyperplane which separates two classes

with maximum margin in a given dimensional space using a given kernel function,

K. The aim of training the SVM classifier is to find a suitable kernel, K, and its

associated parameters.

A commonly used parameter evaluation method is cross-validation [62]. This

is a statistical method of testing hypotheses that keeps a subset of data as a

test set and the remaining data as a training set. There are several commonplace

cross-validation methods with k-fold cross-validation being the most popular [77].

This procedure divides original data into k subsets and keeps one of them as a

test set while the remaining k-1 subsets are used to train the classifier. This

process is repeated until every subset has been used as test set and the mean

correct rate is taken as the single estimation of the classifier. Cross-validation

helps to eliminate the unilateral testing hypotheses suggested by the data [79]

(i.e. over-fitting), so that it can give a comprehensive estimation of parameter

configuration.

In order to utilize the cross-validation method to find the best configuration of

a classifier, a grid search method is used [24, 54]. The grid search method performs

cross-validation on training sets using all possible parameter configurations within

certain ranges. This method searches a parameter space based on a “try-all”

method, i.e. searching all the possible combinations and all ranges of different

parameters specified by user to find the best configuration. For a SVM classifier,

the configuration includes the kernel, K, and its parameters. The parameters of

a kernel to be tuned are cost C and a parameter γ. This way, the kernel and its

parameter configuration with best performance (normally highest detection rate
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on training sets) is decided. In addition, the grid search method can also prevent

over-fitting by finding the model with the best generalization [54]. Lin et al [54]

find that trying exponentially growing sequences of C and γ is a practical method

to identify good parameters (for example, C = 2−5, 2−3, ..., 215, γ = 2−15, 2−13,

..., 23). After this coarse search, a better search space will be decided and a fine

search can be conducted to find the best configuration of parameters. I use their

methodology to find the best kernels and their parameter configurations for SVM

classifiers.

2.5 Related Work

A popular object recognition approach is to train a classifier using whole target

images and recognise the target from background. Nattkemper et al. [80] de-

signed a neural cell detection system (NCDS) for the automatic quantization of

fluorescent lymphocytes in tissue sections. This system acquired visual knowledge

from a set of training cell-image patches selected by a user. The trained system

evaluated an image by calculating the number, the positions and the phenotypes

of the fluorescent cells. The NCDS detected a minimum of 95% of the cells.

Using single-layer SVMs to detect objects has achieved remarkable success.

Osuna et al [50] applied SVMs to face detection, later extending this application

to a real-time system. El-Naqa et al. [32] applied SVMs to detect microcal-

cifications in mammogram images, which outperformed all the other methods

considered within the study. Single micro-calcification is the input to the SVM

classifier. A sensitivity as high as 94% was achieved by the SVM method at an

error rate of one false-positive cluster per image. Breckon et al applied trained

single classifiers to detect a person from thermal imagery and a vehicle from op-

tical imagery [18]. These classifiers were trained to detect whole body of a person

and whole front and back patches of a vehicle. They also developed a generic

and robust approach for the detection of road vehicles from an Unmanned Aerial

Vehicle (UAV) which is within the framework of fully autonomous UAV deploy-

ment for aerial reconnaissance and surveillance. Their approach facilitates the
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real time detection of both static and moving vehicles invariant to orientation,

colour, type and configuration by using multiple trained cascaded Haar classifiers

(a disjunctive set of cascades). This approach successfully detected differing ve-

hicle types under varying conditions in both isolated rural and cluttered urban

environments with minimal false positive detection [17].

Eichner et al proposed a machine learning based system which offers continu-

ous speed restriction monitoring for driving. It integrates both numerical speed

limit sign recognition, robust cancellation sign detection together with GPS nav-

igation for operation in all possible road scenarios (i.e. city, country, highways).

It ensures real-time processing speed in all weather conditions with good perfor-

mance [31].

Han et al [43] applied a machine learning based approach (cascaded Haar

classification [108]) to classify three types of cystic lesions of the jaws: solitary

odontogenic keratocysts, basal cell naevus syndrome associated odontogenic ker-

atocysts, and radicular cysts [99]. In this application, the Haar classifier was

trained using whole cyst images and a total correct classification rate of 86%

was achieved. It showed successful detection of individual cell nuclei within the

pathological slides in addition to promising classification rates on the cyst sub-

types [43, 65]. It can detect whole cysts successfully but with a limited success

rate in detecting occluded cysts. Han also applied SVM classifier to detect cells

from complex background. The cell images were in different colour, different light-

ing, and cells were in different average sizes. The SVM classifier was trained with

only limited number of samples but can detect cells of different sizes under vary-

ing lighting conditions. The average detection rate was above 90%. The above

examples of single layer classifier based classification applications have achieved

high performance on whole object detection but there are still some limitations

on detecting incomplete or occluded objects.

Recently, multi-layer classifiers, most of them adopting an hierarchical struc-

ture, are becoming popular. Dillon et al [28] developed Cite, a scene understand-

ing and object recognition system, which can generate hierarchical descriptions of

visually sensed scenes based on an incrementally learned hierarchical knowledge
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base. In this system, traditional feed-forward segmentation is augmented with

knowledge-driven re-segmentation that closes the control loop on low-level vision

processes to match the human annotation process as close as possible. Cite ex-

tends the conventional knowledge bases (including relational database models)

to a fully hierarchical one with, in principal, no depth limitation. Multiple hy-

potheses are generated for each scene element, and these are resolved using a

hierarchical extension to relaxation labeling. Behnke et al [10] proposed a hier-

archical neural architecture for image interpretation, which was based on image

pyramids and cellular neural networks inspired by the principles of information

processing found in the visual cortex. One of the main features of the architecture

is the transformation of the given image to a sequence of representations with

increasing level of abstraction and decreasing level of detail. The binarization of

handwriting has been implemented and has been shown to be perform well.

Especially, Heisele et al [53, 55] have presented a dual-layer SVM algorithm

learning discriminative components (features) of objects similar to the system

which will be introduced in this thesis. Figure 2.6 shows the system overview. In

their system, component-based face classifiers were combined in second stage to

yield an hierarchical SVM classifier. On the first layer, the component classifiers

independently detected components of the face. On the second layer, the combi-

nation classifier performed the detection of the face based on the output of the

component classifiers. There is a collection of 14 features from the face on the first

layer. These features were chosen automatically from seed areas of a set of syn-

thetic face images [52]. When their system identifies faces, features are located on

an image by component classifiers within rectangular search regions around the

expected positions of the components. The expected component positions were

decided when extracting component samples from training images. Once identi-

fied, the features’ maximum outputs within a search region and their locations are

passed to the second layer in the following format: (O1, X1, Y1, ..., O14, X14, Y14).

The second layer then decides if this component configuration belongs to a face.

They also compared the performance between component-based (dual-layer) and

global (single-layer) approaches [51]. Their experiments showed the potential of



27

dual-layer SVMs on pose and illumination invariance. My system differs from

these other approaches in several main aspects. Firstly, my system uses a feature

map rather than their special format vector as an intermediate representation, in

order to retain detailed relations between features. Secondly, I employ an active

attention mechanism [44, 45, 46]. The system training strategy is also different in

my system. Their system trains each layer separately. My system joins two layers

together to get the best training results from limited training samples. Chapter 3

will describe my system in detail.

In a real-world scene, an object recognition system should be able to find

useful features of a target then, according to these features, decide if it should

trigger an alert that it has found a meaningful target. Occlusion of a target can

have negative influence on whole-image classifiers, as compared with component-

based one. A simple single-layer approach has good performance of detecting

targets when there is no occlusion existing. But in a real environment, especially

in a battle field, it is not always possible to get whole target images. Therefore

it is useful that the system has the ability to deduce the existence of an object

by detection of its features.

Apart from the feature-based detection, an ideal system also should be able to

find other related features in likely areas when a feature has been detected. This

mechanism will take advantage of learned knowledge about the target and help

to improve the detection speed and confidence. Many efforts have been done to

handle the influence of occlusion occurring in detection which is now summarized.

Rensink et al [90] have found that early vision can use monocular cues to rapidly

complete partially-occluded objects. Visual search for easily-detected fragments

becomes difficult when the completed shape is similar to others in the display;

conversely, search for fragments that are difficult to detect becomes easy when

the completed shape is distinctive. They concluded that it is only the completed

structures–and not the fragments themselves–that serve as the basis for rapid

recognition.

Williams et al [111] investigated the reconstruction of 3D surfaces when oc-

clusion exists. They generalized the conventional visual reconstruction to include
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Figure 2.6: System overview of the component-based face detector using fourteen components. Adapted from [53].
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both visible and occluded forward facing surfaces and found that the topology of

three dimensional scene structure can no longer be taken for granted, but must

be inferred from evidence provided by image contours.

Elgammal et al [33] presented a framework that uses maximum likelihood es-

timation to estimate the best arrangement for people in terms of 2D translation

that yields a segmentation for the foreground region. They conducted occlusion

reasoning to recover relative depth information and presented a method to auto-

matically initialize a person model which is based on segmenting the body into

regions in order to spatially localize the colour features corresponding to the way

people are dressed and learn them before the occlusion. Tan et al [103] addresses

the influences on face recognition caused by partially occluded face images by

extending a previous local probabilistic approach presented by Martinez, using

the self-organizing map (SOM) instead of a mixture of Gaussians to learn the

subspace that represented each individual. Their experiments show that the pro-

posed method exhibits high robust performance against the partial occlusions

and variant expressions.

The hierarchical component-based object recognition system provides a suit-

able platform to recognise objects from complex real-world scenes. It represents

objects with their components. By using this representation, the detection should

be robust even when there is only partial image of an object available. This rep-

resentation also provides a better chance to apply an attention mechanism to

speed up the recognition of an object, by focusing on the important parts of an

image.



Chapter 3

A Multi-Level System for Object

Recognition

This chapter describes the object recognition system developed for this thesis.

This system is a hierarchical component-based computer vision system and has

a name ‘Cengji ’. I want to use this word to emphasize the important character-

istic of this system, hierarchical, and distinguish this system from other existing

systems. This chapter begins with an overview of the Cengji system, and then

describes it in detail through Section 3.2 to 3.4.

3.1 Overview of the Cengji System

Figure 3.1 provides an overview of this system. It is an object recognition system,

taking an image as its input and returning a classification of that image as its

output. Internally, there are two layers. The first consists of a number of feature

detectors, or classifiers, whose job is to recognise specific features within the

image; each classifier is tailored to recognise one kind of feature, such as an eye

within a face. The features identified by all of the classifiers are placed together

onto a feature map, as shown in Figure 3.2. The feature map, which will be

introduced in detail in Section 3.2, is a grid, of the same size as the input image.

The elements of the grid encode the label for the feature which overlaps that
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position.

The dynamic behaviour of the complete system captured in Figure 3.1 is as

follows. First, the feature detectors are scanned over the image in turn, until one

of them identifies their feature; for example, the eye classifier will report when it

locates an eye in the image. Once the first feature has been located, the feature is

placed onto the feature map, and passed to the autoassociator. If successful and

the attention mechanism is applied, the autoassociator returns a prediction for

the complete feature map, encoding locations for the remaining features. These

predicted locations are then passed back to the feature detectors, which attempt

to identify the predicted features. If the attention mechanism is not applied,

other feature classifiers will be scanned over the image just like the first classifier

does. When all features have been located, the complete feature map is passed

to the second layer, which classifies the feature map. This process stops when

all the feature classifiers have performed a complete scan of the input image, or

located a feature.

I have implemented the feature classifiers and final classifier using Support

Vector Machines. The autoassociator is a neural network, trained using back-

propagation.

3.2 Feature Map

A significant characteristic of Cengji is the introduction of a feature map. The

phrase feature map has been seen in previous applications [112]. Here, I use it to

name the intermediate representation which conveys key information of individual

features and describes how they compose a higher level object. ‘Feature’ in this

feature map refers to components forming higher level objects.

The feature map is an abstract image of an object, keeping only the essential

information. When constructing a feature map of an object, each feature in the

input image forming this object is given a label (a number). Each pixel belonging

to the image patch containing this feature is replaced with this feature’s label.

Pixels not belonging to any feature are set to 0. So a feature map keeps the
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Figure 3.1: Hierarchical structure of Cengji. In the first level are classifiers for basic components. The intermediate

representation holds position information for these components, and this representation is converted into a class in the

second layer.
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geometric information of each feature and the spatial relations among features.

Potentially the feature map can also group objects to form a higher-level object,

in a hierarchical manner.

For example, Figure 3.2 is a feature map of a face. Each feature in the face

map is given a label: left eye is 4, right eye 1, nose 3 and mouth 2. The background

is 0. Each number in the map corresponds to a pixel in the face image. So the

map matrix has the same length and width as the face image, and the matrix of

a feature also contains the size information of this feature. There is overlapping

between two different features. The system will not be confused by this because

I can arbitrarily design the feature detection process proceeding always in the

same sequence, for example, for a face: right eye → mouth → nose → left eye.

The overlapping sequence will be embodied by the feature map. This ensures

that the overlapping between two features is always consistent.

3.2.1 Feature Detection

In computer vision and image processing, feature detection refers to methods that

find useful information from images and decide which image pixel is a part of the

target patch carrying that information [39]. These features will be subclasses or

a kind of abstraction of the image to be detected. They might be edges, corners,

interesting points, blobs, regions and so on. In Cengji, a feature is defined as

a component of a meaningful object. It refers to a patch of image pixels. For

example, we can say an eye is a feature belonging to a face. So one of the feature

detectors might be detecting an eye from an image. Of course, this does not

mean this system ignores the detection of features like edges, corners and so on.

These kinds of features can also help the system to recognise objects in complex

images, and could be included.

Feature detection is a relatively low-level image processing operation. Object

recognition starts from the detection of individual features. Therefore, feature

detection performance has a fundamental influence on the whole system.

Feature detection identifies a feature from a patch of an image. A computer

has to know what a feature looks like. In general, there are two main methods.
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Figure 3.2: A feature map of a face. A face is distinguished from a complex

background by several features: two eyes, nose, and mouth. These features are

composed together to form a face. These features and the relation of locations

and sizes are unique to a face. A feature map conveys this information.
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The first is to describe the feature manually. It needs an expert using a special

programming language to code the feature, line detection is a good example.

The second is to teach the detector by presenting it training samples, using a

machine learning approach. By using machine learning algorithms, a computer

program automatically learns features from those training samples. These two

methods both have their merits. Recently, much emphasis has been paid on the

latter because it is often difficult to describe a mass of objects manually. There

have been many feature detection algorithms following the second approach. In

this thesis, the second approach is taken, using machine learning algorithms to

perform object classification.

An important task Cengji must fulfill is to scan the input image and identify

individual features in it. When an input image is presented to this system, feature

classifiers will scan the image to find features. During this process, classifiers

classify each scanned sub-image patch, and the system will give each sub-image

a label. Detected features are then passed to the next stage.

The scanning can be simple, pixel by pixel, or smart, guided by higher-level

knowledge. A commonly used method is to use grids or certain templates to scan

across the image pixel by pixel to extract data to the classifiers [108, 50, 43].

When one classifier finishes its searching over the image, another classifier then

repeats the same scanning for the next feature.

The crude pixel by pixel scanning for features can be computationally expen-

sive and time-consuming. Some knowledge about the target object may be used

to guide the feature detection stage to reduce this time. When the system has

knowledge of the spatial relations among features and some features have been

detected, the expected relation between features mean only certain parts of the

image need to be searched for the remaining features. The human visual system

makes extensive use of contextual information for facilitating object search in

natural scenes [105]. This suggests that the movement of eyes is driven by tar-

get locations which are deduced by applying learned knowledge about the scene.

Using or imitating these processes can help the hierarchical system effectively

search for features. The autoassociation and attention mechanism, which will be



36

introduced in section 3.2.2, provide such a process. When the system finds one of

the features, an expectation of other relative features is generated and tells the

system possible locations and sizes of those features. At the same time, the sys-

tem can ignore less relevant information and concentrate on searching important

parts of the image for relevant features. This strategy can improve system scan

performance.

The process of feature detection, especially of scanning, can use either a gen-

eral approach or a domain-specific one. For example, the pixel by pixel sequential

scanning is an often used general approach of scanning. It can work for many

scanning tasks but may not be the most effective. When adapting this system to

a domain, the scanning strategy can be adjusted to have a better performance,

i.e. speed and precision. The adjustment can include domain-specific scanning

order and locating important image areas. The adaption of the feature detection

process to be domain-specific will be illustrated in Chapter 4 and Chapter 5.

3.2.2 Using Attention Mechanism

Cengji is designed to take advantage of an attention mechanism such as used

by the human vision system to optimize the search for features. So far, humans

have not had a thorough understanding of their own vision system, but found

some important mechanisms, which can improve computer vision systems’ per-

formance.

Associative Memory

An autoassociative memory is a structure storing learned patterns, which can

map an input pattern to a most similar stored pattern [74, 66, 67, 40]. When this

system is used to help feature detection, it needs information about the features

to be searched. This information includes what these features are and where they

can be located. A feature map comprises all this information. So for Cengji, the

feature map is the pattern that an autoassociative memory learns and stores.

A well trained autoassociative memory can retrieve a whole feature map stored
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when the input is only a partial feature map which only contains feature having

been found [74].

Attention Mechanism

An attention mechanism is a way to help the object recognition system focus

on features relevant to the target object without spending time on irrelevant

information. The core of the attention mechanism is the autoassociative memory.

The autoassociative memory forms a whole feature map using only those features

found earlier. This generated artificial feature map will tell the system what

other possible features may exist and where they might be. This process is a

mapping from a partial feature map (containing only the found feature) to a

learned whole feature map stored in the autoassociative memory, which has the

smallest difference from the partial feature map.

The attention mechanism helps Cengji search for features in a ‘smarter’ way.

For example, when the system is scanning for a face and an eye is found, it will

automatically select feature classifiers and go to the possible positions of other

features, for example, nose and mouth, under the instruction of the associative

memory. These feature locations are indicated by their top left corner coordi-

nates. The system will conduct a local search at those proposed locations. The

search area size can be decided arbitrarily or experimentally to reach the best

balance between speed and precision. Currently, the search areas are decided

by the user. For example, when the system is led to the proposed location of a

mouth, the search area will be a 20×20-pixel area (over which the top left corner

of the feature can move) whose geometric centre is the proposed location.

There are some machine learning algorithms that can be used to implement

the attention mechanism. For example, a feed-forward neural network trained

with feature maps both as input and output or a KNN algorithm can act as an

associative memory. Figure 3.3 is a sample. Each box in the picture represents a

feature holding the pixels of some label value. The box in the left side represents

a right eye. When it is input to the autoassociator, the autoassociator generates

a partial feature map of the face. Then, according to the feature maps stored in
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Figure 3.3: An autoassociator generates a complete face feature map according to

a partial face feature map.

the associative memory, the autoassociator automatically completes this partial

map and retrieves a whole artificial feature map of a face.

Work Flow of Cengji Using Attention Mechanism

When applying the attention mechanism, this system uses knowledge of the tar-

get object to focus only on certain features and possible regions which may con-

tain these features, without paying attention to every part of the image. This

knowledge is stored in the autoassociative memory and includes location rela-

tions among features and possible locations of each feature in the target object.

This information is conveyed by the feature map. A feed-forward neural network,

trained using feature maps, can learn and memorize knowledge about the target

objects.

Figure 3.4 is a flow chart showing how a dual-layer Cengji uses its attention

mechanism. The first layer of this system starts from searching for the first

feature. This feature can be any of those forming the target object and can

be found by basic pixel by pixel search method. When it is found, the system

will use it to form a partial feature map. Then the attention mechanism uses

its autoassociative memory and this partial feature map to produce an artificial
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whole feature map. This artificial feature map will tell the system what other

relevant features may be present and where these features are most likely located.

According to this information, the system selects corresponding feature classifiers

and goes to possible locations to search for these suggested features. If a feature

classifier finds an expected feature in the possible region, then it will report the

feature label and its coordinates to the system. Otherwise, this expert reports

nothing to the system, and the next expert will perform search. This process will

stop when every classifier completes its search. Cengji then forms a final complete

feature map according to search results reported by the feature classifiers and

sends it to the second layer. The second layer judges whether this feature map has

the structure that a target object has and gives the final output. The attention

mechanism speeds up feature search and improves feature location precision by

directing classifiers to locations with a higher likelihood of containing features.

There are two layers in this flow chart.

The autoassociative memory is stored in a feed-forward neural network. Its

input is a partial feature map which only contains one or a few features. Each

pixel within a feature map has the label value of the feature which it belongs to.

These values have to be scaled to between 0 and 1 before the partial feature map

is fed into the autoassociator. Different inputs, i.e. the locations of the right eye

vary, will produce different outputs which means the locations of other features

might be different.

Locating proposed features may be difficult due to the performance limitation

of the associative feed-forward neural network. In particularly separating each

feature type from its real number. Some features can be directly isolated, but

the identification of some features will be difficult because the associator can not

discriminate them well. Therefore it needs some generic method to discriminate

those overlapping features. For example, in the face feature map, it is difficult

to separate the mouth and nose. In order to locate these features, the output

raw feature map is thresholded to a binary image. I find the smallest rectangle

containing the lowest image patch and use its coordinate to decide the locations of

proposed mouth and nose. The method of feature separation is domain dependent
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Figure 3.4: Flow chart of a dual-layer Cengji with attention mechanism.



41

and must be adapted for each target. The following is the procedure of applying

the attention mechanisms, taking face classification as an example.

A. Find the right eye and generate a partial feature map;

B. Feed this partial feature map into the associative feed-forward neural net-

work and produce a raw feature map, see Figure 3.5;

Figure 3.5: Step 1: associator produces a raw feature map using a partial feature

map.

C. Apply image processing methods (erosion, dilation etc.) to generate binary

image patches, see Figure 3.6;

Figure 3.6: Step 2: process the raw feature map to be binary.

D. Find the smallest rectangles containing each patch and decide patch label

(i.e. feature label according to the major values within the raw feature map).

The location of each proposed feature is geometrical centre of the rectangle. To

separate the mouth and nose, I use rectangle corners to determine the locations

of proposed mouth and nose, see Figure 3.7;

E. A feature map is proposed. See Figure 3.8.
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Figure 3.7: Step 3: find locations of features.

Figure 3.8: Step 4: produce a full feature map.

3.3 Algorithms Used and Data Format

Cengji is designed to be an open system. Every part of it is a module whose

algorithm can be selected according to the algorithm’s performance and system

requirements. In this thesis, I used SVM as the main classification algorithm and

feed-forward neural network as the associator, as described here.

3.3.1 Support Vector Machines

In this experiment, the system takes advantage of the high classification per-

formance of Support Vector Machines (SVMs) to perform feature detection and

object classification. There are several SVM packages available, such asmySVM ,

SVMdark, winSVM , LibSVM , SVMstruct and so on. LibSV M , developed by

Chang and Lin [24], was selected as the SVM package for face classification ex-

periment. An OpenCV SVM implementation was selected for thermal person

detection. Both are widely used SVM packages and are easy to integrate into a

system.
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3.3.2 Feedforward Neural Network

A feed-forward neural network can act as an autoassociator when the input vec-

tors and output vectors for training are exactly the same [63, 72]. For Cengji, a

two layer feed-forward neural network, which comprises one hidden layer, is used

and trained using back propagation. When it is trained, each feature map is both

the input and the output. This feed-forward neural network remembers these fea-

ture maps after training. So that when a partial feature map is presented, this

autoassociator can produce a completer feature map containing other expected

features.

3.3.3 Data Format

This face classification experiment uses 8 bit gray scale bitmap (bmp) as input.

The bmp format is one of the simplest image formats. It is widely used in

research. There are 3 or 4 parts in a bmp file. The first part is bmp file header.

The second part is bmp information header. An optional palette follows. It is

optional because there is no palette unless we are dealing with an indexed colour

image. The last part is the image data. The number of bytes in each line must

be divided exactly by 4. If it can not, 0x00 must be appended to this line until

it can be divided exactly by 4.

Bmp image files have to be converted to the format that the LibSV M and

OpenCV SVM can read. Following lines are data samples:

1 1:0.423529 2:0.505882 3:0.592157 ... 10:0.674510 11:0.674510 ...

725:0.227451

2 1:0.568627 2:0.568627 3:0.596078 ... 10:0.654902 11:0.670588 ...

725:0.615686

The first number is the sample class, which is the target value. In classification

mode, the target value denotes the class of the example. It is an integer to indicate

which class this sample belongs to. Following it are sample element indices and

element values. Element indices start from 1 and increase. Element values can

be integer or decimal. Normally these values are scaled to -1˜1 or 0˜1 to avoid
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calculation problems [54]. Value pairs are separated by a space. Feature/value

pairs are ordered by increasing feature number. Features with value zero can

be skipped. A program was created to convert image files to the specific format

using Visual C++.

3.3.4 Software Used

In this thesis, the SVM package for the face recognition experiments is Libsvm−

2.84. OpenCV −1.0 provides the SVM implementation for the extended thermal

person recognition. Visual C++ 6.0 is used for the face classification experi-

ments. Visual Studio 2005 is used for the person detection experiments.

3.4 Training of Cengji

To create Cengji, one of the most important procedures is the training of the

system. A classifier has to be trained before use. In this procedure, training

sets for each individual classifier are created. The quality of the training sets

determines the performance of a machine learning system. A well-constructed

training set can demonstrate the best performance of an algorithm, on the other

hand, a bad one can limit the algorithm’s potential and lead research in a wrong

direction by discouraging use of an algorithm. So it is important to have a proper

training methodology.

There are more than one layer and more than one classifier existing within

this system. It requires different training datasets for each layer and classifiers

within these layers. In the lowest level, classifiers are trained to detect features

which are the basic components forming higher level objects. Their training sets

are image patches containing a feature. In the higher level, there are feature map

classifiers. Their training sets are feature maps generated by the trained lower

level. These training sets are generated automatically.

I did not use the training set creation method proposed by Huang et al [55],

which considered the creation of training sets for two layers as two independent

processes. They created training sets for each layer separately. There was no
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direct connection between two layers when creating training sets. I consider the

dual-layer system as an integrated system. The creation of feature training sets

is tightly connected with the creation of the feature map training set. Therefore

the two layers have mutual influence on each other.

The training sets for the higher level are determined by the lower level. An

ideally trained first layer can precisely locate basic features and reject non-features

in an image. At the same time, a well trained higher level can also help to improve

the training sets for the lower level in return by giving the correct locations of

targets in the lower level.

Considering the complexity and enormous diversity of the negative samples,

it is difficult to create perfect training datasets, especially a negative training set.

When training a machine learning system, several challenges emerge. First, what

is the best performance that a learning method can reach using the available

data? There are some documents describing how to decide the training standard

for a learning task [102]. This limiting performance can be a trade off between the

false positive detection rate and the true positive detection rate. This trade off

can be found by using the ROC curve [36, 68] of a learning system. It is located

at the turning point at which the increasing speed of correct detection rate starts

to become slow with respect to the increase of false positive detections. Second,

how to select training samples from image database? Sung [102] introduced

active learning, which uses information derived from its current state and prior

knowledge to gather useful examples, to optimize the example selection. Cengji

is trained hierarchically from the lowest level to the highest level. I use trained

lower level to form training datasets for higher level, then use the higher level to

improve the lower level training database in return. This is a closed loop and is

repeated until the system becomes stable.

Bigger training datasets usually give more comprehensive sampling on the

domain in which a learning system is to learn and generalize, and have higher

likelihood to include key samples. But it is impossible to include all possible

samples into training sets in some real-world applications. For example, if I

exhaustively sample a 84 × 96 non-face image into 25 × 29 non-eye sub-images,
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1. Initialize training sets for each feature classifier. Extract lowest level features

from positive training images to form the initial version positive training datasets

for the first level. Randomly extract non-features from negative training images and

non-feature areas of positive training images to form the initial version of negative

training datasets.

2. Create first version of feature classifiers. Train classifiers using the initial version

training datasets.

3. Improve feature classifier training sets further. Scan trained classifiers across both

positive and negative training images to generate training datasets for feature map

classifier in the second layer. Train the feature map classifier and join the first layer

and the second layer together to scan both positive and negative images. Check

misclassified images. Add non-detected features to positive feature training datasets

and false positive detections to negative feature training datasets.

4. Optimize each classifier using new training sets and train feature classifiers on new

training sets.

5. Get the final version of training sets for all classifiers. Repeat step 3 and 4 until

the correct detection rate starts to become stable. The creation of training sets is

finished.

6. Use the final system to detect test sets.

Table 3.1: The procedure to create training database for a dual-layer Cengji.

there would be 3963 sub-images. Therefore, for a 350 images training dataset,

there will be 138,7050 sub-images if all these 350 images are sampled. This large

sample number would make training and classification infeasible. Some method

must be used to find key samples to limit the size of the training sets. Table 3.1

shows the procedure of creating the database and verifying the training result for

a dual-layer Cengji.

An important procedure of training a SVM classifier is to find the proper

kernel and its optimized parameters. During training, samples of two classes

are presented to the classifier. After analysing these training data, the classifier

finds the hyperplane which separates two classes with maximum margin in a
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given dimensional space using a given kernel function, K. The aim of training

the SVM classifier is to find a suitable kernel, K, and its associated parameters.

Cross-validation [62, 77] is used for parameter evaluation.

3.5 Summary

Cengji is a component-based computer vision system. It represents an object

using its constituent features. A feature map is a medium to convey the object’s

structure directly and preserve all relative positions among features explicitly.

This representation is inspired by the way that the human vision system stores

knowledge of objects. The benefit of adopting the hierarchical structure is clear

that it can effectively speed up the system by searching a smaller area. It also

provides a chance to introduce the attention mechanism into the system. By

applying these mechanisms, this system can focus its computation only on those

salient features forming an object, therefore a higher speed can be achieved. Also

less noise will be introduced as the attention of the system is focused on a limited

area.

The next two chapters apply this system to two different domains in image

classification and object detection.



Chapter 4

Application to Face Detection

In this chapter, I will apply Cengji to classify faces. Face detection is one of the

important and challenging areas of object recognition. Much effort has been done

to improve the performance of face detection systems [113, 115, 109, 103, 44]. Face

detection involves identifying image patches containing a face, which might be in

different attitudes, illumination and expression. There are broad applications of

face detection in security surveillance, vision-based human computer interaction,

ID identification, and so on. Face classification is the first step of face detection,

which is to classify if an image patch is a face. The variation of face pose,

presence or absence of structural components, facial expression, occlusion by

other objects, image orientation, and imaging condition present challenges for

face detection [113]. There are many face databases, and much work has been

done in this area. So face detection is a good choice to verify the framework of

this hierarchical system and test its performance.

4.1 Applying Cengji to Face Classification

A human face comprises several prominent features, especially two eyes, a mouth,

and a nose. These features form a face according to certain geometric and spatial

relations. These relations include distances between different features, their rel-

ative locations, the proportion of feature sizes to higher level objects, and so on.
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They can be represented using a two-level hierarchy. The bottom layer of this

hierarchy is composed of individual features. The top layer is a face classifier.

Figure 4.1 is the basic structure used for face classification. In this figure, the

attention mechanism is not shown.

SVM classifiers are used to detect features and relations among them because

of the high classification performance of the SVM [26, 50]. There are four individ-

ual SVM feature detection classifiers, two eyes, nose, and mouth, composing the

first layer. This layer searches for features in the input image. By detecting these

features, the system finds their locations in the image and labels each feature.

Using the features’ geometry and position information, the system generates a

feature map, which comprises the structure information among features. The

second layer is used to identify the structure of the target object formed by those

detected features. Its input is the feature map created by the first layer. The

output of this system is a class label identifying if the input image is a face.

When this system classifies faces, feature classifiers in the first layer scan the

input image according to a certain strategy. The search for a feature is achieved

by moving a grid over the target image to extract image patches for classification.

The grid can have different sizes from the feature size for training. The system

just needs to resize the image patch extracted by the searching grid to the training

size before classification. In the face classification experiment, which is mainly

to verify the framework of Cengji, the feature sizes and face sizes are fixed as for

training, so the grid sizes keep fixed as well. When the feature grid moves to a

pixel, it extracts all pixels in an area which starts from that pixel and has the

same width and length as the feature. These pixel values are then sent to the

feature classifier to calculate whether these pixels form a feature.

Search of a feature stops when the first sample of this feature is detected.

When a classifier finds the first feature sample, the movement of the grid stops.

This feature’s coordinate and label are used to form a feature map. The classifier

can also continue to search the whole potential area and find all possible features,

then the system takes the features with the highest probability to form a feature

map. In this thesis, Cengji takes the first detected feature to form the feature
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0

Figure 4.1: Structure of dual-layer Cengji without attention mechanism used for

face detection.
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Figure 4.2: Feature classifier movement routes for Cengji on face classification.

To detect a left eye, the eye classifier moves from right to left and top to bottom.

For the right eye, the classifier moves from left to right. To detect mouth and

nose, two classifiers move from bottom to top and left to right.

map.

For face classification, I designed a feature scan strategy for this system.

Figure 4.2 shows the movements for each feature classifier. Two eye classifiers

were trained with the same training sets. This is because the difference between

the left and right eyes is small. They are identified by different search routes in

the potential target area. During the scan, the grid can ‘jump’, which means after

the grid extracts data and the feature classifier does not detect a feature at one

position, the grid can ignore neighboring pixels and jump to another position to

start new data extraction and detection. This can save scan time for the system

without reducing the detection rate significantly.

When applying the attention mechanism, this system uses learned knowledge

stored in the associative memory to speed up search and improve feature location

precision. For a face, the stored knowledge can be that the nose is above the

mouth but below the two eyes, two eyes are almost at the same altitude, and so

on. All this information is conveyed by the feature map. A feed-forward neural
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network, trained using feature maps, learns the face feature maps. Figure 4.3

shows how this system detects features using the attention mechanism.

The attention mechanism helps this system focus attention on areas with

more likelihood containing other features when one feature is detected. The first

feature to be searched can be any of those features within the first layer. The

search for the first feature is the same as that in Figure 4.1. Once the first sample

of this feature is found, the feature classifier will report its location and label to

the system to form a partial feature map only containing this feature. The system

then uses this partial feature map and the autoassociative memory to produce

an artificial feature map containing other features. This generated feature map

will tell the system other related face features and their possible locations. Then

the proper classifiers can be selected and searching areas can be decided. The

search within these proposed areas is the same as that of the first feature search.

Once all the classifiers finish their feature classification, their search result will be

composed together to form a final feature map. The second layer of this system

will decide if it is a face’s feature map. The procedure of applying the attention

mechanism has been introduced in Figure 4.15, Chapter 3.

4.2 Source Database

The main purpose of the experiments on face classification is to understand the

performance of the dual-layer Cengji when the attention mechanism is absent and

present. This will display the impact of the attention mechanism. As a single-

layer structure is popular and easy to implement, it is also useful to compare the

difference between it and the dual-layer system to see how a dual-layer system

performs. A face database, which comprises a face training set and a non-face

training set, is constructed. This database is used to train the single-layer SVM

classifier directly and to create training sets for feature and feature map classifiers

in the dual-layer system.

In order to focus on the understanding of systems’ performance of different

classification systems and simplify the training process, faces in this database are
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Figure 4.3: Structure of the dual-layer Cengji with attention mechanism used for

face classification
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mainly frontal, that is the face attitude extremity in all directions is no more

than ±30o.

All face and non-face examples are available in public databases. I took the

following source databases to construct the face database: The Database of Faces

from AT&T Laboratories, Cambridge, The Japanese Female Facial Expression

Database, The CalTech Database, The PIE Database, The Psychological Image

Collection at Stirling. BEV1 Dataset and Caltech Database were used for creating

negative samples.

The Harvard Face Database is another database used, which is not used to

create feature databases to train classifiers. It is used to test the generalization

performance of different classifiers.

Each face database has different image sizes and different background against

the faces. Faces and negative samples were manually extracted from these

databases and adjusted to the size of 84×96 in order to coincide with the Harvard

face dataset. For the experiments, 350 face images were randomly selected for

training from above datasets and 150 were chosen for test. 350 non-face images

were chosen for training and 150 for test. The testing samples have the same

distribution of source databases, which means if 10% training samples are from

database A, then 10% testing samples are from database A as well. For details

of databases used, please see Appendix A.

4.3 Constructed Databases

To train this dual-layer system requires several separate training datasets for

each layer. In the first layer, four feature classifiers need to be trained. There are

three databases, each respectively for eyes, mouth, and nose. They were created

manually, as described in Section 4.3.1. In the second layer, there is a feature

map classifier. Its training set is generated by the trained first layer. It is mainly

created automatically, but needs certain manual control and adjustment. There

are no feature training sets directly available. They are derived from the face

databases mentioned in Section A.1.
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The training set for the second layer is determined by the first layer. An

ideally trained first layer can precisely locate features and reject non-features in

a face image. So when creating the training set for the second layer, the ideal

first layer can create correct feature map for faces and non-faces. A well trained

second layer can also help to improve the performance of the first layer in return

by giving the correct feature locations. But in fact, considering the complexity

and enormous diversity of the non-face background, it is difficult to create a

perfect first layer.

Training a dual-layer system is a process of improving the training database

gradually to reach a training limit. Table 3.1 in Chapter 3 has shown the proce-

dure of generating the database and verifying the training result for this system.

4.3.1 Creating Feature Database

The initial training dataset has 350 faces and 350 non-face examples. I extracted

face feature training datasets from these faces and non-faces. The feature sizes

are decided by their geometry characteristics. For the eye, each eyebrow and

eyeball in all images should be contained entirely within the feature area and the

pupil should be at the centre of the feature image patch. 25×29 is the size which

contains the biggest eyebrow and eyeball. The size of nose, 38×22, is decided by

the nose width and the distance from bridge of a nose to the very bottom of nose.

The width and the height of mouth decide the size, 33× 20, of mouth samples.

Positive feature examples in the initial training sets had to be extracted man-

ually image by image. The negative feature examples are extracted from non-face

images randomly. Due to the large number of potential non-feature examples,

the creation of negative feature training sets is more difficult. Table 3.1 describes

the basic procedure of creating feature and feature map training sets.

When creating initial negative datasets, I randomly extracted non-feature

examples from non-face images. I also extracted some non-feature examples from

face images. At the same time, one kind of feature samples can act as another

feature’s negative samples, for example, noses and mouths as negative examples

of eyes. Each feature classifier has its own negative training set. This is the step
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1 in Table 3.1. Before the feature classifiers are trained using these sets, the grid

search method is used to choose kernels and optimize kernel parameters.

The most important step is step 3. Those trained feature classifiers are used

to search across face and non-face images in the training face database. The

training face database is randomly split into 5 independent subsets. One is held

out for test. Feature classifiers scan over those remaining four subsets and gen-

erate feature maps. Features used to generate the feature map could be the first

detected during the scan or the one with the highest probability to be a feature.

In the experiment of this thesis, I chose the first detected features to form the

feature maps. The generated feature maps are used to train a feature map classi-

fier in the second layer. This classifier’s kernel and kernel parameters are chosen

by grid search method. Connecting those feature classifiers and this feature map

classifier together, a dual-layer system is constructed. Then the held out subset

is presented to the system and classified. This system might mis-classify some

samples in the held out subset and all these misclassified images are checked.

Those non-detected features will be extracted to positive feature training sets,

and false positive detections will be taken to negative feature training sets. This

process will be repeated 5 times until all subsets are tested. At the same time,

the average classification correct rate, Rcorrect, of all tests is recorded. In step 4,

the updated training sets are used to retrain the feature classifiers. Again, grid

search is used to optimize the classifiers’ configuration.

Step 3 and step 4 will be iterated several times until Rcorrect reaches maximum.

Normally Rcorrect will have a maximum. The configurations of classifiers in this

iteration will be chosen as the system configuration. The training samples will

also be fixed. This maximum may not be the global maximum but as long as

the Rcorrect is good enough for the experiment, it will be taken. How to find the

global maximum is not a topic of this thesis. Now the system is converged and

all individual classifier training sets are formed. Final version feature classifiers

are trained using these datasets. The final feature map training set is generated

by scanning feature classifiers on all examples in the training face database using

the final version feature classifiers. By training on this final feature map training
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Feature Name Number of Images Image size

Positive Negative

Eye 700 700 25× 29

Nose 350 372 38× 22

Mouth 350 372 33× 20

Table 4.1: Feature Datasets details

set, the final version feature map classifier is created.

Table 4.1 shows the details of final version feature training sets.

Figure 4.4 shows some positive feature examples.

The generation of negative samples is the core of creating good feature clas-

sifier training sets. The challenge is how to effectively find those key negative

examples, which are close to positive images and can be support vectors. The

method proposed above can effectively solve this problem. One of the benefits of

using the whole system to create and optimize feature training sets is that the

user does not have to manually create a feature map training set. This eases the

creation of a feature map training set. This method can offset the imperfection

of feature classifier training sets. It counteracts the influence of imperfect feature

training sets by decomposing feature training errors into feature map training

sets. This makes the dual-layer system tolerate certain misclassification in the

first layer so that the correct classification rate can be achieved overall.

Figures 4.5 displays some samples in the negative feature training sets.

4.3.2 Training the Feature Map Classifier

In the second layer of the dual-layer system, more interest is paid to the structure

of the face. There is a feature map classifier, which is trained on an automatically

generated training set to learn the face structure.

I considered two ways to create the training set for the feature map classi-

fier. One is to manually create feature maps by giving random locations to each

feature. In order to create a positive dataset, different tolerances are given to
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Figure 4.4: Some positive examples in feature datasets. These samples are from

different source databases. Their illumination are various.
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Figure 4.5: Some negative examples in feature datasets. There are some patches

containing features but the centres of these features are too far away from the

patch centres. Also a feature can act as another feature’s negative sample.
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each feature which allows each feature to change its location in a certain area.

The feature map is treated as a negative sample if these features are outside of

their positive areas. It is convenient to control the composition and distribution

of samples in the training set by using this method. But it puts high demand on

the training of feature classifiers. These feature classifiers must be trained to find

features precisely. Otherwise, some false positive detections may be produced. If

these false positive detections locate where true features should be, the feature

map will be wrong and classification will fail.

The problem with the manual training set creating method is that it does not

cooperate with the training status of the first layer very well. Instead of using

a manually created training set, both positive and negative samples in feature

map training sets were automatically generated by the trained first layer. This

technique has been introduced in 4.3.1.

4.4 Experiments

4.4.1 Single-Layer SVM Classifier

The structure of a single-layer SVM classifier is relatively simple. It directly takes

images as inputs, and outputs the classification results. The single-layer SVM

classifier is widely used due to the simple structure and ease of training. I trained

the SVM to perform classification of faces as follows.

Method. 350 face images and 350 non-face images in the training face dataset

were used to train the single-layer SVM classifier. The remaining 150 face and 150

non-face images were used in testing. I compared 4 types of kernels’ performance

using grid search method. A linear kernel had the highest correct rate, 98.33%,

converged over 5-fold cross validation. The linear kernel was chosen for the single-

layer SVM classifier. The grid search method helped to find the best value of the

kernel parameters. The Linear kernel has the best performance when cost is 3.

In the grid search, the RBF kernel reached its highest correct rate 97.50%

when Cost=8 and γ=0.000124; the linear kernel reached the highest correct rate
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1. Use grid search method to search proper kernel and optimize kernel parameters on

training dataset.

2. Use selected kernel and its optimized parameters to train classifier.

3. Use trained classifier to classify test dataset.

Table 4.2: A procedure to train and test single-layer SVM classifier.

Set Name Classification result Correct(%)

Correct Incorrect Total

Faces 149 1 150 99.33

Non faces 150 0 150 100

Total 299 1 300 99.67

Table 4.3: Results of experiment using single-layer SVM classifier.

98.33% when Cost=3; the polynomial kernel reached its highest correct rate

97.50%, when Cost=2 and γ=7; the sigmoid kernel only reached the highest

correct rate 50%. For all kernels, the search range of Cost is between 0 and 10

which was decided after a coarse search from 2−5 to 215 where 23 gave the highest

correct rate, search step is 1; the search scope of γ is between 1/k and 10 which

was decided after a coarse search from 2−15 to 25 where 23 gave the highest correct

rate. k is the number of attributes in the input data. γ has different meaning for

different kernel. See Chapter 2.

Once the grid search method found the proper kernel and its optimized pa-

rameter configuration, a SVM classifier was trained on the training face dataset

using the optimized kernel. The trained classifier was tested on the test face

dataset. Table 4.2 shows the procedure of testing a single-layer SVM classifier.

Results. The single-layer SVM classifier displayed excellent performance. For

the 150 test faces, 149 were successfully detected and only 1 was missed. The

success rate was 99.33%. For the 150 non-faces, 150 were successfully detected

as non-faces and 0 were misclassified as faces. The success rate was 100%. The

total correct rate for the 300 test images is 99.67%. See Table 4.3.

Figure 4.6 is the only wrongly detected face. Compared with other faces, this
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face has bigger attitude extremity and relatively different feature configuration.

Its eyes are located lower and hair occupies more area than other face.

Figure 4.6: This face is recognised as a non-face by the single-layer SVM classifier.

Discussion. The single-layer SVM classifier displays a good performance on

detecting faces. On the one hand, the high correct rate is due to the high per-

formance of Support Vector Machines. On the other hand this might be because

of the non-face examples. The negative examples might be relatively easy to

be discriminated from faces. The SVM classifier can easily learn the separation

boundary. The performance can be further tested using more difficult examples

in future.

4.4.2 Cengji without Attention Mechanism

Cengji works in a different way compared with the single-layer SVM classifier.

There are two layers each for detecting features and judging feature maps. In this

experiment, I test the system without attention mechanism on the face dataset.

Methodology

The procedure of creating training datasets for the dual-layer system has been

introduced in Section 4.3.1. For the dual-layer system, feature kernel types and

their kernel parameters have been decided when creating training sets.
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When detecting a feature, a grid with the same size as the training feature

images scans the whole input image and outputs image patches to the classifier.

Once the classifier finds a feature, it gives the feature a label unique to it and

records its location. The grid moves according to certain strategies which are

task specific. For example, the grid scans from right to left and top to bottom

for the right eye, etc. See Figure 4.2.

The emphasis of Cengji ’s training is put on the first layer. I tested perfor-

mance on the first layer then I did the joint test of the whole system.

Performance of the First Layer on Feature Detection

The first layer detects independent features from faces. There are 3 classifiers to

be trained separately. The performance of the first layer is decided by individual

feature classifiers.

Method The performance of an individual classifier is determined by the train-

ing dataset and training method. The creation of the training set is the most

important procedure of creating a classifier. This procedure has been introduced

in 4.3.

When a classifier finds a feature, it gives the feature a label. The grid moves

according to rules, as in Figure 4.2 and previous description. When a search finds

a feature or finishes, other begin searches for the remaining features in turn.

150 face images and 150 non-face images were presented to the first layer for

the test. For each of these images, 4 feature classifiers scanned it in turn. In the

experiments, I used the first detected features to build feature maps.

Results. I used a 5-fold grid search introduced in Section 2.4.4 of Chapter 2 to

find the best kernels and optimize their parameters. The RBF kernel performed

the best for each feature classifier. During 5-fold cross validation grid search, the

highest average accuracy on the eye dataset was 96.77% when cost C was 11 and

γ was 0.001379, nose dataset 95.57% when cost C was 6 and γ was 0.001196, and

mouth dataset 87.26% when cost C was 10 and γ was 0.001515. These kernel

parameters were then used to train the feature classifiers.

For the test face images, the feature classifiers work well but there were false
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positive detections in some faces. For non-faces, the second layer can reject most

of these, but there were also some false positive detections existing in the first

layer. Figure 4.7 is a sample of detecting different features from the face. Note

that each feature may be recognized several times. The bottom right image is

a correctly classified face in which only the first detected features were taken to

form the face feature map.

Discussion. The first layer of this system plays an important role for the dual-

layer SVM system. The first layer feature detectors can detect most features in

images but there were false positive feature detections existing. The false positive

detections increase when the light and attitude extremity are increased. This

situation can be improved by improving the datasets, such as adding more key

negative samples and adjusting the positive samples. (The performance of the

feature classifiers can also be improved by adjusting cost C of each class when

the imbalance of training example numbers of two classes is big. This method,

also known as weighting, adjusts the separation boundary between two classes to

optimize the classification [94, 107, 26].)

Joint Performance of Dual-Layer Cengji

Method. In this experiment, the first layer and the second layer were joined

together to detect faces from images. The first layer is the same as mentioned

in 4.4.2. The feature map classifier of the second layer is a SVM classifier as well.

The creation of the training set has been introduced in 4.3. The kernel type and

kernel parameters of the feature map classifier were selected by 5-fold grid search

method.

Figure 4.8 shows the relation between the correct rate and the number of

training cycles. There are four iterations. During the second training iteration,

Rcorrect reaches maximum. The configuration of the classifiers in this iteration

was chosen as the system configuration. The training samples were also fixed.

When this system classifies faces, an input image is presented to the first

layer. Four feature classifiers in the first layer scan this input image according

to predetermined sequences, right eye→mouth→nose→left eye. When the first
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Figure 4.7: Detection of features. Each feature can have more than one detected

samples, only the first one will be passed to Cengji to form the final feature map.
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Figure 4.8: Relation between training iterations and average correct rates. Dur-

ing the second iteration, the average correct rate reaches maximum: %94.15. The

configuration of classifiers and training sets were fixed as they were in this itera-

tion.

classifier finds the first feature it is looking for, it stops the search and reports

the feature label and coordinates. Then the next classifier starts to search. This

search process will be over once all classifiers complete their search. After the

feature search is complete, feature classifier outputs are composed to form a

feature map, which is the input to the second layer. The second layer judges

whether the feature map fed to it has the structure that a face has. Its output is

1 for face, 2 for non-face.

Results. Feature classifiers have exactly the same configurations as intro-

duced in 4.4.2. Parameters of the feature map classifier kernel were decided by

grid search. The linear kernel had better performance than the other kernels. The

highest correct rate was 94.17% when cost C was 7. The dual-layer system gave

a good performance: 286 images were correctly detected from 300 test images,

150 faces and 150 non-faces. The overall correct rate was 95.33%. See Table 4.4.

Figure 4.9 and Figure 4.10 show some samples of successful classifications. Fig-

ure 4.11 and Figure 4.12 show some samples of failed classifications.
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Set Name Classification result Correct(%)

Correct Incorrect Total

Faces 138 12 150 92

Non faces 148 2 150 98.67

Total 286 14 300 95.33

Table 4.4: Face classification result of the dual-layer Cengji.

Figure 4.9: Images correctly classified as faces. Red: right eye. Light blue: left

eye. Blue: nose. Green: mouth.
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Figure 4.10: Images correctly classified as non-faces. Red: right eye. Light blue:

left eye. Blue: nose. Green: mouth.
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Figure 4.11: Images incorrectly classified as non-faces. Red: right eye. Light blue:

left eye. Blue: nose. Green: mouth. These images are misclassified because: 1.

Features are not detected; 2. Features locate in positions forming a negative

feature map.

Figure 4.12: Images incorrectly classified as faces. Red: right eye. Light blue: left

eye. Blue: nose. Green: mouth. The misclassification is caused by those false

positive feature detections at the right side of each image. These false positive

features form positive feature maps, therefore these non-faces are classified as

faces.
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Discussion. There were more than one example of each feature detected in

the first layer. Only the first detected samples were taken, and their locations

have a decisive influence on the feature maps. See Figure 4.7. The second layer

classification depends strongly on the first layer. Comparing the results in Ta-

ble 4.3 and Table 4.4 suggests that the performance of the dual-layer system is

not as good as the single-layer SVM classifier. What makes the dual-layer sys-

tem have lower correct classification rate than the single-layer SVM classifier is

false feature detections, especially the false positive detections, where an eye, for

example, is found in an incorrect location. Many non-features are detected as

features. When one of these false positive feature detections was at the first posi-

tion to be detected, the feature map can be incorrect. The occurrence of the false

positive feature detections reflects the imperfection of feature classifier training.

Figure 4.13 shows some correctly classified faces. This figure displays the

compensation effect of the second layer on the training imperfection of the first

layer. In the faces shown in this figure, some features detections are not posi-

tioned well, but the feature map classifier learns these imperfections when being

trained. It can ignore or tolerate them and give the right classification. The

training datasets and procedure have counteracted the mistakes or imperfections

generated by individual feature classifiers.

4.4.3 Dual-Layer Cengji with Attention Mechanism

Cengji with attention mechanism (for simplicity, I call Cengji with attention

mechanism Cengji AM and Cengji without attention mechanism Cengji WA)

focuses on the expected positions of certain features relative to the target object.

This section evaluates the complete system, as described in Chapter 3. This

experiment compares the system’s performance with and without the attention

mechanism, to see the benefits of the attention mechanism.
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Figure 4.13: Compensation on imperfect detection of individual features. (A).

The mouth is not located well; (B). The mouth is not located well and the nose

is at the wrong place; (C). The nose is at the wrong place; (D). The nose is not

located well. But all these faces are correctly classified by Cengji.
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Methodology

Cengji AM uses the same first and second layer of the dual-layer Cengji intro-

duced in Section 4.4.2. Each classifier uses the same kernel, same parameters,

and classification model trained on the same dataset. This means the trained

classifiers of Cengji WA are directly used for Cengji AM. The sole difference is

the introduction of the attention mechanism.

Without the attention mechanism, the system searches for features in the

input image according to certain routes. This is a simple method when there is

not enough knowledge available about the target object. It is straightforward but

time consuming. If the performance of an individual feature classifier is not good,

this method can bring many false detections. The introduction of the attention

mechanism changes this situation. It gives the system clues about the locations of

features when relative information is available. This makes the system ‘smarter’.

A feed-forward neural network is used as an autoassociator. It is trained using

feature map training set by BackPropagation algorithm [77], which is introduced

in Chapter 2. When it is trained to be an autoassociator, both the input and

output vectors in a training pair are the same feature map. The purpose of

training is to reproduce the input fed into this network at the output layer. After

training, it learns and memorizes the structure of feature maps of faces. Even

when the input is a partial feature map, it can still recover the whole feature

map. The challenges of training are to decide the hidden layer size and when to

stop training, and at the same time, to prevent over-fitting. I chose the hidden

layer size by trying as many as possible. The stopping criterion is the training

error.

The training of the autoassociator is relatively independent of the training of

those two layers. Due to the limited training samples and in order to speed up

the training, I resized feature maps from 84×96 to 21×24. The autoassociator

is a 3 layer feed-forward neural network with 1 input layer, 1 output layer and

1 hidden layer. There are 504 nodes in the input and output layers respectively.

The hidden layer has 500 nodes which is decided by experiment. I set a very

small stop error, 0.00001, then trained the neural network with different hidden
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Figure 4.14: Training test on face feature map associator. The left side of each

small image is the input feature map. Right side is the associator output.

layer numbers. Actually, the training did not reach this stop error. But after

certain training period, the training error was stable. 100 node hidden layer

configuration gave stable error at around 1.1. 200 gave stable error at around

0.95. 300 is stable at around 0.81. 400 is stable at around 0.32. 450 is stable at

around 0.09. 500 node hidden layer gave the lowest error 0.06. The stop criterion

is set as the average output error of each sample being smaller than 0.06. 330

face feature maps were used to train the associative feed-forward neural network.

Figure 4.14 shows some test samples of the face feature map associator. The

inputs are face feature maps generated by the first layer but not used to train the

associator. All together 20 face feature maps were used to test the performance

of the associator. An average error of 0.08 was achieved.

A trained autoassociative feed-forward neural network can recall a full feature

map when a partial feature map is presented. Then this recalled feature map can

help the system go to possible places to search for features. When the system

goes to the proposed location, it searches within a certain area, which takes the

proposed coordinates as its geometrical centre. Figure 4.15 shows some samples



74

Set Name Classification result Correct(%)

Correct Incorrect Total

Faces 137 13 150 91.33

Non faces 146 4 150 97.33

Total 283 17 300 94.33

Table 4.5: Face classification result of the dual-layer Cengji AM.

of applying the attention mechanisms to produce proposed artificial feature maps

with partial inputs.

The same test data for Cengji WA is used, for comparison.

Results

Table 4.5 shows the results of face classification using Cengji AM. This system

gave a good performance: 283 images were correctly detected from 300 test im-

ages, 150 faces and 150 non-faces. The overall correct rate was 94.33%. The clear

benefit from this system is that it can save classification time. For classifying test

faces, it saved 25.22% time of a Cengji WA. For non-faces, it saved 16.46% time.

Classifying faces saved more time because for a non-face, a classifier usually finds

no feature after searching the proposed areas.

Table 4.6 is the confusion matrix between Cengji AM and Cengji WA. It sug-

gests Cengji AM gave a slightly inferior performance: 94.33% correct compared

with 95.33%. But it is noticed that the performance of Cengji AM on detecting

positive faces is almost equal to that of Cengji WA: 91.33% vs 92%. What makes

the performance of Cengji AM worse is mainly the recognition of non-faces. This

will be discussed later.

Figure 4.16 and Figure 4.17 show some samples of successful classifications.

Figure 4.18 and Figure 4.19 show some samples of failed classifications.

Figure 4.20 and Figure 4.21 compare the number of calls to feature classifiers

within Cengji WA and Cengji AM. The calls to eye classifier to detect right eyes

are fixed call numbers both for Cengji AM and Cengji WA because the search

for this feature is required by both. Apart from this, the remaining calls are
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Figure 4.15: Samples of proposing feature map by applying the attention mechanisms. Different inputs will produce different

outputs.
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With AM Without AM

Face Non-face Face Non-face

Face 137 13 138 12

Non-face 4 146 2 148

Table 4.6: Confusion matrix of Cengji, with and without attention mechanism.

The row gives the correct class, and the column gives the class produced by the

system.

Figure 4.16: Images correctly classified as faces. Red: right eye. Light blue: left

eye. Blue: nose. Green: mouth.
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Figure 4.17: Images correctly classified as non-faces. Red: right eye. Light blue:

left eye. Blue: nose. Green: mouth.

Figure 4.18: Images incorrectly classified as non-faces. Red: right eye. Light

blue: left eye. Blue: nose. Green: mouth.
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Figure 4.19: Images incorrectly classified as faces. Red: right eye. Light blue: left

eye. Blue: nose. Green: mouth. The misclassification is caused by those false

positive feature detections at the right side of each image. These false positive

features form positive feature maps, therefore these non-faces are classified as

faces.
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Figure 4.20: Calls to SVM feature classifiers by Cengji with and without attention

mechanism on test faces. This table shows calls on SVM feature classifiers when

applying Cengji on 150 test faces. Blue bars are of Cengji WA and red bars

are of Cengji AM. The search of the right eye is not influenced by the attention

mechanism. It is not included in this figure. 1. Calls to eye classifier to detect

left eyes, 18356: 8787 times; 2. calls to nose classifier, 108122: 33645 times;

3. calls to mouth classifier, 24148: 17597 times; 4. total calls, 150626: 60029

times. Attention mechanisms save up to 60.15% SVM calls.

influenced by the attention mechanism. These figures show that the application

of the attention mechanisms saves SVM calls up to 59.11%, 6678 with attention

mechanism compared with 16332 without it.

Discussion

An attention mechanism is the cognitive process of selectively concentrating

on one aspect of the environment while ignoring other things [cited from

en.wikipedia.org]. This mechanism allows a human to concentrate on certain

tasks without being disturbed by useless information. This process also plays a

role in machine learning systems, to avoid confusion from irrelevant features [14].
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Figure 4.21: Calls to SVM feature classifiers by Cengji with and without attention

mechanism on test non-faces. This table shows calls on SVM feature classifiers

when applying Cengji on 150 test non-faces. Blue bars are for Cengji WA and

red bars are for Cengji AM. The search of the right eye is not influenced by the

attention mechanism. It is not included in this figure. 1. Calls to eye classifier

to detect left eyes, 59529: 49966 times; 2. calls to nose classifier, 194340: 55086

times; 3. calls to mouth classifier, 69760: 28575 times; 4. total calls, 323629:

133627 times. Attention mechanisms save up to 58.71% SVM calls.
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The results here indicate that the attention mechanism can help the system

save classification time up to 20.84% on average; 25.22% and 16.46% for faces

and non-faces respectively. Especially the calls to relative SVM classifiers have

been saved up to 59.43% on average; 60.15% and 58.71% for faces and non-

faces respectively. The time and classifier call saving are achieved by leading

the system to the most likely areas containing features. Hence, the searched

areas are reduced. Figure 4.22 shows the reduced search areas. Another effect

of applying the attention mechanism is to help the system locate features with

higher precision. In other words, the attention mechanism enables Cengji AM

to avoid misclassifying certain face features. Figure 4.23 gives an example of the

face correctly classified with the attention mechanism.

The attention mechanism has two influences on the performance of this sys-

tem. On one hand, the attention mechanism reduces the detection of, for example,

non-noses as noses. This means that the feature map is more likely to have fea-

tures within the correct locations, which the second layer can correctly identify

as a face. When the feature classifiers are trained well, they are more likely to

identify non-features in a non-face image within areas suggested by the attention

mechanism, where a positive feature might be. But on the other hand, if there

is an imperfection when training the feature classifiers, the attention mechanism

can cause this system to make some mistakes. When a feature classifier is led to

the possible area suggested by the attention mechanism, if it is not well trained,

it may take a non-feature as a feature. This false positive feature is in the po-

sition that can form a positive feature map. This increases the chance that a

non-face image is taken as a face. The performance of this system is decided

by the interaction of these two kinds of influences introduced by the attention

mechanism. The better the performance of the feature classifiers is, the higher

the performance of Cengji will be.

4.4.4 Performance Test Using Different Database

In the previous experiments, both training datasets and test datasets were from

the same source database. So samples in the test datasets have some common
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Figure 4.22: Reduced search area. (A) shows the search areas of a Cengji WA.

This system searches every feature in broad areas. (B) shows the effect of the

attention mechanism. Once the first feature is detected, the associative memory

generates an expected feature map, which gives the likely area for each feature.

This reduces the search area, hence saves search time by up to 20.84% on av-

erage and reduces calls to feature classifiers up to 59.11% where the attention

mechanism is applied.
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Figure 4.23: Comparison. Left is a result produced by Cengji WA. The nose

location is wrong. Right, Cengji AM correctly located the nose and detected it as

a face.

Figure 4.24: Some samples in Set 5 of Harvard face database. They have more

illumination extremity and some features (eyes, noses, mouths) are even dark,

virtually occluded.

ground as samples in the training datasets. In order to compare the generality

of different algorithms, especially the single-layer classifier and the dual-layer

classifiers, I used two untouched databases, the Harvard face database and a

negative sample database provided by DIP Lab at Cranfield University.

There are 5 datasets in the Harvard face database. Set 1 has the smallest

illumination extremity. And the extremity increases from set 2 to set 5. In set 5,

some features are even dark. Figure 4.24 shows some samples in Set 5. This kind

of images is not in the training sets used for the previous experiments. Table 4.7

shows the experiment results.
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Set Name Correct Rate (%)

Single-Layer SVM classifier Cengji WA Cengji AM

Set1 70 100 100

Set2 52.22 81.11 80.56

Set3 20 56.92 55.27

Set4 8.24 58.24 53.66

Set5 1 47.69 46.83

Table 4.7: Experiments on Harvard database. The face attitude and illumination

extremity increase from set 1 to set 5.

Classifier Classification result Correct(%)

Correct Incorrect Total

Cengji WA 141 13 154 91.6

Cengji AM 143 11 154 92.9

Single SVM 139 15 154 90.3

Table 4.8: Classification results on Cranfield non-face database.

There are 154 non-face images in the Cranfield University negative sample

database. They are outdoor scenes, cars, indoor scenes and persons. Figure 4.25

shows some samples in this dataset. This kind of images are not in the training

sets used for previous experiments. Table 4.8 shows the experiment results. In-

terestingly, Cengji AM has the best performance while the single SVM has the

worst performance on this non-face database.

In this experiment, the dual-layer Cengji AM and the Cengji WA clearly gave

better performance than the single-layer SVM classifier on a different database,

both on faces and non-faces. Especially on the most difficult set 5 of the Harvard

dataset, the single-layer only got a correct rate of 1%. It is much lower than

Cengji. Even for the easier sets, Cengji outperformed the single-layer classifier.

What caused this is mainly the difference between the two different databases.

In different training databases, the face structure may have some differences even

when the image sizes are the same. For example, the distance between two

eyes may be longer than in another database. The single-layer SVM only learns
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Figure 4.25: Some samples in non-face database provided by DIP Lab at Cranfield

University. They are from difference sources.
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one kind of eye distance within one training database, so it can not cope with

the variety of distance in a different training database. Another factor is the

illumination. In the training sets used for previous experiments, faces do not

have illumination extremities like faces in Harvard set 5. Therefore there is no

chance for the single-layer classifier to learn the dark or even occluded faces.

But for the dual-layer system, its first layer detects features with the feature

classifiers then forms a feature map, which is the input to the second layer.

During training, the second layer classifier will learn the configurations of feature

maps. Because only the first detected features are taken to form the feature

map, there is the possibility the detected locations of features may vary from the

locations of features in the images. Therefore the learned feature maps may cover

the feature configurations within another database.

From this experiment, Cengji displayed better generalisation performance

than the single-layer classifier. It has the ability to cope with the variance of

target illumination, appearance and occlusion. This superiority is an important

reason to build a hierarchical and trainable object recognition system.

4.5 Conclusion

In this chapter, I did face classification experiments using the single-layer SVM

classifier, dual-layer Cengji AM, and dual-layer Cengji WA. Then I compared

their generality performance using the Harvard face database and a negative

image database provided by Cranfield University.

In the experiments, the single-layer SVM classifier displayed good perfor-

mance. It got a high classification rate of 99.67%. This has been described

in 4.4.1. The high performance of the single-layer SVM classifier is why it is

appropriate for individual classifiers in the dual-layer system.

The experimental results demonstrate that the developed system achieves a

good result in face classification. The feature map concept has been shown to

work. The dual-layer system with and without attention mechanism displayed

good performance. For 300 test images, the correct rate of Cengji WA and Cengji
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AM are 95.33% and 94.33% respectively. This is the accuracy of discriminating

face from non-face images in a held-out test dataset of 300 images. Further, the

results show that the attention mechanism saves the total time to locate features

by an average of 21%. The calls to relative SVM classifiers have been saved

up to 60% on average. Also the accuracy of located features is improved. I

had expected a greater increase in time, because the scanning algorithm requires

many comparisons before it reaches the point where a feature may occur. I am

currently investigating alternative local search routines to try to improve the

search time. Although potentially the training procedure described in Table 3.1

in Chapter 3 could involve a large number of iterations, the system achieved its

best performance on the training set after just two cycles, so the overhead is

small. However, the improvement in performance was not so large, indicating

that perhaps the initial training sets for the individual feature classifiers were

already comprehensive enough.

The attention mechanism makes this system search intelligently; that is to

say it can directly search in areas with a higher likelihood of containing features

and ignore irrelevant information. This is smarter than exhaustively searching

everywhere without discrimination when prior knowledge about target objects is

available.

The experiments showed the positive effect of the attention mechanism that

it can reduce the classifier calls by leading this system to areas that may contain

features. It can also bring a negative influence into the system when the individual

feature classifiers perform poorly. This influence can be offset to a certain extent

by the joint training dataset creation method introduced in 4.3. The whole

performance of the system is a trade-off between the positive and the negative

effects. The experiments suggest that the hierarchical structure of Cengji with

and without attention mechanism is successful.

Another notable priority of the hierarchical system is its better generality.

The dual-layer system performs better than the single-layer classifier on different

databases. It displayed better invariance to the illumination, appearance and

occlusion variance. This is an importance characteristic to find targets, which
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may be different from its training samples in terms of illumination, appearance

and occlusion, from complex real-world backgrounds.

From the experiments, the feasibility of the hierarchical multi-layer system has

been verified. The application of an attention mechanism has been successful.

It saves feature detection time significantly. Because this system is a machine

learning based multi-classifier system, the training of these individual classifiers

is decisive to the system. The strategy of training this multi-layer system is

effective. Though the single-layer SVM classifier displayed a higher performance

on face classification, the target of this thesis is to create an object recognition

system for a general and robust scene understanding system. In the next chapter,

I extend and further test Cengji in a new domain.



Chapter 5

Application to Detecting People

from Thermal Imagery

In this chapter, I look at the problem of detecting people from complex back-

grounds in infrared images. Infrared imaging has extensive application in both

military and civilian domains [15, 5]. Military purposes of infrared imaging

application include target and threat detection, night vision, target guidance,

surveillance, target tracking, and so on. Civilian applications include remote

temperature measurement, thermal efficiency investigation, wireless communica-

tion, medical diagnosis assistance, fire rescue, and so on. It also has broad uses in

astronomy to investigate the features of planets and other projects from complex

space. Cengji will process more general scenes in this chapter. The images used

were taken from natural environments using a thermal camera. The targets are

people in the scenes. Compared with the face recognition experiments in Chap-

ter 4, target objects have more variety and the background in the image is more

complex. And it is also inevitable the target objects can be blurry or occluded

by other objects. In this kind of situation, a single classifier detecting the whole

target will find it difficult to successfully seperate targets from background. The

hierarchical system is applied to solve these problems. The benefit of applying an

auto-associative memory and attention mechanism will be explored. In addition,

I will also test the performance of a single-layer SVM classifier and a Haar like
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feature classifier, which allows me to compare standard whole-image classifiers vs

my component-based classifier.

5.1 Detecting People from Thermal Images Us-

ing Cengji

In this experiment, the focus is to detect thermally-imaged people from images.

These thermal images of people may be in different appearances compared with

the original training samples or some parts may be occluded. I will apply Cengji

AM to explore the ability of dealing with these complexities and compare the

performance with Cengji WA. The purposes of this experiment are to explore the

generality of this system on different and more difficult inputs and explore the

effects of the attention mechanism on the whole system .

Compared with the experiments of face classification, images with more com-

plex scenes will be used in this experiment. There will be a more complex back-

ground to be processed. The target to be searched is also more complex than a

face especially in terms of pose and illumination. Therefore I used more features

to represent a person. These features include head, waist, left upper body, right

upper body, left lower body and right lower body.

Figure 5.1 shows the structure of the system which is used to detect people

from infrared images, which is similar to that in Figure 4.3.

A difference of the feature search in this experiment is its clustering of detected

features. Detected image patches with similar dimensions within a certain area

will be clustered together to form a new single patch which will be treated as

a single feature. Those clusters with less members than the threshold number,

which is set by the user from an experiment, will be discarded. For example,

all recorded heads will be clustered to filter out repeated detections and noise.

Figure 5.2 shows the clustering procedure. This procedure is intended to reduce

false positive feature detections. The size of the cluster is the feature size but its

location is the mass centre of those clustered detections.
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Figure 5.1: Structure of the dual-layer Cengji for the person detection experiment.
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Figure 5.2: Cluster multi-detections to a final detection. This is a sample of

clustering multi-detections of head for illustration only. The clustering threshold

is 3 detections within certain area which is decided by experiment. A. There are

more than one head detections. Some of them are false positive detections. B.

Those detections with less than 3 neighbours will be removed. Detections with no

less than 3 neighbours (within the green box) will be clustered together to form

a united detection. C. Final detection. Its centre is the average centre of those

three detections.
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When the first seed feature, a head feature currently, is found, its coordinate

and size will be recorded and the system will extract a sub-image from the input

image. The size of this sub-image is decided by the head patch’s size. The rule is

that the head centre line should be identical with the centre line of the sub-image

in width direction and its top should be 1/6 length to the top of the sub-image.

After this sub-image is created, the system will search for other features within

this sub-image. The second feature to be searched can be chosen randomly. For

simplicity in the experiment, I chose waist as the second feature to be searched.

The search strategy is same as that of the head.

When the attention mechanisms are not engaged, this system will scan over

this sub-image for all remaining features using the same procedure used by the

seed feature classifiers. There may be more than one sample (cluster of image

patches) of a feature. I took the first one which passes the clustering threshold as

the detection of these features to compose the thermally-imaged person feature

map. This feature map will be the input to the second layer.

When the attention mechanism is engaged, this system will use the detected

head and waist features to compose an expected feature map using the associa-

tive memory. This memory will indicate other features’ possible locations and

dimensions. The system will go to these suggested locations to search for possible

features in relatively smaller areas compared with areas without applying the at-

tention mechanism. This procedure will confine the search in areas with a higher

likelihood of containing a feature. The search strategy within these areas is the

same as that of the seed feature search. Once all feature searches suggested by

the proposed feature map are complete, the detected features will be composed

to form a final feature map for the second layer classification. Figure 5.3 shows

the procedure of generating a proposed body feature map. This proposed body

feature map will provide the search areas of the left and right upper bodies, left

and right lower bodies. The output from the associative neural network does not

discriminate different features clearly but gives the block area containing these

features. Therefore in Step D, I find the smallest rectangle containing the image

patch and use its coordinates to decide the locations of proposed upper and lower
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bodies. Its four corners will decide the search area centres. The search area sizes

are determined experimentally to achieve the best balanced performance in terms

of search time and accuracy. This figure also shows the different responses from

the associator when the inputs are different.

An important issue with machine learning based object recognition systems

is the selection of inputs used for detection. We have to answer a question when

we develop an object recognition system. That is what kind of inputs distinguish

targets from the background best. It is straightforward to take raw pixels as

input to a classifier directly. But this kind of input may not be the best choice.

Some key information which separates different classes of pixels can be hidden

within raw pixels. They have to be discovered or amplified by certain operations.

For this experiment, I mainly tested three types of values for an image patch:

raw pixel values, Laplacian values [95], and the combination of these two kinds of

values. Other information considered were image moments and histograms [95],

but these showed no clear improvement on classification performance. During

training, I rescaled raw pixel values and Laplacian values into a range between 0

and 1 (as required by SVMs). The combination of them is simply the sum of two

types of values and was also rescaled into between 0 and 1. The Laplacian value is

calculated according to Equation 5.1, Where src is the source image. The kernel

of applying Laplacian kernel to a digital image is shown in Equation 5.2. The

reason for using edge information as an input component is that in a positive sub-

image, the target edges form relatively stable and unique contours, the shapes

of head, waists, arms and legs. But in a negative image patch, the edges may

be distributed in a random shape. Another phenomenon worth noticing is that

the edge strength of the person is often stronger than other parts of the image.

This is because of the relatively higher temperature of a person compared with

the background, though there is a chance of some hot spots existing. In order

to find which kind of input was the best choice, I used a grid search method to

find the input with the highest classification performance. In the grid search, I

tested different kernel types, their parameter configurations, and parameters of

input values in certain ranges. The combination of raw pixel value and Laplacian
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Figure 5.3: Procedure of generating artificial feature maps. A. Find the head and waist then generate a partial feature

map; B. Feed this partial feature map into the associator and produce a raw feature map; C. Applying image processing

methods (erosion, dilation etc.) to remove the head patch and generate binary image patches; D. To separate arms and

legs, I find the smallest rectangle containing these image patches and use its coordinate to decide the locations of proposed

arms and legs; E. A feature map is proposed.
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value gave a better classification rate and was chosen for the experiment.

L(x, y) =
d2src

dx2
+

d2src

dy2
(5.1)
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5.2 Database Used

The source database used is provided by Digital Image Processing Laboratory at

Cranfield University. All images in the source database were manually extracted

from videos shot in a natural environment, mainly at Cranfield University. The

image size is 64×128. Person bodies within these images cover around 60% of the

image height. Spreading limbs cover 30-60% of the image width. The body central

line is as close to the image central line as possible. The ambient temperature was

varied when shooting images, so the contrast between people and background is

also varied. The people are also in different poses and at varying distance.

There are 1216 positive images in the database. These images are front or

back of person bodies. 1000 of them are taken for training and the remaining 216

images are for test, selected by random sampling. Also there are 1240 negative

images in total. 1000 of them are taken for training and the remaining 240 images

are for test, selected by random sampling. Figure 5.4 shows some positive and

negative samples of the training sets. Apart from the front and back person im-

ages, there are also 1133 side person images. Some 210 of these images, which are

unseen by the system when training, are randomly chosen to test the generality

of the system.

When training the first layer of this system, the people are extracted from

those 1000 training images. Then key components are extracted from these ther-

mal images. Originally, these key components include head, shoulder, waist,

arms, legs, upper up body, and lower up body. But I found the relatively small

components could not cope with some difficult person gestures and gave many
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Figure 5.4: Some person samples used for training Cengji to detect person from

complex thermal background.
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false positive detections. These gestures are mainly with stretched arms and legs.

These stretched arms and legs occupy bigger areas than naturally pendulous ones.

If I use small rectangles to extract both vertical and stretched limbs, some limbs

will be cut out therefore some of the gestures can not be covered. The classi-

fier will be confused by these partial gestures. A relatively bigger image patch

size will ease this confusion to the classifier. So I re-chose head, waist, Left-upper

body, Right-upper body, Left-lower body and Right-lower body. They are extracted

from the training images manually. Because the person bodies, especially limbs,

have complex gestures, it is difficult to set strict rules of extracting component

images. But I tried to follow a consistent process. For the head feature, I tried

to keep the neck central line to be overlapping with the image central line and

keep a certain part of the shoulder (top of the shoulder is beyond 1/3 but below

1/2 of the image patch height). When extracting the waist feature, its centre is

overlapping with the image central line and the vertical centre of it is often the

separation line between the clothes and the trousers. For the remaining features,

I tried to cover as many as possible gestures within image patches. Hands and

feet were included within these image patches. All these extracted components

have a unique label from 1-6 in turn. The background has a label of 0. All

the negative training data for these features were randomly extracted from those

images not containing these features. Table 5.1 shows the details of the final

version feature training sets. Figure 5.5 shows some samples of body features

in the positive training sets. More training samples are shown in Section A.2,

Appendix A.

For the second layer, the input is a body feature map which is composed of

feature labels. It comprises the information of feature sizes and the geometrical

relations among them. Positive and negative targets will be discriminated by

their feature maps. Both the positive and negative training sets for the second

layer are generated by the first layer. The training sets creation procedure has

been introduced in Table 3.1, Chapter 3. The training samples for the autoasso-

ciator are the body feature maps generated by the first layer. When training the

associator, these feature maps are presented to both the input layer and the out-
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Figure 5.5: Some body feature samples used for training Cengji to detect person

from a complex thermal background.
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Feature Name Number of Images Image size

Positive Negative

Head 850 900 20× 20

Waist 953 970 30× 10

Left-upper body 876 912 20× 40

Right-upper body 858 900 20× 40

Left-lower body 949 977 20× 50

Right-lower body 954 970 20× 50

Table 5.1: Feature Datasets details.

put layer. Figure 5.6 shows some samples of positive and negative body feature

maps.

5.3 Training Procedure

The main training difference between this experiment and the previous face classi-

fication experiment is the feature clustering. In the face classification experiment,

the first detected features are directly used for generating feature maps. But in

this experiment, detected features will be clustered to decide a location to reduce

false positive detections due to the much more complex scenes. The threshold

for the feature clustering has to be decided during training. There are 6 features,

therefore 6 clustering thresholds need to be decided. The feature classifier kernels

and their parameters are decided by grid search. When deciding the threshold,

I applied each classifier to find features in whole person images in the feature

training sets. For each feature classifier, I calculated the average distance from

the first clustered feature to the real feature in each image. The distance is from

the clustered image patch centre to the actual feature patch centre.

Once the thresholds of clustering feature patches have been decided, feature

classifiers will be used to generate feature maps. A feed-forward neural network

is used to store the association memory. It is trained using these generated

feature maps. Apart from the feature clustering threshold, the other training
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Figure 5.6: Some body feature map samples used for training Cengji to detect

person from a complex thermal background.
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procedure is similar to that used in the face classification experiments. It follows

the same training strategy described in Section 3.4, Chapter 3. The kernels and

kernel parameters of each classifier are decided by using a grid search. During

the training iterations, every time the classifier changes, the threshold should be

recalculated. I used a 5-fold grid search to find the best kernels and optimize

their parameters. The RBF kernel performed the best for each feature classifier.

Table 5.2 shows the parameter configurations of each feature classifier and their

performance during the 5-fold cross validation.

Classifier Name Cost γ 5 fold correct rate (%) Clustering threshold

Head 5 0.05 98.8877 2

Waist 4 0.07 98.443 2

Left-upper body 9 0.04 97.4399 3

Right-upper body 7 0.03 97.2046 3

Left-lower body 9 0.01 97.9366 3

Right-lower body 10 0.04 97.6406 3

Table 5.2: Feature classifier parameters and their performance.

The training of the autoassociator is relatively independent of the training

of those two layers. It is a feed-forward neural network trained using back-

propagation [16, 86, 25, 77]. The training samples are those body feature maps

generated by the first layer. They are presented to both the input and output

layers. In order to speed up the training, I resized these images from 64×128

to 16×32. The autoassociator is a 3 layer feed-forward neural network with 1

input layer, 1 output layer and 1 hidden layer. There are 512 nodes in the input

and output layers respectively. The hidden layer has 500 nodes which is decided

by experiment. I set a very small stop error, 0.00001, then trained the neural

network with different hidden layer numbers. The training can not reach this stop

error. But after certain training period, the training error will be stable. 100 node

hidden layer configuration gave stable error at around 0.9. 200 gave stable error

at around 0.75. 300 is stable at around 0.72. 400 is stable at around 0.12. 450

is stable at around 0.07. 500 node hidden layer gave the lowest error 0.05. 510
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Figure 5.7: Training test on person feature map associator.

gave almost the same error. The stop criteria is set as the average output error

of each sample is smaller than 0.05. 900 person feature maps were used to train

the associative feed-forward neural network. Figure 5.7 shows some test samples

of the body feature map associator. The inputs are body feature maps generated

by the first layer but not used to train the associator. All together 100 person

feature maps were used to test the performance of the associator. An average

error of 0.07 was achieved. These test images were all resized from 64×128 to

16×32.

For the additional single-layer SVM classifier, the input is also the combina-

tion of raw pixels and Laplacian values. The calculation of this input is same as

those person body features. I applied a 5-fold grid search to find the best kernel

and its parameters. During this search, the RBF kernel performed best with

cost C of 10 and γ of 0.004. The correct rate with this kernel and its parameter

configuration is 99.5595%. The Haar like feature classifier also takes the same

input.
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5.4 Experiment

5.4.1 Method

In this experiment, the performance of the dual-layer system with and without

attention mechanisms is tested. Additionally, as in Chapter 4, I trained and

applied a single-layer SVM classifier and a Haar like feature classifier to the test

set. The single-layer SVM classifier and the Haar like feature classifier were

trained on those person and non-person images which were used to create feature

training sets.

When applying Cengji WA, all classifiers scan over the whole input images

from the top left corner to the bottom right corner. These classifiers report all

detected feature image patches’ sizes and locations to the system. The system

then post-processes these patches by clustering them together to form new detec-

tions. Those clusters containing image patches less than the thresholds will be

discarded. The first post-processed detections which satisfy the thresholds will

be taken as the final detections for each feature. These final detections are used

to form a feature map which is the input to the second layer.

When applying Cengji AM, head and waist classifiers scan over the whole

input images. Their outputs will be post-processed to form clustered detections.

The system will use the first clustered detections to form a feature map. This

proposed feature map will lead other classifiers, two upper body and two lower

body classifiers, to search in the areas expected to contain features. In these

areas, the feature classifiers will search for each feature and report any found to

the system. The system will then cluster them together to form final detections.

These final detections and the previous detected head and waist will then be

composed to form a final feature map for the second layer to decide if this feature

map belongs to a person.
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Set Name Classification result Correct(%)

Correct Incorrect Total

People 201 15 216 93.06

Non-people 192 48 240 80.0

Total 393 63 456 86.8

Table 5.3: Person classification results of the Cengji AM.

Set Name Classification result Correct(%)

Correct Incorrect Total

People 203 13 216 93.98

Non-people 194 46 240 80.83

Total 397 59 456 87.06

Table 5.4: Person classification results of the Cengji WA.

5.4.2 Results

Firstly, the thermal target detection was performed on the 456 test thermal im-

ages, 216 person and 240 non-person images.

Experiments on Cengji. With the attention mechanism, 201 people were suc-

cessfully detected. 15 were misclassified. Among non-people, 192 of them were

correctly detected as non-people and 48 were misclassified. The total classification

rate is 86.8%. Without the attention mechanism, 203 people were successfully

classified. 13 were misclassified. Among non-people, 194 of them were correctly

classified as non-people and 46 were misclassified. The total detection rate is

87.06%. There were more non-people misclassified as people. This is because

this system emphasizes on detecting as many targets as possible. Therefore the

feature map tends to give a loosen restriction on the non-person targets. It can

be adjusted by changing the classification boundary. The performance of the

Cengji AM is equivalent with that of the Cengji WA. See Table 5.3 and 5.4.

Figure 5.8 shows some successful samples.

Figure 5.9 shows some failed samples.

Figure 5.10 and Figure 5.11 compare the number of calls to feature classifiers
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Figure 5.8: Successful person classification. A. People are successfully recognized

in thermal images. B. These photos are successfully recognized not containing

any person images. Though there are some person features are found, but they

do not compose a complete person. The structure configuration among them does

not belong to a person.
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Figure 5.9: Failed person recognitions. A. People are not recognized in thermal

images. Though there are some person features are found, but they do not compose

a complete person. The structure configuration among them does not belong to a

person. B. These photos are wrongly recognized containing person images. This

kind of failure is caused by individual classifiers. They gave false positives and

these false positives form a feature map belonging to a person.
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Figure 5.10: Calls to SVM feature classifiers by Cengji with and without attention

mechanism. This table shows calls on SVM feature classifiers when applying

Cengji on 216 test people. Blue bars are of Cengji WA and red bars are of

Cengji AM. The search of the heads and waists are not influenced by the attention

mechanism. It is not included in this figure. Attention mechanism saves up to

87.35% SVM calls.

within Cengji WA and Cengji AM. The calls to head and waist classifiers to detect

these two features are fixed call numbers both for Cengji AM and Cengji WA

because the search for these features are the same. For the remaining features,

the search is influenced by the attention mechanism. These figures show that

the application of attention mechanism saves SVM calls up to 87.73%, 375,246

times with attention mechanism compared with 3,058,478 times without them on

non-person images. For the person images, the saving of SVM classifier calls is

also up to 87.35% when applying the attention mechanism.

Experiments on single-layer SVM classifier and Haar like feature classifier. In

the additional test on the single-layer SVM classifier, its performance is equivalent

to those of the dual-layer system. 211 out of 216 test people were successfully

classified as people. 186 non-people were successfully classified from 240 non-
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Figure 5.11: Calls to SVM feature classifiers by Cengji with and without attention

mechanism. This table shows calls on SVM feature classifiers when applying

Cengji on 240 test non-people. Blue bars are for Cengji WA and red bars are

for Cengji AM. The search of the heads and waists are not influenced by the

attention mechanism. It is not included in this figure. Attention mechanism save

up to 87.73% SVM calls.
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Set Name Classification result Correct(%)

Correct Incorrect Total

People 211 5 216 97.69

Non-people 186 54 240 77.5

Total 397 59 456 87.06

Table 5.5: Person classification results of the single-layer SVM classifier.

Set Name Classification result Correct(%)

Correct Incorrect Total

People 199 17 216 92.1

Non-people 191 49 240 79.6

Total 390 66 456 85.5

Table 5.6: Person classification results of the Haar like feature classifier.

person images. Totally, 397 images were successfully classified from 456 test

images. The success rate is 87.06%. See Table 5.5.

With the Haar like feature classifier, 199 out of 216 test people were success-

fully classified as people. 191 non-people were successfully classified from 240

non-person images. Totally, 390 images were successfully classified from 456 test

images. The success rate is 85.5%. See Table 5.6.

Using different dataset. Secondly, I tested Cengji with different images from

a different dataset. In the first experiment, images are person fronts and backs.

Images for this experiment are people taken with a side view. Sometimes some

features of these people are occluded. For example, there may be only one arm

or one leg visible. There are also some blurry images. Some images have a

complex background. All of these set more challenges to a feature detection

system. Figure 5.12 shows some samples in this dataset.

In the generality performance test, 210 side body images were used. Among

these images, 196 of them were correctly classified as people by Cengji AM and

195 by Cengji WA. The detection rate is 93.33% and 92.86% respectively. Fig-

ure 5.13 shows some sample recognitions from this image set.

Again, the single-layer SVM classifier gave an equivalent generality perfor-
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Figure 5.12: Samples of person sides used to test the generality performance of

Cengji. These images are side bodies. Some body parts, for example arms or legs,

are occluded. There are also complex backgrounds.
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Figure 5.13: Samples of side person recognition. These images are side bodies.

Some body parts, for example arms or legs, are occluded. There are also complex

backgrounds.
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mance compared with the dual-layer system. 198 from 210 test images were

successfully classified. The classification rate here is 94.28%. The Haar like fea-

ture classifier successfully classified 192 “side” people images. The correct rate is

91.42%.

5.5 Discussion

In this chapter, I applied the system to classify people in infrared images. In

Chapter 4, face classification experiments have verified the feasibility of the com-

ponent based hierarchical structure and the positive effects of the attention mech-

anism. This experiment is to explore the performance of the system using a

different dataset.

In the experiments, I applied Cengji AM and Cengji WA to detect people

in IR images. The attention mechanism has displayed good performance in this

experiment. One of the main differences between this experiment and previous

experiments is the clustering of detected features to form a uniform detected fea-

ture patch. This is to reduce the false positive rate due to the more complex target

and background. The introduction of feature clustering required a procedure to

find the best clustering threshold for each classifier. Otherwise the training strat-

egy is the same as the face classification experiment, the main procedures are

also identical.

There are two parts to this experiment. The first part is to use a dataset

similar to the training set to demonstrate this system works on different inputs.

Another part is to use a difficult and unseen dataset, in which people have differ-

ent gestures and illuminations, to demonstrate generalisation. In the first part,

201 of 216 people were successfully classified as people by Cengji AM. 15 were

misclassified. Among non-people, 192 of 240 were correctly classified but 48 were

misclassified. The total classification rate is 86.8%. In the second part, 210 im-

ages were used for generality performance test. Among these images, 196 of them

were correctly classified as people. The classification rate is 93.33%.

The second part of the experiment shows the system works on unseen datasets
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with more difficult targets and background. In this part, some target person

features, for example arms or legs, were occluded. But these people can still be

properly classified. Though some of these difficult images can not be identified

as a person because they are too different from the learned people, part of their

body components are detected. This gives the system a chance to find target

features. A user can set up their own rules to decide the detection of targets. For

example, a person exists as long as there are more than two body components are

detected. This kind of function is a useful property of component based system

to deal with occlusion. In this part, Cengji AM gave a correct rate of 93.33%.

Though the detection performance of Cengji AM is slightly worse, it saves

calls to related classifiers dramatically by up to 87.73% under the search strategy

introduced by the previous sections.

The training of these individual classifiers is decisive to the system. Our strat-

egy of training this multi-layer system is effective. The person image database is

much more complex than the face database. Targets have much more variety in

terms of appearance, gesture and illumination. These variations put a great chal-

lenge on the system training. With the selection of feature content and training

patch sizes, the system learns these images effectively with the training strategy

proposed in this thesis.

The experimental results demonstrate that our system achieves a good result

in person detection from infrared images. The hierarchical system structure and

feature map concept work properly. The attention mechanism helps the system

find features by leading the system to the areas with higher likelihood of contain-

ing a new feature. Also this system displays good generalisation performance.

5.6 Extension

This system is being extended to detect people in different sizes in a big real-

world image. The challenge is that the ratio between the feature size and the

input image size is not stable. In the face classification experiment, the feature

sizes were constant. It was not necessary to consider the variety of feature sizes in
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the image when the main purpose of the face experiment is to verify the feasibility

of this system. But when processing more realistic images, it is inevitable the

feature sizes will have some variety therefore the feature search is more difficult

than that of the face classification experiment. To cope with the variety of feature

sizes, the size of the feature grid will change during each search. For example,

the size of the original head feature in the training set is 20× 20, but in an input

image there might be head features of sizes up to 30× 30. In order to find these

heads, the grid size will have to increase. The grid with size of 20× 20 will scan

over the image and record all heads found. Then the grid will increase its size

and search the image again until its size reaches 30×30. Figure 5.14 shows some

successful person detections by the system with attention mechanism. A is a

relative easy detection. Person is similar to those in training set. Person in B is

blurry due to the vibration of the camera. But the system successfully found the

person. C contains a semi-occluded person. His left arm and leg are occluded by

the wall. The system identifies this image patch as a person correctly. D contains

no person and therefore there is no detection of person.

Figure 5.15 shows some images with false positive person detections by the

system with attention mechanism.

The single-layer SVM classifier and Haar like feature classifier were also ap-

plied. They are not good at detecting occluded people. For example, these two

classifiers missed the person in Image C. At the same time, they also gave false

positive detections. The false positive detections produced by Cengji can be re-

duced by using a higher threshold on feature cluster. The improvement of feature

classifier performance will also help to improve the system performance.

I am also aiming to further improve this system’s speed to be a practi-

cal system. For example, to process PAL (720×576) format in a speed of 1

frame/second. Current speed is 30 seconds per frame on such kind of images

using a 2.33 GHz, 3 G RAM computer. To achieve the speed of 1 frame/second,

in the first layer, two kinds of classifiers will be used. The first kind of feature

classifier will have a fast classification speed, for example, Haar like feature clas-

sifiers. This kind of classifier will give a higher false positive rate. So a SVM
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Figure 5.14: Successful samples of person detections.
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Figure 5.15: False positive detections exist in some images.
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feature classifier, which has better classification performance, will be engaged to

verify the output of the Haar like feature classifier. The high speed system has

the similar structure as that in Figure 4.3 and Figure 5.1. Figure 5.16 shows the

structure of the system which is used to detect people from infrared images with

higher speed.

When a thermal image is presented to this system, the Haar like feature

classifier of head is called to scan through the image to find patches containing

head images. Any feature classifier can be the first one to be called. The benefit of

calling the head classifier as the first one is that there are many patches containing

features similar to a head hence using head classifier will locate as many of these

patches as possible. This will benefit a system which does not want to miss any

possible targets. However this may bring in some false positives if each single

classifier does not perform well. Therefore this strategy puts a relatively high

demand on each feature classifier and their training. But the training method

can compensate this to some extent as discussed in Chapter 4. The head classifier

will scan over the image pixel by pixel and record every location of head patches

for post processing. Patches with similar sizes within a certain area will be

clustered together to form a single patch which will be treated as a single head.

These clustered head patches then will be verified by a SVM head classifier. If

the SVM head classifier classifies a candidate head patch as a head, its coordinate

and size will be passed to the system to create a sub-image for detection of

remaining features. The size of this sub-image is decided by the head patch’s

size. The rule is that the head centre line should be identical with the centre

line of the image in width direction and its top should be 1/6 length to the

top of the sub-image. After this sub-image is created, this system will search

for other features. The second feature to be searched can be chosen randomly.

For the simplicity of the experiment, I chose waist as the second feature to be

scanned. The scanning strategy is the same as that of the head scanning. The

waist classifier finds all candidates and sends them to the system for clustering

and verification by a SVM classifier. The SVM verified candidate which has most

members will be taken as the final detection. Within this sub-image, there can



119

Figure 5.16: Structure of Dual-Layer Cengji for the extended experiment
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also be two kinds of classifiers, one for high speed search, another for verification

of detected features.

When the attention mechanism is not engaged, Cengji will scan over this

sub-image for all remaining features using the same procedures used by previous

feature classifiers. There may be more than one sample (cluster of image patches)

of a feature accepted by its SVM classifier. I took the one with most members

as the finial detection of these features to compose the feature map of a person.

This feature map will be the input to the second layer.

When the attention mechanism is engaged, Cengji will use the detected head

and waist features to compose an expected feature map using association memory.

This memory will indicates other features’ possible locations and sizes. The

system will go to the suggested locations to search for these features in relatively

smaller areas compared with areas without using the attention mechanisms. This

procedure will confine the search in areas with higher likelihood containing a

feature. The search strategy within these areas is same as that of head and waist

feature search. Once all feature searches suggested by the expected feature map

are complete, the detected features will be sent to the system to compose the

final feature map for the second layer to classify.

The trained first layer and second layer SVM classifiers are exactly the same of

those used in the person detection experiment without Haar like feature classifiers.

The input to the first layer classifiers is the combination of raw pixel value and

Laplacian value. The input to the second layer is the feature map generated by

the first layer.
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Conclusions and Future Work

In this thesis, I have developed a component-based dual-layer Cengji system and

applied it to face classification and recognition of people in thermal images. This

system applies an attention mechanism to help locate features and improve scan-

ning speed. The experiments verified the feasibility of the hierarchical structure

of this system and the application of the attention mechanism. The performance

of Cengji with and without the attention mechanism was also tested.

6.1 Summary

At the beginning of the thesis, in Chapter 1, I set up my objectives. It aims

to make progress towards an object recognition system using a dual-layer clas-

sifier. To achieve this objective, a component-based trainable computer vision

system which can detect salient features in images and integrate these features

into complex, hierarchical representations of meaningful objects is designed.

In Chapter 2, related concepts, algorithms, methodologies and other re-

searchers’ applications which are relevant to this thesis are reviewed. Through

these reviews and discussions, the background of the developed system has been

explained. This object recognition system is inspired by the ability of a human

vision system which can recognise an object effortlessly compared with a com-

puter vision system [75, 39, 9]. The ability of the human vision system is based
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on the fact that the human brain stores knowledge of objects in a hierarchical

manner [100, 38, 2, 12]. The application of the attention mechanism is a signif-

icant characteristic of this system. With the help of the attention mechanism,

objects are recognised more quickly and more accurately when they fall within

a familiar schema [81, 91, 11, 67]. Figure 6.1 shows an extended view of the

hierarchical structure of this system.

Chapter 2 also reviewed machine learning algorithms used in the thesis, in-

cluding Support Vector Machines, Neural Networks and Haar Like Feature Clas-

sifier. The SVM has high classification performance. A feed-forward neural net-

work trained with back-propagation method can act as an auto-associator. Haar

Like Feature Classifier is used as comparison. Heisele et al [53, 55] have devel-

oped a dual-layer SVM algorithm learning discriminative components (features)

of objects similar to the system introduced in this thesis. These two systems

are both dual-layer systems. Their system uses a collection of 14 features on the

first layer to classify a face. My system uses only 4 features. Their system uses a

vector to connect two layers but my system uses a feature map. Also, I employ an

active attention mechanism [44, 45] to speed up the system. The system training

strategy also presents some differences. Their system trains each layer separately.

My system joins two layers together to get the best training results from limited

training samples. The aim in my system was to automate as much of the training

as possible.

In Chapter 3, the developed system is described in detail. As an object

recognition system, the basic components of this system are individual classifiers

which classify features, objects, and relations among them. These classifiers

are linked together according to the hierarchy among features and higher level

objects. This system utilizes a combination of both bottom-up and top-down

processing to interpret visual objects. This system then uses detected features

and bottom-up knowledge to form a higher level object. This process will stop at

the top of the object hierarchy. It can use top-down knowledge to figure out what

are other relevant features or objects and where and how to find them when some

features have been detected. A feature map is introduced to act as a medium to
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Figure 6.1: The Cengji system. The system takes an image as input, returning a classification of that image. Internally,

it consists of two layers, communicating through a feature map. The number of classifiers can be varied, depending on the

domain. The autoassociative memory is not shown.
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convey object structure directly; the feature map has the advantage of preserving

all relative positions among features explicitly. For this machine learning based

system, I designed a training strategy to train it. During the training, two layers

are joined together to reach the best performance with limited training samples.

The procedure has been shown in Table 3.1.

Face classification and thermal image experiments are conducted in Chapter 4

and Chapter 5. In the face classification experiments, a face is represented by

four features, two eyes, nose and mouth. In the thermal image experiments, a

person is represented by six features, head, waist, left upper body, right upper

body, left lower body and right lower body. Cengji AM, Cengji WA, a single SVM

classifier and a Haar like feature classifier are applied to these experiments. The

experimental results demonstrate that the system achieves good results in object

recognition. The feature map concept works properly for the system. The dual-

layer system with and without attention mechanism displayed good performance.

The experiments indicate that the performance of the first layer is crucial to the

whole system. The first layer detects individual features which form higher level

objects. These features are the basis of further analysis. The construction of

higher level objects depends on them. The performance of individual feature

classifiers decides how the first layer performs.

A significant characteristic of this system is the application of the attention

mechanism. The main purpose of applying the attention mechanism is to im-

prove the system performance of locating features, especially the speed. In the

experiment of face classification, applying this mechanism has significantly im-

proved the face classification speed compared with Cengji without applying it.

In the thermal person recognition experiment,the saving on SVM classifier calls

is more significant than that of the face classification due to the feature detection

strategy which searches over the whole suggested feature areas. After the seed

features have been found, detection calls to SVM classifiers within the target area

are clearly saved.
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6.2 Contribution

The contributions to the object recognition domain made by this thesis are the

following:

• A component-based object recognition algorithm. This algorithm repre-

sents an object by its salient features and these features are organized in a

hierarchy. A dual-layer object recognition system applying this algorithm

has been constructed. Face classification and person detection experiments

have been conducted to verify and test the feasibility and performance of

both the algorithm and the system. This system can discriminate faces

from non-faces and detect thermal people from complex background even

when there is occlusion on the objects.

• Application of the attention mechanism to help locate features. The system

learns the geometrical and hierarchical relations among features composing

the object and utilizes it to locate other features when some features are

found. The application of the attention mechanism has effectively reduced

the calls to feature classifiers therefore improving the system efficiency.

• Comparison between different algorithms. This thesis compared the per-

formance of the developed system with and without attention mechanism,

against a single-layer SVM classifier and a Haar like feature classifier on

both face and person classification. In the face classification experiments,

the single-layer SVM classifier has better detection performance but in the

person detection experiments, the system displays equivalent performance.

The experiments show that this system has better generalization perfor-

mance than other algorithms. When applying the attention mechanism,

this system has higher efficiency and equivalent object recognition perfor-

mance.

• A feature map concept is introduced as an internal representation. It is a

representation of an object by retaining spatial relations between features.
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• An effective training method for training the dual-layer system. The dual-

layer system is considered as an integrated system. The creation of feature

training sets is coupled to the creation of the feature map training set. The

two layers have mutual influence on each other. It is a closed loop to create

training sets for both layers. This method is an effective way to create an

optimized system with limited training samples.

• Another contribution is the databases created for the component based-

face and thermal person classification and detection. The face classification

experiment source images come from several existing face databases. Face

features are generated from these images. Person images are provided by

Cranfield University. Person features are extracted from whole person im-

ages. These feature training sets have been optimized for the best perfor-

mance of Cengji. But they can still be used for other systems.

6.3 Conclusions

This thesis has developed a novel trainable algorithm and provided a framework

for an object recognition system. Object recognition is often the first step to-

wards scene understanding, that is extracting individual objects from a complete

scene. Most scene understanding computer vision systems have a component for

detecting objects from background. I have presented a hierarchical component-

based object recognition system, Cengji, and applied this system to face and

person recognition. The first layer is used to detect individual features compos-

ing a higher level object. These features are organised using a feature map which

mainly contains structure information of the object. The second layer takes a

feature map as the input and judges if this feature map belongs to an object. A

significant characteristics of this system is the integration of the learning of com-

pound objects with the attention mechanism which guides the system to areas

likely to contain relevant features. Because this is a machine learning based object

recognition system, I also developed a training routine fitted to this multi-layer

structure.
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The experiment of the face classification has verified the feasibility of the

structure of this system and the positive effect of the attention mechanism. The

experiments of thermal person recognition has displayed the generality perfor-

mance of this system. Compared with the face classification experiment, the

targets to be detected have more complex structure with components have more

freedom regarding its location. Hence the feature maps of the thermal person

have much more varieties than the face feature maps. In these experiments,

both Cengji with and without attention mechanism depended on their first layer

deeply. It decides the input to the second layer. The performance of the first

layer has a fundamental influence on the entire system performance. Therefore

the training of individual feature classifiers is an emphasis of this component-

based system. The strategy designed for this system aims to achieve the best

performance with limited training sources. It joined two layers together as a

whole. This strategy can compensate the training imperfection existing within

each feature classifier by tolerating it in the second layer. This is proved to be

very useful to the system because it is difficult to create perfect feature classi-

fiers even with comprehensive training samples. The second layer also helps to

improve the first layer training by providing a chance to get some key training

samples, especially negative samples.

It is difficult to generate perfect feature classifiers.I adopted several ways

to reduce false positives. Adding more negative samples into training sets of

first layer feature classifiers can improve the classifier training and reduce some

false positives. But it is impossible to collect all kinds of negative samples and

adding too many negative samples will make the training unfeasible. Another

direct way of reducing false positives is to tune the parameters of classifiers by

moving the classification boundary towards the positive side which will give a

stricter criteria to take a sample as positive therefore reducing the false positive

rate. The negative influence of this method is that more false negatives will be

generated. In the thermal person experiments, when detecting thermal targets

from complex background, more than one detected targets were clustered to

form a final detection. Only the detection having more than certain number
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of neighbours with similar size existing within certain areas will be taken as a

valid detection by clustering itself with its neighbours. This clustering detection

adoption strategy was shown to reduce the false positives effectively.

In order to get the optimized classification performance, I put great emphasis

on training classifiers, especially those SVM feature classifiers. Table 3.1 gives

the details of our unique training methods for the dual-layer machine learning

based system. This method can find the best configuration for a SVM feature

classifier, the kernel type and its parameters. The second layer feature map SVM

classifier is also optimized at the same time. An important part of this method is

the grid search method which helps to optimize classifiers and decide the training

sets. One of the notable effects of the grid search method is that it can prevent

over-fitting.

The hierarchical component-based structure of this system provides a good

platform to apply the attention mechanisms. It represents an object using a

hierarchy by decomposing it into several prominent features. Advantage is taken

of both the top-bottom and bottom-top knowledge of the object. A feature map

acts as the medium to convey this hierarchy. Feature selection is the first task

facing this structure. The selected features must be representative for the object

to distinguish it from other objects and background. These features also should

be distinct itself. The feature selection for the face classification experiment

and thermal person detection experiment are manually conducted according to

a human being’s experience. Therefore they may not be the best choices for a

computer. But currently they are good enough to justify the performance of this

system.

The main benefit that the attention mechanism has brought is the time reduc-

tion. The introduction of the attention mechanism also has a secondary influences

on the performance of this system. On the one hand, the attention mechanism

leads this system to areas more likely to contain features. This reduces the chance

of visiting areas which may contain false positive features. This means that the

feature map is more likely to have features within the correct relative positions,

which the second layer can correctly identify as an target object. When the fea-



129

ture classifiers are trained well, they will identify features and reject non-features

within areas suggested by the attention mechanism, where a positive feature

should be. But on the other hand, if there is imperfection on feature classifiers

training, the attention mechanism can cause this system to make some mistakes.

When detecting a non-object image, a feature classifier will be led to a possible

area suggested by the attention mechanism. If the feature classifier is not well

trained, it may take a non-feature as a feature. This false positive feature is in

the position that can form a positive feature map. This increases the chance that

a non-object image is taken as an target object. This negative influence can be

offset to certain extent by the joint training dataset creation method introduced

in 4.3. The detection performance of this system is influenced by the interaction

of these two effects introduced by the attention mechanism. The less the im-

perfection of the feature classifiers is, the higher the performance of Cengji will

be.

The role of the attention mechanism is to modify the search for features. The

introduction of it has made this system search intelligently so it directly searches

in the most likely areas containing features, ignoring irrelevant information. This

is smarter than exhaustively searching everywhere when some knowledge of the

target objects is available.

In this thesis, I have introduced and empirically evaluated the attention mech-

anism in Cengji. The dual-layer system with attention mechanism displayed good

performance on both face and thermal person recognition. On a held-out face test

set, the system with the attention mechanism scored 94% correct, compared with

a score of 95% correct when not using the attention mechanism. On the thermal

person test set, Cengji with the attention mechanism scored 86.8%. With the at-

tention mechanism, this system performs well when there is knowledge about the

target objects available. It can robustly find features though there may be false

positive detections. The feature map concept works effectively, and provides an

intuitive and extendable internal representation for compositional objects. The

two-level SVMs demonstrated promising performance on structure classification.

This provides a useful way of learning hierarchical structure of the real world.
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Though the two-level SVM system is not perfect this time, it gives us an ap-

proach to understanding the real world scene, which can not be fulfilled by the

single-level SVMs themselves. The benefits of using dual-layer SVM classifier

include separately identified features, structural information of object, a more

flexible architecture, and higher generality.

6.4 Future Directions

I have been spending lots of time pursuing a so called “Excellent” object recogni-

tion system. Obviously the current system has a long way to go to be considered

“Excellent”. But it is the starting step towards this target. During my limited

PhD research period, it is inevitable there are many questions not answered.

When the system was developed, there are many potential pathways, includ-

ing other researchers’ applications and some established algorithms, which have

attracted my attention.

I will improve the dual-layer SVM classifiers in following directions: Investi-

gate the feature classifiers. Currently, the feature classifiers perform well. But

there are still some false detections especially false positive detections. These false

positive detections give negative influence on the whole system performance. The

improvement of the negative training set is one of the directions. Another direc-

tion is to investigate the classification algorithm itself, for example, its responses

to those false positive detections.

Investigate the auto-associator. A feed forward neural network acts as the

auto-associator for current system. It may not be the best option but only for

verification purpose. Other algorithms will be applied to find the best option.

Generalise the attention mechanism. Some domain dependent information is

used in the current system. This is due to the limitation of the auto-associator

performance. I aim to make the application of the attention mechanism more

general which can adapt to different domain automatically.

Analyse the impact of the negative data. Find images that are boundary cases.

Key negative samples play an important role in the training of feature classifiers.
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But it is difficult to find those boundary negative cases compared with positive

cases. These boundary cases decide the classification performance of classifiers.

Therefore it is useful to analyse the impact of the negative data.

Use different feature classifiers. Only SVM classifiers are used for the current

system. In future, I will also use other algorithms.

Feature selection. Currently I select features which compose the object man-

ually according to a human being’s experience. We also arbitrarily specify the

feature size, location and type. They work well for the current system but it

may not be the best choice for a computer. There have been some applications

applying certain algorithms to decide the features [55]. I will investigate these

algorithms and find a suitable way for this system.
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Appendix

A.1 Source Database for Face Classification Ex-

periments

A face database is used in the face classification experiments. In order to focus on

the comparison among different classification systems and simplify the training

process, faces in this database are frontal, which means the face attitude extrem-

ity in all directions is no more than ±30o. All face and non-face examples are

downloaded from the Internet.

The Database of Faces from AT&T Laboratories, Cambridge This

database is from AT&T Laboratories, Cambridge (formerly ‘The ORL

Database of Faces’). 40 frontal faces are used. See Figure A.1.

The Japanese Female Facial Expression (JAFFE) Database 66 frontal

faces from this database are used. See Figure A.2.

The CalTech Database This is Collected by Markus Weber at California In-

stitute of Technology. 158 frontal faces from this database are used. See

Figure A.3.

The PIE Database This database is created by Robotics Institute, Carnegie

Mellon University. PIE stands for the CMU Pose, Illumination, and Ex-
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Figure A.1: Some faces used from AT&T Laboratories, Cambridge

Figure A.2: Some faces used from The Japanese Female Facial Expression

(JAFFE) Database
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Figure A.3: Some faces used from The CalTech Database

pression (PIE) database. 15 frontal faces from this database are used. See

Figure A.4.

The Psychological Image Collection at Stirling (PICS) This database

contains a number of sub-databases. See Figure A.5, A.6, A.7. 92 frontal

faces from Stirling-faces database and 192 from Nottingham-scans and

Nott-faces-originals are used.

Figure A.4: Some faces used from The PIE Database
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Figure A.5: Some faces used from Nottingham-scans, The Psychological Image

Collection at Stirling (PICS)

Figure A.6: Some faces used from Stirling-faces, The Psychological Image Col-

lection at Stirling (PICS)
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Figure A.7: Some faces used from Nott-faces-originals, The Psychological Image

Collection at Stirling (PICS)

Figure A.8: Some non-faces used

The above databases were used for creating positive training samples. The

following databases were used for creating negative samples.

BEV1 Dataset One of its sub-datasets, Extra Background Images, was used,

which is about background.

Caltech Database Most samples are about natural scene. The Background

sub-dataset was used.

Figure A.8 shows some non-faces.
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Figure A.9: Some faces used in the Harvard Face Database: note varying illumi-

nation

The Harvard Face Database is another database used to test generalization

of classifiers with different structures. There are 5 sub-directories containing 651

images. Each set has different illumination and face attitudes extremity. Set 1

has the smallest extremity, set 5 has the biggest. The image size in the database

is 84× 96. See Figure A.9.

Faces were manually extracted from these datasets and resized to the size of

84 × 96. 350 face images were chosen for training from above datasets and 150

were chosen for test. 350 non-face images were chosen for training and 150 for

test.

A.2 Source Database for Person Detection Ex-

periments

This database is provided by Digital Image Processing Lab at Cranfield Univer-

sity. They are taken by infrared cameras.

Figure A.10 shows some original images used for extracting training samples.

They are captured from video shot at Cranfield University.

Figure A.11 shows some person image samples. They are extracted from full
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Figure A.10: Some original images from which the training samples are extracted.

Person and non-person images will be extracted from these images and resized to

64×128.
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images which are illustrated in Figure A.10.

Figure A.12 shows some non-person image samples. They are extracted from

full images which are illustrated in Figure A.10.
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Figure A.11: Some samples of people. They are used to create feature training

datasets. Their sizes are 64×128.
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Figure A.12: Some samples of non-people. They are used to create feature training

datasets. Their sizes are 64×128.
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Appendix

B.1 Source Code of Feed-forward Neural Net-

work

This part of source code is adapted from the Internet for the use of the experi-

ments.

B.1.1 Header File

#pragma once

/////////////////////////////////////////////////////////

typedef struct NeuroLayer

{

INT nNode; //number of node

INT nInput; //input node number

DOUBLE *pInput; //input to a layer

DOUBLE *pOutput; //output of a layer

DOUBLE *pError; //layer error

DOUBLE **ppWeight; //weights

DOUBLE **ppDWeight;

} NeuroLayer;
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//////////////////////////////////////////////////////////

classCNeuroNet BP

{

public:

CNeuroNet BP();

CNeuroNet BP(INT NumLayer, INT* pNumNodeInEachLayer, CString MyFile-

Name);

∼CNeuroNet BP(void);

INT nInput; //feature number of an input sample

DOUBLE *pInput; //network input

DOUBLE *pOutput; //network output

INT nLayer; //layer number of the network

NeuroLayer *pLayer; //pointer to each layer

DOUBLE Eta; //learning efficiency

DOUBLE Alpha; //momentum

DOUBLE Error; //network error

DOUBLE Gain; //gain of the sigmoid function

DOUBLE MError;

DWORD TrainTimes; //training times

CString fileName;

private:

public:

BOOL ReadNetFromFile(void); // read neural network model from a file

BOOL SaveNetToFile(void); // save neural network model to a file

public:

// process input and generate output

BOOL Propagate( DOUBLE* pInput);

// node function

DOUBLE func(INT i, INT j);

void Train(DOUBLE* pInput, DOUBLE* pTarget);

// randomly assign value to varibles
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void RandomWeight(void);

void BackPropagate(void);

// compute output errors

void ComputeOutputError(DOUBLE* pTarget);

// build the network frame and allocate memory space

void GenerateNet(void);

};

B.1.2 Source File

#include”StdAfx.h”

#include”neuronet bp.h”

#include”math.h”

CNeuroNet BP::CNeuroNet BP()

{

}

CNeuroNet BP::CNeuroNet BP(INT NumLayer, INT* pNumNodeInEachLayer,

CString MyFileName)

{

Alpha = 0.9;

Eta = 0.1;

Gain = 1;

Error = 0;

nLayer = NumLayer;

pLayer = new NeuroLayer[nLayer];

this->TrainTimes =0;

fileName = MyFileName;

//build the neural network

for(INT i=0; i<nLayer; i++)

{

pLayer[i].nNode = pNumNodeInEachLayer[i];
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}

this->nInput = pLayer[0].nNode;

//allocate memory for varibles

this->GenerateNet();

//randomly setup weight values

this->RandomWeight();

}

CNeuroNet BP::∼CNeuroNet BP(void)

{

}

// randomly setup weight values

voidCNeuroNet BP::RandomWeight(void)

{

for(INT i=1; i<nLayer; i++)

{

for(INT j=0; j<pLayer[i].nNode; j++)

{

for(INT k=0; k<pLayer[i].nInput; k++)

{

pLayer[i].ppWeight[j][k] = (double(rand())-0.5*

double(RAND MAX))/double(RAND MAX);

//weight values are between (-0.5, 0.5)

pLayer[i].ppDWeight[j][k] = 0.0;

}

}

}

}

// read weights values from model file

BOOL CNeuroNet BP::ReadNetFromFile(void)

{

INT i;
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CFile file;

if(file.Open(fileName, CFile::modeRead)==FALSE)

{

returnFALSE;

}

char *pChar = new char[10];

file.Read((void*)pChar, 10);

file.Read((void*)&this->TrainTimes, sizeof(DWORD));

file.Read((void*)&this->Error, sizeof(DOUBLE));

file.Read((void*)&this->Alpha, sizeof(DOUBLE));

file.Read((void*)&this->Eta, sizeof(DOUBLE));

file.Read((void*)&this->Gain, sizeof(DOUBLE));

file.Read((void*)&this->nInput, sizeof(INT));

file.Read((void*)&this->nLayer, sizeof(INT));

//read out node numbers of each layer

INT* pNumNode = new INT[nLayer];

for(i=0; i<nLayer; i++)

{

file.Read((void*)&pNumNode[i], sizeof(INT));

}

pLayer = new NeuroLayer[nLayer];

for(i=0; i<nLayer; i++)

{

pLayer[i].nNode = pNumNode[i];

}

this->GenerateNet();

//assign weights to each neuron

for(i=1; i<nLayer; i++)

{

for(INT j=0; j<pLayer[i].nNode; j++)

{
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file.Read(pLayer[i].ppWeight[j], pLayer[i].nInput*sizeof(DOUBLE));

//read out weights of each layer

file.Read(pLayer[i].ppDWeight[j], pLayer[i].nInput*sizeof(DOUBLE));

}

}

returnTRUE;

}

// save weights to file

BOOL CNeuroNet BP::SaveNetToFile(void)

{

INT nTemp = 0;

INT i;

char ID[10] = ”NeuroBP”;

CFile file(fileName,CFile::modeCreate|CFile::modeWrite);

file.Write((void*)ID, 10); //write file type tag

file.Write((void*)&TrainTimes, sizeof(DWORD)); //write training times

file.Write((void*)&this->Error, sizeof(DOUBLE)); //write the latest network er-

ror

file.Write((void*)&this->Alpha, sizeof(DOUBLE)); //write training parameters

file.Write((void*)&this->Eta, sizeof(DOUBLE));

file.Write((void*)&this->Gain, sizeof(DOUBLE));

file.Write(&(this->nInput), sizeof(INT));

file.Write(&(this->nLayer), sizeof(INT));

//write node numbers of each layer

for(i=0; i<nLayer; i++)

{

file.Write(&(pLayer[i].nNode), sizeof(INT));

}

//write weights of each node within each layer

for(i=1; i<nLayer; i++)

{
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for(INT j=0; j<pLayer[i].nNode; j++)

{

file.Write(pLayer[i].ppWeight[j], pLayer[i].nInput*sizeof(DOUBLE));

file.Write(pLayer[i].ppDWeight[j], pLayer[i].nInput*sizeof(DOUBLE));

}

}

file.Close();

returnTRUE;

}

// process input and generate output

BOOL CNeuroNet BP::Propagate( DOUBLE* pInput)

{

this->pInput = pInput;

//calculate output

for(INT i=0; i<this->nLayer; i++)

{

if(i==0)

{

pLayer[i].pInput = this->pInput;

for(INT j=0; j<pLayer[i].nNode-1; j++)

{

pLayer[i].pOutput[j] = 1.0/(1.0 + exp(-pLayer[i].pInput[j]*

this->Gain));

}

}

else

{

pLayer[i].pInput = pLayer[i-1].pOutput;

intm onumber;

m onumber=pLayer[i].nNode;

for(INT j=0; j<m onumber; j++)
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{

pLayer[i].pOutput[j] = func(i, j);

}

}

}

returnTRUE;

}

// calculate output of each neuron

DOUBLE CNeuroNet BP::func(INT i, INT j)

{

DOUBLE sigma = 0.0;

for(INT k=0; k<pLayer[i].nInput; k++)

{

sigma = sigma + pLayer[i].pInput[k] * pLayer[i].ppWeight[j][k];

}

sigma = 1.0/(1.0 + exp(-sigma*this->Gain));

return sigma;

}

//train the neural network with samples

voidCNeuroNet BP::Train(DOUBLE* pInput, DOUBLE* pTeach)

{

Propagate(pInput); //process input data

ComputeOutputError(pTeach); //calculate errors

BackPropagate(); //backpropagate and adjust weights

this->TrainTimes++;

}

//******************************************************************************

// backpropagate and adjust weights

// *****************************************************************************

// calculate output errors

voidCNeuroNet BP::ComputeOutputError(DOUBLE* pTarget)
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{

DOUBLE Out, Err;

this->Error=0;

this->MError=0;

for(INT i=0; i<pLayer[nLayer-1].nNode; i++)

{

Out = pLayer[nLayer-1].pOutput[i];

Err = pTarget[i] - Out;

this->pLayer[nLayer-1].pError[i] = Out*(1-Out)*Err;

this->Error += 0.5*pow(Err, 2);

if(abs(Err)<0.5)

Err=0;

else

Err=1;

this->MError=MError+Err;

}

}

//backpropagate errors

void CNeuroNet BP::BackPropagate(void)

{

DOUBLE Out, Err;

INT i, j, k;

//calculate backwards errors

for(i=nLayer-2; i>=0; i–)

{

if(i!=0)

{

for(j=0; j<pLayer[i].nNode; j++)

{

Out = pLayer[i].pOutput[j];

Err = 0;
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for(INT k=0; k<pLayer[i+1].nNode; k++)

{

Err += pLayer[i+1].pError[k] * pLayer[i+1].ppWeight[k][j];

}

pLayer[i].pError[j] = Out * (1-Out) * Err;

}

}

else

{

for(j=0; j<pLayer[i].nNode; j++)

{

Out = pLayer[i].pOutput[j];

Err = 0;

for(k=0; k<pLayer[i+1].nNode-1; k++)

{

Err += pLayer[i+1].pError[k] * pLayer[i+1].ppWeight[k][j];

}

pLayer[i].pError[j] = Out * (1-Out) * Err;

}

}

}

//adjust weights

for(i=nLayer-1; i>0; i–)

{

if(i==nLayer-1)

{

for(j=0; j<pLayer[i].nNode; j++)

{

for(k=0; k<pLayer[i].nInput; k++)

{

Out = pLayer[i-1].pInput[k];
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Err = pLayer[i].pError[j];

pLayer[i].ppWeight[j][k] += pLayer[i].ppDWeight[j][k];

pLayer[i].ppDWeight[j][k] = this->Eta *Err * Out +

this->Alpha*pLayer[i].ppDWeight[j][k];

}

}

}

else

{

for(j=0; j<pLayer[i].nNode; j++)

{

for(k=0; k<pLayer[i].nInput; k++)

{

Out = pLayer[i-1].pInput[k];

Err = pLayer[i].pError[j];

pLayer[i].ppWeight[j][k] += pLayer[i].ppDWeight[j][k];

pLayer[i].ppDWeight[j][k] = this->Eta *Err * Out +

this->Alpha*pLayer[i].ppDWeight[j][k];

}

}

}

}

}

// build the network and allocate memory for varibles

voidCNeuroNet BP::GenerateNet(void)

{

for(INT i=0; i<nLayer; i++)

{

if(i==0)

{

pLayer[i].nInput = this->nInput;
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pLayer[i].pOutput = new DOUBLE[pLayer[i].nNode]; //allocate mem-

ory for output

pLayer[i].pError = new DOUBLE[pLayer[i].nNode];

}

else

{

pLayer[i].nInput = pLayer[i-1].nNode;

pLayer[i].pOutput = new DOUBLE[pLayer[i].nNode];

pLayer[i].pError = new DOUBLE[pLayer[i].nNode]; //allocate momery

for neuron errors

pLayer[i].ppWeight = new DOUBLE*[pLayer[i].nNode ]; //allocate

memory for weight pointers

pLayer[i].ppDWeight = new DOUBLE*[pLayer[i].nNode ]; //allocate

memory for weight increments

for(INT j=0; j<pLayer[i].nNode; j++)

{

pLayer[i].ppWeight[j] = new DOUBLE[pLayer[i].nInput]; //allocate

memory for weights of each neuron

pLayer[i].ppDWeight[j] = new DOUBLE[pLayer[i].nInput]; //allo-

cate memory for weight increments

}

}

}

this->pOutput = pLayer[nLayer-1].pOutput;

}

B.2 Source Code of Locating Features in a Pro-

posed Feature Map

OpenCV image processing library is used in this part of source code.
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CvPoint* CCellNuclearDetectorView::LocateFeatures(IplImage* m pImage)

{

//locates features in a proposed face feature map, returns their coordinates

//takes proposed feature map as input

IplImage* img;

CvPoint* points = new CvPoint [3];

//makes sure the input image is a 256 gray scale image

if(m pImage->nChannels == 1)

{

img= (IplImage*)cvClone(m pImage);

}

else

{

img = cvCreateImage( cvGetSize(m pImage), 8, 1 );

cvCvtColor(m pImage, img, CV BGR2GRAY);

}

cvSmooth( img, img, CV MEDIAN, 3, 3, 0, 0 );

//thresholds the image into a binary image

cvThreshold(img, img, 30, 255, CV THRESH BINARY INV);

//morphological operations to form pixel blocks

cvErode( img, img, NULL, 3);

cvDilate( img, img, NULL, 3);

//locates the centres of pixel blocks

CvMemStorage* storage = cvCreateMemStorage(0);

CvSeq* contours = 0;

CvSeq tmp;

CvMat* color tab;

int comp count = 0;

//finds feature patches

cvFindContours( img, storage, &contours, sizeof(CvContour),

CV RETR CCOMP, CV CHAIN APPROX SIMPLE );

//finds pathch corner coordinates

int left, right, top, bottom;
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int i=0;

for( ; contours != 0; contours = contours->h next, comp count++ )

{

if((contours->first->count)>4 && i<3) //a patch must have more than 4

pixels

{

left=10000;

right=0;

top=0;

bottom=10000;

for(i=0; i<contours->first->count; i++) //finds the centre of the small-

est rectangle surrounding the patch

{

CvPoint* k;

k=(CvPoint*)cvGetSeqElem(contours,

contours->first->start index+i);

if(k->x<left)

left=k->x;

if(k->x>right)

right=k->x;

if(k->y<bottom)

bottom=k->y;

if(k->y>top)

top=k->y;

}

points[i].x=(left+right)/2;

points[i].y=(top+bottom)/2;

}

i=i+1;

}

return points;

}
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