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Abstract 
 

 

 Modern day technology aspires to always progress. This progression leads to a lot of 

research in any significant area of improvement. There is a growing amount of end-users in 

the wireless spectrum which has led to a need for improved bandwidth usage and BER 

values. In other words, new technologies which would increase the capacity of wireless 

systems are proving to be a crucial point of research in these modern times. 

 Different combinations of multiuser receivers are evaluated to determine performance 

under normal working conditions by comparing their BER performance charts. Multiple 

input, multiple output (MIMO) systems are incorporated into the system to utilise the 

increased capacity rates achievable using the MIMO configuration. The effect of MIMO on 

the technologies associated with modern day technological standards such as CDMA and 

OFDM have been investigated due to the significant capacity potentials these technologies 

normally exhibit in a single antenna scenario. An in-depth comparison is established before 

comparison is made with a conventional maximum likelihood (ML) detector.  

 The complexity of the ML detector makes its realization evaluated in such a manner 

to achieve the same or near ML solution but with lower computational complexity. This was 

achieved using a proposed modification of the Schnorr-Euchner Sphere decoding algorithm 

(SE-SDA). The proposed sphere decoder (P-SD) adopts a modification of the radius utilised 

in the SE-SDA to obtain a near ML solution at a much lower complexity compared to the 

conventional ML decoder. The P-SD was configured to work in different MIMO antenna 

configurations. 

The need for the highest possible data rates from the available limited spectrum led to 

my research into the multi-user detection scenario and MIMO. 

 



iii 

University of Hertfordshire, 2011 
 

 

 

Acknowledgements 
 

 

Firstly, I would like to express my deepest thanks to God for his blessings and directions in 

giving me the knowledge and health to complete this project. 

I would like to say a big THANK YOU to my family; especially my parents, for their support 

and assistance in every manner towards the completion of this project.  

I would like to express my utmost gratitude to my supervisor, Prof. Yichuang Sun. His 

advice, support, encouragement, motivation, guidance and perseverance were at times 

priceless and immense. I would also like to say a big THANK YOU to him for his belief in 

this project and in my completion of the task. 

Finally, I would like to say one last THANK YOU to my friends and colleagues. Their belief 

in me made me attain that belief within myself and served as a catalyst towards the 

completion of this project. 

 

 

 

  



iv 

University of Hertfordshire, 2011 
 

 

 

List of Abbreviations 
 

 

BER   Bit Error Rate 

BLAST  Bell Labs Layered Space Time  

BS   Base station 

CAI   Co-Antenna Interference 

CDMA  Code Division Multiple Access 

IEEE   Institute of Electrical and Electronics Engineers 

i.i.d   Identically independent distribution 

ITU   International Telecommunications Union 

MAI   Multiple Access Interference 

MC   Multi Carrier 

MIMO   Multiple input, Multiple output 

ML   Maximum Likelihood 

MMSE   Minimum Mean Squared Error 

MUD   Multiuser Detection 

NP-Hard  Non-Deterministic Polynomial Time Hard 

OFDM   Orthogonal Frequency Division Multiplexing 

PIC   Parallel Interference Cancellation 



v 

University of Hertfordshire, 2011 
 

 

 

PSK   Phase Shift Keying 

QAM   Quadrature Amplitude Modulation 

QPSK   Quadrature Phase Shift Keying 

SD   Sphere Decoder 

SDA   Sphere Decoding Algorithm 

S-E   Schnorr-Euchner 

SIC   Successive Interference Cancellation 

SISO   Single-input Single-output 

SNR   Signal-to-Noise ratio 

STBC   Space Time Block Code 

WiMaX  Worldwide Interoperability for Microwave Access 

WLAN  Wireless Local Area Network 

ZF   Zero Forcing 

 

 

 

 

 

 

 



vi 

University of Hertfordshire, 2011 
 

 

 

List of Figures 
 

 

Figure 2-1: Different MUD Configurations............................................................................ 8 

 

Figure 2-2: A Typical Multi-user CDMA Transmitter ......................................................... 11 

 

Figure 2-3: BER vs. No. of Users ......................................................................................... 18 

 

Figure 2-4: BER vs. SNR with 5 users ................................................................................. 18 

 

Figure 2-5: BER vs. SNR with 10 users ............................................................................... 19 

 

Figure 2-6: BER for n-stage PIC detector ............................................................................ 20 

 

Figure 3-1: A Typical MIMO System .................................................................................. 25 

 

Figure 3-2:  A Typical BLAST Architecture ......................................................................... 40 

 

Figure 3-3: D-BLAST Transmitter ....................................................................................... 42 

 

Figure 3-4: D-BLAST Diagonal Layering ............................................................................ 43 

 

Figure 3-5: D-BLAST Decoding Process ............................................................................. 44 

 

Figure 3-6: H-BLAST Transmitter ....................................................................................... 45 

 

Figure 3-7: Capacities of different MIMO Configurations .................................................. 48 

 

Figure 3-8: 2x2 MIMO with different Receive Architectures .............................................. 49 

 

Figure 3-9: 4x4 MIMO with different Receive Architectures .............................................. 50 

 

Figure 3-10:  A 2x2 MIMO System with 16-PSK modulation ................................................ 51 

 

Figure 3-11:  A 4x4 MIMO with different Modulation Schemes ............................................ 52 

 



vii 

University of Hertfordshire, 2011 
 

 

 

Figure 4-1: A Multi-user MIMO uplink/downlink system ................................................... 54 

 

Figure 4-2: A Typical Multi-user CDMA MIMO System ................................................... 61 

 

Figure 4-3:    Flowchart representation of multi-user channel................................................. 65 

 

Figure 4-4:    A Typical MIMO-OFDM Telecommunications System ................................... 67 

 

Figure 4-5: OFDM Modulator Block of k
th

 user ................................................................... 70 

 

Figure 4-6: BER for a 2x2 MIMO CDMA System for K = 5 users ..................................... 73 

 

Figure 4-7: BER for a 2x2 MIMO CDMA System for K = 10 users ................................... 73 

 

Figure 4-8:    BER Performance of a MIMO-OFDM for NT = NR = 1, 2 and 4 (802.11a)...... 74 

 

Figure 4-9:    BER Performance of a MIMO-OFDM for NT = NR = 1, 2 and 4 (802.11g) ..... 75 

 

Figure 4-10:  BER of a 2x2 MIMO-OFDM with different cyclic prefix lengths (802.11a) .... 76 

 

Figure 4-11:  BER of a 2x2 MIMO-OFDM with different cyclic prefix lengths (802.11g) ... 77 

 

Figure 5-1: Geometric Representation of the Sphere Decoding Algorithm ......................... 81 

 

Figure 5-2: Linear representation of a MIMO Channel ........................................................ 82 

 

Figure 5-3: Tree search representation for a 2-by-2 MIMO SD-QPSK system ................... 94 

 

Figure 5-4: BER using QPSK modulation at the transmitter.............................................. 101 

 

Figure 5-5: BER using 16-PSK at the transmitter .............................................................. 102 

 

Figure 5-6:    Comparing the Total Number of Nodes for Different Sphere Detectors ......... 103 

 

Figure 5-7: Comparing the Total Number of Nodes with m = 2, rt = 1, Nt = Nr = 2. ....... 105 

 

Figure 5-8: Comparing the Total Number of Nodes with m = 4, rt = 2, Nt = Nr = 4. ....... 106 

 

Figure 5-9: Comparing the Total Number of Nodes with m = 2, rt = 1, Nt = Nr = 4. ....... 106 

 



viii 

University of Hertfordshire, 2011 
 

 

 

Figure 5-10:   Comparing the Total Number of Nodes with m = 5, rt = 2, Nt = Nr = 4. ...... 107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



ix 

University of Hertfordshire, 2011 
 

 

 

List of Tables 
 

 

Table 4-1: Generic IEEE 802.11 specifications .................................................................. 68 

 

Table 5-1: Total number of nodes with Nt = Nr = 2, m = 2 and Ntot = 10
4
 ........................ 108 

 

Table 5-2: Total number of nodes with Nt = Nr = 2, m= 4 and Ntot = 10
4
 ......................... 108 

 

Table 5-3: Total number of nodes with Nt = Nr = 4, m= 4 and Ntot = 10
4
 ......................... 109 

 

 

 

 

 

 

  



x 

University of Hertfordshire, 2011 
 

 

 

Table of Contents 
 

 

Abstract ...................................................................................................................................... ii 

 

Acknowledgements .................................................................................................................. iii 

 

List of Abbreviations ................................................................................................................ iv 

 

List of Figures ........................................................................................................................... vi 

 

List of Tables ............................................................................................................................ ix 

 

1 Introduction ........................................................................................................................ 1 

 

1.1 A General Overview.................................................................................................... 1 

1.1.1 Multi-user Detection Techniques ......................................................................... 1 

1.1.2 Multiple Input, Multiple Output (MIMO) Systems ............................................. 2 

1.1.3 The Maximum Likelihood Solution..................................................................... 3 

 

1.2 Aims and Objectives ................................................................................................... 3 

 

1.3 Thesis Contributions ................................................................................................... 4 

 

 

2 Multiuser Detection (MUD) Algorithms ............................................................................ 6 

 

2.1 Introduction ................................................................................................................. 6 

 

 



xi 

University of Hertfordshire, 2011 
 

 

 

2.2 Multi-user Detection: A Brief Overview for SISO Systems ....................................... 7 

2.2.1 Near-Far Resistance ............................................................................................. 9 

2.2.2 Asynchronous versus Synchronous ..................................................................... 9 

2.2.3  Linear versus Nonlinear ...................................................................................... 9 

2.2.4  Limitations under Practical Operating Conditions ........................................... 10 

 

2.3 Multi-user Detectors for SISO Systems .................................................................... 10 

2.3.1 Linear Detectors ................................................................................................. 11 

2.3.2 MUD Algorithm for the Linear Detectors ......................................................... 13 

2.3.3 Non-Linear Detectors......................................................................................... 15 

 

2.4 Simulation of Linear Detectors ................................................................................. 17 

 

2.5 Simulation of Non-Linear Receiver Combinations ................................................... 20 

 

2.6 Summary ................................................................................................................... 21 

 

 

3 The ‘MIMO’ Technology ................................................................................................. 22 

 

3.1 Introduction ............................................................................................................... 22 

 

3.2 Overview of MIMO Wireless Systems ..................................................................... 22 

3.2.1 MIMO with Pre-Coding ..................................................................................... 23 

3.2.2 MIMO with Spatial Multiplexing ...................................................................... 23 

3.2.3 MIMO with Diversity Coding ........................................................................... 24 

 

3.3 Capacity of a MIMO System .................................................................................... 26 

 

3.4 MIMO Detectors ....................................................................................................... 28 

3.4.1 Zero Forcing (ZF) Detector ............................................................................... 28 



xii 

University of Hertfordshire, 2011 
 

 

 

3.4.2 Minimum Mean Squared Error (MMSE) Detector ............................................ 33 

3.4.3 Successive Interference Cancellation ................................................................ 33 

3.4.4 Ordered Successive Interference Cancellation (OSIC) Algorithm .................... 38 

 

3.5 MIMO using BLAST Techniques ............................................................................. 40 

3.5.1 D-BLAST ........................................................................................................... 41 

3.5.2 H-BLAST ........................................................................................................... 45 

3.5.3 V-BLAST Architecture ...................................................................................... 46 

3.5.4 Turbo-BLAST Architecture ............................................................................... 46 

3.5.5 BLAST Receivers .............................................................................................. 47 

 

3.6 Simulations and Results ............................................................................................ 47 

3.6.1 Capacity of a MIMO System ............................................................................. 48 

3.6.2 Implementation Using Different Receiver Configurations ................................ 49 

3.6.3 Using different modulation schemes ................................................................. 51 

 

3.7 Summary and Analysis.............................................................................................. 52 

 

 

4 Multi-user Detection and MIMO ...................................................................................... 54 

 

4.1 Introduction ............................................................................................................... 54 

 

4.2 A V-BLAST MIMO Model ...................................................................................... 55 

4.2.1 V-BLAST Transmitter ....................................................................................... 56 

4.2.2 V-BLAST Receiver ........................................................................................... 57 

 

4.3 Transmitted Signal Model of V-BLAST Architecture .............................................. 58 

 

4.4 Detection Algorithm of V-BLAST Architecture ...................................................... 59 

 



xiii 

University of Hertfordshire, 2011 
 

 

 

4.5 MIMO-CDMA .......................................................................................................... 61 

 

4.6 MIMO-OFDM ........................................................................................................... 66 

4.6.1 A MIMO-OFDM System based loosely on the IEEE 802.11 standards ........... 68 

 

4.7 Simulations and Results ............................................................................................ 71 

4.7.1 Varying the number of users in a MIMO CDMA system ................................. 72 

4.7.2 Varying the Number of Antennas in a MIMO-OFDM system .......................... 74 

4.7.3 Varying the Guard Band Interval in MIMO-OFDM ......................................... 75 

 

4.8 Summary and Analysis.............................................................................................. 77 

 

 

5 Sphere Decoder (SD) for MIMO Detection ..................................................................... 80 

 

5.1 Introduction ............................................................................................................... 80 

 

5.2 Maximum Likelihood Detection ............................................................................... 82 

 

5.3 Principle of the General Sphere Decoder Algorithm ................................................ 86 

5.3.1 System Model of a Sphere Decoder................................................................... 88 

5.3.2 General Sphere Decoder Algorithm................................................................... 92 

5.3.3 Choice of Sphere Radius .................................................................................... 95 

5.3.4 The Schnorr-Euchler SD Tree Search ................................................................ 97 

 

5.4 Simulations .............................................................................................................. 100 

5.4.1 Comparison with other Detectors .................................................................... 100 

5.4.2 Visited Nodes for different Antenna Configuration ........................................ 102 

5.4.3 S-E SDA using a modified Babai radius.......................................................... 104 

 

5.5 Summary and Analysis............................................................................................ 109 



xiv 

University of Hertfordshire, 2011 
 

 

 

6 Conclusions and Future Work ........................................................................................ 111 

 

6.1 Conclusions ............................................................................................................. 111 

6.1.1 Effect of MIMO on BER performance ............................................................ 112 

6.1.2 Improved BER performance ............................................................................ 112 

6.1.3 Complexity of a ML decoder ........................................................................... 113 

 

6.2 Future Work ............................................................................................................ 113 

6.2.1 MIMO and MC-CDMA ................................................................................... 113 

6.2.2 Modified Sphere Decoder (M-SDA) ............................................................... 114 

6.2.3 Sphere Decoder and MC-CDMA ..................................................................... 114 

 

 

7 References ...................................................................................................................... 115 



1 

University of Hertfordshire, 2011 
 

 

 

1 Introduction 

 

 

1.1 A General Overview 

 

 Wireless communications is an important part of the telecommunications industry. It 

is easily the fastest growing part of the telecommunications industry. The available resources 

are limited and therefore maximising how we use it is a very attractive research area. The 

advent of multiple input, multiple output (MIMO) antennas has had a major influence on how 

the current capacity limits of single antenna systems could be increased without the need of 

overwhelming computational complexity. MIMO enhances the capacity of the system and 

can be used in conjunction with multi-user techniques to improve system throughput. This 

introductory chapter gives a brief overview of the main elements researched within this 

project.  

 

1.1.1 Multi-user Detection Techniques 

 

There is a growing amount of end-users in the wireless spectrum which has led to a 

need for improved bandwidth usage and BER values. In other words, new technologies which 

would increase the capacity of wireless systems are proving to be a crucial point of research 

in these modern times. Hence, the focus of the research was to examine, identify and 

establish a detector capable of delivering rates required by the demand of the end users in 

modern day telecommunication systems.  

Multiuser detection (MUD) is a technique that has been widely accepted in current 

telecommunications technologies as the demand from the end user increases. It enables the 
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multiple users to share the same wireless communications channel and therefore increasing 

overall system capacity. Essentially, MUD can be envisaged as one of the most important 

breakthroughs achieved in wireless telecommunication technology. The demand caused by 

the end user led to a lot of users operating within the same frequency allocation as seen in the 

3G mobile broadcast cells although they do so at different time intervals. The advent of 

increased users caused the introduction of multiple access interference (MAI) in mobile 

wireless systems. MAI is an interference caused by the existence of multiple users allotted to 

the same frequency range. MAI is witnessed when these users access the allotted frequency 

band at the same time. In essence, although several users can transmit at the same frequency, 

MAI would be present provided two or more users are transmitting at the same time. 

Multiuser detection (MUD) techniques aim to remove the effect of MAI from the wireless 

system [20].  

 

1.1.2 Multiple Input, Multiple Output (MIMO) Systems 

 

The use of multiple transmit and receive antennas has been proposed for the fourth 

generation code-division multiple access (CDMA) and orthogonal frequency division 

multiplex (OFDM) wireless cellular networks in order to meet the increasing demands for 

higher data rates [7], [8]. MIMO systems are utilised to increase total system data rates, 

throughput and capacity [9]. MIMO is a simple algorithm which manipulates the space 

dimension of a wireless telecommunication spectrum to achieve increased data rates without 

the need to add complex software [7], [8], [9]. Prior to MIMO, improved data rates were 

normally increased by transmitting at higher modulation rates. MIMO system adopts multiple 

antennas at both the transmitter and the receiver; hence, MIMO simply adds a simple 

hardware change to the system rather than increased computational complexities as witnessed 

with using a higher modulation technique [9], [46].  
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1.1.3 The Maximum Likelihood Solution 

 

 The function of a receiver can be visualised as a bunch of algorithms working 

together to correctly predict a received signal that has been corrupted by noise from the 

wireless channel. The optimal solution of any received signal is generically termed the 

maximum likelihood (ML) solution for that received signal. This optimal solution raises 

issues such as the overall exhaustive runtime of the system and the burden of iterations 

required to find the result [20], [46]. These drawbacks make the ML solution termed to be a 

NP-Hard process [20]. Hence, sub-optimal processes where the performance of the receiver is 

closest to the performance of ML receiver have been investigated in this research. 

 Bit error rates (BERs) are a means of analysing and investigating how efficient a 

receiver performs under certain conditions. BER performance have been computed and 

analysed for different receiver systems and combinations to establish performance margins in 

the presence of noise and interference. 

 

 

1.2 Aims and Objectives 

 

The aims and objectives of this project can be visualised as indicated below. 

- To  review typical single antenna systems 

- To establish the variations of detectors and investigate their BER performance 

- To disseminate the MIMO algorithm and investigate the current MIMO detectors  

- To identify a suitable MIMO detector and combine it with a multi-user signal to 

investigate the combination of MUD and MIMO 

- To extend the MIMO algorithm to OFDM and CDMA systems to  study the effect 

using the calculated BER performance 
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- To compare the sphere decoding algorithm (SDA) to the maximum likelihood (ML) 

detector  

- To establish a modification that improves on the utilised SDA 

 

 

1.3 Thesis Contributions 

 

The novel contributions of this thesis have been highlighted below. 

- Devised a clear and precise presentation of the progression from low performance 

receivers to high performance receivers. 

- Implemented a decoding algorithm developed by Foschini [46] using different 

modulation techniques and antenna configuration. 

- Analysed Foschini’s decoding algorithm in [46] and the combination with CDMA and 

OFDM 

- Provided a clear and precise description of the sphere decoding algorithm. 

- Implemented the receiver algorithm devised by Schnorr and Euchner in [36] and 

investigated the effect of its combination with MIMO systems using different 

modulation techniques and antenna configurations. 

- Implemented a novel adaptation of a very utilised algorithm for detection in MIMO 

receivers  
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1.4 Thesis Outline 

 

 Chapter 1 is a basic introduction to the work done within the project and gives a brief 

summary of the main objectives. 

Chapter 2 provides an overview of single input, single output (SISO) multiuser 

systems and identifies the sub-par performance noticed. 

Chapter 3 introduces the reader to MIMO with a complete dissemination of the 

technology by investigating the key components and attributes with regards to single user 

communications. The BER performance of different MIMO receivers is investigated. 

Chapter 4 introduces the concept of MIMO in combination with higher order 

modulation technologies such as multi-user CDMA and OFDM. Modern telecommunication 

networks normally adopt these standards so in effect; the combination of MIMO with these 

technologies was also investigated. 

Chapter 5 analyses the ML solution and provides a proper insight into the 

complexities involved in obtaining this solution.  It then proposes a modification to the 

receiver algorithm developed by Schnorr and Euchner in [36]. 

Chapter 6 concludes the research project by identifying the benefit of the proposed 

scheme and highlight significant advantages of adopting the proposed algorithm in modern 

day wireless systems. It also discusses future work that can be carried out to further the 

research. 
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2 Multiuser Detection (MUD) Algorithms 

 

 

2.1 Introduction 

 

The ultimate aim of the telecommunications industries of today is the transmission 

and reception of information; voice, data or a combination of both; with high data rates and 

offering significantly low interference.  

Wireless communications is one of the rapidly growing means of communications 

simply because of the attraction it brings to the end users: mobility. Due to technological 

advancements, the premature use of wireless devices as simply a means of voice 

communications; as used by mobile phones, needed to be reassessed to accommodate for the 

growing need for multimedia and text messages. This need created a desire for very high data 

rates which could not simply be offered due to the limited radio spectrum and signal 

interference. Although wired devices offer these desired rates, they lack the needed 

advantages of mobility and instantaneity hence research into achieving these rates for 

wireless systems became a significant area of research in our modern day world. 

 The modern day world strives for perfection. This attribute contributes to the need for 

the maximum data bandwidth, fastest processing speeds and minimum errors. The last 

attribute is where multiuser detection is involved. It is a combination of techniques employed 

to minimise the errors in the ‘receive’ end of a communications system. 

 MUD is a topic of great interest as the need for higher bandwidths and greater speeds 

generates a need for receivers that reflect minimum errors. The multi-user detection schemes 

are simply a combination of algorithms that readily detect the incoming multi-user signals. 

This property enables different MUD combinations to be serially processed together to 
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achieve better error rates although the more combinations visualised, the greater the 

complexity of the system. 

This chapter gives a general overview of the most common multi-user detection 

techniques for use in SISO systems.  Different combinations of ZF, MMSE and SIC detectors 

have been investigated to determine the detector combination most suitable for the final 

receive detector discussed in Chapter 5. 

 

 

2.2 Multi-user Detection: A Brief Overview for SISO Systems 

 

 Multiuser receivers would never yield a perfect match between the transmitted and 

received signals [4]. An approximation to a perfect match exists in the Optimal Maximum 

Likelihood Sequence Estimation Receiver (MLSE). This receiver has its major drawbacks 

with respect to the computational complexity of the system increasing exponentially with the 

total number of users [4]. Verdu derived the optimal CDMA receiver in 1986 [4]. This was 

pre-empted seven years earlier by the introduction of multi-user detection by Schneider in 

1979 [4]. The optimal receiver consists of a bank of matched filters which are used to provide 

first order user amplitude estimates to a Viterbi decision algorithm. Verdu showed 

mathematically that the optimal receiver gave a very significant performance improvement 

over the conventional structure, but the expense of its implementation increased significantly 

with the total number of users in the system. This also raised an issue due to the significant 

complexity involved in deploying the system. Hence, less expensive and less complex 

detectors are currently being proposed although the optimal detector is now being used as a 

benchmark for future systems. To reduce this significant drawback, an estimation of the 

receiver is considered; this led to the study of ‘sub-optimal’ receivers. The major formats of 

multi-user receivers can be envisaged in Figure 2-1. 
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Figure 2-1: Different MUD Configurations 

 

 The different types of receivers possess their corresponding advantages and 

disadvantages; therefore, an insight into their theoretical behaviour is essential. As shown in 

Figure 2-1, there are two variations; linear and non-linear receivers.  The design tradeoffs 

which need to be considered when deciding upon any receiver detection algorithms are: 

- Near Far Resistance 

- Asynchronous versus Synchronous 

- Linear versus Non-Linear 

- Performance versus Complexity 

- Limitations under Practical Operating Conditions 
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2.2.1 Near-Far Resistance 

 

 This corresponds to the fact that the receiver picks up the incoming detected signals at 

different receive powers. 

- Signals reach the receiver at different powers; caused by fading, distance from the 

receiver and different transmit powers of the user (i.e. as seen in the cellular industry). 

- Linear receivers are not affected by this phenomenon since the disparate power in the 

signal does not affect the performance while nonlinear receivers take into account the 

power of each user [13]. 

 

2.2.2 Asynchronous versus Synchronous 

 

 Linear receivers project their incoming received signal vectors onto a state space 

which are orthogonal to each other and therefore, the presence of interference is non-existent. 

Hence, there is no need for synchronization. Non-linear receivers need to detect the presence 

of each user and therefore synchronisation becomes essential. Asynchronous detection is still 

possible with nonlinear receivers but it leads to a substantial increase in complexity. 

 

2.2.3  Linear versus Nonlinear  

 

 A major drawback of linear equalizers is their vulnerability and ineffectiveness to 

deep fades [15]. In other words, linear equalizers suffer when the frequency response of the 

frequency selective channel contains deep fades. This is not apparent in nonlinear equalizers 

and their performance under deep fades can also be harnessed significantly [16]. 
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2.2.4  Limitations under Practical Operating Conditions 

 

 The most practical operating condition is the transmission channel itself. Linear 

receivers do not require prior knowledge of the channel unlike nonlinear receivers. Nonlinear 

receivers would normally require knowledge of the channel gains of each user. The 

transmission channel is never constant and varies over time; hence, determining the channel 

gains leads to added complexity. A significant deviation from the actual channel transfer 

function at any given time can seriously hamper the performance of a non-linear receiver; 

hence research into blind multi-user receivers [14] where close approximations to the channel 

transfer functions have been investigated. 

 

 

2.3 Multi-user Detectors for SISO Systems 

 

 Detection of signals at the receive end used to normally be in the ‘single-user’ 

scenario. In the advent of the advantages of multi-user transmission, i.e. Figure 2-2, a need 

for an adequate multi-user detection has also arisen. The current ‘matched filter’ detectors 

utilised for the existing single user systems are not sufficient on their own to detect multi-user 

signals; this is due to the presence of Multiple Access Interference (MAI) within the multi-

user signals. As the number of active users increases, the MAI term disrupts the BER of the 

detected signal when using the conventional matched filters. The MAI is filtered out by the 

matched filters and treated as noise. This MAI still possesses parts of the signal and therefore, 

useful information when determining the value of the actual signal is being thrown away. 
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Figure 2-2: A Typical Multi-user CDMA Transmitter 

 

 Referring to MUD receiver classification tree above, i.e. Figure 2-1, there are 2 major 

forms of sub-optimal detectors. It is important to understand the key concepts, advantages 

and disadvantages of the systems in order to facilitate and decide the choice of detectors to be 

utilized. The most common detector configurations have been investigated for both the linear 

and non-linear scenarios. 

 

2.3.1 Linear Detectors 

 

The aim of linear multi-user detectors is to perform a linear operation on the matched 

filter outputs, aimed at producing a refined set of decision statistics with reduced MAI seen 

by each user, hence become near-far resistant. The two most common are described below. 
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2.3.1.1 The De-correlating Detector 

 

 It performs a linear transformation on the set of matched filter outputs from the first 

stage. As the name implies, it de-correlates (i.e. process that is used to reduce the auto-

correlation within a signal or cross-correlation within a set of signals, while preserving other 

aspects of the signal) the user signals so as to isolate the user from one another. This process 

is achieved by computing the PN code waveform cross correlation values and storing these in 

a KxK  matrix (reason it is known to have a 2K complexity). The vector of the matched filter 

outputs are then multiplied by the inverse of this matrix [19]. The receiver is insensitive to 

the near-far effect as prior knowledge of the channel parameters is not required. The receiver 

produces a significant performance when compared to the conventional matched filter 

receiver although it suffers from a major disadvantage of enhancing the noise statistics as a 

result of the de-correlation process. Due to this disadvantage, it has been neglected in the 

context of linear detectors examined.  

 

2.3.1.2 The MMSE Detector 

 

 This operates similarly to the de-correlating detector with respect to applying a linear 

transformation to the matched filter outputs at the first stage. The function of the detector is 

to minimise the average squared error between the actual data and the detected data, i.e. 

output from the matched filter. This attribute makes the MMSE detector favourable when 

compared to the de-correlating detector due to the simple reason that it does not amplify 

noise. The drawback incurred because of this attribute, is a need to possess knowledge of the 

channel parameters [70]. It has been shown [12] that the MMSE displays a better bit error 

rate, BER compared to the de-correlator but at its limit; i.e. when the noise level drops to 

zero, its performance approaches that of the de-correlator. It has also been shown to possess a 

slightly lower near-far resistance [20], [21]. 
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 Another useful linear detector which is widely used is the Least Squares detector; 

this is similar to the MMSE with respect to minimising the sum of the squared error. The 

error referred to corresponds to the subtraction of the detected signal from the original signal 

[4].  

 

2.3.2 MUD Algorithm for the Linear Detectors 

 

The following is the derivation of the utilised equations. 

-    Using the one-shot demodulation assumption: the i
th

 data symbol of the K users is given 

by the vector, r(i) whose k
th

 component is the output of a filter matched to sk in the interval 

written as: 

 





Ti

iT
kk dttriTtsir

)1(

,)()()(               k = 1,2, … K      (2.1) 

 

-     Assuming all N chip samples at the i
th

 symbol instance, the received discrete-time signal 

can be written in vector form as: 

 

)()()( iniSAbir           (2.2) 

 

-    Since the discrete-time signal, rk(i) is statistically invariant to the choice of symbol 

interval, i; the indices can be removed without losing their generality. Hence in vector form, 

Equation (2.2) becomes: 
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nSr      where Ab        (2.3) 

 

S is an N by K matrix that holds the signature sequences of all the K users and θ holds 

the product of the transmitted bits and their corresponding amplitudes. Using [27] and (2.3), a 

general equation representing linear multi-user detection can be defined below as: 

 

CnCSCr  ̂          (2.4) 

 

For the k
th

 user case: 

 





K

kj

kkkkkkk CnjsCsC )(ˆ         (2.5) 

 

where the filter, Ck is used to obtain estimates k̂  for the k
th

  user from the received signal. 

 

The equation also shows the contribution of ambient noise and the presence of MAI 

within the signal. The filter Ck corresponds to the transfer function of the linear detector. The 

following are the derivations of k̂  for the three detectors examined; matched filter, least 

squares and MMSE multi-user detectors. 
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where S represents the user spreading sequences 

 

2.3.3 Non-Linear Detectors 

 

 In the same manner as linear detectors, nonlinear multi-user detectors perform a 

nonlinear operation on the matched filter outputs. The detectors to have undergone the most 

advancement in recent years have been investigated. A brief explanation of their basic 

principles is described below while a more comprehensive approach is considered in Chapter 

3. 

 

2.3.3.1 Successive Interference Cancellation (SIC) 

 

The algorithm detects the strongest user first, subtracts it from received signal, and 

then detects the next strongest, etc. It can behave in two manners. Firstly, it can subtract the 

soft information from received signal; leads to little or non-existent error propagation but 

acquires an accumulating noise effect for weak users. Secondly, it can subtract hard 

information from received signal leading to little or no noise accumulation but possible error 

propagation. Successive interference cancellation could be done in a circular manner to 

improve the performance at the expense of low convergence and thus high complexity. MAI 

is reduced and near/far problem increased. Cancelling the strongest signal has the most 

benefit and is the most reliable cancellation [22]. Therefore being the most reliable 
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cancellation, the SIC algorithm would mainly suffer from error propagation. It also requires 

channel estimates at the receiver [22]. Another variation of this interference cancellation 

detector is the parallel interference cancellation, PIC. 

 

2.3.3.2 Parallel Interference Cancellation (PIC) 

 

 Similar to its predecessor, the PIC detector also involves subtracting the interference 

of the other users. As the name implies; unlike the serial subtraction in SIC, the PIC detector 

cancels the estimates of the MAI from the outputs of the matched filters in a parallel manner 

(i.e. simultaneously). Its performance depends heavily on the initial signal estimates and it 

also requires channel estimates at the receiver. It performs better than SIC when all of the 

users are received with equal strength (e.g. under power control) [23]. 

 

2.3.3.3 Decision Feedback Equalizer (DFE) 

 

 Decision feedback equalizer (DFE) is a very popular nonlinear equalization scheme. 

In most cases, it is a combination of a linear equalizer and a nonlinear decision part, both 

parts can be implemented with different algorithms. The objective of the DFE is to 

incorporate both a feed-forward FIR filter as well as a feedback filter to minimize the residual 

inter-symbol interference, ISI. In multi-gigabit systems, the DFE is very hard to implement 

due to the need to resolve the decisions within picoseconds in the feedback path. DFE 

outperforms linear detectors in terms of throughput but the major drawback involved 

comprises mainly of the complexity of its deployment and some error propagation issues 

[24]. 

 This project comprises the combination of a different number of MUD techniques. 

Therefore, a proper dissemination of each technique is required.  
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2.4 Simulation of Linear Detectors 

 

 The modern technological world of today makes it possible to understand and 

research wireless systems using a number of software. The software chosen to simulate this 

project is “MATLAB” due to its broad use within the industry. It is user-friendly software 

that has been specifically designed to allow engineers and scientist to model everyday 

occurrences to the best approximation possible. The project objective is very direct but the 

implementation is very broad as it involves the integration of a numerous number of 

communication systems. The main stages utilised within this project are listed below: 

 

- Design and simulate linear multi-user detectors for single carrier CDMA 

- Combine the chosen linear detector with a PIC receiver 

- Extend it using the MIMO architecture 

- Improve total performance by incorporating the Sphere Decoding Algorithm  

 

The simulations below summarise the initial stage within the project. It involved a 

comparison between the conventional matched filter detector and the two significant 

industrial linear detectors; Least Squares detector and the MMSE detector. The desired 

choice of MMSE and PIC has been combined and their performance evaluated 

The following were derived using MATLAB as a means for comparison between the 

following three detectors; conventional matched filter, least squares detector and the MMSE 

detector. 

- Bit Error Rate versus The number of Users, as shown in Figure 2-3. 

- Bit Error Rate versus Signal to Noise Ratio, as shown in Figures 2-4 & 2-5 with 

different number of users. 
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Figure 2-3: BER vs. No. of Users 

 

 

 

Figure 2-4: BER vs. SNR with 5 users 
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Figure 2-5: BER vs. SNR with 10 users 

 

 The results in Figures 2-3, 2-4 and 2-5 clearly describe the advantages of utilising the 

MMSE detector compared to the conventional matched filter detector and the least squares 

detector. It can be seen from these figures that the MMSE gives a better SNR and also 

provides better BER for an increasing number of users. The figures also explain the need for 

multi-user detection as the conventional matched filter deteriorates as the number of active 

users increase. In Figure 2-5, a high roll off is noticed with regards to the MF estimate when 

compared to the previous MF estimates in Figure 2-4. 
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2.5 Simulation of Non-Linear Receiver Combinations 

 

 The initial simulations proved that the MMSE offers significant improvement when 

compared to its other counterparts discussed above. However, the ever increasing demand for 

higher data rates calls for even higher improvements in the BER. This was envisaged by 

combining the MMSE algorithm with the PIC algorithm which has also been evaluated in 

previous literature such as [12]. A receiver utilising this configuration was analysed up to an 

n-stage system. It is easily seen in Figure 2-6 that the BER values improve with increasing 

PIC stages. However, it is worth to note that the complexity of the PIC system increases with 

the number of stages which leads to a trade off during system design. Figure 2-6 also shows 

that the addition of the MMSE stage to the PIC algorithm yields a better BER value. This 

addition however increased the simulation time compared to the PIC stand-alone simulations. 

 

Figure 2-6: BER for n-stage PIC detector 
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 It would be worth to note again that as 0 , i.e. noiseless wireless channel; the 

MMSE/PIC approximates to a simple PIC algorithm simply due to the reasoning that its 

MMSE counterpart approximates to a matched filter.  

 

 

2.6 Summary 

 

A few multi-user detectors have been examined above where the MMSE outperforms 

other linear detectors and the n-stage PIC surpassing the SIC. The evaluated detectors were 

studied as they also take the correlative structure of MAI found in CDMA into account 

during the detection process. A conventional linear detector shows relatively poor 

performance when the number of users is large and also since in effect it is essentially a bank 

of matched filters, the limitations in the presence of noise and multipath are making its use 

redundant in complex modern day detectors. The MMSE detector can be viewed as an 

upgrade of the de-correlating detector. Hence, its selection as one of the linear detectors 

examined with respect to combination with other types of detectors as seen in the latter 

chapters. 

It is also seen that SIC and PIC algorithms outperform their MF and MMSE 

counterparts. The main attraction of the MMSE/PIC detector is the manner at which the 

interference caused by the incident system noise is used to improve the signal reception.  
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3 The ‘MIMO’ Technology 
 

 

3.1 Introduction 

 

 The term ‘MIMO’ is used to describe systems that employ the use of multiple 

antennas at both transmitter and the receiver so as to improve performance by achieving 

higher bit error rates. It is one of the several forms of the smart antenna [5] technology. It is 

one of the major developments in the third generation wireless communication system and is 

internationally researched. The signals are transmitted in multiple paths and therefore 

introduce spatial diversity on the data stream in the channel. It is unlikely that all the paths 

would encounter severe fading at the same time which allows the MIMO scheme to improve 

the signal liability in a natural wireless environment.  

MIMO systems [6] have become attractive trends for broadband wireless 

communications such as wireless LAN (IEEE 802.11n), WCDMA and WiMAX (IEEE 

802.16); this is partly due to the significant increase in data throughput and link range without 

the need to either increase the transmit power or the system bandwidth. 

 

 

3.2 Overview of MIMO Wireless Systems 

 

Different streams of data are sent into the channel by the multiple transmit antennas at 

the transmitter. The transmitted streams are subjected to a communication channel made up 

by the matrix representation formed via the presence of multiple antennas at both transmit 

and receive ends [6]. The receiver then decodes the multiple received signal vector to extract 

the original data stream. 
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 The overall capacity and performance of a MIMO system is dictated by the design 

objective in question. Depending on the required scenario, MIMO systems are normally 

employed using one or a combination of the following techniques. 

 

3.2.1 MIMO with Pre-Coding 

 

Pre-coding is an adapted beam-forming [7] method used to support multi-layer 

transmission in MIMO radio systems. Beam-forming is a process where the same signal is 

transmitted from each antenna with adequate weighting of its associated power and phase in 

order to maximise the signal power at the receiver antenna. This particular set-up is affected 

by factors such as line of sight and positioning; hence, it needs to be adapted for the MIMO 

scenario.  

MIMO receivers have multiple antennas and therefore single layer beam-forming is 

not sufficient to simultaneously maximise the received signal levels at all the receive 

antennas. To achieve this, pre-coding is used to handle this multi-layer level structure of the 

MIMO configuration to enhance the overall performance of the system. In such systems 

where pre-coding is used, multiple streams of the intended transmission signal(s) are 

modulated into the channel with independent weighting per each receive antenna. This would 

yield the required increase in data throughput at the receiver output. Pre-coding requires prior 

knowledge of the channel state information, CSI at the transmitter to be successfully 

deployed. 

 

3.2.2 MIMO with Spatial Multiplexing 

 

 A high data rate signal is normally transmitted by splitting it into multiple lower rate 

data streams. Each stream is then transmitted from a different antenna in the same frequency 

channel. At the receiver, these streams can be separated into parallel channels as long as they 
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arrive at the receiver antenna with different spatial signatures. This method of multiplexing 

can be implemented with or without CSI knowledge. 

 

3.2.3 MIMO with Diversity Coding 

 

 In a typical MIMO communication scenario where the CSI is not known, diversity 

coding techniques are employed to enhance system performance. A single stream is 

transmitted from each antenna using various coding techniques such as space-time coding 

which employ partial or full orthogonal coding. Due to the nature of modern day 

communication wireless systems, a path from transmitter to receiver via a line of sight is 

normally rare hence diversity schemes employ means by which the multiple paths created by 

the interaction of the transmitted signal and the environment (i.e. buildings, trees, mountains 

etc.) can be harnessed to achieve the best assumption to the transmitted stream as possible. 

Space time coding is normally employed to harness the signal seen at the receiver. The 

transmitted signal normally undergoes phase shifts, time delays and various degradations due 

to the multi-path scenario. No CSI knowledge is required at the receiver. Different diversity 

coding schemes exist but the final choice of scheme or MIMO configuration is normally 

dependent on the requirements of the system to be designed. An example of a MIMO uplink 

system is shown in Figure 3-1. 
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Figure 3-1: A Typical MIMO System 

 

 To further evaluate the MIMO system, a linear representation of its associated signals 

is required. Assuming a system comprising N transmit and M receive antennas where nx  

represents the transmitted signal, mnh  is the relevant entry in the channel matrix, H and  nn is 

the noise; the received signal my  is represented as follows: 

 

1,2,...M  m     
1




n

N

n

nmnm nxhy        (3.1) 

 

 The multiple transmit and receive antennas create channel coefficients that can be 

realised in the form of an M x N channel matrix shown below. 
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Therefore; at any given time, t, the received signal can be expressed as shown below. 

 

)()()( tntHxty           (3.3) 

 

where n(t) represents the noise with a variance of  . A means of understanding the 

advantages of MIMO systems is by their system throughput; i.e. capacity. 

 

 

3.3 Capacity of a MIMO System 

 

 The equations for MIMO capacities have been derived, documented and included in 

[7]. These have been derived under a number of assumptions including:  

- channel knowledge at the receiver 

- additive white Gaussian noise and total transmitted power remain constant 

irrespective of the number of transmit antennas. 

- narrowband Rayleigh channel exists during the data burst 

 

 



27 

University of Hertfordshire, 2011 
 

 

 

Under the above assumptions; the overall channel capacity is given by using the following 

equations [8], [9], [10], [11]. 

 

  b/s/Hz  )(detlog2

H

m HHnIC        (3.4) 

b/s/Hz  detlog 2 







 R

n
IC m


       (3.5) 

 

where C represents system capacity, Im represents an identity matrix,   represents the 

average SNR exhibited at each receiving antenna and R represents the normalised channel 

correlation matrix.    

Using the single value decomposition theory [11], MIMO system capacities can be 

visualised via a “water filling” algorithm [8], [11]. This leads to the popular equation below.  

 

b/s/Hz  1detlog
1

2 









k

i
n

C 


       (3.6) 

 

where k represents the rank of the matrix and i  is the i
th

 eigenmode of HH
H
 matrix.  

 

This equation enables the visualisation of a MIMO channel as a number of parallel 

single-input single-output, SISO pipes with gains equal to their respective eigenvalues. 

Therefore, if the channel is known at the transmitter, the overall capacity can be increased by 

using only the “good channels” i.e. the channels that exhibit the highest gains under an 

unequal power distribution. This allows (3.6) to be transformed into (3.7) below. 
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where ip  is the power in the i
th

 pipe. 

 

This value can be determined using the water-filling solution discussed earlier. It is 

worthwhile to note that the capacity realised from a single user MIMO system differs to that 

of multi-user systems. 

 

 

3.4 MIMO Detectors 

 

 There are numerous detectors available but they are mostly a combination of linear 

and/or non-linear detectors. The most common detectors are ZF, MMSE, OSIC and VBLAST 

schemes. New technologies such as Sphere Detectors are emerging and offering Bit Error 

Rates closer to the ML approximation with lesser system complexity. These detectors where 

compared using different antenna configurations and modulation techniques. There are a lot 

of different configurations of MIMO but the adopted method and the assumptions made 

during this research are highlighted below.  

 

3.4.1 Zero Forcing (ZF) Detector 

 

 This is one of the simplest algorithms available. It works as a standard equalizer 

where the inverse of the channel frequency response is applied to the received signal. This 

theoretically sounds efficient but in practical situations, it is very susceptible to noise as the 
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inverse of the received noise is also applied to the signal since the channel response includes 

noise as depicted in (3.3). Therefore, the ZF algorithm is very good for noiseless channels as 

it would successfully eliminate all inter-symbol interference, ISI but impractical for a noisy 

channel as it would amplify the noise experienced at the receiver [12]. 

 Obviously, in order to utilise this algorithm; the channel knowledge is required at the 

receiver which adds to system complexity. Therefore, with respect to MIMO systems, the 

estimate, y  of the received signal, y can be written as: 

 

yHyHHHy HH

ZF

  1)(         (3.8) 

 

where H  corresponds to the Moore-Penrose inverse which is essentially a pseudo-inverse of 

the matrix, H. 

 

The MIMO System can be further analysed below using (3.3). It is evident that the 

data seen by both receivers is made up of signals from both transmit antennas. The received 

data seen by both receive antennas during the first time slot is y1 and y2 in this case where 

       

 

122,111,11 nxhxhy    ;         1

2

1

2,11,11 ],[ n
x

x
hhy 








     (3.9) 

222,211,22 nxhxhy  ;        2

2

1

2,21,22 ],[ n
x

x
hhy 








     (3.10) 



30 

University of Hertfordshire, 2011 
 

 

 






































2

1

2

1

2,21,2

2,11,1

2

1

21

n

n

x

x

hh

hh

y

y

yyy

 

      (3.11) 

 

1x   : The transmitted symbol from the first antenna 

2x  : The transmitted symbol from the second antenna 

1y   : Received signal evident on the first transmitter 

2y   : Received signal evident on the second transmitter 

1,1h  : Channel from the first transmit antenna to first receive antenna 

2,1h : Channel from the second transmit antenna to first receive antenna 

1,2h : Channel from the first transmit antenna to second receive antenna 

2,2h : Channel from the second transmit antenna to second receive antenna 

1n  : Noise at the first receiver 

2n  : Noise at the second receiver 

 

The H matrix in (3.11) is the matrix whose equivalent of H
+
 is given in (3.12). 
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Adapting the solution for    to higher order antenna configuration is more tasking 

and causes higher system complexity. For instance, solving for the inverse of a matrix for a 

4x4 MIMO system where        can be represented below using a similar procedure as 

the       above. 
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



















4,43,42,41,4

4,33,32,31,3

4,23,22,21,2

4,13,12,11,1

hhhh

hhhh

hhhh

hhhh

H        (3.13) 

 

There are now four different antenna signatures received at the receiver due to the presence 

of the four receive antennas as shown below. 
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Recalling (3.13), the inverse of a 4x4 matrix is required. The values for determinant 

are required to calculate its inverse, the elements of the new matrix formed by H  . The 

inverse of a matrix is normally realised by using co-factors. This technique adds significant 

and unnecessary complexity to the system for higher order of the H
+
 matrix. 

 

3.4.2 Minimum Mean Squared Error (MMSE) Detector 

 

 This is an algorithm which performs better than the ZF under noisy conditions. 

Although, it does not fully eliminate ISI like the ZF algorithm; it substantially reduces the 

total noise power experienced at the receiver [4]. 

 

yHIHHy H

sn

H

MMSE

12 ))((          (3.17) 

 

where n  and s  represent the noise power and received signal power respectively and I 

represents an identity matrix. It should be noted that when n   s ; the MMSE estimate equates 

to the ZF estimate. Therefore, the 2x2 and 4x4 estimates from (3.17) can be viewed as similar 

to their ZF counterparts with the introduction of a scaling factor.  

 

3.4.3 Successive Interference Cancellation 

 

The algorithm detects the strongest user first, subtracts it from received signal, and 

then detects the next strongest, etc. It can behave in two manners. Firstly, it can subtract the 

soft information from received signal; leads to little or nonexistent error propagation but 

acquires an accumulating noise effect for weak users. Secondly, it can subtract hard 

information from received signal leading to little or no noise accumulation but possible error 
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propagation. Successive interference cancellation could be done in a circular manner to 

improve the performance at the expense of low convergence and thus high complexity. MAI 

is reduced and near/far problem increased. Cancelling the strongest signal has the most 

benefit and is the most reliable cancellation [22]. Therefore being the most reliable 

cancellation, the SIC algorithm would mainly suffer from error propagation. It also requires 

channel estimate at the receiver [22]. Pre-filtering for general SIC systems normally adopt 

either a ZF or an MMSE detector. A detector using the ZF algorithm for pre-coding is 

examined below. 

 SIC systems need initial estimates to perform efficiently. These initial estimates are 

obtained from the output of the ZF detector. Depending on the number of MIMO antennas; 

estimates of the transmitted symbols 21  and xx  for a 2x2 scenario and 4321  and ,, xxxx for the 

4x4 scenario are obtained. 

 The SIC detector then takes these estimates and deducts it from the original input 

stream. Again the total number of iterations would depend on the number of antennas 

utilised. In a 2x2 scenario, only one estimate is required while in the 4x4 scenario, three 

estimates are required.  

 Using (3.8) above for a ZF detector, the estimates for a 2x2 and a 4x4 MIMO system 

can be expressed respectively as shown below. 
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Adopting a 2x2 MIMO system for simplicity, the incident received signal at the first receive 

antenna, 1y is shown below. 

 

1

2

1

2,11,1122,111,11 ] [ n
x

x
hhnxhxhy 








       (3.20) 

 

Consequently, the received signal at the second receiver corresponds to 2y  below.  
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Using (3.1) where 

 

M1,2,...,  m     
1
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N
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nmnm nxhy    

 

                 (3.22) 

 

As the MMSE and ZF counterparts can be viewed as significantly similar via a 

weighting factor, the ZF approach is adopted for simplicity purposes. Estimates of the 

incoming signal are decoded using the ZF algorithm by meeting the constraint below where 
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H
+
 is a matrix inheriting the size attributes of its parent matrix, H that exhibits the 

relationship shown in (3.23). 

 

                 (3.23) 

 

I  is an identity matrix and using the convenient properties of an identity matrix [12], the 

matrix, H
+
 can be written below as: 

 

   (   )               (3.24) 

 

The estimates received can be visualized as depicted in (3.25) using the relationship in (3.22) 

to solve for the received estimates. 
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Assuming the first estimate to be subtracted is 2
~x  and given the estimates in (3.26), the 

received signal comprises only the remaining estimate, 1
~x as shown in (3.27). 
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From (3.27); it can be seen that after one iteration, the incident signal at the receiver consists 

of the other symbol but for cases with a higher number of transmit antennas, more iterations 

will suffice and the composition of the received signal will be a combination of the elements 

of the other transmitted signals. This can be seen from the description of the received signal 

after the first iteration for a 4x4 MIMO system. 
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It can be seen the manner at which the new values for the H matrix change after each 

iteration; i.e. the corresponding h values are set to zero and the iteration repeats with the new 

value of r till all the transmitted symbols have been decoded. 
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3.4.4 Ordered Successive Interference Cancellation (OSIC) Algorithm 

 

 This is a form of non-linear equalization and is the detection algorithm utilised in this 

project. The major impairment in MIMO systems is Co-Antenna Interference, CAI. This 

impairment is readily avoided using the OSIC algorithm. This algorithm recursively detects 

the incoming sub-streams i.e. layers. It would initially detect the strongest layer; i.e. sub-

stream with the highest SNR, and then subtracts it from the original received signal to 

properly eliminate the CAI. This process repeats for subsequent layers; detected on a basis of 

their signal strength; until all the available sub-streams / layers have been detected and 

subtracted from the original received signal [46]. 

There is a need for ordering when using the successive interference cancellation 

technique as the errors associated with earlier detected layers would continually be associated 

with the detection system. Hence, there is a need to initially detect layers with lower error 

probabilities prior to detecting other layers. The process of this ordering and in effect, the 

OSIC algorithm can be viewed in the three major steps described below. 

 

3.4.4.1 Interference Cancellation 

 

 On the detection of the symbol from the thi  transmitter, there will be interference 

from 1i  transmitters. This interference is subtracted from the original received signal as 

indicated in the mathematical expression below. 

 

1111

' ...


ii yhyhyy         (3.29) 

 

where    ih  represents the respective thi  column within the matrix H 
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 i
y  represents estimated hard decisions of the received signal, y. 

 

3.4.4.2 Interference Nulling 

 

 This is a very crucial technique and it is usually done using some form of linear 

equalization algorithm. In current systems, this is achieved using ZF or MMSE [46]. This 

project utilised the MMSE algorithm.  

 

3.4.4.3 Optimal Ordering 

 

 There is a huge risk of error propagation due to the nature of the detection pattern 

undertaken by SIC systems. Hence the entire BER performance would be greatly hindered if 

sub-streams with large error probabilities are detected and subtracted from the received 

system at the early stages of the detection. This would cause a propagation of the acquired 

error throughout the rest of the detection process. Optimal ordering is used to eliminate this 

error propagation by allowing the row within the received signal vector with the highest post 

detection SNR to be detected earlier than others. Therefore, there is an optimal ordering 

process immediately after the occurrence of the interference nulling within the OSIC decoder.  

 The OSIC detection algorithm is the benchmark of layered Space Time Systems. It 

was first introduced by Bell Labs and widely known as BLAST [46]. A dissemination of the 

different types of BLAST systems is given below. 
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3.5 MIMO using BLAST Techniques 

 

The constant demand for improved capacity, higher data rates and quality of service, 

QoS has led to an appreciation of the probable capacity gains possible using the MIMO 

systems. A lot of research has been undertaken from the advent of MIMO in the mid 90s till 

present. This has led to different configurations of MIMO being deployed. This project 

utilises one of the early, famous and well known high-rate MIMO architectures known as the 

Bell Labs Layered Space-Time system, BLAST [46]. This takes advantage of the 

multiplexing nature associated with MIMO systems.In a rich scattering environment, multiple 

single input single output (SISO) channels are formed. This is due to the reasoning that the 

fading experienced by each of the spatially multiplexed paths is independent of one another. 

Therefore, the capacity of the BLAST architecture would increase linearly with the number 

of spatial multiplexed paths formed. The BLAST system can be envisaged in different 

configurations. The most popular are: diagonal, D-BLAST; horizontal, H-BLAST; vertical, 

V-BLAST; and TURBO-BLAST. A typical BLAST configuration is shown in Figure 3-2. 

 

 

Figure 3-2:  A Typical BLAST Architecture 
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The initial BLAST system developed by Gerard J. Foschini in 1995 became very 

attractive to the telecommunications industry due to its characteristics of significantly high 

spectral efficiencies [42]. It significantly increases the transmission rate of the system by 

taking advantage of the multiplexing nature of MIMO systems. The initial BLAST 

architecture was the D-BLAST. It utilises multiple antenna elements at both transmit and 

receive ends and a diagonally layered coding structure that disperses the coded blocks across 

the diagonals in space-time. In a rich Rayleigh scattering environment, the capacity of this 

codec structure increases linearly with the number of antenna elements, which could rise to as 

much as 90% of the Shannon theoretical capacity limit [46]. Despite the appealing attributes 

offered by the D-BLAST; the realisation on chip offers significantly high complexity. As a 

result, different configurations of the BLAST architecture have surfaced. The main difference 

between these BLAST architectures is the means by which the data is transmitted. A number 

of these different architectures have been discussed below.  

 

3.5.1 D-BLAST 

 

 This is the first BLAST system proposed and it has become the benchmark that 

subsequent BLAST architectures are built upon. Hence an elaboration on this architecture is 

sufficient [46]. Although, it is highly regarded within the wireless MIMO communications 

systems due to its high capacities offered; there is a major drawback due to the high 

complexity involved in its realization. 

 

 

3.5.1.1 D-BLAST Transmitter 

 

 The incoming data is initially de-multiplexed from a serial data stream into a set of 

parallel streams. These parallel streams are then individually encoded and mapped onto 
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complex signals. The resulting symbols of these sub-streams are then mapped diagonally 

across the antenna arrays over time. This task is made possible courtesy of the spatial inter-

leaver block as displayed in Figure 3-3. 

  

 

Figure 3-3: D-BLAST Transmitter 

 

 The symbols are transmitted across the multiple antennas as described in Figure 3-4, 

therefore exhibiting transmit diversity. It would be important to highlight the reasoning that 

the transmitted frame might have more symbols than the number of available antennas which 

would therefore make the frame very long and lead to severe space time wastage [46]. This 

wastage is caused by the decoding nature of the receiver. The system described in Figure 3-4 

describes one with four transmit antennas. 
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Figure 3-4: D-BLAST Diagonal Layering 

 

 Figure 3-4 clearly shows the diagonal layer structure of the D-BLAST system. The 

corresponding wastage of space-time caused by its structure is illustrated via the unoccupied 

spaces in time shown in the figure. 

 

3.5.1.2 D-BLAST Receiver 

 

 This is done by detecting the incoming received data layer by layer; i.e. it detects the 

first layer, discards it, detects the second layer, discards it and the cycle continues over for 

subsequent layers. This nature of detection contributes to space time wastage as each layer 

has to initially be detected first before the next. An example is shown in Figure 3-5. 

 The first symbol in every layer is always demodulated and detected with a great 

possibility of near to zero errors as it is always transmitted alone. After which the next 

symbol is also demodulated and detected; this symbol experiences interference from the 

initial layer detected. Therefore, we can call it as suffering from one interferer. The next 
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symbol is then demodulated and detected but this would suffer interference from the previous 

two signals; hence we can refer to it as suffering from two interferers. The process repeats for 

other subsequent symbols until the entire layer has been demodulated and detected [46]. After 

detection of the entire layer, the sub-stream associated with this layer can then be decoded. 

To increase the resistance against errors, the channel coding associated with the stream must 

be essentially long. Finally, after the entire layer has been decoded; it can be subtracted from 

the received data. In other words, it can then be peeled off the received data so as to expose 

the next layer to be detected. The process then repeats as indicated above. 

 

 

Figure 3-5: D-BLAST Decoding Process 
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3.5.2 H-BLAST 

 

 This is a BLAST architecture that came into fruition during the search for an 

alternative to the D-BLAST architecture. It is a simpler version of D-BLAST which aims to 

reduce the computational complexity of the D-BLAST architecture. This new approach 

suffers from a drawback with respect to a loss of the transmit diversity originally provided by 

its predecessor. This is due to the horizontal nature by which the data is encoded. Although it 

suffers from this drawback, H-BLAST systems have the distinct advantage of eliminating the 

space-time wastage problem exhibited by the initial D-BLAST system. 

The major differences between the BLAST architectures are visible from the block 

diagrams which show a representation of the re-arrangement of the system. An H-BLAST 

transmitter is shown in Figure 3-6. 

 

Figure 3-6: H-BLAST Transmitter 

 

 The H-BLAST removes the Space Inter-leaver block witnessed in the D-BLAST 

transmitter. Each sub-stream is encoded and transmitted independently of each other. This 

allows the channel coding associated with a particular sub-stream to be readily available and 

also transmitted via the same antenna hence removing the space-time wastage problem 
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experienced using the earlier D-BLAST architecture. The decoder can be a conventional one 

dimensional system as the detected streams emanate from the same antenna.  

 

3.5.3 V-BLAST Architecture 

 

The data stream is split into multiple sub-streams and an array of antennas is used to 

transmit the parallel sub-streams. All the sub-streams are transmitted in the same frequency 

band which allows the spectrum to be used very efficiently. The V-BLAST is similar to the 

H-BLAST in every respect except for the type of encoding deployed [46]. This receiver has 

been chosen to be the focal receiver to be utilised within this project due to its lower 

complexity deployment compared to the other forms of BLAST architectures. A proper 

dissemination of the VBLAST architecture is provided in Chapter 4. 

 

3.5.4 Turbo-BLAST Architecture 

 

 This is another derivative of the D-BLAST technique aimed at reducing its 

complexity. This version is exactly the same as the D-BLAST with respect to the transmitter 

structure but differs with respect to the encoding utilised. A special set of codes have been 

used to harness the high spectral capacity of the D-BLAST system without the excessive 

space-time wastage involved. However, there is a higher increase in the system complexity 

which defeats the whole objective of achieving a simpler approximate to the D-BLAST 

system. 
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3.5.5 BLAST Receivers 

 

The main attraction of using BLAST architectures is their lower receiver complexity 

when compared to other MIMO systems such as those using Space Time Trellis Codes whose 

complexity increases exponentially with the number of transmit antennas involved. This 

makes the realization of these systems impractical, hence the advantage of BLAST 

architectures [43]. The different BLAST receivers also vary from each other with respect to 

the degree of complexity involved in deploying them. The best available detection method for 

optimal performance is the Maximum Likelihood, (ML) approach but this method suffers 

from a great deal of complexity and therefore leads to the use of sub-optimal approaches. 

These mostly comprise of linear equalization techniques such as those discussed in the 

previous chapter above. In this new age, a new technique has evolved known as Sphere 

Decoding [74]. This technique approaches the optimal performance with a much lower 

complexity when compared to the techniques discussed above. This algorithm is discussed in 

Chapter 5. 

 

 

3.6 Simulations and Results 

 

 Assuming there is an mxm MIMO channel with a data transmission sequence, 

],...,,,,[ 4321 nxxxxxx  , the data is normally transmitted sequentially in a single antenna 

scenario and would require ‘n’ data time slots to transmit the data stream. In the case of the 

‘mxm MIMO detector where there are ‘m’ antennas; the data can be transmitted at ‘m’ times 

the current data rate for normal transmission. This happens because ‘m’ symbols can now be 

sent in each timeslot. For example, in a 2x2 case, 21, xx  are sent from both transmit antennas 

in the first timeslot with 43 , xx  are sent in the second timeslot and so on; hence, data rate is 
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doubled. In the 4x4 MIMO case, data rate is quadrupled as four symbols are sent in each 

timeslot. The other major assumptions applied are: 

- the channel experiences flat Rayleigh fading 

- the channel matrix, H from (3.2) is known at the receiver   

 

3.6.1 Capacity of a MIMO System 

 

 The capacity derived above in (3.7) which was obtained using the single value 

decomposition theory [41] and simulated for different combinations of transmitters and 

receivers. A trend is immediately recognised with respect to an observed increase in capacity 

with an increasing number of receive antennas as depicted in Figure 3-7. 

 

Figure 3-7: Capacities of different MIMO Configurations 
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3.6.2 Implementation Using Different Receiver Configurations 

 

A combination of ZF, MMSE and OSIC have been studied. The receiver 

combinations tested are ZF, MMSE, ZF-OSIC and MMSE-OSIC. A test message signal 

comprising of 
5101xn  bits transmitted through a Flat Rayleigh fading channel. The 

transmitted modulated signal was split into the appropriate number of streams required for 

the test antennas required. For instance; for a 2x2 system, the signal would be split into two 

independent data streams and a 4x4 system would require 4 streams etc. Figures 3-8 and 3-9 

represent the BER performance of a 2x2 and 4x4 system respectively, for different receiver 

combinations. 

 

 

Figure 3-8: 2x2 MIMO with different Receive Architectures 
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The incoming QPSK data signal would encounter an open-loop spatial-multiplexing 

system [7], [10] which refers to an assumption of ‘perfect channel knowledge at the receiver 

without the need for any feedback to the transmitting device.  

 

 

Figure 3-9: 4x4 MIMO with different Receive Architectures 

 

A detector based on the maximum likelihood algorithm is used as a means of 

comparing the performance margins exhibited by each receive detector combination for a 4x4 

system as shown in Figure 3-10. The transmitted signal is assumed to have a zero phase 

offset and Gray-scale coding is utilised at the transmitter. No spatial coding was utilised. 
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Figure 3-10: A 2x2 MIMO System with 16-PSK modulation 

 

3.6.3 Using different modulation schemes 

 

 The initial MIMO system was implemented using the simple QPSK digital 

modulation scheme. There is a need to understand the effects of different modulation 

schemes with the MIMO system. The system was compared using the most common 

modulation schemes such as BPSK, QPSK, 16-PSK and 16-QAM for a ZF receiver shown in 

Figure 3-11. 
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Figure 3-11: A 4x4 MIMO with different Modulation Schemes 

 

 

3.7 Summary and Analysis 

 

 The capacity of a typical MIMO system increases accordingly with an increase in the 

total number of antennas as shown in Figure 3-3. It can also be noticed that the capacity of an 

NxM MIMO system is the same as an MxN  MIMO system.  

 The addition of SIC to both the ZF and MMSE MIMO receivers provides slight 

improvements to the estimated BER values but this slight improvement becomes a very 

substantial one when ordering is implemented with SIC as shown in Figures 3-8 & 3-9. It can 

also be noted as seen in Figure 3-10 where 16-PSK is utilised, the performance BER plots of 

MMSE-OSIC to ZF-OSIC are now similar though MMSE-OSIC still exhibits better BER 
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rates. An ML decoder is also included in Figure 3-10 to show the achievable BER rates 

possible using an optimal decoder that requires a much higher computational complexity. 

 The choice of modulation scheme depends on the scenario with respect to the factors 

of transmission required. For instance, 16PSK and 16QAM transmit more symbols than 

QPSK and BPSK. A 2x2 MIMO System was investigated as shown in Figure 3-11 with 

receiver architecture based on the simple ZF detector. As expected, due to increasing the total 

number of transmitted symbols per second, there would be an increase in the total number of 

errors and therefore the need to operate at a higher SNR values. The need to operate at higher 

SNRs for higher order modulation is also shown in Figure 3-11.  

 This chapter should have provided a concise understanding of a typical MIMO 

system. Modern day systems adopt a multi-user scenario when compared to the single user 

systems adopted above. The current demand for increased data rates leads to the industry 

utilising techniques such as OFDM; as seen in WLANs, and CDMA to further utilise the 

capabilities of MIMO. The next chapter looks at integrating MIMO with receive architectures 

based on multi-user algorithms. 

 

 

 

 

 

 

 

 

 



54 

University of Hertfordshire, 2011 
 

 

 

4 Multi-user Detection and MIMO 

 

 

4.1 Introduction 

 

As discussed in Chapter 3, this project utilises one of the early, famous and well 

known high-rate MIMO architectures known as the Bell Labs Layered Space-Time system, 

BLAST [32]. Due to the endless demand for higher data rates for current and future systems, 

MIMO has proven to be a promising candidate to meet these demands through the increased 

capacity it offers over its SISO counterpart. Current and future systems normally operate 

using multi-user algorithms to meet the demand for the growing number of active users and 

the limited resources [22]. Multi-user systems combined with a MIMO configuration 

theoretically should provide higher data rates and this is investigated in this chapter. 

A Multi-user MIMO (MU-MIMO) system generally comprises multiple users and a 

base station; which could be for both uplink and/or downlink, as shown in Figure 4-1 below. 

 

 

Figure 4-1: A Multi-user MIMO uplink/downlink system 
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An example of an MU-MIMO system can be witnessed in the MIMO broadcast 

channel [12]; this basically refers to the downlink portion of MIMO systems. The downlink 

involves the base station sending different streams of data to multiple users as depicted in 

Figure 4-1.  Conversely, the MIMO uplink system operates with the base station receiving 

different streams of data from multiple users. Research on MU-MIMO has been developing 

promising results with respect to performance and complexity issues since it significantly 

improves overall data rates without the need for extra bandwidth or increased transmit power. 

This attribute of MIMO is witnessed due to the higher number of bits been transmitted using 

the same radio resources, i.e. higher spectral efficiency [46]. MU-MIMO has been tipped as a 

fore-runner for current and future 3GPP LTE trends, IEEE 802.11 standards, 4G and WiMaX 

[35].  

MIMO systems are offering large capacities with greater spectral efficiency when 

compared to their predecessors within the telecommunications sector. For instance, the 

mobile communications industry continually searches for systems to improve the capacities 

and throughput it currently offers due to the ever increasing consumer demand. This has led 

to the increased amount of research being conducted using multiple users. This development 

coupled with MIMO systems has become a worldwide research area aimed at increasing the 

overall capacity of mobile and telecommunication networks. 

This chapter gives a description of a multi-user V-BLAST detection algorithm, multi-

user MIMO and its combination with CDMA and OFDM systems. It further analyses the 

combination of these important telecommunication technologies with MIMO systems by 

investigating the overall BER performance of the system.   

 

 

4.2 A V-BLAST MIMO Model 

 

Vertical Blast or V-BLAST [46] is a simpler version of its predecessor, D-BLAST 

discussed in Chapter 3. The deployment of D-BLAST is known to have a high computational 
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complexity and hence a better alternative in the form of V-BLAST was deployed. MIMO 

using V-BLAST (i.e. spatial multiplexing) is generically referred as a MATRIX B MIMO 

design [37]. 

 

4.2.1 V-BLAST Transmitter 

 

The incoming data stream to be transmitted is normally split into separate sub-streams 

where each sub-stream experiences independent encoding algorithms before being directed 

towards the input of a transmitting antenna. This form of layering when compared to the 

diagonal nature of D-BLAST is horizontal in nature which simply implies that the constituent 

symbols of ONE of the sub-streams are all evident on and transmitted using the SAME  

antenna. This form of layering would almost certainly remove the space wastage problem 

realised by the D-BLAST detector though it already gives an immediate drawback in the loss 

of transmit diversity normally exhibited by the D-BLAST receiver since the symbols of every 

subsequent sub-stream are not spread across all the transmit antennas. The transmitted 

symbol array can be envisaged as shown below. 

 

T

kNkk T
ssss ],...,[ 21          (4.1) 

 

where   s is the transmitted vector at any time instant, T 

 iks is the 
thk  symbol of antenna sub-stream i for i = 1:NT. 
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4.2.2 V-BLAST Receiver 

 

The nature of the V-BLAST layering is such that the symbols are transmitted in a 

vector manner with each incident vector comprising of a symbol from each sub-stream. In 

systems where a form of channel coding is utilised, the received symbols need to be stored in 

a data buffer until the adequate block size required for correct demodulation has been 

received. V-BLAST requires a detector to approximate the initial incident transmitted arrays 

before final signal detection. 

 Two main linear decoders are utilised in modern day systems depending on the 

performance requirement of the system. The Zero Forcing, ZF and Minimum Mean Squared 

Error, MMSE detectors are commonly used and they operate as discussed in the previous 

chapter above.  The channel transfer characteristic for both detectors is as shown below. 

 

 H
E

N
H

S

T
ZF *          (4.2) 

 

H

N
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S

T
MMSE HI

N
HH

E
N

H
T

*)*(* 1


     (4.3) 

 

where H  represents the Moore-Penrose pseudo inverse of H 

            HH represents the Hermitian transpose matrix of H 

 TN  represents the total number of transmit antennas 

     is a weighting constant chosen dependent on the channel noise statistic 

 SE  represents the transmitted signal energy 

 

 The linear decoders behave differently when utilised as the nulling [3] algorithm for 

the V-BLAST system; V-BLAST utilises the non-linear O-SIC algorithm in Chapter 3 for its 

normal operation. The ZF contributes to the overall system noise as it tries to demodulate the 
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received signal vector by inverting the transmission channel. This is not beneficial in noisy 

scenarios as it would only enhance the received noise. The MMSE decoder improves on this 

limitation by also inverting the transmission channel but having a weighting factor allotted to 

compensate for the noise amplification caused by the channel inversion.  

 

 

4.3 Transmitted Signal Model of V-BLAST Architecture 

 

 A high rate single data stream is converted into NT low rate sub-streams which are 

encoded independently of each other and transmitted via its respective BPSK transmitters 

[40]. The wireless channel is assumed to be flat fading in the presence of rich Rayleigh 

scattering. After undergoing matched filtering and symbol rate sampling, the received signal 

vectors at the receiver can be written as in (4.4). 

 

T

321 ]  ,  ...  ,  ,  ,[
TNrrrrr         (4.4) 

 

where the transmitted symbols can be described as in (4.5). 

 

Tbbbb ]  , ...  ,  ,  ,[
TN321b          (4.5) 

 

The received signal depicted in (4.4) can be represented as in (4.6) below. 
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nH  br           (4.6) 

 

where the channel matrix, H can also be represented as columns corresponding to the NT 

transmitted signals as depicted in (4.7). 

 

T

NT
hhhhH ]  , ...  , ,, 321       [         (4.7) 

 

 

4.4 Detection Algorithm of V-BLAST Architecture 

 

 This detection technique is based on the OSIC algorithm for signal detection initially 

proposed by Foschini [35]. Ordered Successive Interference Cancellation, OSIC is combined 

with linear nulling techniques to perform the required symbol detections. As discussed 

earlier, the efficiency of the system is enhanced mainly due to the ordering of the SIC 

technique. This ordering is based on the maximization of the post-detection signal-to-

interference plus noise ratio (SINR) which is used as the reference for the ordering. The use 

of ZF or MMSE as the nulling process is internationally implemented hence both algorithms 

are utilised within this project. The following steps are followed during detection via the V-

BLAST algorithm. 

 

The index of the computational iteration is i where TNi 1  

- Calculation of the inverse of the channel correlation matrix: 

 

11 )]()(Re[)(   iHiHi H
R   
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- Determine the sub-stream, g whose post de-correlating SNR is the highest; this would 

correspond to the minimum among the first 1 iNT  diagonal entries of
1)( iR : 

 

1 ..., 2, 1,g     where])(min[arg 1
,   iNig TggR  

 

The nulling vector w is the g
th

 row of 
1)( iR and the bit estimate of the g

th
 sub-stream 

is:        ))(()( isigni wrb    

 

- Interference cancellation is obtained by subtracting the detected signal from the 

received signal: 

 

)()()1( ihii g brr    

  

H(i) is reordered such that the g
th

 column and the last column are then interchanged 

 

 ])1([]     ...    ...  [)'( 1 ggNi hiHhhhhiH
T

  

 

 where H(i+1) is now defined as H(i)’ with the last column hg being deleted. 

 

- The process repeats with i being incremented by 1 and continues until all the NT 

transmitted sub-streams have been detected. 
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4.5 MIMO-CDMA 

 

 A downlink mobile telecommunications system is considered as shown in Figure 4-2. 

The system consists of K mobile users each possessing NR receive antennas and a single 

base-station with NT transmit antennas [58]. 

 

 

Figure 4-2: A Typical Multi-user CDMA MIMO System 

 

 Each user is modulated using a codeword of a particular length. These are then 

transmitted via NT transmit antennas leading to TKN  transmitted sub-streams within the rich 

scattering channel. A few assumptions have been taken into consideration. These are as 

follows. 
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- The complex fading coefficients among the antennas are uncorrelated due to the 

assumption that the antennas have been spaced sufficiently far apart from each other. 

 

- Inter-symbol interference is ignored since the delay spread is small when compared to 

the incoming data symbol 

 

- The time delays between antennas are independent of each other and are restricted 

within one symbol interval. 

 

- The interference between frames is eliminated by inserting a blank bit interval after 

every M bits and selecting a received signal length of M+1 bits. 

 

Taking the effect of multi-path into consideration, the coherently received complex 

baseband signal, )(trp  for a frame of M data bits at the 
thp  (p = 1, 2, … NR) antenna can be 

represented as: 

 


  


M

m

N

n

K

k

pnkpnsknkpnp

T

tnmbmTtsactr
1 1 1

,,,, )()()()(      (4.8) 

 

where  cn,p  is the complex channel coefficient between the n
th

 transmit antenna and the p
th

      

receive antenna 

  ak,n   is the amplitude of the k
th 

user’s n
th

  sub-stream 

 sk(t) is the normalized PN code sequence of the k
th

 user 

 Ts    is the symbol interval 

pn,  is the time delay of the path between the n
th

 transmit antenna and the p
th

 receive  

antenna 



63 

University of Hertfordshire, 2011 
 

 

 

)(, mb nk  is the BPSK modulated data symbol of the k
th

 user’s n
th

 sub-stream 

)(tnp  is the AWGN on the receive antenna p. 

 

 After passing through a chip matched filter, the discrete time complex baseband 

received signal for a mobile user at its 
thp  antenna during a given symbol period; i.e. M+1, 

can be written as a complex N – vector as shown below: 

 

pppp H nAbSr           (4.9) 

 

)](    ...   )2(    )1([ ,,,,,, Mpnkpnkpnkp SSSS        (4.10) 

 

where pS  is the real part of the ((M+1)L)x(KMNT) spreading code matrix formed from 

concatenating the matrices. 

 

T1)LxKN(M

,,,1,2,,1,1,1,,  )](  ...  )(   )(  ...  )([)(


 iiiii pNKppNppnk TT
ssssS    (4.11) 

 

LM

pnkpnk iLti )1(

,,, )()(  ss        (4.12) 

 

It should be noted that the matrix of (4.11) consists of columns of spreading code 

vectors for the transmission of the k
th

 user data over the n
th

 antenna. The matrix pH  is a 
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block diagonal of size KMNT by KMNT. It is made up of KM instances of the channel matrix 

pH  along its main diagonal. 

 

 
ppKMp HdiagH H  ...   I        (4.13) 

 

where   represents the Kronecker product. The matrix pH  is a complex NT by NT channel 

matrix described as follows. 

 

  )  ...   ( ,,2,1 pNppp T
hhhdiagH         (4.14) 

 

where hn,p represents the complex coefficient corresponding to the fading channel between 

the transmit antenna n and the receive antenna p. The matrix A is a (KMNT)x(MKNT) 

diagonal matrix with its amplitudes described as shown in (4.8). 

 

aIA  M            (4.15) 

 

)  ...     ...       ...  (
TT NK,K,11,2N1,1,1 aaaaadiaga      (4.16) 

 

The data vector b is the real part of the binary data vector defined by (4.17). 

 

 Tnk
T

nk
T

nk
T M )(   ...   )2(    )1( ,,, bbbb        (4.17) 
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Assuming BPSK is the chosen digital modulation method. 

 

T

KNnk iibibibibi
T

)](b   ...  )(  ...  )(     )(  ...  )([)(
TNK,1,1,2,11,1, b     (4.18) 

 

The vector np is a zero mean complex Gaussian noise (M+1)L vector with 

independently and identically distributed (i.i.d) components whose real and imaginary 

components both have a variance of 
2

2 . The power within the system is equally 

transmitted across the antennas. Hence each sub-stream corresponding to any user within the 

system possesses a transmit energy equal to
TN

1 . 

 This project investigated an example of a downlink system where a single base-station 

is transmitting to k mobile users. When visualising the multi-user MIMO CDMA scenario, 

each user would only see the signal from its subsequent transmitter as shown in Figure 4.3. 

  

 

Figure 4-3: Flowchart representation of multi-user channel 
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 From Figure 4-3, it can be seen that for every receive antenna, rk; only data 

information from user k is meant to be witnessed but as expected in real life systems, there 

exists an element of noise depicted as nk.  

 

 

4.6 MIMO-OFDM 

 

The advent of MIMO caused a major stir in the manner at which data rates have been 

perceived in the modern day telecommunications industry. As previously discussed, MIMO 

significantly enhances total system throughput by increased data rates between transmitter 

and receiver.  

Another initiative realised by MIMO in modern telecommunication systems is its 

combination with another technique known as Orthogonal Frequency Division Multiplexing, 

OFDM. OFDM is a modulation technique which transmits data in parallel over a N sub-

carriers. OFDM is readily integrated into systems as due to its use of the Fast Fourier 

Transform [23] principle. Therefore, system complexity is already simplified as the total 

number of sub-carriers will be equal to the FFT block size utilised. OFDM is a technique that 

harnesses the frequency-selective nature of the channel to enhance the transmitted signal, i.e. 

it converts a frequency selective channel into several flat fading channels [24]. Each sub-

carrier has a designated bandwidth which is set as a fraction of the total allotted system 

bandwidth; this fraction is the FFT block size used in the system. Therefore, in a system with 

N = 24 sub-carriers and total system bandwidth, B, each sub-carrier would utilize B(Hz)/24 of 

the total bandwidth. In OFDM systems, a cyclic prefix is also attached to the front of every 

OFDM symbol to effectively eliminate the effect of inter-symbol interference from adjacent 

sub-carriers.  

OFDM has also been recognised as a key technology in the search for improved data 

rates and therefore the combination of both technologies seemed inevitable. MIMO-OFDM is 
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being widely recognised and used in international standards such as in IEEE 802.11a, 

802.11n, 802.16e , 3GPP & 3GPP2 for applications like WLAN, Wi-Fi, Wi-Max and internet 

broadcast data [29]. A simplified version of an OFDM transmission system can be seen in 

Figure 4-4 below. 

 

 

 

Figure 4-4: A Typical MIMO-OFDM Telecommunications System 

 

 The concept of multi-user communications can be visualised from the figure above 

where each user has a designated transmitter.  
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4.6.1 A MIMO-OFDM System based loosely on the IEEE 802.11 standards 

 

A system partially based on the IEEE 802.11 standards such as the 802.11a and 

802.11g was simulated and the effect of the addition of MIMO to OFDM researched. There 

are some specifications generic within the 802.11a and 802.11g standards. These are shown 

in Table 4-1. 

 

Specification 802.11a 802.11g 

   

FFT Size 64 64 

Used Sub-Carriers 52 48 

Sub-carrier Index [-26 to -1, +1 to +26] [-24 to -1, +1 to +24] 

FFT Sampling frequency 20MHz 20MHz 

   

Cyclic Prefix 0.8 µs 0.8 µs 

Duration of data symbol 3.2 µs 3.2 µs 

Total Symbol Duration 4 µs 4 µs 

Pilot Sub-carriers 4 4 

 

Table 4-1: Generic IEEE 802.11 specifications 

 

The cyclic prefix is generally utilised to reduce the effect of ISI and although 52 of the 

64 subcarriers are designated to be used, 4 of these are used as pilots to transmit the essential 

phase, frequency training and tracking. In essence, only 48 out of the 52 allotted sub-carriers 

are actually used to carry data.  

 The effect of varying different specifications such as the cyclic prefix rate and the 

total number of MIMO antennas was investigated for each of the 802.11 standards shown in 
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Table 4-1. Modern day systems normally allow for some wastage in bandwidth as a trade-off 

to increased performance. This wastage in bandwidth, known as cyclic prefix is used to 

eliminate ISI in OFDM systems despite the loss of data rate encountered from the 

transmission of redundant data. The cyclic prefix exhibits this property by categorically 

acting as a buffer between subsequent OFDM symbols.  

 To accommodate the desired specifications, the following parameter values were 

derived from the extract shown in Table 4-1. 

 

The total number of used sub-carriers: Generally in OFDM systems, the cyclic prefix is 

realised via a copy of part of the signal to be attached to the OFDM frame as redundant 

information to battle ISI. The number of used subcarriers is given as 52.  

Given an operating frequency of 20MHz: 
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where Ts    represents the symbol period 

f   represents the sub-carrier spacing 

kf    represents the range of frequencies of the k
th

 sub-carrier 

Btot    represents the total dedicated system bandwidth 

Cused   represents the total number of used sub-carriers 

Cunused   represents the total number of unused sub-carriers 

DFTsize  is equal to the FFT size = 64 

B   represents the range of frequencies available for operation 

 

From the parameters above, it is visible to see although there exists an allocated 

frequency range, B , the entire signal is not distributed along the entire available bandwidth as 

there are unused sub-carriers in the DFT block. In modern day systems, 4 of the unused sub-carriers in 

the allotted unused sub-carrier index are normally used to transmit pilot data about the OFDM frame.  

 The OFDM Modulator block in Figure 4-4 has been expanded into Figure 4-5 below 

to provide clarity on how the OFDM symbol is processed and transmitted. The manner of the 

addition of the cyclic prefix is also highlighted. 

 

Figure 4-5: OFDM Modulator Block of k
th

 user 

K-point 

IFFT 

Addition of 

Cyclic prefix 

P/S 
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 The MIMO-OFDM system being investigated consists of a system of Nt transmit and 

Nr receive antennas. Incoming data bits are normally modulated to form Tx
i
 [n,k] with respect 

to the i
th

 transmitter; n represents the OFDM symbol number and k is the sub-carrier index. 

After MIMO processing, each sub-stream is orthogonally modulated onto k sub-carriers using 

a K-point Inverse Fast Fourier Transform; IFFT, and re-multiplexed with a cyclic prefix 

addition to form the transmitted OFDM frame. The channel between a receiver and its 

subsequent transmitter is assumed to be a Rayleigh fading environment with L taps [13]. The 

real and imaginary part of each tap is an independent Gaussian variable whose impulse 

response is represented below.  

 

 )(    ...  )()(1)( 2211 LL tthtthtth
L

th       (4.19) 

 

The term )( LL tth  in (4.19) represents the channel coefficient of the L
th

 tap and the 

L
1  term is used to normalise the power of the channel with respect to the total number of 

realised taps [13]. 

 

 

4.7 Simulations and Results 

 

 This chapter is based on the combination of MIMO with multi-user systems. Different 

sub-systems were created using the MATLAB computing software [version r2009b].  These 

sub-systems are then combined together to compare the BER performance of MIMO when 

subjected to different types of multi-user scenarios namely CDMA and OFDM. The latter has 
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developed more interest within the telecommunications industry of late and as such has 

become an interesting research area.  

A 2x2 MIMO CDMA system was simulated using the same combination of receivers 

observed in Chapter 2 to establish the expected BER improvements exhibited by the addition 

of the spatial property of MIMO systems.  

OFDM is a current trend in the industry because of the advantages it offers. This led 

to the use of MIMO as a means to increase their current effectiveness is a field that attracts a 

lot of interest. Hence, combination of MIMO; using spatial multiplexing, with OFDM have 

been investigated. The utilised linear detector is the Zero Forcing Detector for MIMO-OFDM 

for investigation purposes. The IEEE standards investigated were primarily 802.11a and 

802.11g. 802.11n can be considered as a high throughput amendment to the 802.11 standards 

containing improvements over earlier 802.11 standards [29]. MIMO is currently an attractive 

technology when combined with OFDM due to the BER improvements offered by MIMO 

and the signal robustness exhibited by OFDM in a multi-path scenario makes their 

combination very useful in systems such as WiFi and WiMax using specifications according 

to the LTE, 3GPP standards. 

 

4.7.1 Varying the number of users in a MIMO CDMA system 

 

 A 2 x 2 MIMO CDMA system was investigated. Individual user signals were 

simulated across NT = NR = 2. A different set of gold codes of length N = 32 was utilised for 

each transmit antenna and the BER performance of the multi-user MIMO-CDMA system was 

investigated using the detectors previously discussed in Chapter 2 for SISO CDMA have 

been revisited and their equivalence when subjected to a MIMO scenario have been depicted 

in Figure 4-6 & Figure 4-7 below where the total number of users examined were K = 5 and 

K = 10 respectively. 
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Figure 4-6: BER for a 2x2 MIMO CDMA System for K = 5 users 

 

 

Figure 4-7: BER for a 2x2 MIMO CDMA System for K = 10 users 
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4.7.2 Varying the Number of Antennas in a MIMO-OFDM system 

 

The MIMO-OFDM system was simulated with 
RT NN   to realise Figure 4-8 below with a 

total number of 10,000 OFDM frames. The results obtained in Figure 4-8 and Figure 4-9 were 

obtained for MIMO systems deployed using IEEE 802.11a and IEEE 802.11g respectively. 

 

 

Figure 4-8: BER Performance of a MIMO-OFDM for NT = NR = 1, 2 and 4 (802.11a) 
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Figure 4-9:  BER Performance of a MIMO-OFDM for NT = NR = 1, 2 and 4 (802.11g) 

 

A test multi-user signal was initially modulated using BPSK modulation technique 

before it was split into the required number of data streams for MIMO transmission. These 

streams were passed through a multipath fading Rayleigh environment to be received by 

mobile user equipment at the receivers. The same set of conditions applied in Table 4-1 were 

utilised for each set of MIMO-OFDM symbol generated. 

 

4.7.3 Varying the Guard Band Interval in MIMO-OFDM 

 

 An important factor in OFDM transmission is the cyclic prefix [67]. In essence, the 

effect of varying the amount of redundant information included in an OFDM symbol frame 

was investigated. The cyclic prefix duration utilised were grouped in rates as indicated below. 
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The achieved BER performance is shown in Figure 4-10 and Figure 4-11 below where 

symbol duration equals 3.2µs. 

 

Rate I  :  8 / 64  =  0.4 µs  

Rate II  :  16 / 64 = 0.8 µs 

Rate III :  24 / 64 = 1.2 µs 

 

 

Figure 4-10:  BER of a 2x2 MIMO-OFDM with different cyclic prefix lengths (802.11a) 
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Figure 4-11:  BER of a 2x2 MIMO-OFDM with different cyclic prefix lengths (802.11g) 

 

 The guard band is used to limit interference. Increasing the guard time increases the 

delay spread between each OFDM frame and therefore limits multipath interference between 

adjacent symbols. The effect of shortening the guard band would effectively reduce the delay 

spread but actually increase the transmitted data rate. The effect of varying this parameter 

was investigated for a 2x2 MIMO-OFDM system using different 802.11(a/g) standards and 

the results are shown in Figure 4-10 and Figure 4-11 above.  

 

 

4.8 Summary and Analysis 

 

 As expected, the BER performance of the MIMO-CDMA declined as the number of 

users increased as shown in Figure 4-6 and Figure 4-7. This decline can be reasoned as 

visualizing the same bandwidth being shared by more users, this would only reduce the 
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overall system performance. Therefore; to attain a minimum optimum performance, current 

MIMO-CDMA systems usually define user thresholds for a minimum system performance. 

 The most significant findings from the combination of multiuser MIMO with OFDM 

is it offers a spatial sharing of the available channel bandwidth between users. This is also 

done using additional hardware such as antennas. In essence, a transmitting base station can 

achieve spatial multiplexing gains without the cost of additional bandwidth. An immediate 

advantage can be seen in this setup as it opens the realization of the use of cheaper remote 

user terminals. 

 There is an increase in BER rate at corresponding SNR values for the different set of 

MIMO antenna utilised. The relation follows the predicted relationship derived from the 

MIMO attribute of improving spectral efficiency. This is reflected by the increase in BER for 

any particular operating frequency shown in Figure 4-8 and Figure 4-9. 

 The capacities offered by MIMO-OFDM compared to SISO-OFDM seem to have a 

linear relation in correlation with theoretical assumptions of capacity. The capacity of an 

OFDM system is linearly increased as the number of antennas utilised. This is because the 

data rates are increased while transmitting at the same bandwidth. 

Another parameter varied was the total number of sub-carriers. Theoretically, 

increasing the sub-carrier index would not increase the system capacity; it would simply 

affect the symbol rate of the effective sub-carriers. A longer sub-carrier symbol rate is 

normally implemented as a resource to combat multipath mitigation [67] hence it is a very 

important specification in OFDM standards such as WiFi and WiMaX. 

 It can be seen clearly from Figure 4-10 and Figure 4-11 that increasing the guard band 

would effectively improve signal quality as delay spread is essentially improved. This 

increase has negligible effects on BER as seen in the difference between Rate II and Rate III 

although it is quite significant when compared to operation at higher SNR values as shown by 

Rate I systems. At higher SNRs which translates to a higher operating power, the effect of the 

incident inter symbol interference increases. This is seen as an increased deviation from the 
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other MIMO-OFDM systems (i.e. Rate II and III). Hence, a trade-off exists between the 

choice of guard interval length and data rate required when considering modern day systems. 
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5 Sphere Decoder (SD) for MIMO Detection 

 

 

5.1 Introduction 

 

 The sphere decoder is a very novel technique that has been making a great impact 

within modern day telecommunication systems. Its main attraction is an alternative to the 

complexity of the maximum likelihood, ML detection algorithm. In modern times, signals are 

transmitted using digital modulation such as n-PSK or QAM; whose signal space-time 

diagram forms a constellation diagram. 

In the presence of additive white Gaussian noise, the ML algorithm needs to search all 

the available constellation points within the channel to obtain the right one associated with 

the random data looking to be detected. This search can become very exhaustive and 

therefore makes the computational complexity of this optimal decoding algorithm increase 

exponentially with respect to the length of the codeword involved. This exhaustive search 

prompted research into means to reduce it, hence the emergence of the sphere decoding 

algorithm [3]. 

 The Sphere Decoding algorithm searches the closest lattice point to the received 

signal within a chosen sphere radius, where each codeword would be represented by a lattice 

point within a lattice field [2]. A two dimensional example of this lattice search is shown in 

Figure 5-1 below for a 16 point signal constellation map. A circle is drawn around the 

received signal just big enough to enclose a lattice point which eliminates any other search 

for points outside the circle. 
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Figure 5-1: Geometric Representation of the Sphere Decoding Algorithm 

 

 This chapter begins by explaining the concept of maximum likelihood detection and 

its complexity issues to show the need for a better approach to the ML algorithm. The Sphere 

Decoding Algorithm (SDA) presented in [1] is investigated in comparison to other MIMO 

detectors. A Proposed Sphere Decoding Algorithm, PSDA which is a modification of a 

general SDA in [1], is implemented and investigated in comparison with other sphere 

detectors to analyze its performance capabilities and system complexities. The scenario being 

assumed is a linear Space time block code (STBC) environment where the encoded data is 

split into Nt sub-streams which are in turn transmitted simultaneously via Nt antennas. In 

essence, it means that the received signal is actually a linear superposition of the 

simultaneously transmitted Nt sub-streams that have been corrupted by noise and channel 

inter-symbol interference (ISI). We also assume perfect channel knowledge at the receiver. 
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5.2 Maximum Likelihood Detection 

 

 Let us consider a linear MIMO system where a signal is transmitted using a digital 

modulation technique such as BPSK and QPSK. The transmission channel can be envisaged 

as shown in Figure 5-2.  

 

 

Figure 5-2: Linear representation of a MIMO Channel 

 

From Figure 5-2, the manner at which the MIMO channel coefficients interact with 

the transmitted signal is witnessed. It is assumed that the transmitter would send Nt symbols 

during the same time slot which leads to the incidence of Nr symbols at the receiver for any 

given time slot. At the receiver, the incident Nr symbols experience noise which is also 

indicated in the figure. Using the above Figure 5-2, we can also re-establish the relation 

developed in (3.1) of chapter 3 in simple matrix form as seen in (5.1) below. 

 

nHsy            (5.1) 

 

h1,1 
s1 

hNt,Nr sNt 

h1,Nr 

hNt,1 

nNr 

 

y1 

yNr 

n1 
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where  y represents the received signal vector 

  H represents the channel matrix 

  s represents the transmitted symbols  

  n represents the incident noise 

 

 During transmission, the actual value of the transmitted signal constellation is shifted 

by noise. The aim of the receiver is to estimate as close a value to the transmitted symbol as 

possible.  In essence, the receiver would need to decide on which value of the signal 

constellation is closest to the actual value of the transmitted signal.  

 A few assumptions are implemented; the transmitted symbols, sNt are chosen from a 

signal constellation with an alphabet size   and the channel matrix coefficients are known at 

the receiver. The transmitted symbols are normally modelled as independent and identically 

distributed; iid random variables since each random variable utilised possesses the same 

probability distribution as the other variables where all the variables are mutually 

independent of each other [2]. These symbols are uniformly distributed across the 

constellation alphabet,   whose signal constellation is assumed to be centred at zero. 

 In essence, the ML detector tries to reduce the probability of detecting a wrong 

constellation point as represented in (5.2). 

 

observed) vector symbol |sent  vector P(symbol maxarg
 s Nt

s


      (5.2) 

 

Equation (5.2) is generally known as the Maximum A posterior Probability, MAP 

detection rule [19]. Also, since the probability of error in choosing the correct estimate, s is 

more or less equivalent to maximizing the probability of correctly estimating the received 
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signal vector, y [2]; one can utilise this attribute; i.e. ),|( HyssPe  , as shown in (5.3) where 

it has been expanded to analyse it further. 

 

)|(

),|()(
),|(

|

,|

Hyf

HssyfssP
HyssP

Hy

Hsy

e


       (5.3) 

 

where  Hyf |  is the conditional probability density function of y given values for H 

 Hsyf ,|  is the conditional probability density function of y given values for s and H 

 

Consequently, as the values of )( ssP  and )|(| Hyf Hy do not rely upon the value of

s , it implies that ),|( HyssPe  can be maximised for s [2]. This would in turn maximise 

the ),|(,| Hssyf Hsy   term in (5.3) which transforms into the well-known ML detector 

criterion in (5.4) where MLs represents the ML estimate. 

 

),|(maxarg ,|
 s

Hssyfs HsyML
Nt




       (5.4) 

 

 The received vector model adopted in (5.1) can be used in conjunction with (5.4) to 

establish the relationship [2] depicted in (5.5). 

 

),|(,| Hssyf Hsy  = )( sHyfn         (5.5) 
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where  fn represents the probability density function of white Gaussian noise.  

 

A standard Gaussian noise vector, n can be visualised as a collection of Nr 

independent and identically distributed (i.i.d) Gaussian random variables (n1 , n2 , ... , nNr). It 

is well known that the probability density function of white Gaussian noise is given by (5.6). 

 

2

2
||||

1

2 )(

1
)(

n

Nn enf
r







         (5.6) 

 

Recalling that a means of maximising fy|s,H is by minimising the calculated Euclidean 

distance,
2|||| n ; it follows that we can substitute n with sHyn  which leads to very well 

known equation representing the ML estimate of s [1], [2] given by (5.7). 

 

2

 s

||||minarg sHys
Nt

ML 


        (5.7) 

 

 It can be seen clearly that the ML detector attempts to retrieve the desired 

constellation point, MLs  that would minimise 
2|||| sHy  . In essence, an ML detector needs to 

calculate |||| sHy  for every transmitted constellation point before deciding on which 

symbol was sent. Although the ML estimate is a very accurate means of estimating the 

transmitted symbols, it is clear that for higher order systems where Nt or constellation size, m 

is high, the computational complexity of ML would become very significant. 

This ML estimate, MLs  embodies the daunting nature of the computational complexity 

witnessed in modern day telecommunication systems to achieve a ML detection of the 

transmitted signal in scenarios of large m and Nt. This is usually termed as being NP-Hard 
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[30].  The high computational complexity necessary for ML detector operation led to research 

into other detection algorithms which offer much lower complexity though they might be 

sub-optimal in nature. A derivative of ML detection was presented by Fincke-Pohst (F-P) and 

Schnorr-Euchner (S-E) who devised computationally efficient techniques to derive a sub-

optimal ML estimate without the need of the exhaustive search across all constellation points 

exhibited by normal ML detection algorithm [32], [36]. This algorithm searches for the 

required ML estimate within a hyper-sphere in the signal  constellation mapping as was seen 

in Figure 5-1 leading to the sphere decoder becoming the industry name for detectors based 

on algorithms using this manner of sphere search. A number of sphere detectors currently 

exist but most usually utilise either a F-P or S-E algorithm as the foundation of their 

operation [36]. 

 

 

5.3 Principle of the General Sphere Decoder Algorithm 

 

 The sphere decoder is derived from a variation of the ML equation shown in (5.7).  

Another way to look at (5.7) is to refer to the Euclidean distance, dE which can be expressed 

as shown below. 

 

|| sHydE            (5.8) 

 

where dE represents the Euclidean distance. 
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During transmission through a communications channel, the received symbol is 

simply one of the constellation points displaced by noise. A ML decoder calculates the 

Euclidean distance; i.e. the distance between the received symbol and any point on the 

constellation map. Therefore, ML attempts to find the Euclidean distances between the 

received symbol and all points on the constellation map before selecting the minimum out of 

the calculated distances as it would obviously be the closest match on the constellation map 

to the received symbol. 

 A sphere decoder limits the number of constellation points utilised in order to 

calculate MLs by limiting the symbol search to occur within a hyper-sphere with a radius, dr 

around the received signal vector, y. The radius of the hyper-sphere is chosen in such a 

manner to maintain the presence of at least one constellation point within it. It is obvious that 

if the closest point lies within the hyper-sphere, it would generally represent the closest point 

of the whole constellation lattice and in effect would have avoided the extra computational 

complexity caused by the need for an ML detector to search the whole lattice [34] as depicted 

in Figure 5-1 above.  

 From the principle of SD above, it is obvious that a very important design attribute 

would be the actual radius of the sphere. This is a very tricky design question and different 

sphere decoders adopt different means of generating the search radius, dr. The choice of dr 

would affect the complexity of the system because if dr is too large, it would have an adverse 

effect on the system as there would be too many constellation points to search through and in 

effect the aim of SDAs in trying to reduce ML complexity is nullified. Also at the other 

extreme, if dr is too small, there is a possibility of not finding any constellation point within 

that sphere and hence a flawed system.  Geometrically speaking, the obvious solution would 

be to calculate the smallest radius of spheres centred at the lattice points that would basically 

cover the entire space. This is known as the covering radius [41]. Calculating this radius 

involves a lot of increased complexity and also effectively removes the aim of SDAs if 

deployed as the choice of radius selection [41]. 

 



88 

University of Hertfordshire, 2011 
 

 

 

5.3.1 System Model of a Sphere Decoder 

   

 To consider the SDA algorithm, QR decomposition is performed on the channel 

coefficients. It is known that QRH  where Q is a unitary orthogonal matrix and R is an 

upper triangular matrix whose diagonal possesses real valued positive entries [36].  

 

Recall (5.1): 

 

nHsy   

 

Since Q is unitary implying IQQH  , multiplying both sides by Q
H
 turns (5.1) into (5.9) 

below: 

 

nQRsx H           (5.9) 

 

where yQx H  

 

Using (5.9), (5.7) can be represented as shown in (5.10) below. 

 

2

 s

||||minarg sRxs
Nt

ML 


        (5.10) 
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The manner at which an SDA works is basically solving (5.10) where it can be clearly 

seen that in order to achieve correct results, the utilised SDA algorithm needs to completely 

identify all the constellation points that exist within the hyper-sphere with a radius, dr centred 

around a received vector point, x. Using (5.10), a relationship can be established between dr 

and x as seen in (5.11). Therefore, a lattice point sH would exist in a sphere of radius, dr if 

and only if the condition of (5.11) is met. 

 

22
||||  sHxdr           (5.11) 

 

 It is possible to derive an alternative solution using the QR factorization of H and 

substituting for H as shown in (5.12) similar to the initial algorithms utilised by Fincke and 

Pohst [32]. 

 

2
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2
|| ]  [||  s

R

R
QQxdr 








         (5.12) 

 

where Q1 and Q2 represent the first Nr and last (Nr – Nt) columns of the Q unitary matrix and 

R2 = 0 . Using this unitary quality of the Q matrix, we can redefine (5.12) as (5.13). 
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90 

University of Hertfordshire, 2011 
 

 

 

Equation (5.12) can then be rewritten using (5.13) to establish the relationship in (5.14). 

 

2

11

2

2

2 ||||        |||| - sRxQxQd HH

r         (5.14) 

 

For clarity purposes, we assume xQz H

1  and
2

2

22 |||| - xQdd H

r ; we can then re-write 

(5.14) as (5.15). 

 

2

1

2 ||||  sRzd           (5.15) 
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where   ri,j represents the (i,j)
th

 entry of R1  

sj is the j
th

 bit of symbol, s 

 

Following an expansion of (5.16), we obtain (5.17) below. 

 

...   )z()z(  2

11,1,11N

2

,N

2

tt
  ttttttttt NNNNNNNNN srsrsrd    (5.17) 
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It is noticed that in (5.17), the first term is the only term whose value is dependent on 

a single bit of s while the second term depends on two bits of the symbol s and so on. 

Therefore, it is possible to assume that sNt would belong to the interval depicted in (5.18). 
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                   (5.18) 

 

It should be noted that  :  represents rounding out to the larger of the elements in the 

set of numbers that cover the selected lattice points [14], [15], [32] and  :  represents 

rounding off to the smaller of the elements in the set of numbers that cover the selected lattice 

points [14], [15]. 

 The second term depends on two terms which leads to the possibility of re-defining a 

new set of boundaries for sNt-1 taking into account the effect of an already calculated sNt using 

the new definitions below to establish a new interval (5.19) for sNt-1. This is done with the 

consideration that (5.18) would have already been observed. 
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 This same interval limit can be adjusted in a similar manner to find all the remaining 

bit components of s from sNt to s1 [32]. These interval limits are used to correctly enumerate 

all the lattice points required for (5.11). 

 

5.3.2 General Sphere Decoder Algorithm 

 

A suitable code can be written as indicated below to implement a general sphere decoding algorithm 

as discussed above. 

 

-  Required inputs: r

H
dxQzxRQQQ ,,,],   [ 121   

 

- (1): Set initial layer  
tttt NNN

H
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2 ||,||,  

 

- (2): Set upper bounds (UB) for sk   
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- (3): Increase sk unit wise           sk  =  sk + 1 

              

                If (4)  tocontinue else (5)  tojump )(sk ksUB  
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- (4): Increase k unit wise     k = k + 1 

 

If  k = Nt  +  1; end algorithm, else go back to (3). 

 

- (5): Decrease k unit wise; If k = 1, jump to (6) else define new values below  

 

1 kk    

 

  
tN

kj jjkkkk sryy
1 ,1|  

2
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2

1

2 )(   kkkkkkk srydd  

      

    Go back to (2) 

 

- (6): A solution has been discovered.  

 

  Save s and its distance from x; 
2

11,11

2

1

2 )( srydd
tN   

 

 Go back to (3). 
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 The algorithm described above can be envisaged in the manner of a tree search 

algorithm [31]. This is a widely recognised manner of interpreting the search characteristic 

employed by a typical sphere decoder. In other words, the shortest path along a tree 

corresponds to finding the minimum Euclidean distance and hence it results in finding the 

ML solution for the received vector. A tree structure for a 2-by-2 MIMO system is shown 

below in Figure 5-3. 

 

 

Figure 5-3: Tree search representation for a 2-by-2 MIMO SD-QPSK system 

 

 The ML detector involves an exhaustive search from the root via all the branches to 

all the nodes in the tree representation in Figure 5-3 above. The aim of SDA is to limit the 

branches visited to establish the maximum likelihood solution required. A constellation point 

is depicted by a node on the tree diagram; therefore, the path from the root to end node (leaf 

node in some literature) [15], [31] can be visualised as a possible solution. Therefore, the path 

with the smallest path equates to the solution which would possess the minimum Euclidean 

distance required. 

 Examining Figure 5-3, it can be visualised how the complexity of SD is reduced using 

tree pruning techniques. This is simply because since every node visited is associated with its 

own Euclidean distance; referred to as partial Euclidean distances, PED’s in other literature. 

Tree Level k = Nt = 2 

root 

Tree Level k = Nt-1 = 

1 
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If the visited node’s Euclidean distance is larger than the search radius of the sphere, it 

simply implies the branches connecting the node to the root are also outside the search radius 

and can thus be neglected or pruned from the tree. This continues at the leaf nodes to 

establish the nodes with PED’s less than the search radius and effectively updating the sphere 

radius to this lower value [14]. 

 There are two main adopted methods of accessing the SD tree [2],[30],[32] namely 

depth-first and k-best (breadth-first). The former is the basis of the Schnorr-Euchner, S-E SD 

algorithm and has been utilised within this project due to the lower complexity if offers over 

the faster approach of k-best tree search which uses parallel processing [30] to improve the 

search speed. The S-E SD algorithm is based on the more traditional tree search which 

analyses one node per cycle.  

In other words, the S-E SD algorithm uses radius reduction techniques to function 

properly. The initial radius is normally set to begin at infinity which is indicative of an 

exhaustive ML search [14], [17]. The algorithm then tends to update the radius when a viable 

solution is found (i.e. at the leaf node). It then continues the tree search with the new radius 

discovered being the value of the PED just observed. Therefore, since the complexity of SD 

is dependent on the search radius as discussed earlier, the radius reduction offered by the S-E 

SDA is a very attractive feature for the deployment of SD using this algorithm [30]. 

 

5.3.3 Choice of Sphere Radius 

 

This is one of the underlying design tradeoffs required for the successful meaningful 

operation of a sphere decoder. As already discussed, the complexity of a sphere decoder 

would vary accordingly with the size of the sphere radius. This is because the larger dr 

became, the larger the range of constellation points that would need to be visited to obtain the 

correct set of points within the hyper-sphere, this relationship is of an exponential nature for 

higher values of dr [31]. On the downside as well, if dr is too low in value, a possibility exists 

whereby there would be no constellation points to search through and hence the system 
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having to return zero or search the entire constellation lattice just like a normal ML detector 

and this in turn defeats the purpose of using SD [30], [31]. 

 The Schnorr-Euchler, S-E SD algorithm was utilised in preference to its Pohst 

counterpart mainly due to the lower complexity involved with the S-E SD algorithm as it is 

not dependent on the initial radius of the sphere. This is because this value is initially set to 

infinity [31]. Other SD algorithms use other values for dr such as the zero forcing estimate 

(referred to as the Babai estimate) [14] and a scaled variance of the noise element within the 

system [30]. 

It follows that as we have obtained the channel matrix, H via channel knowledge at 

the receiver and due to the geometric properties of the constellation matrix, it is possible to 

assume the multiplication of the channel with the signal does not affect the branch lengths 

within the actual transmitted symbol [17]. After QR decomposition, recalling the solution 

(Rs) = y corresponds to the zero forcing estimate of the system which is the least squares 

solution to (5.7). To complete the result, we solve for s by rounding up to the closest integer 

value to obtain the required lattice point. This lattice point is normally identified to as the 

Babai estimate mentioned earlier [14] and the search radius, dr can be defined as the 

difference between the received point and the Babai estimate as shown in (5.20)  

 

||||  r ysRd           (5.20) 

 

In modern day telecommunication systems, the channel parameters are not always 

known and in such a situation, the complexity of the system would increase significantly as a 

new unknown has been invited into the system and there would be a need to calculate the 

covering radius which is normally referred to as also being NP-Hard [16]. A better estimate 

of the initial radius can be obtained from the noise variance accompanying the system [42]. 

This choice meets the required criteria because the actual shift in the received symbol from 
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the transmitted symbol is dependent on the noise statistics of the system.  The noise attribute 

is an independent function depicted by (5.21) below. 

 

2

2

2

2
||||

2

1
||||

2

1
Hsyn 


        (5.21) 

 

where σ
2
 represents the variance with a mean, µ equals zero for an AWGN scenario. 

 

 The value of dr is chosen in such a manner to ensure that the new radius derived from 

(5.21) above is such that the probability of a transmitted symbol is found inside the search 

sphere is extremely high [36], [42]. This leads to a universal relationship also utilised in 

recent sphere decoder systems as seen in (5.22) given the relationship depicted in (5.21). 

 

22  rr Nd            (5.22) 

 

where α is a scaling factor implemented into the system. 

 

5.3.4 The Schnorr-Euchler SD Tree Search 

 

 The SD algorithm is a less complex algorithm used to achieve ML detection in 

modern telecommunication systems. This is done by interpreting the ML detection in the 

form of a tree search. To achieve SD, QR decomposition is done on the channel coefficients 

to produce the required squared matrices. It is worthwhile to note that since SD depends on 
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QR decomposition and Q needs to be a square matrix, the SD algorithm tends to fail in 

systems where Nr > Nt [34]. 

  The aim of the S-E SDA is to quickly recover the ML estimates while reducing the 

search radius during its operation to limit the node search and effectively the system 

complexity [36]. The S-E SDA performs a depth first search of the tree by correctly 

enumerating the required symbol search set. It finds the symbol estimate sNt-k+1 where the 

search starts at the root with k = Nt. A strategy which was first proposed by C.P. Schnorr and 

M. Euchner [36] used an increasing distance from the unconstrained least squares estimate, 

y where 

 

1

1

1)( 



 kNkN tt
zry          (5.23) 

 

 This kind of enumeration procedure has its advantages over other methods or variants 

due to its radius reduction principle in sequence with its operation.  The first leaf node visited 

is actually the zero forcing estimate i.e. the Babai estimate; this already corresponds to a very 

small radius at the start and hence automatically reduces the search radius as the Babai 

estimate should be fairly close to the required ML point. This would obviously drastically 

reduce the complexity of the search and makes the S-E SDA already look favourable as the 

daunting task of selecting a search radius is almost or completely eliminated from the design 

parameters [34]. The manner by which the S-E SDA operates is the reason why the initial 

search radius can be set to a significantly large value or infinity as a large radius would also 

ensure that the required ML estimate is located within the sphere and since the first node 

visited is at the Babai estimate, the subsequent tree search radius would also be small. After 

the expansion of (5.17), the increments required for use in the SD algorithm can be 

visualized. 
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 The first term corresponds to a value for 2|| ie where i = Nt, the second term for 

when i = Nt-1 and the last term depicted is for i = 1. These can be visualised as distance 

increments from successive layers whose sums are calculated recursively from the root level 

where k = Nt to the leaf node where k = 1 as shown in (5.24). 

 

2

,

2 |||| 



Nt

ik

kkiii sRze          (5.24) 

 

As the name suggests, these partial sums, generically referred to as partial Euclidean 

distances, PEDs [30] represent the distance from the received vector point to the node of 

interest. The PEDs can thus be calculated and updated using (5.25) and (5.26) below. 
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An initial condition is set as such where 01  tNd . After obtaining the PEDs, it is 

easy to prune the tree during the search because if we ever arrive at a node which possesses a 

PED larger than the current sphere radius, dr, it simply indicates the sub-tree of that node 

does not need to be searched as going through that sub-tree only increases the search distance 

which has already been found to be outside the sphere radius and not the required ML point 

of interest [36]. 

 There are different variants of the tree search method currently recognised where the 

manner and direction of the search are different to the S-E SDA [36], an example is the Stack 

Sphere Decoding Algorithm developed by F. Jelinek [38] although for all SD algorithms, the 

tree search normally begins at the root level. 

 

 

5.4 Simulations 

 

 Simulations were carried out using MATLAB version R2009a to establish a sphere 

decoder using modulation techniques such as QPSK, 16-PSK, 32-PSK and 64-PSK for 

transmission. These were adapted to different MIMO antenna configurations and their 

performance analysed. A general sphere detector was compared to the MIMO detectors 

discussed in previous chapters to determine the high performance and complexity involved in 

general sphere decoder algorithms, GSDAs. 

 

5.4.1 Comparison with other Detectors 

 

 A sphere detector based on the Schnorr Euchner algorithm was investigated using the 

MIMO configuration and the performance in terms of BER was compared with versions of 

VBLAST; i.e. ZF-OSIC and MMSE-OSIC, and the ML receiver. A user signal was 
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implemented with the MIMO algorithm for different antenna configurations. The modulation 

methods tested was mainly QPSK and some variants of n-PSK with a total number of 

modulated bits, nbits = 1 x 10
5
. Figure 5-4 shows the results achieved where it is seen that a 

sphere decoder can achieve ML detection. 

 

 

Figure 5-4: BER using QPSK modulation at the transmitter 

 

Figure 5-4 shows the BER performance for a 2-by-2 MIMO system where different 

versions of VBLAST; ZF-VBLAST & MMSE-VBLAST have been compared against both a 

sphere decoder based on the Schnorr & Euchner algorithm and a maximum likelihood 

detector. A QPSK modulated signal was used simply due to its recognised implementation as 

a modulation technique adopted in technologies such as IEEE 802.11 WiFi, IEEE 802.16 

WiMAX, WCDMA/HSDPA 3G and 4G [1], [36], [37]. 
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Figure 5-5: BER using 16-PSK at the transmitter 

 

The current industrial telecommunication standards normally support QPSK up until 

64-PSK and 64-QAM. Figure 5-5 shows the BER performance achieved with a slight 

modification in the MIMO system of Figure 5-4 where the 2-by-2 MIMO system used 16-

PSK for a system transmitting a total number of bits equalling 1 x 10
4
. 

 

5.4.2 Visited Nodes for different Antenna Configuration 

 

 The sphere decoder algorithm based on principles developed by Schnorr & Euchner 

[1] achieved ML detection as seen in 5.4.1. There was an obvious hindrance derived from the 

runtime of the simulations as expected. As there is a need to perform an exhaustive search 

when using the ML detector; in essence, the whole aim of the sphere decoding algorithm 



103 

University of Hertfordshire, 2011 
 

 

 

would be to reduce the time taken in calculating the maximum likelihood estimate for a 

received symbol. This increased simulation time is caused by the need to search through all 

the constellation points which is typical of a ML detector. The complexity can generally be 

visualised as being related to the search radius of the ML detector. Therefore, decreasing the 

search radius as witnessed in the SD algorithm should in effect lower the runtime and hence 

lower the complexity of the system. Different configurations of the general sphere decoder 

algorithm were examined and their results compared to the modified SDA. The total number 

of visited nodes corresponds to the total number of constellation points searched; therefore 

reducing the radius would also reduce this value as witnessed in Figure 5-6 below where a 

ML detector was compared to a General Sphere decoder (GSD) based on the S-E iterations 

with the initial radius set to infinity. 

 

 

Figure 5-6:  Comparing the Total Number of Nodes for Different Sphere Detectors  
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5.4.3 S-E SDA using a modified Babai radius 

 

 The GSD sets the initial radius search to begin from infinity to allow the sphere to 

always encompass the required zero forcing estimate at the first node. Using the means 

described in (5.19), it should be noted that rounding off to nearest integer value occurs and 

therefore, computation errors need to be taken into account when the value of NT or m 

increases. At some values of NT, the sphere detector based on the Babai radius failed to return 

a value as there were no points inside the sphere and hence returned with no value on higher 

values of NT. To overcome this, there was a need to slightly increase the search radius using a 

unit increase by introducing a scaling factor, rt. The modified sphere decoder was found to 

achieve a 100% success rate with respect to always locating a constellation point within the 

search sphere for a transmission with nbits = 1 x 10
4
. 
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Figure 5-7: Comparing the Total Number of Nodes with m = 2, rt = 1, Nt = Nr = 2.  

 

Figure 5-7 above also includes the total number of nodes that have been visited 

assuming the search radius was the Babai estimate. It is used as a point of reference to 

compare how much complexity is added to the system by utilising the modified radius in the 

Proposed SDA (PSDA). This reference has been applied to Figures 5-8, 5-9 and 5-10 where 

different values of m, Nt, Nr and rt have been deployed for different system configurations to 

determine the robustness of the proposed SDA. 
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Figure 5-8: Comparing the Total Number of Nodes with m = 4, rt = 2, Nt = Nr = 4.  

 

 

Figure 5-9: Comparing the Total Number of Nodes with m = 2, rt = 1, Nt = Nr = 4.  



107 

University of Hertfordshire, 2011 
 

 

 

 

Figure 5-10:  Comparing the Total Number of Nodes with m = 5, rt = 2, Nt = Nr = 4.  

 

It is clear from Figure 5-7, 5-8, 5-9 and 5-10 that the P-SDA adds a slight complexity 

increase with respect to comparison with an SE-SDA based on the Babai radius. This 

increase is visualised by the increased amount of nodes visited for the different scenarios 

evaluated. Tables 5-1, 5-2 and 5-3 have been drafted below to include the total number of 

visited nodes and the different failure and success rate patterns exhibited for different antenna 

configurations corresponding to Nt = Nr = 2 and 4 respectively. 
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BER rt = infinity rt = 1 rt = 2 rt=1 

(PASS/FAIL) 

rt=2 

(PASS/FAIL) 

10 dB 9115 4096 5120 PASS PASS 

15 dB 9179 4127 5225 PASS PASS 

20 dB 9137 4128 5202 PASS PASS 

25 dB 9158 4097 5148 PASS PASS 

30 dB 9062 4143 5149 PASS PASS 

 

Table 5-1: Total number of nodes with Nt = Nr = 2, m = 2 and Ntot = 10
4
  

 

 

BER rt = infinity rt = 1 rt = 2 rt=1 

(PASS/FAIL) 

rt=2 

(PASS/FAIL) 

10 dB 16705 9486 11200 PASS PASS 

15 dB 16734 9284 11045 PASS PASS 

20 dB 17032 9611 11413 PASS PASS 

25 dB 16933 9456 11200 PASS PASS 

30 dB 16579 9406 11104 PASS PASS 

 

Table 5-2: Total number of nodes with Nt = Nr = 2, m= 4 and Ntot = 10
4
 

  

 

BER rt = infinity rt = 1 rt = 2 rt=1 

(PASS/FAIL) 

rt=2 

(PASS/FAIL) 

10 dB 27973 Error 8451 FAIL PASS 

15 dB 28255 Error 8302 FAIL PASS 

20 dB 28564 Error 8606 FAIL PASS 
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25 dB 28963 Error 8612 FAIL PASS 

30 dB 28497 Error 8462 FAIL PASS 

 

Table 5-3: Total number of nodes with Nt = Nr = 4, m= 4 and Ntot = 10
4
 

 

 Tables 5-1, 5-2 and 5-3 were populated using the corresponding values where Error 

was displayed when the search sphere contained no points within it. The test was to ensure 

that for a certain value of rt, the system would actively have at least one point within the 

search sphere. A PASS was displayed when this condition was met and a FAIL otherwise. 

 

 

5.5 Summary and Analysis 

 

 The time taken by the conventional ML receiver to process was significantly longer 

than any other method and sometimes took hours to finish depending on the total number of 

bits that were transmitted. The GSD was significantly more responsive with regards to the 

conventional ML detector. Figures 5-4 & 5-5 show that the GSD achieves ML detection. The 

reason of so much interest in SDAs is simply because they reduce the complexity of finding 

the ML estimate of a received signal which is generally termed to be NP-Hard. The search 

sphere has been identified to be a very important decision factor in the design of SDAs as it 

basically decides the complexity of the overall system as it is reduces the nodes visited. This 

can be witnessed in Section 5.4.2 above where each visited node corresponds to a trip from a 

root to a node. This is also regarded as a means of measuring the complexity of a ML 

detector. Therefore reducing the amount of nodes visited effectively reduced the run time and 

in essence, the computational complexity required for ML detection.  

 The sphere radius is an important quantity and despite its importance, it has no exact 

definition for its value and is usually estimated. The GSDA uses methods based on a Schnorr-
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Euchner lattice reduction algorithm as already described. This method sets the initial radius to 

infinity although this is only for the first trip to a visiting node as this would guarantee a point 

definitely within the search sphere at initialisation. This first visited node is generally termed 

the Babai estimate. 

 The telecommunication industry today adopts a different approach to defining the 

initial radius, dr as the Babai estimate where pre-processing before the search commences to 

define a value for the search radius as discussed in Section 5.3.4. The search for the Babai 

estimate is normally done to the nearest symbol and therefore leads to computational errors as 

witnessed in our experiments by the FAIL result which indicates that not 100% of the 

received symbols were decoded. This is caused by the rounding off errors incurred when 

calculating the Babai estimate. The proposed SDA, P-SDA utilises a variable; rt, to slightly 

increase the search radius to allow for the increased efficiency of a 100% successful detection 

without the need to use an initial big radius as the GSD and in effect slightly increase the 

complexity.  Different values of m, Nt, Nr and rt were implemented to try to notice and 

establish a suitable relationship to define rt. It was noticed from Table 5-1, 5-2 and 5-3 that 

the system demanded a minimum of a unit increase to get a PASS. This result was unaffected 

by varying the values of m and obviously increasing rt should make no difference as it only 

increases the search radius. A trend and relationship was noticed between Nt and rt where in 

order to get a 100% success rate of detection where a PASS is awarded, the value for rt for 

minimum complexity is: 
2

rN
rt  . This value for rt is independent of the utilised value of 

m.            
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6 Conclusions and Future Work 

 

 

6.1 Conclusions 

 

 This thesis investigated the examples of the different types of receivers utilised within 

a wireless communication system. It analysed linear and non-linear receivers to evaluate their 

performance attributes and the effect of varying certain transmission parameters such as 

modulation order and digital modulation type. 

 The contribution of MIMO to the wireless communication industry was also 

examined by initially investigating the performance of various MIMO receivers utilised 

within the wireless industry. A V-BLAST MIMO Receiver was combined with two well 

know modulation techniques in CDMA and OFDM to investigate the improvements 

envisaged while adopting MIMO technology. 

 A Sphere decoder based on the Schnorr-Euchner algorithm was implemented to 

obtain a maximum likelihood solution of the transmitted symbol at the receiver. This decoder 

along with other MIMO Receivers was compared to a conventional ML receiver by 

comparing their BER performance. The Sphere decoder was modified to overcome an 

impairment normally overlooked in the general equation for calculating the radius of the 

search sphere. The modified sphere decoder was compared to other sphere decoders and the 

ML decoder by counting the total number of nodes visited during detection. This established 

an insight into the complexity issues slightly reduced by adopting a Sphere decoder for ML 

detection. 
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6.1.1 Effect of MIMO on BER performance 

 

 It is safe to conclude that MIMO increases the BER performance of the receiver. The 

addition of MIMO to conventional 3G, LTE and 4G systems using CDMA or OFDM has 

been researched extensively. OFDM and CDMA are modulation techniques that currently 

have an edge over simpler digital modulation techniques such as BPSK, QPSK, QAM and n-

PSK. It has been easily established from the results the effect of the addition of MIMO to the 

system. MIMO increases the spectral efficiency of the system and generally the achieved 

BER performance linearly increases proportionally to the number of receive antennas 

deployed. MIMO-OFDM and MIMO-CDMA deliver better data rates to their SISO 

counterparts. 

 

6.1.2 Improved BER performance  

 

An aim of this project was to identify and implement a receiver showing improved bit 

error rates by comparing the performance of several industrially recognised receivers. Two 

variations of receivers were tested which led to an observation of achieving improved BER 

performance when both variants of a non-optimal receiver were utilised in sync with each 

other such as the MMSE linear detector and its addition with the non-linear OSIC for use in a 

V-BLAST receiver. This detector combination offered the best BER performance achieved 

when trying to achieve a non-optimal solution for the received signal. The conventional 

optimal receiver achieves ML detection with very high computational complexity and 

therefore poses a difficult conundrum with respect to operating at higher digital modulation 

rates as higher rates correspond to a longer search cycle and hence very large and unwanted 

runtimes. Hence, though the optimal ML receiver achieves the best BER performance, it is 

not an attractive solution for systems involving orders of higher modulation. 
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6.1.3 Complexity of a ML decoder 

 

A modification of the general sphere decoder (GSD) has been presented in this thesis 

as exhibiting the best BER performance out of the non-linear and linear receivers tested. It 

was shown that the sphere decoder achieved a ML solution at a reduced complexity to the 

conventional ML detector. The GSD is based on the Schnorr Euchner algorithm which sets 

the initial search radius to infinity to allow for the 100% probability of obtaining a point 

within the sphere. A modification to the GSD is utilised in the industry where the Babai 

estimate was utilised to find the search radius. The proposed modification of the Babai 

estimate realised a 100% probability of finding a point within the search sphere was 

maintained. 

 

 

6.2 Future Work 

 

The future of telecommunications is nearing towards the realization of the 4G 

standard as defined by the International Telecommunications Union (ITU) where peak data 

rates of 100 Mbps and 1Gbps have been targeted for high and low mobile service operation 

respectively. MIMO-CDMA and MIMO-OFDM have been shown to realise significant BER 

performance improvement compared to their SISO counterparts.  

 

6.2.1 MIMO and MC-CDMA 

 

 The combination of OFDM and CDMA; known as multicarrier CDMA, MC-CDMA 

is currently a very attractive technology in the wireless industry due to the advantages it 

offers over constitute technologies i.e. OFDM and CDMA. A combination of MIMO with 
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MC-CDMA should make significant BER improvements when compared to MIMO-OFDM 

or MIMO-CDMA.  

 

6.2.2 Modified Sphere Decoder (M-SDA)  

 

The received signal has a relation to its associated noise variable. This noise variable 

has the same statistics as the received signal and can be used to determine a value for the 

search radius. The initial radius is set to a scaled variance of the associated noise variable. 

This can be researched and investigated to establish an M-SDA. The total number of nodes 

visited should then be compared to the P-SDA to establish any system complexity 

improvement. 

 

6.2.3 Sphere Decoder and MC-CDMA 

 

 A choice of a receiver based on the M-SDA or P-SDA should be made against two 

decision statistics namely observing a PASS and a probability of 100% as described in 

Chapter 5. This choice should be used as the detector to evaluate the combination of MC-

CDMA with MIMO. 
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