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Abstract

Cis-regulatory elements are the short regions of DNA to which spe-

cific regulatory proteins bind and these interactions subsequently in-

fluence the level of transcription for associated genes, by inhibiting

or enhancing the transcription process. It is known that much of

the genetic change underlying morphological evolution takes place in

these regions, rather than in the coding regions of genes. Identify-

ing these sites in a genome is a non-trivial problem. Experimental

(wet-lab) methods for finding binding sites exist, but all have some

limitations regarding their applicability, accuracy, availability or cost.

On the other hand computational methods for predicting the position

of binding sites are less expensive and faster. Unfortunately, however,

these algorithms perform rather poorly, some missing most binding

sites and others over-predicting their presence. The aim of this thesis

is to develop and improve computational approaches for the predic-

tion of transcription factor binding sites (TFBSs) by integrating the

results of computational algorithms and other sources of complemen-

tary biological evidence.

Previous related work involved the use of machine learning algorithms

for integrating predictions of TFBSs, with particular emphasis on the

use of the Support Vector Machine (SVM). This thesis has built upon,

extended and considerably improved this earlier work.

Data from two organisms was used here. Firstly the relatively simple

genome of yeast was used. In yeast, the binding sites are fairly well

characterised and they are normally located near the genes that they

regulate. The techniques used on the yeast genome were also tested

on the more complex genome of the mouse. It is known that the



regulatory mechanisms of the eukaryotic species, mouse, is consider-

ably more complex and it was therefore interesting to investigate the

techniques described here on such an organism.

The initial results were however not particularly encouraging: al-

though a small improvement on the base algorithms could be ob-

tained, the predictions were still of low quality. This was the case for

both the yeast and mouse genomes.

However, when the negatively labeled vectors in the training set were

changed, a substantial improvement in performance was observed.

The first change was to choose regions in the mouse genome a long

way (distal) from a gene over 4000 base pairs away - as regions not

containing binding sites. This produced a major improvement in per-

formance. The second change was simply to use randomised training

vectors, which contained no meaningful biological information, as the

negative class. This gave some improvement over the yeast genome,

but had a very substantial benefit for the mouse data, considerably

improving on the aforementioned distal negative training data. In

fact the resulting classifier was finding over 80% of the binding sites

in the test set and moreover 80% of the predictions were correct.

The final experiment used an updated version of the yeast dataset,

using more state of the art algorithms and more recent TFBSs annota-

tion data. Here it was found that using randomised or distal negative

examples once again gave very good results, comparable to the results

obtained on the mouse genome. Another source of negative data was

tried for this yeast data, namely using vectors taken from intronic

regions. Interestingly this gave the best results.



Contents

Contents vii

List of Figures xiv

List of Tables xx

1 Introduction 1

1.1 The Importance of Protein-DNA Interaction . . . . . . . . . . . . 2

1.2 Limitations of Experimental and Computational Approaches to

Identify TFBSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Combining Sources of Computational and Biological Data . . . . 5

1.4 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Contribution to Knowledge . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 8

2 A Review of Gene Regulation and cis-regulatory Binding Sites 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Gene Expression and Regulation . . . . . . . . . . . . . . . . . . . 11

2.3 Transcription Factors and cis-regulatory Sites . . . . . . . . . . . 13

2.3.1 Transcription factors in eukaryotes . . . . . . . . . . . . . 14

2.3.2 The organisation of cis-regulatory sites . . . . . . . . . . . 16

2.3.3 The number of transcription factors across different eukary-

otes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Identification of cis-regulatory Regions and Binding Sites Using

Biological Cues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



CONTENTS

2.5 Identification of cis-Regulatory Sites Experimentally . . . . . . . 21

2.6 Gene Regulatory Networks . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 A Review of cis-regulatory Binding Sites Prediction Strategies 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Representation of DNA Sequences . . . . . . . . . . . . . . . . . . 29

3.2.1 Consensus Sequence . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Position Weight Matrices . . . . . . . . . . . . . . . . . . . 31

3.2.3 Representing TFBSs using Information Theory . . . . . . 34

3.2.4 Sequence Logo . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.5 Markov Models . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Transcription Factor Binding Site Prediction Algorithms . . . . . 39

3.3.1 Scanning algorithms . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Statistical algorithms . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Co-regulatory algorithms . . . . . . . . . . . . . . . . . . . 41

3.3.3.1 Gibbs Sampling . . . . . . . . . . . . . . . . . . . 42

3.3.3.2 Expectation Maximisation . . . . . . . . . . . . . 43

3.3.4 Phylogenetic and other alignment based approaches . . . . 44

3.4 Combining Sources of Evidence . . . . . . . . . . . . . . . . . . . 46

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Machine Learning and Sampling Techniques 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Two-class Kernel Method . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Maximum margin separator . . . . . . . . . . . . . . . . . 49

4.2.2 Two-class SVM . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.3 Feature space . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.4 Kernel functions . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 One-class Kernel Methods . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 One-class SVM . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.2 LIBSVM: A popular SVM implementation . . . . . . . . . 58

4.4 Model Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii



CONTENTS

4.4.1 Cross-validation method . . . . . . . . . . . . . . . . . . . 61

4.4.2 Finding best hyperparameters . . . . . . . . . . . . . . . . 61

4.5 Imbalanced Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Problems with imbalanced data . . . . . . . . . . . . . . . 63

4.5.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.3 Confusion Matrix and Performance Measures . . . . . . . 65

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Description of Datasets 70

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Choice of Experimental Organism . . . . . . . . . . . . . . . . . . 71

5.3 Selection of Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Description of the Algorithms Used . . . . . . . . . . . . . . . . . 74

5.4.1 Algorithms used for the yeast data . . . . . . . . . . . . . 75

5.4.2 Algorithms used for the mouse data . . . . . . . . . . . . . 77

5.5 Statistics of the Algorithms . . . . . . . . . . . . . . . . . . . . . 79

5.5.1 Algorithm performance for the yeast dataset . . . . . . . . 79

5.5.2 Algorithms performance for the mouse dataset . . . . . . . 82

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Integration of Algorithmic Predictions Using Non-linear Classi-

fication Techniques 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Classification Approach . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Representation of Data . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Data structure . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.2 Windowing input vectors to include contextual information 90

6.4 Methodology for Two-class SVM . . . . . . . . . . . . . . . . . . 92

6.4.1 Statistics of the datasets . . . . . . . . . . . . . . . . . . . 92

6.4.2 Pre-processing data . . . . . . . . . . . . . . . . . . . . . . 95

6.4.2.1 Dataset division and normalisation . . . . . . . . 95

6.4.2.2 Variation in test sets . . . . . . . . . . . . . . . . 96

ix



CONTENTS

6.4.2.3 Sampling techniques in the training set . . . . . . 96

6.4.3 Training and testing data . . . . . . . . . . . . . . . . . . 97

6.4.4 Post-processing Data . . . . . . . . . . . . . . . . . . . . . 97

6.4.5 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 Results for Two-class SVM on the Yeast Data using Standard

Cross-validation (biological test set) . . . . . . . . . . . . . . . . . 100

6.6 Results for Two-class SVM on the Mouse Data using the Standard

Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6.1 Results for the best original algorithm . . . . . . . . . . . 103

6.6.2 Results for two-class SVM on the filtered test set . . . . . 104

6.6.3 Results for two-class SVM on the biological test set . . . . 105

6.6.3.1 Using Accuracy as the cross-validation criterion . 105

6.6.3.2 Using F-score as the Cross-validation Criterion . 106

6.7 Using the Modified Cross-validation Method . . . . . . . . . . . . 108

6.7.1 Results of Two-class SVM on Yeast Data using Modified

Cross-validation (biological test set) . . . . . . . . . . . . . 108

6.7.2 Results of two-class SVM on the mouse data using modified

cross-validation (biological test set) . . . . . . . . . . . . . 110

6.8 Methodology for the One-class SVM . . . . . . . . . . . . . . . . 111

6.9 Results for One-class SVM (biological test set) . . . . . . . . . . . 111

6.9.1 One-class SVM result for the yeast data (biological test set) 111

6.9.2 One-class SVM result for the mouse data (biological test set)113

6.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.10.1 Prediction Algorithm vs. Two-class SVM vs. One-class

SVM (biological test set) . . . . . . . . . . . . . . . . . . . 116

6.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Improving Transcription Factor Binding Sites Predictions by Us-

ing Negative Examples from Different Sources 122

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 Anticipated Problems and Solutions . . . . . . . . . . . . . . . . . 123

7.2.1 Problems with the dataset and solution . . . . . . . . . . . 123

7.2.1.1 Distal Negative examples . . . . . . . . . . . . . 124

x



CONTENTS

7.2.1.2 Randomised Negative Examples . . . . . . . . . . 125

7.2.2 Problem with the current approach and proposed solution 126

7.3 Methodology When Replacing Negative Examples . . . . . . . . . 127

7.4 Results When Replacing Negative Examples . . . . . . . . . . . . 129

7.4.1 Results using filtered test Set . . . . . . . . . . . . . . . . 129

7.4.1.1 Replacing negative examples with distal negative

examples . . . . . . . . . . . . . . . . . . . . . . 129

7.4.1.2 Replacing negative examples with randomised neg-

ative examples . . . . . . . . . . . . . . . . . . . 131

7.4.2 Results using biological test set . . . . . . . . . . . . . . . 133

7.4.2.1 Replacing negative examples with distal negative

examples . . . . . . . . . . . . . . . . . . . . . . 133

7.4.2.2 Replacing negative examples with randomised neg-

ative examples . . . . . . . . . . . . . . . . . . . 134

7.4.3 Visualisation of the Predictions . . . . . . . . . . . . . . . 136

7.5 Effect of Repetitions and Inconsistent Vectors . . . . . . . . . . . 138

7.6 Comparison of Results and Discussion . . . . . . . . . . . . . . . 139

7.6.1 Comparisons between the base algorithm and all the two-

class SVM results . . . . . . . . . . . . . . . . . . . . . . . 139

7.6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8 Application of Varying Negative Examples on Updated Yeast

Datasets 147

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2 Genomic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.2.1 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.2.2 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.3 Sources of Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.4 Statistics of the Algorithms . . . . . . . . . . . . . . . . . . . . . 153

8.4.1 Algorithm performance for Yeast p0.001 stringent . . . . . 153

8.4.2 Algorithm performance for Yeast p0.005 moderate. . . . . 155

8.5 Dealing with Inconsistent and Repetitive Data Vectors . . . . . . 157

xi



CONTENTS

8.6 Methodology for a Two-class SVM on the New Yeast Datasets . . 158

8.7 Results for a Two-class SVM on New Yeast Datasets . . . . . . . 159

8.7.1 Using promoter negative examples . . . . . . . . . . . . . . 160

8.7.2 Using distal negative examples . . . . . . . . . . . . . . . . 163

8.7.3 Using randomised negative examples . . . . . . . . . . . . 166

8.7.4 Using intronic negative examples . . . . . . . . . . . . . . 169

8.8 Comparisons of the Results and Discussion . . . . . . . . . . . . . 171

8.9 Visualisation of the Predictions . . . . . . . . . . . . . . . . . . . 177

8.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9 Conclusions 181

9.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.2 Contributions to Knowledge . . . . . . . . . . . . . . . . . . . . . 184

9.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.4 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Appendix A Nucleic Acid Notations 187

Appendix B Position Weight Matrix 188

Appendix C Effect of Repetitions and Inconsistent Vectors 191

Appendix D Visualisations 208

Appendix E List of Publications 217

References 219

xii



List of Figures

1.1 Regulation of gene expression along the protein synthesis pathways 3

2.1 The different stages of gene expression in a eukaryote . . . . . . . 12

2.2 Classification of transcription factors. . . . . . . . . . . . . . . . . 14

2.3 Transcription factors involved in eukaryotic transcription initiation 15

2.4 A gene regulatory network . . . . . . . . . . . . . . . . . . . . . . 23

2.5 The control process of a gene regulatory network . . . . . . . . . 24

2.6 A gene regulatory network during drosophila embryogenesis. . . . 25

3.1 Relative position of the gene, basal promoter region and cis-binding

sites in the organisation of a eukaryotic gene . . . . . . . . . . . . 27

3.2 A simple example illustrating the creation of a six nucleotides con-

sensus sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 An example of a Position-Weight Matrix. . . . . . . . . . . . . . . 32

3.4 Sequence logo of -10 region of bacterial promoter . . . . . . . . . 36

3.5 A Markov model of a DNA sequence . . . . . . . . . . . . . . . . 36

3.6 A simple HMM with two hidden states and four observable states 37

3.7 Sequence conservation across different species . . . . . . . . . . . 44

3.8 MEMOFinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Two-class classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Maximum margin separator. . . . . . . . . . . . . . . . . . . . . . 51

4.3 Two-class SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Use of slack variable in two-class SVM. . . . . . . . . . . . . . . . 53

4.5 Concept of non-linear data classification . . . . . . . . . . . . . . 54

xiii



LIST OF FIGURES

4.6 Concept of one-class SVM- Schölkopf’s method . . . . . . . . . . 57

4.7 Model over-fitting in SVM. . . . . . . . . . . . . . . . . . . . . . . 60

4.8 Model under-fitting in SVM. . . . . . . . . . . . . . . . . . . . . . 60

5.1 Comparison between Recall, Precision and F-score from different

base algorithms on the yeast data. . . . . . . . . . . . . . . . . . . 80

5.2 Comparison between FP-rate from different base algorithms for

the yeast data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Comparison between Accuracy from different base algorithms for

the yeast data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Comparison between Recall, Precision, and F-score from different

base algorithms for the mouse data. . . . . . . . . . . . . . . . . . 83

5.5 Comparison of FP-rate from different base algorithms for the mouse

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Comparison between Accuracy from different base algorithms for

the mouse data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Workflow of integration sources evidence. . . . . . . . . . . . . . . 90

6.2 Contextualising input vectors with window size 3 . . . . . . . . . 91

6.3 Frequency of inconsistent data rows in the yeast data. . . . . . . . 94

6.4 Frequency of inconsistent data rows in the mouse data. . . . . . . 94

6.5 Filtering on prediction by using post-processing . . . . . . . . . . 98

6.6 Comparison of F-scores between Fuzznuc and the two-class SVM

approach (cross-validation criteria: Accuracy) on the yeast data. . 102

6.7 Comparison of FP-rate between Fuzznuc and two-class SVM ap-

proach (cross-validation criteria: Accuracy) on the yeast data. . . 102

6.8 Comparison of F-scores between EvoSelex and the two-class SVM

approach (cross-validation criteria: Accuracy) on the mouse data. 105

6.9 Comparison of FP-rates between EvoSelex and the two-class SVM

approach (cross-validation criteria: Accuracy) on the mouse data. 106

6.10 Comparison of F-scores between EvoSelex and the two-class SVM

approach (cross-validation criteria: F-score) on the mouse data. . 107

6.11 Comparison of FP-rates between EvoSelex and the two-class SVM

approach (cross-validation criteria: F-score) on the mouse data. . 107

xiv



LIST OF FIGURES

6.12 Comparison of F-scores and FP-rates using modified cross-validation

method using both Accuracy and F-score as cross-validation crite-

ria for the yeast data. . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.13 Comparison of F-scores and FP-rates using modified cross-validation

method using both Accuracy and F-score as cross-validation crite-

ria for the mouse data. . . . . . . . . . . . . . . . . . . . . . . . . 110

6.14 Comparison of F-scores from the one-class SVM on the yeast data

with different kernels. . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.15 Comparison of FP-rates from the one-class SVM on the yeast data

with different kernels. . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.16 Comparison of F-scores from the one-class SVM on the mouse data

with different kernels. . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.17 Comparison of FP-rates from the one-class SVM on the mouse

data with different kernels. . . . . . . . . . . . . . . . . . . . . . . 115

6.18 Comparison of the F-scores of the best base algorithm, two-class

SVM and one-class SVM approaches for the yeast data. . . . . . . 117

6.19 Comparison of the FP-rates of the best base algorithm, two-class

SVM and one-class SVM approaches for the yeast data. . . . . . . 117

6.20 Comparison of the F-scores of the best base algorithm, two-class

SVM and one-class SVM approaches for the mouse data. . . . . . 119

6.21 Comparison of the FP-rates of the best base algorithm, two-class

SVM and one-class SVM approaches for the mouse data. . . . . . 119

7.1 Sources of promoter and distal negative examples. . . . . . . . . . 125

7.2 Creating randomised negative examples. . . . . . . . . . . . . . . 126

7.3 Workflow of applying two-class SVM when replacing negative ex-

amples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4 Visualization of prediction results on the mouse data. . . . . . . . 137

7.5 Comparison of F-score between the best base algorithm, two-class

SVM, and two-class SVM with replacing negative examples (yeast

data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xv



LIST OF FIGURES

7.6 Comparison of FP-rate between the best base algorithm, two-class

SVM, and two-class SVM with replacing negative examples (yeast

data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.7 Comparison of F-score between the best base algorithm, two-class

SVM, and two-class SVM with replacing negative examples (mouse

data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.8 Comparison of FP-rate between the best base algorithm, two-class

SVM, and two-class SVM with replacing negative examples (mouse

data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.1 Comparison of F-score for Yeast p0.001 stringent . . . . . . . . . 154

8.2 Comparison of FP-rate for Yeast p0.001 stringent . . . . . . . . . 155

8.3 Comparison of F-score for Yeast p0.005 moderate . . . . . . . . . 156

8.4 Comparison of FP-rate for Yeast p0.005 moderate. . . . . . . . . . 156

8.5 Comparison of the different data vectors between the old and the

new yeast datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.6 Comparison between F-scores and FP-rates of the best base algo-

rithm (Fuzznuc) and Yeast p0.001 stringent. . . . . . . . . . . . . 161

8.7 Comparison between F-scores and FP-rates of the best base algo-

rithm (PhastConsMC ) and Yeast p0.005 moderate. . . . . . . . . 163

8.8 Comparison between F-scores and FP-rates of the best base algo-

rithm (Fuzznuc) and Yeast p0.001 stringent with distal negative

examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.9 Comparison between F-scores and FP-rates of the best base al-

gorithm (PhastConsMC ) and Yeast p0.005 moderate with distal

negative examples. . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.10 Comparison between F-scores and FP-rates of the best base algo-

rithm (Fuzznuc) and Yeast p0.001 stringent with randomised neg-

ative examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.11 Comparison between F-scores and FP-rates of the best base algo-

rithm (PhastConsMC ) and Yeast p0.005 moderate with randomised

negative examples. . . . . . . . . . . . . . . . . . . . . . . . . . . 168

xvi



LIST OF FIGURES

8.12 Comparison between F-scores and FP-rates of the best base algo-

rithm (Fuzznuc) and Yeast p0.001 stringent with intronic negative

examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.13 Comparison between F-scores and FP-rates of the best base algo-

rithm (PhastConsMC ) and Yeast p0.005 moderate with intronic

negative examples. . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.14 Comparison between F-scores of the original algorithm (Fuzznuc)

and Yeast p0.001 stringent with varying negative examples. . . . 173

8.15 Comparison between FP-rates of the original algorithm (Fuzznuc)

and Yeast p0.001 stringent with varying negative examples. . . . 173

8.16 Comparison between F-scores of the original algorithm (PhastCon-

sMC ) and Yeast p0.005 moderate with varying negative examples. 175

8.17 Comparison between FP-rates of the original algorithm (Phast-

ConsMC ) and Yeast p0.005 moderate with varying negative ex-

amples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.18 Visualisation of computational prediction results on the dataset,

Yeast p0.001 stringent . . . . . . . . . . . . . . . . . . . . . . . . 178

8.19 Visualisation of computational prediction results on the dataset,

Yeast p0.005 moderate . . . . . . . . . . . . . . . . . . . . . . . . 179

xvii



List of Tables

2.1 A summary of genomic and transcription factor statistics for five

species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 A summary of TFBSs databases. . . . . . . . . . . . . . . . . . . 33

4.1 Confusion Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 A summary of the yeast dataset. . . . . . . . . . . . . . . . . . . . 73

5.2 A summary of the mouse dataset. . . . . . . . . . . . . . . . . . . 74

5.3 The 12 Prediction Algorithms used with the yeast dataset. . . . . 75

5.4 The 7 Prediction Algorithms used with the mouse dataset. . . . . 78

5.5 Performance measures of sources of evidence on the yeast data. . . 80

5.6 Performance measures of sources of evidence on the mouse data. . 82

6.1 Statistics of inconsistencies and repetitions in yeast and mouse

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Confusion matrix of the best base algorithm Fuzznuc on the yeast

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Performance measures of the best base algorithm Fuzznuc on the

yeast data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Results of two-class SVM (cross-validation criterion: Accuracy) on

the yeast data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Confusion matrix of the best base algorithm EvoSelex on the mouse

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Performance measures of the best base algorithm EvoSelex on the

mouse data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xviii



LIST OF TABLES

6.7 Results of filtered test set from the mouse dataset (cross-validation

criterion: Accuracy). . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.8 Results of filtered test set from the mouse dataset (cross-validation

criterion: F-score). . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.9 Results of biological test set from the mouse dataset (cross-validation

criterion: Accuracy). . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.10 Results of biological test set from the mouse dataset (cross-validation

criterion: F-score). . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.11 Results of two-class SVM on the yeast data using modified cross-

validation method. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.12 Result of two-class SVM on mouse data using modified cross-

validation method . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.13 One-class SVM results on the yeast data with different kernels. . . 112

6.14 One-class SVM results on the mouse data with different kernels . 113

6.15 Comparison of the best results of base algorithm, two-class SVM

and one-class SVM approaches for the yeast data. . . . . . . . . . 116

6.16 Comparison of the best results of base algorithm, two-class SVM

and one-class SVM approaches for the mouse data. . . . . . . . . 118

7.1 Summary of yeast and mouse dataset . . . . . . . . . . . . . . . . 124

7.2 Summary of the mouse dataset that contain distal negative examples.125

7.3 Results of two-class SVM using the distal negative examples with

modified cross-validation methods in the mouse dataset (filtered

test set). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4 Comparison between the best results for the mouse data (promoter

negative examples vs. distal negative examples) using filtered test

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5 Results of two-class SVM using the randomised negative exam-

ples with modified cross-validation methods in the yeast dataset

(filtered test set). . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.6 Comparison between the best results for the yeast data (promoter

negative examples vs. randomised negative examples) using fil-

tered test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xix



LIST OF TABLES

7.7 Results of two-class SVM using the randomised negative exam-

ples with modified cross-validation methods in the mouse dataset

(filtered test set). . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.8 Comparison between the best results for the mouse data (promoter

negative examples vs. randomised negative examples) using fil-

tered test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.9 Results of two-class SVM using the distal negative examples with

modified cross-validation methods in the mouse dataset (biological

test set). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.10 Comparison between the best results for the mouse data (promoter

negative examples vs. distal negative examples) using biological

test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.11 The result of using the randomised negative examples with varying

cross-validation methods in the yeast dataset (biological test set). 134

7.12 Comparison between the best results for the yeast data (promoter

negative examples vs. randomised negative examples) using bio-

logical test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.13 The result of using the randomised negative examples with varying

cross-validation methods in the mouse dataset (biological test set). 135

7.14 Comparison between the best results for the mouse data (promoter

negative examples vs. randomised negative examples) using bio-

logical test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.15 Comparison of performance measures between the best base algo-

rithm, two-class SVM, and two-class SVM with replacing negative

examples (yeast data). . . . . . . . . . . . . . . . . . . . . . . . . 140

7.16 Comparison of performance measures between the best base algo-

rithm, two-class SVM, and two-class SVM with replacing negative

examples (mouse data). . . . . . . . . . . . . . . . . . . . . . . . . 142

8.1 Statistics of inconsistencies in the previously used yeast dataset . 148

8.2 Number of TFs vs. Number of genes for Yeast p0.001 stringent

and Yeast p0.005 moderate datasets. . . . . . . . . . . . . . . . . 150

8.3 Summary of the new and updated yeast datasets . . . . . . . . . 150

xx



LIST OF TABLES

8.4 Summary of the intronic and distal negative example dataset. . . 151

8.5 The seven sources of evidence used with the new yeast dataset. . . 152

8.6 Performance measures of sources of evidence on the new yeast

dataset, Yeast p0.001 stringent . . . . . . . . . . . . . . . . . . . 154

8.7 Performance measures of sources of evidence on the new yeast

dataset, Yeast p0.005 moderate . . . . . . . . . . . . . . . . . . . 155

8.8 Statistics of inconsistencies and repeats in the new and updated

yeast datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.9 Statistics of inconsistencies and repeats in subsets of new yeast

datasets (Yeast p0.001 stringent and Yeast p0.005 moderate) . . . 159

8.10 Statistics of training and biological test sets when varying negative

examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.11 Best results from original algorithm for Yeast p0.001 stringent . . 160

8.12 Confusion matrix for Yeast p0.001 stringent. . . . . . . . . . . . . 161

8.13 Results of the two-class SVM on Yeast p0.001 stringent. . . . . . 161

8.14 Best results from original algorithm for Yeast p0.005 moderate . . 162

8.15 Confusion matrix for Yeast p0.005 moderate. . . . . . . . . . . . . 162

8.16 Results of two-class SVM on Yeast p0.005 moderate. . . . . . . . . 162

8.17 Confusion matrix of Yeast p0.001 stringent when using distal neg-

ative examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.18 Results of two-class SVM on Yeast p0.001 stringent when using

distal negative examples. . . . . . . . . . . . . . . . . . . . . . . . 164

8.19 Confusion matrix of Yeast p0.005 moderatewhen using distal neg-

ative examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.20 Results of two-class SVM on Yeast p0.005 moderate when using

distal negative examples. . . . . . . . . . . . . . . . . . . . . . . . 165

8.21 Confusion matrix of Yeast p0.001 stringent when using randomised

negative examples. . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.22 Results of two-class SVM on Yeast p0.001 stringent when using

randomised negative examples. . . . . . . . . . . . . . . . . . . . . 166

8.23 Confusion matrix of Yeast p0.005 moderatewhen using randomised

negative examples. . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xxi



LIST OF TABLES

8.24 Results of two-class SVM on Yeast p0.005 moderate when using

randomised negative examples. . . . . . . . . . . . . . . . . . . . . 168

8.25 Confusion matrix of Yeast p0.001 stringent when using intronic

negative examples. . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.26 Results of the two-class SVM on Yeast p0.001 stringent when using

intronic negative examples. . . . . . . . . . . . . . . . . . . . . . . 169

8.27 Confusion matrix of Yeast p0.005 moderatewhen using intronic neg-

ative examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.28 Results of two-class SVM on Yeast p0.005 moderate when using

intronic negative examples. . . . . . . . . . . . . . . . . . . . . . . 170

8.29 Comparison between the performance measures of the best base

algorithm and the two-class SVM with varying negative examples

in Yeast p0.001 stringent. . . . . . . . . . . . . . . . . . . . . . . 172

8.30 Comparison between the performance measures of the best base

algorithm and the two-class SVM with varying negative examples

in Yeast p0.005 moderate. . . . . . . . . . . . . . . . . . . . . . . 174

xxii



Chapter 1

Introduction

Genes lie at the heart of many complex biological processes in genomes where

the interactions between the genes themselves are governed by genetic regulatory

networks (GRNs). The translation of a gene into its protein product is relatively

simple and well understood (Crick, 1962). However, the quantity of protein gen-

erated by a gene within a specific-cell and the change of this protein level over

time, a gene’s expression profile, is less well understood.

The regulation of gene expression can be controlled by regions of a genome

that do not code for genes, simply called non-coding regions. These are large

spaces in the genome and it has been estimated that around 50% of the genome of

a multi-cellular, eukaryotic organism may have a regulatory function (Markstein

et al., 2002).

Specifically, non-coding regions in the vicinity of genes may contain short

stretches of DNA sub-sequences to which proteins can bind. These regions are

known as cis-regulatory binding sites or transcription factor binding sites (TF-

BSs) and are known to finely regulate gene expression (Arnone & Davidson,

1997; Davidson, 2001). The composition and number of cis-regulatory binding

sites across multiple non-coding regions give rise to a complex set of GRNs that

encode the regulatory program of a cell. There are very few biological processes

that are not influenced by regulatory mechanisms.

Deciphering these non-coding regions is significant therefore not only to un-

derstand their functional association with gene coding sequences, but also for

discovering the regulatory instructions they specify. Hence studying GRNs have
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been major focuses of studies in the fields of biology and bioinformatics. Over

recent years the opportunities to study gene regulation has increased markedly as

with the advent of high-throughput experiments from next-generation sequencing

technologies, there is now an unprecedented abundance of genomic data available

from a large number of publicly accessible databases.

The practical benefits of studying regulatory systems originating from this

research are many-fold, including cancer, cell cycle and disease research. The

insights gained from this area are also beneficial to pharmaceutical companies

and medical researchers, including determining the regulatory regions of a gene

that may act as drug targets, predicting the responsiveness of biological pathways

to treatment and identifying potential side effects during a drug’s development

process. Therefore, characterising regulatory systems by identifying their com-

ponents will have a wide-ranging impact in many other research fields.

1.1 The Importance of Protein-DNA Interac-

tion

Every cell in a living organism contains a genetic blueprint that governs the

biological structures and processes for that organism. Gene expression is a key

process that uses this information embedded in DNA to produce non-coding RNA

or proteins. Figure 1.1 shows the different regulatory control mechanisms in a

cells protein synthesis pathway. While all the mechanisms play important roles

in regulating transcription, transcriptional control is the main interest here as it

is the initial step of the protein synthesis process.

Transcription is a fundamental process that determines a cells morphological

and functional attributes. Transcriptional control is achieved via two mecha-

nisms; one by chromatin remodelling and the other by transcription factor ac-

tivity. Chromatin remodelling acts by inhibiting access to large stretches of a

genome to transcription factors, ultimately affecting gene expression (Alberts

et al., 1994). This mechanism is far less specific than the interaction of tran-

scription factors and other regulatory proteins with DNA sequences. The later

mechanism can however directly influence the level at which a specific gene is

2
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expressed.

Figure 1.1: Regulation of gene expression along the protein synthesis pathways

(Source: Essential Cell Biology, 2/e ( 2004 Garland Science)).

It is through the combinatorial effects of transcription factors binding to spa-

tially localised locations neighbouring genes that are sufficient for transcriptional

control in many systems (Arnone & Davidson, 1997; Davidson, 2001; Yuh et al.,

1998; Ptashne & Gann, 2002; Davidson, 1999). The location of these binding

sites within a genome determines the basic connectivity of an organisms GRNs

and ultimately how genes interact. Therefore, identifying these binding sites is

an interesting problem both in biology and bioinformatics.

1.2 Limitations of Experimental and Computa-

tional Approaches to Identify TFBSs

Transcription factors bind to specific DNA regions, or sites, typically 5-30 base

pairs in length and where the DNA composition of each binding site is specific to

the factor that binds there. Identifying binding sites across a variety of genomes

is a complex task and there are ongoing, complementary approaches from both

the experimental (wet-lab) and computational research fields.

There are many experimental approaches for identifying cis-regulatory sites,

all of which have some limitations regarding their applicability, accuracy, avail-

3



1. First Chapter

ability and cost. A number of experimental techniques can identify whether a

protein binds to particular stretches of DNA and whether these interactions have

any regulatory properties. Among them in vitro oligo selection (Pollock & Treis-

man, 1990) and gel-shift assays (Taylor et al., 1994) were often used to determine

the DNA binding properties of a protein. But these two techniques often yield

poor predictions of in vivo binding targets (Lieb et al., 2001; Buck & Lieb, 2004).

Once the interaction between DNA and a protein is reliably established, a number

of in vitro techniques (such as DNA footprinting or chromatin immunoprecipi-

tation, also known as ChIP) can be used to narrow down the search. However,

these approaches are not always suitable for genome-wide analysis. Recently

the combination of ChIP and whole-genome microarray (ChIP-chip) has reduced

these limitations (Ren et al., 2000; Buck & Lieb, 2004; Cawley et al., 2004; Ren

& Dynlacht, 2004) and has become the most successful technique to identify in

vivo binding sites genome-wide. But these types of experimental techniques are

costly and in many cases, time consuming (Tompa et al., 2005; Brown et al.,

2002). Further, experimental approaches such as ChIP-chip and ChIP-seq, are

themselves dependent on the availability of specific antibodies for the binding

proteins they aim to analyse and still require additional verification.

From a computational standpoint, there are a number of algorithmic strategies

for computationally predicting the location of TFBSs. One class of algorithms

search for matches to a motif model of TFBSs (Stormo, 2000) (such as, a position

weight matrix) in a given sequence. Another class of algorithms, which extract

statistical characteristics of sequence features, requires nothing more than se-

quence information. However, these algorithms typically exhibit low accuracy

with a high level of false positive predictions. Other algorithms try to improve on

this statistical approach by searching for common sub-sequences in a set of DNA

sequences, where the set of sequences is determined by clustering together genes

that share similar patterns of expression for a given biological condition. Another

class of algorithms exploits the evolutionary conservation of DNA sequences to

infer TFBSs.

Moreover, there are many reasons why binding site prediction is a difficult

problem to solve computationally. The binding sites can be very short and of

variable sizes. Furthermore a typical transcription factor can bind to a number
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of different DNA sequences, albeit with very similar DNA composition. These are

just some reasons why identifying binding sites computationally is a non-trivial

problem rather than a simple pattern recognition or regular expression problem.

All of these algorithmic approaches have their own strengths and weaknesses.

One problem is that they can be sensitive to the number of sequences being

analysed, sequence length and motif width. It has been shown that some of the

algorithms performance decreases with the increase in one of these factors (Hu

et al., 2005). Furthermore, introducing more data (sequences) does not necessar-

ily improve the performance but may decrease the accuracy. Also these algorithms

often require a number of parameters to be fine-tuned to achieve the greatest ac-

curacy. For a single algorithm for example the set of optimal parameters may

vary depending on the dataset. Due to these shortfalls, experimental biologists

have to date found little practical use for these algorithms

1.3 Combining Sources of Computational and

Biological Data

As described in the previous section, a large number of computational algorithms

are available for the prediction of transcription factor binding sites and these can

be grouped into a small number of prediction strategies, such as: scanning, sta-

tistical, co-regulatory and phylogenetic. Each of these strategies has their own

limitations giving rise to many false positives predictions, which can significantly

limit their utility. However, there is still scope for improvement by reducing their

weaknesses and combining their strengths together. For example, scanning algo-

rithms can only predict those sites that match to the known set of motifs they

are supplied with, whereas co-regulatory algorithms can only predict shared, and

not unique, binding sites in the regulatory sequences for a set of co-expressed

genes. Hence the different subsets of accurately predicted binding sites are com-

plementary and can provide more accurate and reliable predictions if combined

together (Tompa et al., 2005).

In earlier works (Sun et al., 2005, 2006a,b, 2007, 2008, 2009a,b; Robinson et al.,

2006, 2007a,b, 2008), results from grouping different TFBS prediction algorithms
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together produced predictions that are better than that of any of the individual

predictions alone. In one approach, algorithms and supporting biological data

have been classified using Support Vector Machines (SVM). In this thesis, the

same approach of integrating multiple sources of evidence has been undertaken.

One of the major problems with training a classifier on these combined sources of

evidence is that the data constituting the training set can be contradictory and

unreliable. Whereas the labelling of a known binding site is normally correct,

as it has been experimentally verified, the labelling of the non-binding site, the

negative example class, may be much more unreliable. This is the one of the

major issues addressed in this thesis.

1.4 Aims and Objectives

This research developed out of the research undertaken by Mark Robinson. Mark

Robinson pioneered the approach of integrating different predictors or sources of

evidence using an SVM (Robinson, 2006). This integration approach is there-

fore not novel to this thesis. Robinson proved that attempting to optimise the

parameters of the individual predictors prior to combining them in an SVM was

of no benefit. The use of default parameters for the predictors was just as good

as optimised ones so in this thesis all predictors are used with their default (or

commonly used) parameter values.

Robinson, however, only applied his technique to yeast so extending the meth-

ods to another organism, mouse, was central to the work to be undertaken for this

thesis. However, for the purpose of investigating various methods of improving

the results of using an SVM, such as using a one-class SVM and changing the

method for finding the appropriate SVM parameters (using cross validation), I

initially used the same yeast dataset and predictors as was used by Robinson.

Once it became clear that improvements were possible, the mouse genome was

used and finally the old yeast data was replaced by more up-to-date yeast data

and more up-to-date prediction algorithms in order to verify whether or not the

results were generalisable.

Hence the general aims and objectives of this thesis are to develop, investigate

and evaluate computational methods to improve the accuracy of the prediction
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of transcription factor binding sites. Broadly we can divide the objectives into

four different parts:

i. The integration of algorithmic predictions and biological evidence to improve

transcription factor binding site predictions.

ii. Using a non-linear classifier with a suitable cross-validation method on the

combination of algorithmic predictions.

iii. An extension of the computational approach to other organisms (mouse and

updated yeast) to investigate the efficacy of the process.

iv. An evaluation of the effectiveness of using negative examples from different

sources for improving the accuracy of algorithmic prediction by the process

of integration.

1.5 Contribution to Knowledge

The research conducted during my PhD has made the following contributions to

the fields of bioinformatics:

• In previous studies, yeast was used as the experimental organism on which

to test the computational predictions. In this thesis, I have extended the

work to mouse, which has a more complex regulatory system. This proved

that the process of the integration of different prediction algorithms to

improve cis-binding site prediction is not species specific; rather that it can

potentially be used on different species.

• The standard cross-validation method used in other classifier approaches

was found not to be suitable for classifying TFBSs predictions due to the

imbalance of the data. A modified cross-validation method was thereby

devised in this thesis. I have introduced a filtering method during the new

modified cross-validation method. A wide range of parameters has been

searched during the course of this research.

7



1. First Chapter

• As already mentioned, we can be reasonably confident about the annota-

tion of transcription factor binding sites (positive examples) that have been

experimentally verified. However, we cannot draw the same conclusion

about other unverified sites of the genome, the source of negative examples.

Therefore, the most interesting and important finding of this thesis is the

effect that the different types of negative examples have on the accuracy of

predictions. See Chapter 7 for these major results.

• The consistency of the improvement in predicting binding sites largely de-

pends upon the quality of the available data. The yeast data along with

the algorithms for integration process that had previously been used were

quite old and out of date. Therefore, to improve the prediction further, I

have used an updated version of yeast data and more current algorithms

(See Chapter 8).

1.6 Structure of the Thesis

A brief outline of the organisational structure of this thesis is now given.

Chapter 2 reviews the background biological knowledge that is related to this

thesis. It provides a detailed description of transcription and transcription

factors in eukaryotes and the state of knowledge regarding the experimental

approaches for identifying cis-binding sites. The chapter also provides a

brief description of gene regulatory networks.

Chapter 3 provides a literature review of computational approaches of identi-

fying transcription factor binding sites, along with various models for their

accurate representation within computational frameworks.

Chapter 4 presents a review of the meta-classifier, the Support Vector Machines

(SVM). In this chapter, I describe the different strategies such as two-class

and one-class SVMs. I have given a brief description of how to accommodate

biological imbalanced data for an SVM. This chapter also contains discus-

sion on cross-validation strategies and methods to measure classification

performances.
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Chapter 5 then gives a description of the datasets and sources of evidence used

in this research. A description and justification of the statistical measures

used to evaluate performances of these algorithmic strategies is given, which

are used to evaluate the research strategies undertaken in the following

chapters.

Chapters 6 through 8 present the research undertaken in this thesis.

Chapter 6 provides the work undertaken to integrate the results from differ-

ent algorithms and biological evidences and the use of meta-classifiers (as

described in Chapter 4). This chapter introduces a new modified cross-

validation method and shows the efficacy of using the new method on the

integration process. However the results produced up to this point are dis-

appointing. Chapters 7 and 8 contain the major results from this thesis and

finally prove that the method described in this thesis produce exceptionally

good result.

Chapter 7 reports the results of varying negative examples to improve tran-

scription factor binding site prediction. The chapter also presents the com-

parison of results from using different negative examples. It also provides

the results from a selection of three different sets of training and test data

from the same dataset.

Chapter 8 then gives a brief description of a new yeast dataset with improved

annotations and updated algorithms/ biological evidences. All the exper-

iments conducted in Chapter 7 will be repeated in this chapter and thus

this chapter presents the effect of using varying negative examples on the

new yeast data.

Chapter 9 finally summarises the conclusions of each chapter. In addition, a

number of suggestions are offered for extending this research.
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Chapter 2

A Review of Gene Regulation

and cis-regulatory Binding Sites

2.1 Introduction

Nature is full of different species containing a vast spectrum of different body

shapes and sizes. The differences between species can be described as the variation

of the same programme of development that reinitiates again and again. Initially

most embryos start as a cluster of nearly identical cells. The embryo then begins

the process of partitioning itself into different segments, which results in the final

form of the organism. In a nutshell, organisms use similar sets of core genes. This

raises the question, if organisms use similar genes, and if genes determine body

shape, then why are there differences between species? The answer is that genes

are not the only factors that determine body shape. Rather, body shape is the

result of the interplay between genes, cells and the surrounding environment in

which the organisms exists. It has been found that a small set of genes, a genetic

toolkit, lays out the construction of the whole body (Carroll et al., 2005). These

toolkits are like genetic switches- either turning a gene on or off. One startling

observation is that sets of these genetic toolkits are conserved across species, be

they in a fly, a mouse or a human.

Genes are connected to each other in networks, interacting and regulating

their functions. These networks of genetic switches are called Gene Regulatory

10



Second Chapter

Networks (GRN) (Alberts et al., 1994). Each cell within an organism is grown

under the control of these networks leading to the variety of body plans observed

in nature. The products of some of these genes work as transcription factors

that start the process of RNA (Ribonucleic acid) synthesis and modulate the

expression of other genes. Therefore, gene expression plays a vital role in organism

development.

Gene expression is the fundamental level where genotype affirms phenotype

of an organism. It drives every stage of development of the body-plan giving rise

to cell differentiation and morphogenesis. As a result the same cell organisation

can produce different parts of an organism. The coordination of specific gene

regulation events during commitment of stem cells and the appropriate control of

gene expression in differentiated cell are important for the development and func-

tion of all organisms. Inappropriate gene expression may give rise to detrimental

and lethal phenotypes. Chemically induced changes in gene regulation are associ-

ated with serious and complex human diseases, such as Alzheimers, hypertrophy,

cancer, etc. Therefore, understanding gene expression is not only important for

developmental biology but also for drug discovery and their potential therapeutic

side effects.

The aim of this research project is to use computational methods to identify

the components of genetic regulatory networks that drive gene expression. As

eukaryotes have been used as the experimental organisms throughout this thesis,

the basic mechanisms of gene expression and gene regulation in eukaryotes will

be reviewed in this chapter.

2.2 Gene Expression and Regulation

Every cell in living organisms contains a complete set of genes that define how

each cell develops and functions. But not all genes are expressed at the same time;

only a small subset of genes is expressed at any one time. There are different

stages of gene expression:

1. Modification of DNA (Deoxyribonucleic acid) chemically or structurally, which

may alter the accessibility of large regions of DNA for binding proteins.

11
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2. Conversion of DNA to RNA known as transcription.

3. Post-transcriptional regulations such as: capping, splicing, and the addition

of a polyA tail, etc. (Berg et al., 2007)

4. Conversion of RNA to protein known as translation.

5. Degradation by different factors that affect mRNA lifetime, thereby dynami-

cally reducing the amount of protein in a cell.

Figure 2.1: The different stages of gene expression in a eukaryote (This figure is
created by BioDiscovery Group, LIT, Singapore).

Transcription is the second stage where stretches of DNA are transcribed into

RNA. Gene regulation also occurs at the level of transcription. A set of proteins

attached to a certain region of the DNA signals the start of transcription. These

specific proteins called transcription factors (TFs) control gene regulation, which

in turn controls the levels of gene expression. The fourth stage, translation,

synthesises proteins from these RNAs. Both transcription and translation are

important processes taking place in cells.

Figure 2.1 shows a simplified view of gene expression in eukaryotes, where

genes are composed of exons (segment of gene containing information for protein

12
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coding) and introns (segment of gene does not contain any information for protein

coding). A primary transcript is produced through a process of transcription and

then introns are removed from the transcripts to produce mature transcripts

(mRNA). This mRNA then produces a group of amino acids or proteins.

Understanding transcription is essential as the proteins that take part in tran-

scription are also a part of the transcription process and these form gene regu-

latory network (discussed in Section 2.6). In the transcription process we are

mainly interested in the initiation of gene expression, in which the regulatory

protein binds to a specific region of DNA or site and initiates transcription.

Therefore, our primary focus will be on the initiation of the transcription process

rather than on the subsequent stages of gene expression.

2.3 Transcription Factors and cis-regulatory Sites

Transcription factors play an essential part in the process of transcription as me-

diation of transcription factors increases rates of transcription significantly. They

are typically proteins that bind to DNA, preparing a gene for transcription. There

are different types of transcription factors that can broadly be divided into three

different classes (shown in Figure 2.2) according to their mechanism of action,

regulatory function and structural similarity. The mechanistic class comprises

general transcription factors and upstream transcription factors. General tran-

scription factors form the pre-initiation complex for transcription (Orphanides

et al., 1996) and upstream transcription factors enhance or repress the transcrip-

tion process (Boron, 2005). The functional transcription factors can be divided

in two classes namely constitutively active and conditionally active (Brivanlou

& Darnell, 2002). Constitutively active factors are continuously present in all

cells and act as activators of transcription. In comparison, conditionally active

transcription factors depend on external signals. These signals can be generated

from other regulated transcriptions. Transcription factors can also be classified

by their tertiary structure (Stegmaier et al., 2004). These include basic-helix-

loop-helix, zinc coordinate DNA binding domain, helix-turn-helix, beta-scaffold

factors with minor groove contacts, etc.

13
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Figure 2.2: Classification of transcription factors.

2.3.1 Transcription factors in eukaryotes

The transcription process in eukaryotes seems to be quite straight forward, but it

varies between different eukaryotic organisms. This is in part due to RNA poly-

merase (a type of enzyme that produces RNA), which performs different actions

in an organism during the transcription process. For example, RNA polymerase

I produces larger ribosomal RNA (rRNA), RNA polymerase II produces mes-

senger RNA (mRNA) and most of the small nuclear RNAs (snRNA), and RNA

poymerase III produce transfer RNAs (tRNA) and small ribosomal RNA (small

rRNA). Some organisms use RNA polymerase I to transcribe DNA to rRNAs

while others use several RNA polymerases for transcription, making eukaryotic

transcription more complex (White, 2000).

However, the recruitment of RNA polymerase with promoters results in very

low basal transcription rate and as mentioned above mediation of transcription

factors can increase the transcription rate significantly(Ptashne & Gann, 2002).

In eukaryotes, there is a common set of proteins that bind to the promoters (an

14



Second Chapter

upstream region) of most genes, known as general transcription factors. These

transcription factors comprise of basal transcription factors and TATA binding

proteins (TBP). This complex of transcription factors and binding proteins (see

Figure 2.3) recruits the RNA polymerase II enzyme to the promoter and collec-

tively they initiate transcription.

Figure 2.3: Transcription factors involved in eukaryotic transcription initiation

(Source: modified version from Tjian (1995)) .

Eukaryotic promoters contain a specific conserved sequence, which is essential

for transcription initiation. This is generally known as the TATA box (some-

times GC box or CCAAT box) (Lifton et al., 1978; Goldberg, 1979) and they are

found typically around 40 - 120 base pairs upstream of genes transcription start

site (Struhl, 1995). A specific protein called the TATA binding protein binds to

this site and forms a complex with a group of other basal transcription factors

namely TFIIA, TFIIB, TFIIE, TFIIF, TFIIH. Generally the complex of TBP

and its associate binding proteins is known as TFIID.

There is a second class of binding proteins called co-activators, which are ac-

tually TBP-associated factors (TAFs). Different combinations of TAFs and TBP

bind to different promoters and activate them with different strengths. There are
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other factors, which enhance the transcription rate from normal, basal level to

enhanced level. These types of factors are called activators.

Another class of factors is enhancers or silencers. Enhancers (or silencers)

are short stretches of DNA sequences that are hundreds of base pairs upstream

or downstream of the transcription initiation site (see Figure 2.3). Transcription

factors bind to these sites to control the level of transcription. Activators bind

to the enhancers and determine which gene to turn on for transcription and can

also speed the rate of transcription. Alternatively, repressors bind to silencer

sequences that disrupt the function of activators and thus slow transcription.

Enhancers and silencers are also known as cis-regulatory sites.

2.3.2 The organisation of cis-regulatory sites

For the transcription process to be initiated, typically a set of transcription factors

needs to bind to specific sites of DNA, the previously mentioned cis-regulatory

sites. These are normally small stretches of nucleotides of variable lengths ranging

from 5 to 30 base pairs. Unfortunately locating the binding site(s) for a particular

transcription factor is difficult. They maybe upstream or downstream of the genes

transcription start site and further may be located thousands of base pairs away

from it. Moreover a specific regulatory protein may have many sites that it binds

too in the genome, but these sites may not have a common consensus pattern of

DNA to which it binds.

The organisation of cis-regulatory binding sites in eukaryotes is complex.

These cis-regulatory binding sites responsible for regulating certain expression

patterns can form spatially localised clusters along the DNA. The position of

these clusters or modules may not necessarily be near the promoter of a gene.

Rather they can be located a significant distance from the promoter of the reg-

ulated gene (Alberts et al., 1994; Yuh & Davidson, 1996). The combinatorial

nature of many of the DNA binding interactions is mainly responsible for the

diversity and complexity observed in eukaryotes.
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2.3.3 The number of transcription factors across different

eukaryotes

In general terms, the more complex an organism is, the greater the size of genome

it possesses. This is also reflected in the number of protein coding genes encoded

in the genome, with complex species such as human and mouse, in general having

more genes than simpler species, such as fruit fly and yeast. A summary of

supporting statistics for five species is presented in Table 2.1.

To appreciate the complexity of identifying transcription factor binding sites

and regulatory regions in general, at least two genomic properties need to be

considered. Firstly, the potential regions of genomic DNA to which transcrip-

tion factors can bind to can be large. At one extreme, if all non-coding regions

(i.e. non-exonic) are considered potential regulatory regions, then in the case of

humans this could be over 2.9G bps of DNA sequence (Table 2.1(d)). Even in

simpler species such as fruit fly and worm, this equates to more than 67% of their

genomes as being potential regulatory regions. At the other extreme, restricting

the potential search space to just the upstream regions of genes (Table 2.1(e)),

still require the analysis of tens to hundreds of millions of base pairs. Secondly,

the number of genes that are thought to function as transcription factor binding

sites increases with organism complexity (Table 2.1(f)). Taken together, even in

simple organisms the interplay between the number of estimated transcription

factors and the potential genomic regions to which they can bind, results in a

large and complex computational search space when trying to predict transcrip-

tion factor binding sites.

Rows (f) and (g) in Table 2.1 also highlight the gap between the actual es-

timated number of transcription factors that are thought to exist and well char-

acterised transcription factors that are curated in publicly-available resources,

in this case ORegAnno (Montgomery et al., 2006). For simpler species the gap

between known and curated transcription factors is narrow, for example in yeast,

but for human and mouse, less than 10% of transcription factors have been suffi-

ciently characterised to be included in this snapshot of the ORegAnno database.

Experimental methods, reviewed in Section 2.5 are beginning to close these gaps

but computational prediction methods can also provide complementary analyses.
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2.4 Identification of cis-regulatory Regions and

Binding Sites Using Biological Cues

Cis-regulatory sites have some biological properties that can be used to iden-

tify their locations. Sequence conservation is one such property. Short stretches

of nucleotides that are conserved across the non-coding DNA across different

species can indicate that they may be functional. One way of searching for se-

quence conservation can be undertaken by sequence alignment. There are two

types of sequence alignments, global and local, which are typically carried out in

a pair-wise fashion. Global alignment aligns every residue (nucleotides) in every

sequence among equal size DNA sequences. The conventional global alignment

algorithm (for example: Needleman-Wunsch algorithm (Needleman & Wunsch,

1970)) uses a dynamic programming approach. This kind of approach is mainly

suitable for highly similar but small regions of homologous DNA. Alternatively,

local alignment finds regions of similarity or similar sequence motifs within larger

sequences. Local alignment finds the local regions with highest similarities re-

gardless of the rest of the sequence. One advantage of local alignment over global

alignment is that, local similarities may indicate a functional module, (for exam-

ple: transcription factor binding sites) within the sequences.

If more than two sequences are to be aligned then multiple sequence align-

ment is necessary. Multiple sequence alignment is an alignment technique where

three or more relevant sequences are aligned together. This is useful to find the

evolutionary relationship between the sequences and therefore determine their

evolutionary origin. Dynamic programming has been used for multiple sequence

alignment incorporating gap penalties and substitution matrices. This can be

done, using the Carrillo-Lipman algorithm (Carrillo & Lipman, 1988). In this

algorithm, pair-wise alignments are created between different sequences and an

optimisation of the sum of the pair score at the position of the alignment is done

to get an optimum alignment. The progressive technique (also known as the hi-

erarchical or tree method) is another technique for multiple sequence alignment.

In this method, a pair-wise alignment is performed on similar pairs and extends

the alignment to more distantly related sequences (Mount, 2004).

CLUSTALW (Chenna et al., 2003; Larkin et al., 2007) is the most popular
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multiple sequence alignment program that uses the progressive technique. One

problem with the progressive method is that it cannot find the globally optimum

alignment. This can be achieved by the iterative method, which repeatedly re-

aligns the initial sequences and then add new sequences to the growing multiple

sequence alignment. In addition, Hidden Markov Model and genetic algorithms

are also used for multiple sequence alignment.

Histone modification is another way to identify cis-regulatory sites. Histone

modifications occur primarily within the histone amino-terminal tails protruding

from the surface of the nucleosome as well as on the globular core region (Cos-

grove et al., 2004). This can lead to two mechanisms, which may affect chro-

mosomal function. One of these is the alteration of the electrostatic charge of

the histone that leads to structural changes of histones or their binding to DNA.

Another mechanism is that these modifications result in binding sites for the pro-

tein recognition module. This is known as the Histone Code hypothesis proposed

by Strahl & Allis (2000). According to this hypothesis, a modification (for exam-

ple, methylation) at the unstructured tail of histone proteins can be correlated

with transcriptional activities. Therefore, if there is any kind of modification is

present in histone proteins, there is a possibility of transcription at that site.

DNA methylation is another mechanism, which causes DNA modification.

In DNA methylation, a methyl group is added to either cytosine or adenine

at 5´ position. Methylation generally occurs in CpG islands, which are rich

in CG content. Normally these CpG islands are found upstream of promoter

regions. DNA methylation mainly represses the initiation of transcription by

directly binding with the transcriptional activators or indirectly by binding with

the proteins (Weber et al., 1990; Razin, 1998; Ng & Bird, 1999). So any region

of DNA in which DNA methylation occurs is less likely to have binding sites and

therefore can be less significant in determining the location of binding sites.
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2.5 Identification of cis-Regulatory Sites Exper-

imentally

Experimental approaches to identify transcription factor binding sites are im-

portant to understand their biological functions, the complexity of tissue-specific

interactions and the temporal effects that binding has on gene expression (Levine

& Tjian, 2003). There are two types of approaches currently available (i) when

the regulatory proteins involved are not known and (ii) when the transcription

factor that binds to a specific DNA sequence has been putatively identified. In

the first case, analysis of the alteration of chromatin structure and experimen-

tal manipulation of specific DNA segment are carried out. For the latter case,

protein-DNA interactions are directly measured.

DNase hypersensitivity maps the changes in chromatin structure of DNA. The

degree of response that DNA gives to DNase is known as hypersensitivity and this

is present in all actively expressed genes (Elnitski et al., 2006). Hypersensitivity

actually acts as a marker for functional regions in non-coding sequences enabling

the detection of promoters, enhancers, silencers, etc (Cereghini et al., 1984; Gross

& Garrard, 1988). DNasel footprinting (Galas & Schmitz, 1978) can precisely

identify the localisation of protein binding sites without prior knowledge of the

binding preferences of the protein. Promoter analysis is another experimental

method, which can be used if the regulatory protein involved is not known. In

this experimental method a gene expression assay measures changes in response

to regulatory signal.

Other approaches to identify cis-regulatory sites experimentally include using

protein-binding assays. Electrophoretic mobility shift assays (EMSA) (Fried &

Crothers, 1981; Garner & Revzin, 1981) were one of the earliest methods that

utilises the screening technique of nondenaturing polyacrylamide gels for the sep-

aration of protein-bound DNA from other non-binding DNA.

Currently ChIP (Chromatin immunoprecipitation ) assay techniques are more

popular than the traditional techniques described above. ChIP is an immunopre-

cipitation method that determines the location of the binding sites of a particular

protein of interest to DNA in a genome (Aparicio et al., 2004). In this process

DNA binding proteins are cross-linked with formaldehyde, then the regions of the
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DNA where the protein has bound to, are isolated by shearing the DNA along

with the binding protein into small fragments. The binding protein is then bound

to antibodies to isolate the complex by precipitation and a reverse process releases

the DNA fragments. PCR (Plolymerase Chain Reaction) is used to amplify the

DNA sequences.

ChIP-seq technology is based upon both the ChIP method summarised above

and incorporates subsequent gene sequencing (Jothi et al., 2008). The small frag-

ment of DNA attached to a particular protein acts as an oligonucleotide adapter to

enable massive parallel sequencing of the ChIP-DNA fragments using a genome

sequencer. One other technique is ChIP-on-chip technology, where the single

stranded DNA fragments are labeled with fluorescent tags after amplifying the

DNA (Buck & Lieb, 2004). These coloured DNA fragments are then hybridised

over the surface of a DNA-microarray and the array is then further analysed for

identifying the binding sites of regulatory factors. Pair-Ended Tags (PET) are

short DNA or cDNA fragments that map to the genome and thus represent the

whole DNA fragment of interest. ChIP-PET combines the ChIP and PET tech-

nologies together and this is another option to identify binding sites (Fullwood

et al., 2009).

All of these technologies for identifying binding sites are quite successful, but

there are a number of factors that should be taken into consideration. For exam-

ple, tissue ChIP assays need sufficient source tissue samples and it is not feasible

when those tissues are rare (Elnitski et al., 2006). Experimental conditions and

the quality of reagent also affect the results in these experimental techniques.

Also if the binding affinity or strength with which a transcription factor binds to

DNA is weak then it can be difficult to obtain reliable results. Moreover, though

the brute force techniques generate impressive results in identifying transcription

factor binding sites, they are also costly and time consuming. Some of the tech-

niques also need processing of the raw data. For example, ChIP-chip raw data

needs to be processed to find the best binding sites among a collection of DNA

targets and in this case, a number of statistical approaches have been used (Buck

& Lieb, 2004; Lieb et al., 2001; Ren et al., 2000). Computational approaches can

be used to fine-tune the identification of cis-regulatory elements experimentally.

Though they are still in their preliminary stages, these have opened a new di-
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mension of research. Some of these computational approaches will be discussed

in the next chapter.

2.6 Gene Regulatory Networks

The regulatory relationships between genes and their products are interlinked,

where the products of the expression of one gene can act as a regulatory factor

for another and thus form a network. This type of network is known as a Gene

Regulatory Network (GRN). GRNs dynamically control the level of expression

for each gene in the genome by controlling whether and how that gene will be

transcribed into RNA, determining the functional role of the produced proteins.

Figure 2.4: A gene regulatory network (Source: U.S. Department of Energy Ge-

nomics:GTL Program, http://genomics.energy.gov).

A simple GRN can be viewed as cellular input-output device containing an input

signal reception and transduction system, a core gene regulatory network com-

ponent and output in the form of RNAs and proteins. The core gene regulatory

network component consists of regulatory proteins and cis-acting DNA sequences.
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These regulatory proteins bind to the specific cis-acting DNA sequence to start

transcription.

Figure 2.4 shows an example of the structure of a GRN where the transcription

factors (transcription factor A and B) enable the target gene to be transcribed

into mRNA and its end products, proteins. The transcribed protein may also act

as a feedback to regulate those transcription factors themselves and other cellular

functions.

Figure 2.5 shows the general control process of a typical, single level of GRN.

The input signal reception and transduction system induces intra-cellular and/or

extra cellular signals to a group of transcription factors to activate them. The

GRN component comprises these activated regulatory proteins and cis-acting

DNA sequences of their target genes. This component can up-regulate or down-

regulate the synthesis of the corresponding primary output such as RNAs or

proteins. The primary output changes the phenotypes or cell functions, which

are the terminal outputs. Direct and indirect feedbacks can modulate the level

of input. Though here only a single level of GRN has been shown, GRNs can

however be composed of multiple GRNs resulting in complex interactions, where

the products of one level can regulate the expression of another level.

Figure 2.5: The control process of a gene regulatory network (Source: U.S. De-

partment of Energy Genomics:GTL Program, http://genomics.energy.gov).
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One example of a highly studied and modelled GRN is that of the developmental

stages of drosophila embryogensis. Gene expression occurs in different body parts

and segments discretely during the developmental stages of drosophila. Various

gene products (proteins) are produced during the different stages of the drosophila

embryo development which themselves regulate gene expression. As a result the

embryo generates different gene expression levels of the gene products at differ-

ent developmental stages. Figure 2.6 shows the developmental gene regulatory

network controlling segmentation in drosophila development.

(a) (b)

Figure 2.6: A gene regulatory network during drosophila embryogenesis.

2.7 Summary

Transcription is an essential stage in gene expression and the initiation of tran-

scription is the preliminary stage for gene regulation to occur. Multiple tran-

scription factors bind to DNA in the upstream regions of genes and actively take
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part in regulation by initiating, enhancing or suppressing the level of transcrip-

tion. Identifying these binding sites is an important and interesting problem

that biologists are facing today. The interaction between transcription factors

and their binding sites will help advance our understanding of gene regulatory

networks. However, identifying transcription factor binding sites is a difficult

problem. The transcription factors do not always bind to a specific sites and

it depends upon different factors. Also, they are variable in size. According to

the statistics (shown in Table 2.1), the search space (non-coding regions in the

genome) for transcription factor binding sites in complex organisms is also huge.

As a result, finding these cis-sequences by laboratory methods is an expensive

and time-consuming process. This reflects why the curated data for transcription

factors in well-known repositories (for example, ORegAnno) is not sufficient with

respect to estimated number of transcription factors and their binding sites.
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Chapter 3

A Review of cis-regulatory

Binding Sites Prediction

Strategies

3.1 Introduction

As reviewed in the previous chapter, genes are regulated by proteins binding to

specific stretches of DNA, or sites, on the genome according to whether specific

stretches of DNA, or sites on the genome have a regulatory protein bound to them

(see Figure 3.1). These sites, called transcription factor binding sites (TFBSs),

are fundamental in the way cells and their genes interact.

Figure 3.1: Relative position of the gene, basal promoter region and cis-binding

sites in the organisation of a eukaryotic gene. The arrow indicates the direction

of transcription (source: Wray et al. (2003)).
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Unfortunately, locating TFBSs for a particular gene is non-trivial for various

reasons:

i. The spatial locations of TFBSs relative to a gene are notoriously variable.

They can be found nearby (upstream or downstream or even inside the coding

region of a gene) or far away, sometimes hundred of thousands of nucleotides,

from the genes they regulate.

ii. The genome size varies between species. As described in Section 2.3.3 (Ta-

ble 2.1), the larger in size a genome is, the more it is difficult to reliably

detect TFBSs due to their increase in the DNA to search.

iii. A specific regulatory protein may bind to more than one site, but these sites

do not necessarily have a unique, unambiguous DNA sequence.

iv. In a regulatory module, there can be many sites that cooperate together and

the boundary of the module can be difficult to determine. Moreover, though

some cis-regulatory modules have similar functions, they do not contain ex-

actly the same TFBSs.

A number of experimental methods and technologies for identifying TFBSs have

been developed. Conventional methods for recognising binding sites mainly de-

pend upon footprinting methods (Blanchette et al., 2002). These methods iden-

tify those regions of DNA that specifically bind particular proteins and char-

acterise them by various procedures including nitrocellulose binding assays, gel

shifting, etc. Currently, there are also high throughput methods such as EMSA,

ChIP-chip, ChIP-seq, etc. available for experimentally identifying binding sites.

These methods however, are costly, time consuming and some of them do not

scale up to genome-wide analysis. Hence the need for computational approaches

to identify TFBSs has become eminent. Nevertheless, laboratory techniques are

still essential to establish the ground-truth and computational assessments are

complementary to, rather than substituting the experimental approach. In this

chapter I will discuss different computational approaches for recognising TFBSs.

Firstly, I will discuss how genomic (DNA) sequences in general (and binding sites

in particular) can be represented computationally and then introduce a number

of different binding site identification algorithms.
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3.2 Representation of DNA Sequences

There are a number of different ways to represent and characterise a genomic

sequence. These representations, each with their own strengths and weaknesses,

capture different statistical and structural information. Algorithms for TFBSs

prediction are sometimes dependent upon these models. Therefore, a number of

these representations are discussed below.

3.2.1 Consensus Sequence

One method of representing the pattern (nucleotide composition) of known bind-

ing sites is by constructing consensus sequences. It is the simplest representation

of binding site model. In this method, the sequences of binding sites, which

have typically been obtained by wet-lab experiments, are aligned together and

consensus nucleotide letters are assigned to each column to represent nucleotide

composition. There are two broad ways by which a consensus sequence can be

constructed, both of which have been illustrated in Figure 3.2. Both methods sim-

ply use the frequency of the nucleotides in the positions of the aligned sequences.

In one method the nucleotide with the highest frequency for each position is taken

as the representative nucleotide (the consensus sequence in Figure 3.2). A sec-

ond approach represents the nucleotides using the IUPAC (International Union

of Pure and Applied Chemistry) notation (authors listed, 2001). Using this no-

tation, in a consensus sequence the A, C, G, and T represent the individual

nucleotide in a specific position. Other letters represent the ambiguity between

nucleotides. For example, R represents a position that contains either an A or a

G (purines), Y represents a position that contains either a C or a T (pyrimidine),

N represents a position that has any of the four possible nucleotides. A detailed

description of these notations can be found in Appendix A. To search for matches

for a consensus sequence in a DNA sequence, a simple regular expression search is

undertaken. Though consensus sequences provide a better representation than a

single pattern, there are drawbacks (Stormo, 2000; Schneider, 2002). A consensus

sequence is not always representative of the majority of binding sites (Schneider,

1997).
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Figure 3.2: A simple example illustrating the creation of a six nucleotides con-

sensus sequence.

For example in Figure 3.2, there are six sequences used to build the consensus

sequence -TATAAT. If we use the consensus sequence with no mismatch taking

the most frequent nucleotides in each position, only two sites can be identified

among the six sequences. If we allow one mismatch, we find three sites and two

mismatches will identify all the sites. If we use the alternate consensus sequence

(TATRNT) with no mismatches, four out of six sites can be identified.

A well-known consensus sequence of the -10 promoter region of the bacterium

Escherischia coli is TATAAT and is derived from 291 sequences described in Ben-

Gal et al. (2005). However, only 14 of these sequences follow the consensus se-

quence without any mismatch, which is insufficient for a reliable identification.

For the six sequences in Figure 3.2, we need to introduce two mismatches to match

the consensus sequence. Obviously, the larger the number of sequences, the more

mismatches will give rise to the number of false identifications and alternatively

consensus sequence may also reduce the number of real sites detected. The ad-

vantages of consensus sequences are that they are concise, simple to detect and

easily remembered and displayed. However, using consensus sequences usually

result in a loss of information, and it is difficult to quantitatively evaluate partial

matches.
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3.2.2 Position Weight Matrices

Generating profiles of binding sites is another way to summarise the information

contained in a set of TFBSs. A Position Weight Matrix (PWM) is such a profiling

tool. A PWM is a powerful method to model the binding specificity of a tran-

scription factor. It provides a quantitative description of the known binding sites

for a given TF. The common way to construct a PWM is to divide the nucleotide

probabilities by the expected background probabilities and convert the values to

a log-scale. The quantitative PWM score for a putative binding site is the sum of

the PWM values for each nucleotide in the site. The nucleotide probability values

can be then used to determine the total information content for each position.

For a set of sites of length n, a PWM can take the form of a 4 × n matrix

with scores assigned to the sequence by the following formula (Hertz & Stormo,

1999):

score =
n∑

i=1

Wb,i (3.1)

Here,

Wb,i = loge

Ab,i

Bb,i

(3.2)

Ab,i = Conditional probability that the position is found to be base b in the

binding site sequences,

Bb,i = Conditional probability that the position is found to be base b in the non-

binding site sequences.

For larger number of aligned sequences:

Ab,i =
Cb,i

Z
(3.3)

Here, Cb,i = Number of b nucleotide at position i

Z = Total number of aligned sequences

For smaller numbers of aligned sequences:

Ab,i =
Cb,i + Bb,i

Z + 1
(3.4)

For an example, let us take three short sequences: AGATAA, TGATAA, and
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AGATAG.

By performing a simple alignment, we can construct a motif [AT]GATA[AG]

indicating that the middle four bases are always GATA and the first position is

either an A or a T and the last position is either an A or a G. But the problem

with this motif is that it leads to a less specific search by allowing mismatches

and it does not imply how detected sites should be ranked. A PWM attempts to

overcome these issues by computing the log odd weights for a match score. For

the three sequences the following PWM can be constructed:

Figure 3.3: An example of a Position-Weight Matrix.

A detailed explanation of how the PWM is constructed is given in Appendix B.

From this matrix we can calculate the score of different possible motifs and

accept those motifs, which have score above a specified threshold. For example,

we can determine how closely the following four sequences match the PWM by

calculating their scores. The scores are:
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AGTAGG: 0.81+1.79-1.39-1.39-1.39+0.22 = -0.96

AGATAT: 0.81+1.79+1.79+1.79+1.79-1.39 = 6.58

TGATAA: 0.22+1.79+1.79+1.79+1.79+0.81 = 8.19

GGATAA: -1.39+1.79+1.79+1.79+1.79+0.81 = 6.58

If we select the cut-off threshold value as 8.00 then, three sequences will be

removed from the list and one will be left as a candidate of interest. If we decrease

the value of the cut-off threshold, the number of matching sites increases. If we

decrease the threshold to 6.00, only one sequence will be removed. Determining

a suitable threshold value is the main challenge to reliably detect TFBSs using

this technique, since by choosing an inappropriate threshold this may give rise to

many false positives. Hence the challenge is to select the optimal threshold that

maximises true positives while minimising false positives.

PWMs for TFBSs can be obtained from a number of public databases such as

TRANSFAC (Matys et al., 2003), JASPAR (Sandelin et al., 2004), PAZAR (Portales-

Casamar et al., 2009), Frankel Lab 1, etc. These databases are often derived from

experimentally verified TFBSs. Table 3.1 shows a summary of different public

databases where PWMs are available.

Number of TFs Number of organisms PWMs

TRANSFAC 17, 811 180 1,551
(includes miRNAs)

JASPAR 460 20 460
Fraenkel Lab 88 1 124
ORegAnno 561 17 -

Table 3.1: A summary of TFBSs databases.

TRANSFAC is the biggest database, which has more than 1500 PWMs across

180 organisms. JASPAR has far less number of PWMs for the binding sites of

460 TFs. A third public source of data is the Fraenkel Lab from MIT, which has

124 PWMs yeast.

The PWM is a robust representation for TFBS prediction without explicitly

knowing other biological properties. As it is related to the binding energy of the

1http://fraenkel.mit.edu/
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DNA-protein interaction, it can be considered both as a statistical and an energy-

based model. One problem with the PWM is the assumption that the positions

in the site contribute additively to the total activity and this may lead to an over-

prediction of binding sites (Stormo & Fields, 1998; Tompa et al., 2005), which

has already been discussed before. Moreover PWMs are also heavily dependent

on the number and quality of the sequences derived from the experimental data.

3.2.3 Representing TFBSs using Information Theory

Information theory is an alternate and arguably much better approach to us-

ing consensus sequences. The information content (Schneider et al., 1986) at a

position in a site is can be represented as:

Ii = 2 +
T∑

b=A

fb,i log2 fb,i (3.5)

Where, i = position within the site

b = each possible bases (A, C, G, and T)

fb,i = observed frequency of each base at that position

However as defined, Equation 3.5 is only suitable for nucleotides that oc-

cur with equal probabilities, whereas in most organisms nucleotides are not dis-

tributed with equal probabilities across the genome. In that case, Equation 3.5

can be re-written in a more general form as:

Iseq(i) =
T∑

b=A

fb,i log2

fb,i

pb

(3.6)

Here, pb = frequency of base b in the whole genome

Equation 3.6 can be used as the estimate for binding energy contribution. As

each position in the genome contributes independently to the total binding energy,

a matrix H(b, i) is used whose elements define the binding energy contribution
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as its elements (Heumann et al., 1994). Here,

H(b, i) = − ln
fb,i

pb

(3.7)

For the collection of known binding sites for a particular protein, H(b, i) is the

maximum probability estimate for binding energy contribution of each base at

each position and Iseq is the average binding energy for all the known sites (Stormo,

2000).

3.2.4 Sequence Logo

A sequence logo is a graphical representation of the biological information of an

aligned set of binding sites, developed by Tom Schneider and Mile Stephens (Schnei-

der & Stephens, 1990). In other words, a sequence logo is a visual representation

of a PWM, where the aligned sequences are displayed as a set of stacked charac-

ters at each position. The logo shows the frequency of the bases and the relative

height indicates the degree of sequence conservation. The height is measured in

bits of information, with a maximum of 2 bits at each position. The frequency

of any bases is not lost in the sequence logo as it does in a consensus sequence.

The height of the base at each different position is defined in Schneider &

Stephens (1990). The height of base b at position l is f(b, l)Rsequence(l).

Where,

f(b, l) = Frequency of base b at position l

Rsequence(l) = 2− (H(l) + e(n)) bits per position

And here,

H(l) =
∑T

b=A f(b, l) log2 f(b, l) bits per position

e(n) = Uncertainty of the pattern for a small sample size (n) (Correction Fac-

tor) (Schneider et al., 1986)

Figure 3.4 shows the sequence logo (generated by WEBLOGO (Crooks et al.,
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2004)) of the -10 promoter region of the bacterium Escherischia coli (TATAAT)

from 291 sequences described in Ben-Gal et al. (2005).

Figure 3.4: Sequence logo of -10 region of bacterial promoter (Ben-Gal et al.,

2005).

3.2.5 Markov Models

Markov chains and Hidden Markov Models (HMM) are two probabilistic models

used for motif representation. A simple Markov model, composed of a number of

states with the transition probabilities between the states (Durbin et al., 1999),

can be used for modelling a DNA sequence.

Figure 3.5: A Markov model of a DNA sequence. Any path from one node to

another node will produce (emit) a DNA sequence.

36



Third Chapter

Figure 3.5 shows a Markov chain for modelling DNA sequences, where each nu-

cleotide represents a state and the arrows represent state transitions. Here the

transitional probability is the conditional probability that a particular state will

occur given the previous state in a sequence of states. Therefore, the transition

probability from a previous state (s) to a particular state (t) in a sequence of

states x is:

ast = P (xi = t|xi−1 = s) (3.8)

In case of larger data, higher order Markov models are required and therefore a

practical limit on the order needs to be placed in most applications (Eddy, 1996).

The probability of a given sequences generated by using the Markov chain is as

follows:

P (x) = P (xl, xl−1, . . . , x1) = P (x1)
L∏

i=2

axi−1xi
(3.9)

Here, x = a given sequence and L = length of the sequence

Figure 3.6: A simple HMM with two hidden states and four observable states. The

square boxes represent the internal states (TFBSs or background). The circles

represent the emission states (A,T, G, and C). The arrows show the transitions.

Here the transition probabilities are not shown.

The Hidden Markov Model (HMM) is a powerful extension to the Markov model

as it allows a model to contain a number of different states with potentially

differing transition probabilities (Yada et al., 1998; Eddy, 1996; Kochanski, 2004).
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Figure 3.6 shows an example of a HMM that describes a promoter sequence

consisting of a background sequence with short TFBSs.

This model can be used to predict the sequence annotations, i.e. TFBSs. The

state transitions, which are the paths through the two states (here k and l) that

would maximise the probability of generating such a sequence, can be determined

by a classical Markov chain described in Equation 3.10:

akl = P (πi = l|πi−1 = k) (3.10)

The emission state of the HMM can be determined as:

ek(b) = P (xi = b|πi = k) (3.11)

Therefore, the joint probability of an observed sequence, x and a state sequence,

π :

P (x, π) = aπ1

L∏
i=1

eπi
(xi) aπiπi+1

(3.12)

The annotation (defined as the most probable state path) of an observed sequence

can be then determined by the Viterbi algorithm (Eddy, 1996, 2004; Durbin et al.,

1999). There are different variations of HMMs used in Bioinformatics namely,

profile HMM, phylo-HMM, etc. The profile hidden Markov model (Eddy, 1998),

where each position in a motif is represented by a unique state with associated

emission probabilities for that position, can be a well-suited candidate for the rep-

resentation of TFBSs. The phylo-HMM (Phylogenetic Hidden Markov Model) is

another variation of HMM, which can detect conserved elements based on mul-

tiple genome alignments. In the case of the phylo-HMM, a phylogenetic tree

replaces the multinomial distribution and a new column in a multiple alignment

is emitted at each time step (Siepel & Haussler, 2004). Similar to PWMs, HMMs

are largely dependent on the amount of experimental binding site data for the es-

timation of accurate transition and emission probabilities. The data requirement

for training a HMM can be so restrictive that sometimes HMM is impractical to

use in many situations (Eddy, 1996).
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3.3 Transcription Factor Binding Site Predic-

tion Algorithms

A large number of algorithmic approaches have been introduced to identify can-

didate transcription factor binding sites in silico reviewed in Wei & Yu (2007);

Tompa et al. (2005); Nguyen & Androulakis (2009); Das & Dai (2007); Pavesi

et al. (2004); Elnitski et al. (2006); Blanchette et al. (2002); Hu et al. (2005).

Many algorithms have been developed to exploit the various sources of experi-

mental information available, and the various statistical properties that appear

to distinguish regulatory regions from the genome in general using DNA sequence

representation (discussed in the previous section). There are more than 100 TF-

BSs prediction algorithms currently available – almost 50% of them use PWMs

for their match models for predictions, 10% of them use regular expressions, and

the rest uses other strategies for predictions (such as HMM, phylogenetic, etc).

Broadly, these algorithms can be classified into four main groups based on the

approach to the problem scanning, statistical, co-regulatory, and phylogenetic

algorithms.

3.3.1 Scanning algorithms

Scanning algorithms search for sequences that match with experimentally verified

binding sites (Quandt et al., 1995; Rajewsky et al., 2002; Kel et al., 2003; Yan

et al., 2005) by using binding site motif representations. The scanning algorithm

simply performs a regular expression search on the target sequences and in this

case a consensus sequence representation is used. Due to the conservative nature

of a consensus sequence, these algorithms can produce predictions with a low

rate of false positives as well as a high rate of false negatives. Mismatches can be

introduced to reduce the false negative predictions as explained in Section 3.2.1.

Scanning algorithms can use PWM representations that can be used to con-

struct a probability distribution along the length of a target sequence by calculat-

ing the log likelihood of each starting point in the sequence providing the match

to the motif model. In this case, the choice of a threshold value is quite crucial.

As discussed in Section 3.2.2, any sequence with a score above some predeter-
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mined threshold can be considered as a putative binding site. The performance

of a scanning algorithm is normally dependent on the quality of the data used to

generate the motif representation, the accuracy of the background model and the

threshold value. In this thesis a number of scanning algorithms have been used:

Fuzznuc, MotifScanner, MotifLocator, Ahab, EvoSelex,P-match etc.

3.3.2 Statistical algorithms

Statistical algorithms attempt to predict the location of cis-regulatory binding

sites based exclusively on the statistical properties of genomic sequences, and util-

ising no prior information. These algorithms particularly play important roles in

characterising the promoter regions of an organism where the prior information

(such as binding site motif models, expression profiles, orthologous sequence from

related species, etc) is not available and prediction based on the statistical prop-

erties of the sequence is the only available option. Statistical algorithms represent

a diverse array of approaches applied to the problem of binding site prediction

and often incorporate biological knowledge about DNA-protein interactions in

regulatory systems (Galas et al., 1985; Brazma et al., 1998a,b; van Helden et al.,

1998; Marsan & Sagot, 2000; Papatsenko et al., 2002; Sinha & Tompa, 2002;

Apostolico et al., 2004; Frith et al., 2004).

The underlying hypothesis for determining TFBSs, for statistical algorithms,

is based on the following two observations:

i. Regulatory regions often have multiple copies of a particular binding motif,

leading to statistical over-representation of the motif locally (Berman et al.,

2002; Papatsenko et al., 2002);

ii. Functional binding motifs should be restricted to the regulatory regions of

the genes they regulate to prevent titration of the trans-acting transcription

factors, resulting in the under-representation of the binding motifs over larger

genomic stretches (Schneider et al., 1986).

Statistical algorithms mainly rely on an enumeration of all statistically improb-

able words that occur in a sequence- in this case a set of TFBSs sequences. The
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determination of the probability of words can be estimated by a number of dif-

ferent approaches- such as a direct count of word frequencies, or matches to some

variable representation and then is compared to an estimation of the expected

frequency given the background model for the sequence. An alternative approach

is to calculate the probability of occurrence for all words in a sequence, given a

Markov model for the background.

Although statistical algorithm can correctly predict the location of experi-

mentally verified binding sites (Papatsenko et al., 2002; Sinha & Tompa, 2002;

Apostolico et al., 2004), they can produce predictions with high false positive

rate (Tompa et al., 2005). Moreover, over and under-representation alone are not

sufficient to distinguish cis-regulatory elements from the background sequence.

Other sources of biological information, such as functional annotation of regulated

genes (Cora et al., 2004), the clustering of predicted binding sites, the location of

predictions relative to a promoter (Kie lbasa et al., 2001; Hampson et al., 2002),

the use of structural family binding profiles (Sandelin & Wasserman, 2004) can

be used for further refinement of predictions. In this thesis, I have used several

statistical algorithms namely PARS, DREAM, and Verbumculus.

3.3.3 Co-regulatory algorithms

Any statistical algorithm that can make predictions for single sequences can be

trivially extended to make predictions for a set of genes clustered on the assump-

tion described in the previous section. Moreover, the inclusion of information,

described in the previous section, can extend the predictive power of statistical

algorithms. Algorithms based on this approach are among the most efficient pre-

diction tools currently available. In this approach, the main hypothesis in this

case is that if a set of genes is regulated by the same transcription factors, then

the associated binding motifs are expected to be statistically over-represented in

the promoter regions of the set (Markstein et al., 2002; Ptashne & Gann, 2002).

In practice, microarray data for genomic expression profiling is used to assess

this and here the assumption is made that genes clustered by their expression

profiles may be regulated by the same transcription factors (Roth et al., 1998;

Hampson et al., 2000; Bussemaker et al., 2001). Though we can rationally as-
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sume that genes regulated simultaneously are very likely to be responding to

the same genetic signals, it is not true for all the case (Bussemaker et al., 2001).

Moreover, determination of gene clusters in this way is strongly dependant on the

effectiveness of the clustering algorithms used in this process (Dougherty et al.,

2002).

Two powerful approaches that are often used are Gibbs sampling and Expec-

tation Maximisation and they are almost solely used for co-regulatory analysis

and therefore will be discussed here.

3.3.3.1 Gibbs Sampling

Gibbs sampling, an iterative stochastic sampling technique, is based on the

application of Bayesian theory and it is used for solving optimization prob-

lems (Lawrence et al., 1993; Neuwald et al., 1995; Durbin et al., 1999). It can

be used in predicting cis-regulatory binding sites on a set of co-regulated gene

regulatory sequences and hence formulated as follows:

The algorithm iterates through two steps- the predictive update and the sam-

pling step. The predictive update step works by selecting one sequence from the

set of promoter sequences randomly. The substrings of a predetermined length,

starting from positions contained in a set of starting positions, are then aligned,

and a probabilistic profile is generated. This profile represents the current model

of the binding motif. A model of the background sequence is also generated from

all sequences, excluding the sequence in use to generate the profile. Then the

sampling step continues to exploit the generated motif profile and background

model to calculate the likelihood ratio for each possible subsequence in the se-

lected sequence. These likelihood ratios are then used as probabilistic weightings

allowing a new motif start position in the sequence concerned. The stochasticity

of the sampling step ensures that the evolving solution does not get stuck in local

optimum. Once an optimal motif profile has been generated, all matches above a

threshold can be masked and the algorithm is re-run for allowing predictions for

multiple binding motifs. An alternative strategy is to fit the parameters for mul-

tiple motif profiles simultaneously. This helps the sampler to avoid the difficulty

of modelling a site with a variable gap using a matrix representation and model
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conserved regions of the binding site separately.

Gibbs sampling algorithm requires no prior knowledge about binding sites to

predict both the locations and identity of a binding motif. However, one thing

should be noted that this type of algorithm is not sufficient for an exhaustive motif

search as it is not suitable for finding rare motifs. In summary, the Gibbs sampling

algorithm represents a very efficient and powerful heuristic for the detection of

over-represented motifs.

3.3.3.2 Expectation Maximisation

The Expectation Maximisation (EM) algorithm is a deterministic approach to

the problem of identifying over-represented patterns in a set of sequences. It is

actually the maximum likelihood estimation of the parameters for a two state

finite mixture model, which describes a set of sequences (Bailey & Elkan, 1994;

Durbin et al., 1999). In this context the two models correspond to the motif

profile and the background sequence model. The starting positions of the two

components within the sequences are also considered as unknown data and need

to be estimated from the observed sequences.

EM takes a set of unaligned sequences and a motif length as inputs and

returns a probabilistic model of the motif with the highest maximum likelihood

score given the input sequences. The idea behind the use of EM for finding

motifs is that ideally each sequence contains an example of the motif whose

position is unknown. It is assumed that the motif is generated by a sequence

of independent and multinomial random variables. As the sequences are not

aligned in the dataset, the offset needs to be determined by estimation. The EM

algorithm estimates the probability of the motif that starts in some position of a

sequence and is then re-estimated.

The EM algorithm is guaranteed to find a local maximum for the likeli-

hood of the model parameters and the missing data, given the original sequence

data (Durbin et al., 1999). For this reason it is far more sensitive to the choice of

the initial parameter estimates than a stochastic algorithm such as Gibbs sam-

pling, and additional algorithms are typically used to calculate the optimal initial

parameter estimates (Bailey & Elkan, 1995). This is perhaps less of a problem
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in the implementation of the EM algorithm that iteratively searches for multiple

motifs in a set of sequences (Bailey & Elkan, 1995). In such an example it is

perhaps more likely that each local maximum explored is biologically interesting.

In this thesis some co-regulatory algorithms have been used namely MEME, Alig-

nACE, and Sampler.

3.3.4 Phylogenetic and other alignment based approaches

Phylogenetic approaches to binding site prediction use the assumption that bind-

ing sites are likely to show sequence conservation in closely related orthologous

species (Fickett & Wasserman, 2000; Wasserman & Sandelin, 2004). In this case,

the choice of a comparison species with an appropriate evolutionary distance is

essential. Figure 3.7 shows the conservation of CTCF binding site between mouse,

rat, and human H19 DMR regions (Bell & Felsenfeld, 2000).

Figure 3.7: Sequence conservation across different species. Species-specific iden-

tities are shown in grey and cross-species conservation is shown in black. This

figure is taken from Bell & Felsenfeld (2000).

If the evolutionary distance between the species is too small, the non-functional
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sequence will not have had a chance to diverge through the accumulation of mu-

tations. Hence large stretches of DNA will perfectly match, making the identifi-

cation of the short, functional TFBS sequences impossible to find. Alternatively,

too large a distance and the regulatory inputs for the gene in question may have

mutated such that they are dissimilar across species, undermining the basic as-

sumption of identifiable, shared DNA sequences (Fickett & Wasserman, 2000).

The alignment of evolutionary related sequences, either orthologous or paral-

ogous (genes at different chromosomal locations in the same organism that have

structural similarities, indicating that they are derived from a common ancestral

gene), utilises a set of well-established techniques (Durbin et al., 1999; Jareborg

et al., 1999; Bray & Pachter, 2003). These techniques are often used to predict

the biological identity or functionality of novel sequences based on their homolo-

gies with sequences of known identity or functionality. Algorithms for both the

global and local alignment (described in Section 2.4) of such sequences have been

very successfully used for many years. Alignment models can give the explana-

tion for the various evolutionary changes (such as deletion, insertion, mutations,

etc.) that a sequence might be subject to. These models use parameters, for

example, a gap penalty, to enable optimal alignments to be efficiently calculated

using dynamic programming techniques (Durbin et al., 1999; Eddy, 2004).

A study by Wasserman et al. (2000) showed that approximately only 19%

of non-coding DNA was contained within phylogenetic alignments, or footprints

while comparing human and rodent sequences. However, 98% of experimen-

tally determined binding sites were located within this subset of sequence. This

observation suggests a new strategy for binding site prediction, where the phylo-

genetic analysis of all orthologously paired non-coding sequence is done followed

by a Gibbs sampling/ EM/ motif scanning strategy on the subset of sequence

contained within the footprints (McCue et al., 2001; Sinha et al., 2004). Thus

the accuracy for identifying binding sites is be expected to improve by focusing

the search algorithms on regions with a higher probability of containing binding

sites and binding site prediction over a larger genomic scale also becomes much

more feasible. However, such a strategy is greatly dependent on both the amount

of available sequence and the identification of orthologously related non-coding

regions.
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In this thesis, I have used two phylogenetic algorithms namely SeqComp and

Footprinter. I have also used Regulatory Potential, and PhastCons as indirect

sources of evidence.

3.4 Combining Sources of Evidence

The algorithmic strategies described above are diverse and incorporate differing

sources of biological information in the predictive process. They all have there

own strengths and weaknesses. Therefore, there is good reason to consider that

the set of binding sites predicted correctly by the individual sources of evidence

are likely to form non-identical sets. If these predictions do really complement

each other, then they can potentially provide more significant information when

taken in combination. Therefore, combining their outputs may lead to better

predictions. If one algorithm misses any binding site another algorithm may be

able to capture that site. There are a number of approaches where the results

from different algorithms have been combined together to improved predictions.

Among them the most notable are BEST (Che et al., 2005), Multifinder (Huber &

Bulyk, 2006), WebMOTIFS (Romer et al., 2007), and MEMOFinder (Wilczynski

et al., 2008) .

Figure 3.8: MEMOFinder. This figure is taken from (Wilczynski et al., 2008).
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BEST (Binding-site Estimation Suite of Tools) includes the co-regulated al-

gorithms AlignACE, BioProspector (Liu et al., 2001), CONSENSUS (Hertz &

Stormo, 1999), and MEME, as well as the optimisation program BioOptimizer (Jensen

& Liu, 2004). In BEST, BioOptimizer ranks the predictions from the different

motif finding algorithms and presents the top 10 motifs with motif score, width,

number of predicted sites and consensus sequence from both the original algo-

rithms and BioOptimizer. Multifinder uses four motif discovery programs (Alig-

nACE, MDScan (Liu et al., 2002), BioProspector and MEME ) and combines

their results by using a clustering method. WebMOTIFS is another tool, which

works in a similar way as Multifinder, but it includes Weeder (Pavesi et al., 2001)

in place of BioProspector. MEMOFinder (see Figure 3.8) is the most recent ap-

proach for combining the output from motif discovery algorithms using MEME,

Weeder, MDScan and BioProspector.

Figure 3.8 shows that MEMOFinder takes the output from the base algo-

rithms, produces a distance matrix from them and clusters them accordingly. It

also generates consensus motifs from the outputs. The key theme with these

approaches is to use multiple algorithms to generate sets of putative predictions

and they differ in the strategies used to combine the predictions together.

3.5 Summary

This chapter has reviewed the main representation of biological features integral

to the computational binding site predictions, along with the main algorithmic

strategies that have been used in the literature. The algorithms described have

been selected to represent both the major contributions in the field and also

provide necessary background on the algorithmic strategies that are utilised later

in the course of this thesis. At the end of this chapter, the popular approach

of combining these sources of evidence has been discussed. The combination of

algorithms produces promising results and this idea will be adapted and described

broadly in later chapters.
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Chapter 4

Machine Learning and Sampling

Techniques

4.1 Introduction

The existence of hundreds of public databases, with enormous amount of data,

needs proper cataloging and representations with respect to its biological signif-

icance. This gives rise to the necessity of computational tools to analyse this

data in an efficient manner. The importance of classification techniques to the

bioinformatics community has long been recognised. The application of these

classification techniques to various biological problems is of increasing impor-

tance (Workman & Stormo, 2000; Jensen & Liu, 2004; Radivojac et al., 2004;

Ahmad & Sarai, 2005; Beiko & Charlebois, 2005; Dietterich, 2002). There are

many classification techniques developed by the machine learning community to

tackle the problem of data classification.

A number of classifier methods have recently been employed and among these

the Support Vector Machine (SVM) is currently enjoying popularity. SVMs have

been used to predict regulatory motifs (Sun et al., 2006a; Vert et al., 2005; Hol-

loway et al., 2005; Jiang et al., 2007), gene regulatory networks (Qian et al.,

2003) and to detect functionally similar proteins (Leslie et al., 2002, 2004). They

have been used for classification of tissue examples (e.g. type of cancer) based

on microarray data (Furey et al., 2000; Guyon et al., 2002), prediction of the
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function of uncharacterised genes (Pavlidis et al., 2001), and prediction of pro-

tein sub-cellular localisation (Yu et al., 2006; Hua & Sun, 2001b). SVMs have

also been used for predicting protein secondary structure (Hua & Sun, 2001a),

protein folding (Ding & Dubchak, 2001), protein super family (Jaakkola et al.,

2000), etc.

Prediction of cis-regulatory binding sites in regulatory DNA sequences can be

formulated in terms of a classification problem and it can be a good candidate

problem for the application of these algorithms. Classification algorithms can

be quite helpful in classifying this metadata. The major aim of this thesis is to

demonstrate the utility of classification algorithms for improving the performance

of individual binding site prediction algorithm. Integrating multiple binding sites

prediction and learning the correct classification given the initial prediction can

achieve this. This chapter will, therefore, undertake a review of SVMs and some of

the related techniques such as data sampling to enhance their training capabilities.

4.2 Two-class Kernel Method

The kernel method for classification is a recently developed technique in the

Machine Learning field (Cristianini & Shawe-Taylor, 2010). Here the word kernel

is related to mapping data into a higher dimensional space. The simplest form of

SVM to consider is a two-class classifier, where objects belong to two categories

- positive examples and negative examples (Boser et al., 1992). The general idea

is to separate the data just by drawing a separator (for example, a hyperplane)

between them and dividing them into two classes.

4.2.1 Maximum margin separator

There can be many separators that can make a distinction between the two

classes. In Figure 4.1(a), there are two classes of data, which can be separated by

a single separator. However, Figure 4.1(b) shows a number of different separators

can also separate these two classes. Now the question is: which one should be

chosen as an ideal separator?
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(a) (b)

Figure 4.1: Two-class classifier.

A solution is to choose the separator with the maximum margin. Here, the margin

is defined as the distance of the closest data point to the separator in this case

a hyperplane. By having maximum margin this separator can create maximum

separation between the two classes. Figure 4.2 shows the separator with maximum

margin and the data points push up against the margin are the Support Vectors.

A better separation of data, that minimises the risk of over-fitting (discussed

in Section 4.4), can be obtained by allowing some misclassifications. Hence,

a term called cost can be incorporated with it to prioritise the importance of

misclassifications. For larger value of cost, a larger penalty is assigned to the

errors, whereas a smaller value of cost leads to larger margin. Therefore, a large

cost may cause over-fitting and a small one may cause under-fitting. Further

effect of cost will be discussed in the next section.
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Figure 4.2: Maximum margin separator.

4.2.2 Two-class SVM

A Support Vector Machine (SVM) is a maximum margin classifier with a tuneable

cost parameter. Let, a training set of a number of patterns be {x1, x2, x3, · · · , xn}
with known labels {y1, y2, y3, · · · , yn} where yi ∈ {−1,+1}. The training

patterns are used to build a decision function, D(x) such that,

x ∈ class(+) when,D(x) ≥ +1; if yi = +1

x ∈ class(−) when, D(x) ≤ −1; if yi = −1

Here, i = 1, 2, 3, · · · , n
x is on decision boundary when, D(x) = 0

Here,

D(x) = w · x + b (4.1)

w: weight vector

b: bias value

w · x: dot product between the two vectors w and x. This convention will be

followed all through this thesis.

Equation 4.1 is the discriminant function of the hyperplane that divides the
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data points into two classes. In classification with large margin, a boundary of

the hyperplane can be set and we can adjust the value of bias such that the

hyperplane fits in the middle of the margin (see Figure 4.3).

Figure 4.3: Two-class SVM.

For Equation 4.1, the margin is 1
‖w‖ and here ‖w‖ is the length of w. To calcu-

late the value of w and b, we need to solve the following optimisation problem:

min1
2
‖w‖2

subject to: yi(w · x + b) ≥ 1 for i = 1, 2, · · · , n
Here by minimizing ‖w‖2, we are actually maximising the margin to classify

examples correctly. This is called hard margin problem. A hard margin problem

does not allow any misclassifications during building the training model.

However in practice, the data may not be linearly separable or even linearly

separable data may need a greater margin for classification. In theory and exper-

imental results it is found that a larger margin can provide better classification

performance than the hard margin SVM (Ben-Hur et al., 2008). Therefore, A soft

margin problem, by allowing some misclassifications during training, can provide

better classification performance. To do this a set of slack variables (ξ), one for

each data point, is introduced. For correctly classified points the slack variable
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is set to zero (see Figure 4.4), whereas if it is in the decision boundary the value

is in between 0 to 1. But when the instance is misclassified the value of slack

variable used is greater than 1.

Figure 4.4: Use of slack variable in two-class SVM.

As mentioned before, to discourage too much use of slack variable, a term called

cost (C) has been incorporated with it to maximise the margin and minimise the

slack variable. Now the optimisation problem after using slack variable is:

min

[
1

2
‖w‖2 + c

n∑
i=1

ξi

]
(4.2)

subject to: yi(w · x + b) ≥ 1− ξi, for i = 1, 2, · · · , n and ξi ≥ 1

A decision boundary for an SVM with a very high cost value has a narrow margin

around the decision boundary that may lead to under-fitting the data. On the

other hand, a smaller value of cost of the decision boundary for an SVM increases

the margin and therefore may introduce over-fitting.

Equation 4.2 can be reformulated in to dual form by using Lagrange multipli-
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ers (Boyd & Vandenberghe, 2004). The dual form is as follows:

max

[
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjxi · xj

]
(4.3)

subject to:
∑n
i=1 yiαi = 0, 0 ≤ αi ≤ c

From this dual form, it can be proved that,

w =
n∑
i=1

yiαixi (4.4)

For αi > 0, xi is called support vector. (Ben-Hur et al., 2008)

4.2.3 Feature space

The problem with a linear classifier is that it may not be able to satisfactorily deal

with non-linearly separable data (see left hand side of Figure 4.5). Sometimes

non-linear classifiers give a better classification than linear classifiers in these

cases. One solution to this is to map the data into a high dimensional feature

space including non-linear features and then use a linear classifier.

Figure 4.5: Concept of non-linear data classification. Here φ is a mapping func-

tion (Source: http://www.dtreg.com/svm.htm).
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Figure 4.5 shows that using a non-linear classifier can separate the data. But this

data can be implicitly mapped to another space (called a feature space) to make it

linearly separable. A mapping function (φ ) maps the data to feature space with

higher dimension making the data more likely separable. A linear separator in

the feature space may correspond to a non-linear separator in the original space.

But now the question is: how many features are needed to be computed and

which feature should they be? The answer may be to generate nonlinear decision

boundaries by using kernel methods. Figure 4.5 shows that using a non-linear

classifier can separate the data. But these data can be implicitly mapped to

feature space to make it linearly separable.

4.2.4 Kernel functions

To compute a hyperplane, we need to compute dot products in the data space.

But this dot product can be replaced by other functions known as kernel functions.

The interesting property of a kernel function is that by using it we do not need to

explore the feature space and rather all computations can be done on the original

data.

If the kernel function is defined as k(x, x′), then k(x, x′) = φ(x) ·φ(x′)and

it can be computed efficiently as it solves the problem of mapping data into a

very high-dimensional space. Actually, we do not need to compute φ(x) or even

know what it is.

The two most widely used kernel functions are polynomial kernel and Gaussian

kernel. The polynomial kernel of degree d is defined as:

kpolynomiald,x (x, x′) = (x · x′ + δ)d (4.5)

Here, δ is zero(0) if homogenous and one (1) if chosen to be inhomogeneous.

If d = 1and δ = 0, the kernel function is defined as linear kernel function,

klinear, which is the original dot product. The bigger the value of the d, maps

the function to the higher is the dimension. The d of a kernel controls the

flexibility of the classifier (Ben-Hur et al., 2008). Normally d = 2 is sufficient

enough to discriminate between two classes with a good margin.

Another widely used kernel function is Gaussian kernel function, which can
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be defined as:

kGaussianγ (x, x′) = exp(−
1

γ
‖x− x′‖2) (4.6)

Here, γ is a hyperparameter, which controls the width of the Gaussian kernel. If

γ is large, the data point has a non-zero value relative to any data points in the

dataset. But as we decrease its value, the kernel becomes more local. A smaller

value of γ gives a non-zero value of the discriminant function only in the close

vicinity of each support vector (Ben-Hur et al., 2008). If γ is very small there is

a tendency for all the data points to be support vectors.

There is another kernel function called sigmoid kernel function which can be

defined as:

ksigmoidα (x, x′) = tanh(αx · x′ + δ) (4.7)

Here, α(similar to d and γ ) and δ works in the same way as previous kernel

functions.

There are more kernel functions available (Laplacian kernel, ANOVA kernel,

circular kernel, etc). But these four kernel functions have been discussed as I

have used them in this thesis.

4.3 One-class Kernel Methods

Two-class SVM can be used where the training set is well specified, i.e. data

either belongs to positive or negative class. But some data may not be as well

characterised as is needed for the two-class SVM. In some problems one can be

confident on the label of only one class of data and one-class classifier can be a

better choice for classification in this case. One class classification is actually the

special case of two-class classification problems (Alashwal et al., 2006). In this

thesis, the data we are using as positive examples (part of TFBSs) are experi-

mentally verified and thus we have a certain level of confidence about them being

positive examples. But the rest of the data may not belong to one negative class

only. Actually we cannot be sure about the distribution of these data.

In one-class classification approach, data from only one class is available and

this class is also better sampled than any other classes present in the dataset. The

data, which are in well-sampled class, is called target class and others are known
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as outliers. There are many approaches for one-class classification. Schölkopf

et al. (2001) proposed using traditional hyperplane method (One-class SVM). On

the other hand, Tax & Duin (2004) suggested creating outlier uniformly in and

around target class (Support Vector Data Description- SVDD). In this thesis I

have used the one-class SVM and hence I am going to give the detailed description

of the one-class SVM only.

4.3.1 One-class SVM

This method has been proposed in Schölkopf et al. (2001). In this method,

the origin is treated as the only member of the outlier class. Then relaxation

parameters are used to separate the target class from the origin. The main

idea is to separate the surface region containing data from the region containing

no data. The hyperplane is constructed maximally away from the origin. The

points on the other side of the hyperplane are considered as positives. A function

is constructed in such a way that it returns +1 when it captures those data from

one class in the small region and returns −1 otherwise.

Figure 4.6: Concept of one-class SVM- Schölkopf’s method (Source: Sudo et al.
(2008)).

The algorithm can be summarised as follows:

Let {x1, x2, x3, · · · , xn} are the training examples for a classX where,X ⊂ <n

. If the mapping function is φ, then , where φ : X → H is the feature space.

To separate the dataset from the origin we need to solve the following quadratic
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programming problem:

min

[
1

2
‖w‖2 +

1

νn

n∑
i=1

ξi − ρ
]

(4.8)

subject to: w · φ(xi) ≥ ρ− ξ, i = 1, 2, · · · , n and ξi ≥ 0

The solution tends to the decision function,

D(x) = sign(w · φ(x)− ρ) (4.9)

Here, w: weight vector

ν : upper bound of fraction on the outliers and lower bound on the fraction of

the support vector and ν ∈ (0, 1]

ξ: slack variable to penalize misclassification

ρ: bias

n: number of examples

The sign of D(x) will be positive for most of the examples in the training set.

As the representing data is coming from only positive examples, the small

amount of data is not feasible to determine the boundary. Therefore, a huge

amount of good sampled data is needed to be available (Manevitz & Yousef,

2002). This is one big problem with Schölkopfs one-class SVM. Another problem

with Schölkopfs method is that it is sensitive to γ (for RBF kernel) and ν and also

to the kernel selection. The classification performance of it completely depends

upon a good selection of γ and ν. The performance also dramatically changes

for different kernels.

4.3.2 LIBSVM: A popular SVM implementation

In the thesis, I have used LIBSVM (Chang & Lin, 2011) for implementing support

vector machines. LIBSVM is a package, which contains implementations of differ-

ent types of support vector machines. It has the implementation of both two-class

and one-class SVM. It also implemented the four types of kernel functions that we

discussed in Section 4.2.4. It also provides methods for model optimisation and

scaling of the data. The one-class SVM of LIBSVM has actually implemented
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Schölkopf’s one-class SVM algorithm. Recently it has also implemented Tax and

Duin’s SVDD (Tax & Duin, 2004).

4.4 Model Optimisation

The biggest problems of trainable classifiers are over-fitting and under-fitting

problems. Over-fitting occurs when the training model cares too much about

misclassification and thus includes so many feature vectors that it cannot gener-

alise the unseen data well. In case of over-fitting, the classification performance

on the validation set is always very high. However, the prediction on unseen data

is not as good as shown on the validation set. Therefore, over-fitting occurs when

a learning algorithm is more accurate in fitting training examples, but less accu-

rate in predicting new examples. Under-fitting basically occurs when the model

cannot fit well on any data including training examples, which means the model

does not match well with the underlying distribution of the data.

Figure 4.7(a) is an example of model over-fitting where the model cares too

much about the misclassification and thus separates the data well in the train-

ing set. However, the separator (curved line in Figure 4.7(b)) cannot predict

anything beyond the data points in the training set and therefore having a very

bad classification performance on the test set. However, in Figure 4.8(a), the

separator (straight line) is quite straight forward, as it does not care much about

the misclassification. But as a result, it has failed to fully detect the supportive

data points in the training data (Figure 4.8(b)). Here, the model under-fits the

data. In both cases, the model will not be efficient enough to perform an efficient

classification on unseen data.

Therefore, a suitable model optimisation process is needed to find the best

model for classification. The cross-validation method used during training over

a range of parameters can be an efficient way to avoid over-fitting and under-

fitting. In this thesis, we have used cross-validation method from LIBSVM and

also devised a modified cross-validation technique (described in Section 6.4.5).

The standard cross-validation method (implemented in LIBSVM) is described in

the next section.
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(a) (b)

Figure 4.7: Model over-fitting in SVM.

(a) (b)

Figure 4.8: Model under-fitting in SVM.
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4.4.1 Cross-validation method

In this thesis we have used two types of cross-validation: i) cross-validation of

the split of training and test set for the generalisation of classification results on

dataset, and ii) cross-validation for finding the best hyper-parameter.

For the first criteria, we divided the data into three parts and took one part

as test set and the other two parts combined as a training set. We alternate

the different part of the dataset to get different training and test set. The test

set will remain unknown to the model generated from the training set. For

finding the best hyper parameters, we have done v-fold cross validation, where

the training set is further divided into v disjoint (no overlaps) parts and one of

its subset is used as the validation set (for testing). The rest of the (v − 1)

subsets act as the training set. Each subset of the whole training set is predicted

once so the cross-validation efficiency is the average performance measure. The

average performance measure on the validation set can be based on Accuracy,

F-score, or any other of the performance measures of the classification (discussed

in Section 4.5.3).

The standard cross-validation, which had been used in earlier experiments (Sun

et al., 2005, 2006a,b, 2007, 2008, 2009a,b; Robinson et al., 2006, 2007a,b, 2008),

may not be efficient enough for generalisation due to the dissimilar nature of

validation sets and test sets. Therefore, a modified cross-validation method has

been devised in this work. In this new method, the training set is created after

some pre-processing and the validation set is taken from the original biologi-

cally meaningful dataset. A further discussion on this method has been given in

Section 6.4.5.

4.4.2 Finding best hyperparameters

A good classification performance of an SVM depends on the selection of the hyper

parameters (discussed in Section 4.2.4). To find an optimum model, an exhaustive

search on the parameters has been done. It tries the values of a set of parameters

across a specific range (known as a Grid Search, Chang & Lin (2011)). It is quite

straightforward through a näıve process (Chang & Lin, 2011). For each different

hyper parameter set, the validation rate is calculated and the hyper parameters
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are picked based on the best average validation rate. For example, for Gaussian

kernel function, there are two hyper-parameters and . The best pair of C and γ is

picked from an exponentially growing sequence of hyperparameter sets based on

the best validation rate. This parameter search helps to evaluate fitting provided

by a set of parameter values using cross-validation. The limitation of this kind

of search is it takes a lot of computational time if we want to search a big range

of hyper parameter values.

The pseudocode for finding the best hyper parameters is given below:

Pseudocode 1 Finding the best hyper-parameters

1: Split the training data into v partitions
2: This gives v different training sets and the corresponding validation sets
3: for each of the training set do
4: Pre-process the data to produce balanced training set
5: end for
6: for each combination of hyper-parameter values do
7: for each of the pre-processed v training sets do
8: Train an SVM
9: Measure performance on the corresponding validation set

10: end for
11: Average the Performance Measure
12: end for
13: Choose the combination of hyper-parameter with the best average

4.5 Imbalanced Data

When training a supervised classification algorithm on a dataset it is important to

consider the proportional representation of the various features being considered.

If a label of interest is significantly under-represented within the dataset, we can

call the dataset imbalanced. The datasets used in this thesis are imbalanced in

nature. Therefore, now I am going to discuss the problem of using the imbal-

anced data in a supervised learning algorithm (i.e. an SVM) and the sampling

techniques to overcome it.
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4.5.1 Problems with imbalanced data

If a dataset is imbalanced, then training is likely to result in a classifier that has

been over-trained on the majority class and can only act as a weak classifier for

the minority class (Chawla et al., 2002, 2003; Japkowicz, 2003). The output of

the classifier will tend to represent the majority class rather than minority class,

which may in turn produce poor performance on the test set. In the dataset

we have used, very few of the base pairs are positive examples (binding sites)

and the rest of them are negative examples. This made the dataset imbalanced

which is not suitable for supervised learning technique and it will over predict

the majority class - the non-binding sites. In order to compensate for imbalanced

data it is often possible to sample from the original dataset in such a way so as

to provide a new dataset that can be used to train the classifier more efficiently.

4.5.2 Sampling

In Japkowicz (2003) it was shown that oversampling by simply repeating elements

of the minority class might not improve the recognition of this class. So a data

based sampling method (Chawla et al., 2002; Radivojac et al., 2004) had been cho-

sen in which the minority class (here, binding site examples) were over-sampled

and majority class (non-binding site examples) were under-sampled. The Syn-

thetic Minority Over-sampling TEchnique (SMOTE) (Chawla et al., 2002) had

been previously used with this data to over-sample the minority class in the train-

ing set (Sun et al., 2006a,b, 2007, 2008, 2009a,b; Robinson et al., 2006, 2007a,b,

2008) . In this method, nearest neighbors are identified for each data point and

thus new instances were created using a Heterogeneous Value Difference Metric

(HVDM) (Wilson & Martinez, 1997).

For features that are continuous in nature the Euclidean distance function

is used for identifying K-nearest neighbour. There are other distance functions

available for such uses, like Camberra, Chebychev, Quadratic, Correlation, and

Chi-square distance metrics (Michalski et al., 1981; Diday, 1974); hyperrectangle

distance functions (Salzberg, 1991; Domingos, 1995); the Context-Similarity mea-

sure (Biberman, 1994); the Contrast Model (Tversky, 1977); Minkowsky (Batch-

elor, 1978); Mahalanobis Distance (Nadler & Smith, 1993), etc. However, Eu-
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clidean distance function is widely used and feasible for continuous data, which

is defined as:

Eculidean distance =

√√√√ m∑
d=1

(xd − yd)2 (4.10)

Here, x and y are two input vectors and m is the number of the attributes.

But Euclidian distance is not feasible for the data with nominal attributes. So

HVDM is used to calculate the distance between two input vectors which may

have both continuous and nominal values. It can be defined as follows:

HVDM(x, y) =

√√√√ m∑
a=1

da
2(xa, ya) (4.11)

Here, x and y are two input vectors with number of attributes m and da(x, y)

is a function that returns distance.

da(x, y) =

{
normalized vdma(xa, ya), if a is nominal

normalized differencea(xa, ya), if a is continuous

(4.12)

In Equation 4.12, VDM is the Value Difference Metric (Stanfill & Waltz, 1986).

For two values x and y of an attribute a, the simplified version of VDM is as

follows:

vdma (x, y) =
C∑
c=1

∣∣∣∣Na,x,c

Na,x

−
Na,y,c

Na,y

∣∣∣∣q (4.13)

Here, Na,x: the number of instances in the training set T that have value x for

attribute a;

Na,x,c: the number of instances in T that have value x for attribute a and output

class c;

C: the number of output classes in the problem domain;

q: a constant, usually 1 or 2;

For example, we have two classes of data, each containing nucleotides, which

can be part of either a binding site or a non-binding site. Here, nucleotides that
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are part of non-binding sites will be denoted as x and nucleotides that are part

of binding sites will be denoted as y.

There are two classes of data:

C1 = 4(x), 1(y), 4 nucleotides that are the part of non-binding sites and 1

nucleotide that is the part of binding sites.

C2 = 2(x), 6(y), 2 nucleotides that are the part of binding sites and 6 nu-

cleotide that is the part of non-binding sites.

For this problem the VDM is calculated as follows:

vdma (x, y) =
∣∣4
6
− 1

7

∣∣+
∣∣2
6
− 6

7

∣∣ = 22
21

After calculating the distance using the HVMD, the oversampling is done us-

ing the following steps: (i) First, we search for its K−nearest neighbours in

the minority using above-mentioned methods. Since the dataset is a mixture of

continuous and binary features, we took the following measures as suggested in

SMOTE.

(ii) For continuous features, a new feature value denoted by xd
new is given by:

xd
new = xd

n + rand(0, 1)× (xd
n − xdNN) (4.14)

where, the difference of each feature between the pattern (xd
n) and its nearest

neighbor (xd
NN ) is taken, and then multiplied by a random number between

0 and 1, and added to the corresponding feature of the pattern.Here xd
NN) is

calculated based on the HVDM functions mentioned earlier.

(iii) For binary features, the majority voting principle is applied to each element

of the K-nearest neighbours in the feature space.

On the other hand, a randomly selected subset of data points from the ma-

jority class was selected for under-sampling. The SMOTE technique significantly

improves minority class recognition compared with just oversampling done by

replacement (Chawla et al., 2002).

4.5.3 Confusion Matrix and Performance Measures

Confusion matrix is a visualisation tool used for supervised learning like SVM.

Each row of confusion matrix represents the prediction class and each column
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represents the actual class. A confusion matrix has the following entries:

True Negative (TN) : correct predictions that an instance is negative.

False Positive (FP ) : incorrect predictions that an instance is positive.

False Negative (FN) : incorrect predictions that an instance is negative.

True Positive (TP ) : correct predictions that an instance is positive.

Predictive Negatives Predictive Positives

Actual Negatives True Negatives (TN) False Positives (FP)

Actual Positives False Negatives (FN) True Positives (TP)

Table 4.1: Confusion Matrix.

There are different performance measures that can be used to measure the effi-

ciency of a classifier, which are as follows:

Recall is the proportion of positive cases that were correctly identified.

Precision is the proportion of the predicted positive cases that were correct.

F-score is the harmonic mean of Recall and Precision.

False Positive Rate is he proportion of negatives cases that were incorrectly

classified as positive.

Accuracy is the proportion of the total number of predictions that were correct.

Recall =
TP

TP + FN
(4.15)

Precision =
TP

TP + FP
(4.16)

F -score =
2×Recall× Precision
Recall + Precision

(4.17)

FP-rate =
FP

FP + TN
(4.18)
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Accuracy =
TP + TN

TP + FN + FP + TN
(4.19)

Accuracy (correct classification) can be an ideal performance measure to report

the efficiency of a classifier. But as we are dealing with an imbalanced dataset,

simply using Accuracy as the performance measure is not appropriate. Predicting

everything as not belonging to a binding site will give a very good Accuracy rate.

Recall, Precision, F-score, and FP-rate derived from the confusion matrix are

more important for the classification problem used in this thesis.

For example, there are 1200 base pairs and amongst these 10 base pairs are anno-

tated as binding sites. If the classifier predicts all the base pairs as non-binding

sites, the performance measures are calculated as follows:

TP = 0; TN = 1190; FN = 10; and FP = 0

In this case, Recall = 0, Precision = infinite, F-score = infinite, and FP-rate = 0

But, Accuracy = 0.99 even though the other measures showing bad performance.

So for this kind of problem Accuracy is not a very suitable performance measure.

In previous studies(Sun et al., 2005, 2006a,b, 2007, 2008, 2009a,b; Robinson

et al., 2006, 2007a,b, 2008), it was found that most of the original algorithms

have high Recall and this is possibly caused by simply over predicting the bind-

ing sites.

In the previous example, if we predict everything as a binding site, then

TP = 10; TN = 0; FN = 0; and FP = 1190

In this case, Recall = 1.0, Precision = 0.0008, F-score = 0.00016, and FP-rate =

1.0

It shows measuring the performance of our meta-classifier with just Recall is

not correct. It is easy to get high Recall by predicting everything as binding

site. On the other hand, Precision can be a very good measure for measuring

classifier performance, as it is the proportion of actual predictive samples from

the binding sites. Increasing Precision value can be one of our main goals, but
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increase of Precision occurs at the cost of decrease in Recall. Again, it is easy

to get high Precision by predicting nothing as a part of binding sites. If in the

previous example, the confusion matrix becomes as follows,

TP = 9; TN = 1180; FN = 4; and FP = 7

In this case, Recall = 0.69, Precision = 0.56, F-score = 0.62, and FP-rate = 0.006

But if the number of false-positive decreases, the Precision will increase at the

cost of Recall.

So, for TP = 9; TN = 1180; FN = 8; and FP = 3

Recall = 0.53, Precision = 0.75, F-score = 0.62, and FP-rate = 0.002

Both of the classifiers are good and the F-score values in both cases are bet-

ter, though the FP-rate for the later example is less than the previous one.

Therefore, taking account of both Recall and Precision using the F-score

should give a good measure of classification performance since the F-score is ac-

tually a kind of weighted average of Recall and Precision. In addition reducing the

FP-rate should also be another major concern to verify a classifier’s performance.

4.6 Summary

In this chapter, I have presented a brief discussion on various classification meth-

ods that have been used in this thesis. The main aim of the discussion was to

introduce different Support Vector Machine techniques as well as different issues

on the datasets that might decrease classification efficiency. The issue on imbal-

anced dataset has been addressed and the techniques for processing this type of

data properly has been discussed. The databased technique has been described

as the remedy to the problem of imbalanced data and an oversampling tech-

nique (SMOTE) has been explained thoroughly. The performance measure for

the classification has been described along with the rationale behind the selected

performance measure that would be ideal for analysing the results. I have also

mentioned about a new cross-validation technique that has been employed in
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different experiments along side with the standard cross-validation technique im-

plemented in LIBSVM and this will be discussed thoroughly in later chapters.The

results from the new cross-validation method may potentially be an interesting

outcome of the thesis.
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Description of Datasets

5.1 Introduction

The generation of annotated sequences for the testing and evaluation of compu-

tational transcription factor binding site predictions is a crucial, non-trivial step.

To generate a high quality annotated promoter dataset, it is essential to select

an organism which have a large set of sequences and are associated with high

quality, experimentally determined annotations of in vivo cis-regulatory binding

sites. Therefore it is important that any annotation used should be experimentally

verified. However, experimental determination of cis-regulatory binding sites is

currently an expensive and time-consuming process. Such functional annotation

of non-coding sequences is typically only available for particularly well-studied

model species. A number of species, such as E. coli, S. cerevisiae, D. melanogaster

or M. musculus, etc., have not only had their genome sequenced, but have also

been the subject of intense regulatory characterisation. But it is important to

understand that even for the best studied systems there is no assurance that this

characterisation has incorporated all biologically relevant binding sites.

Many computational algorithms can make implicit assumptions about the

type of cis-regulatory organisation found in the model organism. There are algo-

rithms that use clustering of predictions to indicate a regulatory module. How-

ever, it is not yet clear to what extent the additional levels of complexity found in

the cis-regulatory regions of advanced multi-cellular organisms will be amenable
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to different computational approaches for predictions. These computational ap-

proaches for transcription factor binding site predictions are also prone to many

false predictions.

This chapter and the next describe the base prediction algorithms used in

this thesis and most of the initial experiments undertaken while trying to find

improvements in prediction accuracy. Both yeast data and mouse data used in

this chapter has been inherited from previous studies (Sun et al., 2005, 2006a,b,

2007, 2008, 2009a,b; Robinson et al., 2006, 2007a,b, 2008). Both of these datasets

will be discussed in this chapter. This chapter then continues with an analysis

of the prediction accuracy of the base algorithms used separately while the next

chapter considers the combination of the base algorithms analysed via an SVM.

I have used both of the datasets presented here with new experiments described

in Chapter 7, and Chapter 8 will introduce a newer and more up to date dataset

and the experiments performed with it.

5.2 Choice of Experimental Organism

A simple and well-suited regulatory system is preferable for the initial test of proof

of concept of the approaches presented in this thesis. The first studies, exploring

the biochemical mechanisms on gene regulation, were conducted in E. coli (Jacob

& Monod, 1959; Ptashne & Gann, 2002) and therefore can be an obvious choice

in this context. E. coli has a compact genome and this genome is also one of

the best-annotated genomes currently available. Its promoters are small and

simple and found immediately upstream of the gene or operon (a cluster of genes

regulated by single promoter). It also does not have any modular organisation

of the binding sites. Furthermore, bacterial genes are typically regulated by

only 2-3 TFBS per gene and these sites are contained within 200-300 bps of

the sequence. Therefore, finding TFBSs in a prokaryotic model has significantly

reduced challenge compared with eukaryotes.

However, moving from a prokaryotic model to a eukaryote model does not

represent a simple extension of basic regulatory principles. The organisation of

both the genome and the cellular environment is fundamentally different in this

case. Given these considerations, the eukaryote yeast (S. cerevisiae) has been
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chosen as the first experimental organism. Yeast has the most completely anno-

tated sequence and is therefore a more appropriate model for initial evaluation

of binding site predictions. It has many of the advantages of E. coli as a model

organism. It has a small compact genome with a typical size for genes regulatory

sequence of approximately 500 bps. It has also been well studied, and experi-

mentally annotations are readily available from various public databases (Zhu &

Zhang, 1999; Montgomery et al., 2006). It is particularly rich in information such

as co-regulated clusters of genes or orthologous sequences (sequence from genes

that have evolved directly from an ancestral gene) for phylogenetic footprinting,

which is used by a number of algorithms used in this thesis. Thus it represents a

good initial model for testing approaches where there is a possibility for expand-

ing the work to the more complex regulatory organisation found in eukaryotic

multi-cellular organisms.

As mentioned binding sites differ from one species to another, some organisms

have a much more complex organisation of their gene regulatory regions, which

makes the positions of their binding sites more difficult to predict than yeast data.

Unlike in yeast, the location of binding sites may not be proximal to the promoter

site and can even be thousands of base pairs away, both upstream and downstream

as well as inside intronic regions. Complex organisms can have a number of

other biological features in the non-coding sequence, which are not related to

gene regulation or transcription factors. I have therefore chosen a complex multi-

cellular organism, mouse (M. musculus), as the second model organism to validate

my method. The mouse genome has all of the above properties and in addition

it has more non-coding DNA sequences than the yeast genome.

5.3 Selection of Dataset

Generation of appropriate datasets for use in evaluating the performance of

binding site prediction algorithms is a challenging problem with no clear solu-

tion (Tompa et al., 2005). As mentioned before, promoter sequences that have

been experimentally annotated are commonly used in this case with no assurance

of the completeness of sequence annotations. In the initial experiments, to deter-

mine suitable approaches to improve binding site predictions, I used an existing
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yeast dataset (Sun et al., 2005, 2006a,b, 2009a,b; Robinson et al., 2006, 2007a,b,

2008). This consisted of 112 annotated promoter sequences, which were selected

for training and testing the algorithms, a total of 67,782 bps of sequence data.

These 112 annotated promoter sequences were extracted from the S. cerevisiae

Promoter Database (SCPD) (Zhu & Zhang, 1999). For each promoter, 500 bps

of sequence taken immediately upstream from the transcriptional start site were

considered sufficient to typically allow full regulatory characterisation in yeast

(Zhu & Zhang, 1999). If annotated binding sites lay outside of this range, then

the range was expanded accordingly. Likewise, where a 500 bps upstream region

would overlap a coding region then it was truncated accordingly. See Table 5.1

for details.

Total number of sequences 112

Total sequence length 67,782 bps

Average sequence length 605 bps

Average number of TFBSs per sequence 3.6

Average TFBSs width 13.2 bps

Total number of TFBS 400

TFBS density in total dataset 7.8%

Table 5.1: A summary of the yeast dataset.

I used an existing mouse dataset (Sun et al., 2007, 2008; Robinson et al., 2008)

as well.The mouse dataset was constructed from the ABS (Blanco et al., 2006)

and OregAnno (Montgomery et al., 2006) databases. 47 annotated promoters

sequences were taken with TBFS for mouse from these databases and merged

together into a single dataset.

The sequence length in base pairs extracted from ABS is typically 500 bps

and those from OregAnno are around 2000 bps in length. Most of the promoters

are upstream of their associated gene and a few of them are extended over the

first exon including intronic regions. There are 60851 nucleotides in total in the

dataset. See Table 5.2 for details.
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Total number of sequences 47

Total sequence length 60851 bps

Average sequence length 1294.70 bps

Average number of TFBSs per sequence 2.87

Average TFBSs width 12.78 bps

Total number of TFBS 135

TFBS density in total dataset 2.85%

Table 5.2: A summary of the mouse dataset.

Having constructed the datasets, two-third of each dataset (both yeast and mouse)

has been used as training set in the experiments that are discussed in Section 6.4.

The other one-third of the data has been used as a test set. In this chapter, this

biologically meaningful test set has been used, that is the full test set, since I am

not constructing vectors of data and not training a classifier. This has been done

to allow comparison between the results in this chapter and those in Chapter 6.

5.4 Description of the Algorithms Used

A full range of computational approaches to the binding site prediction problem

has already been presented in Chapter 3. This chapter describes a wide diversity

of binding site prediction algorithms selected for the analysis. Most of the selected

algorithms were published and well established in the bioinformatics research

community. The exceptions were a small number of algorithms, which were either

developed in-house or by collaborating institutions.

The different algorithmic strategies are dependent on the values of various

parameters. These parameters being expected to relate in differing ways to

the underlying organisation of the DNA sequences being analysed. A previous

study (Robinson, 2006) showed that attempting to optimise the parameters had

little or no effect on the performance of the integrated process. Hence default

parameter values taken from the literature were used in this study. These param-

eter values are therefore already selected to be good values in the literature. It

was important that this study was carried out using a wide range of different al-
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gorithmic strategies as possible. The intention was to feed the output from these

evidences into the integration process described in Chapter 6, for which again,

maximising the diversity of the set of prediction strategies was a key requirement.

5.4.1 Algorithms used for the yeast data

For yeast, the selected algorithms were typically taken from the literature al-

though some were developed in-house or by the collaborators as mentioned in the

previous section. Table 5.3 lists the algorithms used with the yeast dataset. Pa-

rameter settings for the algorithms were taken from the literature, if not available,

default settings were used.

Strategy Algorithms

Scanning Algorithms Fuzznuc

MotifScanner

Ahab

Statistical Algorithms PARS

Dream (2 versions)

Verbumculus

Co-regulatory Algorithms MEME

AlignACE

Sampler

Evolutionary Algorithms SeqComp

Footprinter

Table 5.3: The 12 Prediction Algorithms used with the yeast dataset.

Fuzznuc 1 , MotifScanner (Thijs et al., 2001, 2002) and Ahab (Rajewsky et al.,

2002) were chosen as scanning algorithms (described in Section 3.3.1). Fuzznuc,

developed as a part of EMBOSS bioinformatics software analysis package, is a

simple scanning algorithm. It performs a regular expression search, using IU-

PAC (International Union of Pure and Applied Chemistry) codes (discussed in

Section 3.2.1), on a DNA sequence for the set of provided consensus motifs. Fuz-

1http://www.hgmp.mrc.ac.uk/Software/EMBOSS/
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znuc does not use any model of the background sequence and allows a number of

user-defined mismatches.

MotifScanner, a part of the INCLUSive 1 suite (Thijs et al., 2002) of bioinfor-

matics tools, searches for the sequences that have a high likelihood score given a

weight matrix motif representation (described in Section 3.2.2) along with higher

order Markov model (described in Section 3.2.5). Unlike Fuzznuc, it uses the

model of the background sequences for the Markov model. Finally, Ahab is an al-

gorithm designed to search for both enhancers and binding sites in the genome of

multi-cellular organisms. Ahab generates a local Markov model of the background

within a sliding window and then within that window it searches for matches to

a weight matrix motif model.

The statistical algorithms (described in Section 3.3.2) selected for the single se-

quence analysis in this study were PARS 2, DREAM (Abnizova et al., 2006), and

Verbumculus 3 (Apostolico et al., 2000, 2004). PARS is a heuristical algorithm

designed specifically to search for patterns exhibiting the kinds of symmetry that

might be associated with dimerically (in which two macromolecules, such as pro-

teins or nucleic acids, bind by non-covalent bonds) binding transcription factors.

PARS was developed by one of my supervisors, Dr. Mark Robinson (Robinson,

2006). DREAM (Detection of Regulatory Elements and Modules) is an algorithm

developed in collaboration with Dr. Irina Abnizova. DREAM first generates a lo-

cal Markov model (described in Section 3.2.5) of the background sequence within

a sliding window and then searches for clusters of words within the window, which

are significantly unlikely to occur given the background model. Finally, The sta-

tistical algorithm Verbumculus searches for over- and under-represented words in

a sequence. It uses a suffix tree (a data structure that presents substring of a

given string as nodes) to identify statistically unlikely patterns in a computational

efficient manner and thus avoids the scaling issues that arise when enumerating

all words over a range of sizes in large sequences

AlignACE (Roth et al., 1998; Hughes et al., 2000) , MEME (Bailey & Elkan,

1995), and Sampler/ Mosta (Reiss & Schwikowski, 2004) are the co-regulatory

1http://homes.esat.kuleuven.be/ sistawww/bioi/thijs/download.html
2http://sourceforge.net/projects/pars
3http://www.cs.ucr.edu/ stelo/Verbumculus
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algorithms (described in Section 3.3.3) used in this study. AlignACE, an imple-

mentation of a Gibbs sampling algorithms (Lawrence et al., 1993) (described in

Section 3.3.3.1), allows searches for multiple different binding motifs within a set

of sequences by using an iterative masking procedure. Motifs located on the com-

plementary strand are also included in the search. MEME is an extension of the

Expectation maximisation algorithm (described in Section 3.3.3.2). MEME in-

corporates a heuristic for selecting an optimal start point preventing convergence

to a locally optimal solution. Finally, Sampler is another algorithm that uses

Gibbs sampling algorithm and included in the set of algorithms as part of the

collaboration (with Institute for Systems Biology). Sampler, being a part of the

netmosta motif searching tools, incorporates a higher order background model

and requires that the number of matching motifs fall within a predetermined

range.

Two phylogenetic algorithms(described in Section 3.3.4) that were included

in this study are SeqComp (Brown et al., 2002) and Footprinter (Blanchette &

Tompa, 2003). SeqComp is a simplistic pair-wise comparison algorithm that com-

pares two sequences and detects if they contain any stretches of a predetermined

size. A similarity threshold value is used in this algorithm (Brown et al., 2002). It

was designed specifically to search for regulatory modules rather than individual

sites. Footprinter is a multiple alignment (described in Section 2.4) algorithm

that identifies the best-conserved motifs in a set of homologous sequences (se-

quences with highly similarity). The phylogeny of the homologous sequences is

used to factor in the expected evolutionary distance and therefore divergence

between the sequences, which enables more accurate predictions.

5.4.2 Algorithms used for the mouse data

Seven sources of evidence were used as input in this study. Table 5.4 lists the

algorithms used with the mouse dataset. A number of sources of evidence were ex-

tracted from the UCSC genome bioinformatics website 1 (Karolchik et al., 2003).

1http://genome.ucsc.edu/cgi-bin/hgGateway
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Strategy Algorithms

Scanning Algorithms MotifLocator

EvoSelex

Evolutionary Algorithms Regulatory Potential

PhastCons (Conserved)

PhastCons (Most Conserved)

Indirect Evidence CpGIsland

Negative Evidence Exon

Table 5.4: The 7 Prediction Algorithms used with the mouse dataset.

The two scanning algorithms included in this study are: MotifLocator (Thijs

et al., 2001, 2002) and EvoSelex. MotifLocator scans using the PHYLOFACTS

matrices from the JASPAR database (Sandelin et al., 2004) (mentioned in Sec-

tion 3.2.2). The 174 matrices were assembled from the paper Xie et al. (2005).

A scanning procedure is designed to produce a distribution for each individual

matrix against random sequence and selected threshold values. This reduces the

number of potential false positive predictions. The Evoselex algorithm uses a

simple wrapper around Fuzznuc (described in the previous section) to identify

motifs assembled from the paper Ettwiller et al. (2005) and these motifs do not

have any degeneracy in the consensus sequences.

Three phylogenetic evidence namely Regulatory Potential (Kolbe et al., 2004)

and two versions of PhastCons (conserved and most-conserved) (Siepel & Haus-

sler, 2004; Siepel et al., 2005) are used. Regulatory Potential (RP) is used to

compare frequencies of short alignment patterns between known regulatory ele-

ments and neutral DNA. The RP scores were calculated using alignments from

the mouse, rat, human, chimpanzee, macaque, dog, and cow. One the other

hand, PhastCons is an algorithm that computes sequence conservation from mul-

tiple alignments using a phylo-HMM strategy (mentioned in Section 3.2.5). It is

the part of the PHAST (PHylogenetic Analysis with Space/Time models) pack-

age. The algorithm was used with two levels of stringency: conserved and most

conserved, which are used as separate sources of evidence.

The CpGIsland algorithm is a kind of indirect evidence of existence of regu-

latory regions in the genome region (mentioned in Section 2.4). The CpGIsland
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algorithm finds CG sequences in the regulatory that are typically found near tran-

scription start sites and are rare in vertebrate DNA. The scores were obtained

from the UCSC genome browser custom track which calculates the ratio of ob-

served to expected CpGs (Gardiner-Garden & Frommer, 1987). Finally, Exon

predictions are included for those sequences where the sequence extends over the

first exon and into the next intronic region and should be considered a type of

negative evidence.

5.5 Statistics of the Algorithms

This section will detail the results obtained during the course of this research.

A critical analysis of the results will be given in the discussion in Section 5.6.

The performance of each algorithm was calculated by comparing the prediction

at each individual nucleotide position in the sequence with the annotated values.

In this way the frequencies of the four possible outcomes at a given sequence

position could be calculated, both across an individual sequence and the entire

dataset:

1. Binding site predicted and also annotated in the database: True Positive

2. Binding site predicted but not annotated in the database: False Positive

3. Binding site not predicted and also not annotated in the database: True Neg-

ative

4. Binding site not predicted but is annotated in the database: False Negative.

This then allowed the calculation of the statistical measures detailed in Sec-

tion 4.5.3.

5.5.1 Algorithm performance for the yeast dataset

A full evaluation of the baseline performance of the twelve algorithms used in the

case of yeast is obviously a necessary prerequisite for any comparative analysis.

Table 5.5 contains the details of the performance of each of the algorithms us-

ing the range of statistics chosen to explore the different aspects of classification
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performance for each of the algorithms. These statistics were calculated based

on performance across the test dataset only and taken from Robinson (2006).

Fuzznuc achieves the best F-score followed by MotifScanner and MEME. MEME

also achieves the lowest FP-rate value.

Algorithm TP FP FN TN Recall Precision F-score FP-rate Accuracy

Fuzznuc 683 2213 962 18655 0.415 0.236 0.301 0.098 0.859
MotifScanner 448 1682 1197 19186 0.272 0.210 0.237 0.075 0.872

Ahab 1108 10806 537 10062 0.674 0.093 0.163 0.480 0.496
PARS 189 1551 1456 19317 0.115 0.109 0.112 0.069 0.866

Verbumculus 349 2545 1296 18323 0.212 0.121 0.154 0.113 0.829
Dream(over) 472 5273 1173 15595 0.287 0.082 0.128 0.234 0.714

Dream(under) 474 5967 1171 14901 0.288 0.074 0.117 0.265 0.6843
Sampler 78 1489 912 20034 0.079 0.049 0.061 0.069 0.893
MEME 262 1305 789 20157 0.249 0.167 0.200 0.061 0.907

AlignACE 174 1393 837 20109 0.172 0.111 0.135 0.065 0.901
SeqComp 352 1215 3421 17525 0.093 0.225 0.131 0.065 0.794

Footprinter 460 1107 4974 15972 0.085 0.294 0.131 0.065 0.729

Table 5.5: Performance measures of sources of evidence on the yeast data.

Figure 5.1 illustrates the variation in Precision, Recall and F-score across the dif-

ferent algorithms. Note that larger values are preferable for all of these measures.

Figure 5.1: Comparison between Recall, Precision and F-score from different base

algorithms on the yeast data.
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Figure 5.2: Comparison between FP-rate from different base algorithms for the

yeast data.

Figure 5.2 shows the FP-rate scores for each of the algorithms. Smaller values

are to be preferred for this measure.

Figure 5.3: Comparison between Accuracy from different base algorithms for the

yeast data.

Figure 5.3 shows the Accuracy scores for each of the algorithms. Larger values

are to be preferred for this measure.
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5.5.2 Algorithms performance for the mouse dataset

Like yeast, a full evaluation of the baseline performance of the seven algorithms

used in case of mouse has been undertaken for comparative analysis. Table 5.6

contains details of the performance of algorithms for the mouse data using the

range of statistics chosen to explore the different aspects of classification per-

formance for each of the algorithms. These statistics were calculated based on

performance across the test dataset only. PhastCons (conserved) achieves the

best F-score closely followed by EvoSelex. However, EvoSelex has better FP-rate

than PhastCons (conserved). CpG Island and Regulatory Potential achieve the

lowest FP-rate value.

Algorithm TP FP FN TN Recall Precision F-score FP-rate Accuracy

MotifLocator 333 4385 451 13739 0.425 0.071 0.121 0.242 0.744

EvoSelex 273 3139 511 14985 0.348 0.080 0.130 0.173 0.807

Regulatory 52 455 732 17669 0.066 0.103 0.081 0.025 0.937

Potential

PhastCons 526 6560 258 11564 0.668 0.074 0.134 0.362 0.639

(conserved)

PhastCons 157 1686 627 16438 0.200 0.085 0.119 0.094 0.878

(most conserved)

CpG Island 27 436 757 17688 0.034 0.058 0.043 0.024 0.937

Exon 26 855 758 17269 0.033 0.029 0.031 0.047 0.915

Table 5.6: Performance measures of sources of evidence on the mouse data.

Figure 5.4 illustrates the variation in Precision, Recall and F-score across the dif-

ferent algorithms. Note that larger values are preferable for all of these measures.

82



Fifth Chapter

Figure 5.4: Comparison between Recall, Precision, and F-score from different

base algorithms for the mouse data.

Figure 5.5 shows the FP-rate scores for each of the algorithms. Smaller values

are to be preferred for this measure.

Figure 5.5: Comparison of FP-rate from different base algorithms for the mouse

data.

Figure 5.6 shows the Accuracy scores for each of the algorithms. Larger values

are to be preferred for this measure.
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Figure 5.6: Comparison between Accuracy from different base algorithms for the

mouse data.

5.6 Discussion

The set of results obtained for the yeast data illustrates a wide range of per-

formances among the base algorithms: Recall ranges between 9-68%; Precision

ranges between 7-25%; F-score ranges between 8-30%; FP-rate ranges between

7-48%, and Accuracy ranges between 50% - 88%. It is really interesting to see

that the Accuracy rate is really high for most of the algorithms. But the Precision

and Recall is not that high as expected. This supports the claim that has been

made in Section 4.5.3 that for this kind of dataset that has very small percentage

of minority class data, Accuracy is not a very good performance measure.

The set of results obtained for mouse data also illustrates a wide range of

performances among the base algorithms: Recall ranges between 3%-42%; Pre-

cision ranges between 2%-10%; F-score ranges between 3%-13%; FP-rate ranges

between 2%-24%, and Accuracy ranges between 63% - 94%.

As we know, Recall (True positive rate) is the proportion of positive cases that

were correctly identified. But Recall can easily be increased by over-prediction.

So, we cannot rely on Recall only for better prediction measures. On the other

hand, increase in Precision can improve the prediction result considerably, but it

may decrease the True Positives in the prediction. Combining both Recall and

Precision should be a solution. Hence, F-score ought to be a useful performance
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measure, which can have a higher value (say more than 50%) if both Recall and

Precision have higher values. A higher F-score with reasonable values of Recall,

Precision and FP-rate could be good criteria for choosing the best prediction

algorithms. From the results of yeast data (Table 5.5), it is evident that Fuzznuc

is the best prediction algorithm with its reasonably better F-score and other per-

formance measures than the other prediction algorithms. Among the prediction

algorithms from mouse data (Table 5.6), EvoSelex can be chosen as the best

algorithm for its higher F-score with reasonable Recall, Precision and FP-rate.

Though, PhastCons (conserved) has the highest F-score, the FP-rate is higher

than EvoSelex.

Individual algorithms exhibit some improvement in Recall. But the variation

of the Recall value is really wide. The scanning algorithms show the same type of

performance. Both of them have higher Recall values. But Precision values are

really low in the cases of all the algorithms. Regulatory Potential, a co-regulatory

algorithm gives the best Precision value though it is not much better than other

base algorithms. So, it can be said that all the algorithms are unable to reliably

identify real binding sites.

As a result of overall small Precision values, a higher value for F-score is only

possible where there are higher Recall values. The three algorithms (MotifLocator,

EvoSelex, and PhastCons (conserved)) have the highest F-score as all of them

have higher Recall values. This implies that the increases in Recall must have

involved some kind of trade-off and increases in the FP-rate indicate that it was

not possible to improve the performance of this measure in any instance.

It is important to remember that a key limitation of all scanning algorithms

is that they require good quality and a large number of position weight matrices

or consensus sequences available to them. In the dataset used for this study, 27

position weight matrices were extracted from the TRANSFAC database (Win-

gender, 2008). But the promoter sequences extracted from the SCPD database

contain annotations for 69 unique transcription factor binding sites. It can be

immediately seen that the scanning algorithms are fundamentally limited in the

number of sites in this dataset that they could possibly predict. Another impor-

tant issue is that the quality of position weight matrices and consensus sequences

is heavily dependent on the amount and quality of the data used to generate
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them. As a result, it might be expected that the optimal threshold settings for a

scanning algorithm might vary from binding site to binding site thus making it

very hard for the optimisation process to find a global optimal value.

Another reason for such unreliable results can be due to the fact that the

algorithms were unable to efficiently search the parameter space. Again, there

are no sets of experimentally annotated regulatory sequences for which there

is absolute confidence that no binding sites have been missed, or even that all

positive annotations are reliable. The dataset selected (SCPD for the yeast and

ABS-ORegAnno for the mouse) represents one of the highest confidence dataset

available but uncertainty still remains even here. Where inaccuracies are present,

this will cause the algorithms to be unfairly penalised. Furthermore, sequences

may differ with respect to the ease with which the algorithms are able to predict

binding sites within them. For example, the presence of DNA features such as

repeats, scaffold attachment sites; etc. may influence the case, which with the

various algorithms are able to detect genuine binding sites against the background

of the non-regulatory sequence.

5.7 Summary

In this chapter, I have given a brief description of the experimental organisms

used in this thesis, their genomic datasets, and the various base algorithms, which

will be used in the later chapters for further experiments. I have also discussed

and analysed a comparative analysis of the performance measures of different

prediction algorithms for both yeast and mouse datasets using a selection of

performance metrics. The results showed some variation in the prediction results

and it is not clear whether this is due to a lack of precision on the part of

the algorithms or flaws and omissions in the experimental annotations. But

these results certainly provided the motivation for the research introduced in the

following chapters. In these chapters I have explored whether integrating the

results from all the base prediction algorithms can provide a much better overall

prediction than each of them gave individually.
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Chapter 6

Integration of Algorithmic

Predictions Using Non-linear

Classification Techniques

6.1 Introduction

As seen in the last chapter, the maximum precision of established binding site

prediction algorithms, as tested on annotated yeast and mouse sequences, re-

mains poor. The algorithmic strategies represented in this study are diverse and

incorporate differing sources of biological information to aid the predictive pro-

cess. In Chapter 3, it was shown that these algorithms have their own weaknesses

and strengths and combining these outputs may lead to better predictions (Che

et al., 2005; Huber & Bulyk, 2006; Romer et al., 2007; Wilczynski et al., 2008) .

If one algorithm misses any binding sites another algorithm may catch that site.

There is, therefore, good reason to believe that the set of binding sites predicted

correctly by the individual algorithms are likely to form non-identical sets. If

these predictions do indeed complement each other they could be expected to

provide significantly more information when taken in combination. Hence this

chapter explores the possibility that the combination of all the base algorithms

will give better predictions than the algorithms themselves.

Section 3.4 describes a number of different approaches (BEST, Multifinder,

87



Sixth Chapter

WebMOTIFS, MEMOFinder, etc.) where the results from different algorithms

have been combined together for improved prediction and in the previous chapter,

the datasets to be used in this thesis and the basic prediction algorithms that will

be combined in a meta-predictor were discussed. In this chapter, I am going to

describe the classification approach that has been undertaken. This approach is

somewhat similar to those approaches described above. Meta-data (motif scores)

are taken from different algorithms and are combined together anticipating that

using them together would combine the strengths of their different algorithms.

Here I have applied classification instead of clustering. This whole chapter will

describe the classification technique I have used, the first set of experiments per-

formed, as well as a comparative analysis with the results from the base prediction

algorithms.

6.2 Classification Approach

As mentioned before, each of these basic algorithms has their own particular lim-

itations and strengths. Taken in combination, it might be expected that they

provide more information about TFBSs than they do individually. These com-

bining algorithms are called ensemble algorithms in the machine learning field

and have proven to be extremely successful (Dietterich, 2000). The initial ap-

proaches (Sun et al., 2005, 2006a,b, 2007, 2008, 2009a,a,b; Robinson et al., 2006,

2007a,b, 2008) were to provide these algorithmic predictions as input to a Support

Vector Machine (SVM), which has been trained to use the original predictions to

make higher specificity predictions on the yeast data (described in Section 5.3).

Among these approaches most of them adopted sampling techniques (described in

Section 4.5.2). Some of the approaches (Robinson et al., 2006, 2007a, 2008; Sun

et al., 2007, 2008, 2009a,b) used post-processing (described in Section 6.4.4). Us-

ing negative examples from different sources was undertaken in Sun et al. (2008).

Among these approaches only few of them (Sun et al., 2007, 2008; Robinson

et al., 2008) used the mouse data and rest of them used the yeast data described

in Chapter 5. Contextualisation of data (windowing technique) was only used for

the yeast data (Sun et al., 2005, 2009a,b; Robinson et al., 2007b).

My work will adopt the same approach (integration, sampling, training an
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SVM model, post-processing, etc.) but will considerably extend it with newer and

up-to-date datasets, techniques and improved cross-validation method. Firstly in

this chapter, I will run experiments with the mouse data inherited from the

previous research. I will also use the windowing technique on the mouse data,

which has never been applied. The most interesting extension of my work over

the previous research is the new modified cross-validation and it will be applied

on the both datasets.

As noted above the output from the different sources of evidences discussed

in the previous chapter has been combined and used as input to a SVM. In fact,

two types of SVM have been used– a two-class SVM and a one-class SVM (both

described in Chapter 4).

The approach can be divided into three major steps:

• Pre-processing data

• Training and testing an SVM model

• Post-processing data

Figure 6.1 shows the complete workflow of the method and these will be discussed

in detail in Section 6.4.

6.3 Representation of Data

There are a number of possible ways to present the base algorithm predictions to

the classification algorithms (motif scores). Therefore, experiments were repeated

using different representation of data in order to clarify these issues.

6.3.1 Data structure

The predictions obtained, mentioned in the previous chapter, were used as the

input datasets for the classifiers. The data is presented to the classification algo-

rithms as an n×(m+1) matrix with each row vector representing the respective

predictions for a given position within the sequence of the promoter region (see
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Figure 6.1: Workflow of integration sources evidence.

Figure 6.1). Here, n is number of base pairs and m is the number of features

with an extra column representing the label for the data. This column, the first

column of the matrix, contains annotations from an appropriate database (SCPD

for yeast, and ABS and ORegAnno for mouse) giving our best estimate for the

known binding site positions. The rest of the columns give the m predictions

from the m base algorithms at each binding site position. The matrix was built

by simply concatenating all of the sequences used. The label column is used

when training the SVM, but not used when testing the SVM except of course to

evaluate its ability at the end.

6.3.2 Windowing input vectors to include contextual in-

formation

It is not clear whether contextual information about neighbouring positions will

be significant when working with a meta-analysis of the base predictions. It is

possible that this kind of contextual information has already been summarised in
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the process of making the raw algorithmic predictions. Then again it may be the

case that further contextual information can further guide accurate classification.

To resolve this question, the experiments were first performed with classification

performed on the set of predictions made at each base position as described in

Section 6.3.1. The experiments were then repeated but this time each base po-

sition was represented by a collection of predictions. These predictions represent

the sets of predictions within a window centred on the base position of interest

(see Figure 6.2).

Figure 6.2: Contextualising input vectors with window size 3.

As mentioned earlier, this technique was applied on the yeast data described

in Sun et al. (2005, 2009a,b). In this thesis, I have extended the same approach

to the mouse data. I, therefore, have contextualised the training and test data

by windowing the vectors. For example, in Figure 6.2, one location either side

has been included, giving a window size of 3. With this window size, if there are

m algorithms then each input vector is now 3×m plus the label for the middle

base pair position. The 3×m matrix consisting of the predictions from the base

pair previous to the one being trained, the predictions for this particular base

pair itself and the predictions from the base pair after the trained one taken in

this order. In this work, a window size from 3 to 7 in increments of 2 has been

set. Therefore, for window size 5 we include two locations either side and for
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window size 7 we include three locations either side and so on.

6.4 Methodology for Two-class SVM

In this section, I have described the two types of experiments that were run on the

yeast and the mouse data. The same experiments had been performed on yeast

data in previous studies and taken from Sun et al. (2005, 2006a,b, 2009a,a,b);

Robinson et al. (2006, 2007a,b). The experiments are:

(a) Using part of the original promoter region deemed to be not in a TFBSs as

negative examples as described above.

(b) Using windowed data containing data mentioned in a with windowing (see

Section 6.3.2) so that the contexualised data also contain its surrounding

information.

Therefore, there are 2 different training sets based on each case mentioned above:

Case 1: Original yeast and mouse data, which will be denoted as yeast for yeast

data and mouse for mouse data.

Case 2: Case 1 with the addition of windowing. Window sizes 3, 5 and 7 have

been used in the experiments. For the yeast data, I will denote the data as

yeast+w3 (for window size =3), yeast+w5 (for window size = 5) and yeast+w7

(for window size = 7). For mouse data, it will be mouse+w3, mouse+w5,

mouse+w7, etc.

In addition some pre-processings (data division, normalisation and sampling)

have been undertaken on the training set and post-processing on the prediction

set. However, before discussing these steps at first I will present the statistics of

both yeast and mouse data.

6.4.1 Statistics of the datasets

Table 6.1 shows the statistics of both yeast and mouse datasets. Here, 7.8% of

the whole yeast data (also known as positive examples) contains base pairs that

are parts of binding sites. Whereas, for mouse it is only 2.9%. In both datasets

92



Sixth Chapter

(yeast and mouse) there are a number of vectors that are repeated. Vectors of this

type (repeats that occur in both negative and positive example classes) are called

inconsistent vectors, which make up about 69% of the yeast data and 20% of

the mouse data (see Table 6.1). Only the same 870 vectors, in the yeast dataset,

repeated in two different classes (negative and positive classes) comprise these

inconsistent data vectors and some examples are very abundant. For example,

only 8 inconsistent data vectors make almost 25% of the yeast dataset. For

the mouse data, only 77 vectors act as inconsistent and among them merely 3

inconsistent vectors make almost 17% of the mouse dataset.

Organism Original Inconsistent Repeats Unique

Yeast Negative examples 62,502 40,656 17,064 5,671

Positive examples 5,280 6,039 1,794 850

Total 67,782 46,695 18,858 6,521

Mouse Negative examples 59,070 11,963 20,731 31,262

Positive examples 1,781 156 238 1,484

Total 60,851 12,119 20,969 32,764

Table 6.1: Statistics of inconsistencies and repetitions in yeast and mouse

datasets. All the numbers in the table are in base pairs.

From Figure 6.3, we can see that, in the yeast dataset, one data vector is repeated

5460 times in the negative example class labeled as the part of non-binding sites

whereas the same vector is present 414 times in the positive example class where

it is labeled as the part of binding sites. This single vector, which is inconsistent,

constitutes more than 8.5% of the whole yeast dataset. There are also other

inconsistent data vectors like this present in the dataset.
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Figure 6.3: Frequency of inconsistent data rows in the yeast data. First 100

inconsistent vectors are included in the figure.

The same is true for the mouse data. Here, one data vector is repeated 6,337

times in the negative example class whereas the same vector is present 19 times

in the positive example class (see Figure 6.4).

Figure 6.4: Frequency of inconsistent data rows in the mouse data.

There are also repeats that occur in only one class and these are simply called

repeats, which are 27.8% for the yeast data and 34.5% for the mouse data. The
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vectors that occur only once overall are called unique. Surprisingly the yeast data

has only 9.6% unique data vectors. However, the mouse data has 54% unique

vectors.

6.4.2 Pre-processing data

The training data used in the SVM consists of a vector of predictions taken from

the different original (base) algorithms, together with a label that represents the

best available evidence for that particular base pair being, or not being, part of

a TFBSs. Most of the biological training data used are imbalanced in nature

(for details see Section 5.3). This type of data can be misleading for an SVM.

An SVM may not be able to find an optimum way of identifying the patterns.

Therefore, some pre-processing is needed before using the data as input into an

SVM. This pre-processing is only carried out on the training dataset and it may

enhance the chances of better prediction and decreases the chance of over-fitting

and under-fitting that an SVM normally faces (described in Section 4.4). The

pre-processing process consists of dataset division, normalisation, sampling, etc.

6.4.2.1 Dataset division and normalisation

At first, repetitive or inconsistent data was identified in the input matrix and

was eliminated from the training set, as these inconsistent and repetitive data

are the source of misleading prediction results. When using contextualised data,

the windowing technique was used to produce larger vectors and then searched

for repetitive and inconsistent data point needed for deletion. There should be

fewer repetitions once the vectors are larger.

As mentioned previously, the data was divided into two sets training and test

set. Two-third of the dataset has been used as a training set. Both training and

test sets have been normalised to isolate any statistical error and standardise the

data. This has been done by subtracting the population mean of each algorithm

from an individual score of the algorithm and then dividing the difference by the

population standard deviation of the that particular algorithm, in other words

each feature is turned into Z-score.
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6.4.2.2 Variation in test sets

In each experiment two types of test sets had been used. One is with only

the consistent data points as described above, which will demonstrate the correct

efficiency of the classifier and it will be denoted as filtered test set as it completely

lacks in biological properties since it is no longer contiguous data. This test

set will be of interest to machine learning practitioners, as it will demonstrate

the classification efficiency of our SVM models on the data suitable for machine

learning.

The second test set is produced by keeping the repetitive and inconsistent data

points to give a biologically meaningful contextualised genome sequence and it

will be denoted is as biological test set. Whilst I realise that this dataset contain

a lot of repetitions and inconsistent data vectors, it is realistic that the measures

on this set will show how our process will work on real world data. Therefore,

this test set will demonstrate how good our prediction model is trained to predict

binding sites from biological data and ultimately it is the biologists that are most

interested in the practical application of the method described in this thesis.

6.4.2.3 Sampling techniques in the training set

As mentioned in Chapter 5, the dataset used for this study is highly imbalanced.

Unless this situation is properly accounted for, the supervised classification algo-

rithms may be expected to trivially over predict the majority class. In order to

mitigate this problem a databased sampling method (Chawla et al., 2002; Radi-

vojac et al., 2004) was utilised for this study. A combination of over-sampling

(SMOTE ) of the minority class and under-sampling of the majority class were

used to balance the training dataset, allowing for more efficient and useful train-

ing to take place (described in Section 4.5.2). Here one thing should be noted

that the number of representatives of the majority class included in the training

set was calculated to ensure a constant ratio – majority to minority. A range of

different ratios has been chosen during the course of this thesis.
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6.4.3 Training and testing data

After constructing the training set using pre-processing, the training set was

trained using an SVM on the data. For the two-class SVM, the radial basis

kernel was used and the two parameter cost (C) and gamma (γ) for the kernel

were chosen from a very large sequence of hyper-parameter sets. But for the

one-class SVM, all four kernels supported by LIBSVM were tested and a wide

range of values of nu (ν ) and gamma (γ) were used. For further information

about these parameters see Chapter 4. I modified the standard approach to use

an exhaustive search of some discrete values of C and γ ( ν and γ in case of the

one-class SVM), which covers a wide range of values of the variables in order to

find the optimum values of the variables. The ranges for cost and gamma were

chosen to give reasonable boundaries, keeping in mind the value of C will have

a high penalty for non-separable points and a very low value of γ is also not

desirable as the scalar multiplication between different data points will actually

be the same data points. However, we explored the whole range of ν (from 0 to

1 with an interval of 0.05) for the one-class SVM. A detail description of these

parameters is given in Section 4.2.2. All the values of the variables during this

exhaustive search were selected by standard 5-fold cross validation, which has

been described in details in Section 6.4.5.

6.4.4 Post-processing Data

The original biological algorithms predict contiguous sets of base pairs as binding

sites. However in the classification approach undertaken here, each base pair

is predicted independently of their neighbouring nucleotides. As a result, the

classifier may output many short predictions sometimes even with the length of

only one or two. It is not clear whether these very short stretches are feasible or

have any biological meaning. From both yeast and mouse dataset, it can be seen

that the shortest binding site is 5 bps in length and the longest one is 13 bps.

Therefore, predictions with a length equal or smaller than a threshold value had

been removed (replaced the positive prediction with a negative one) and then the

effect of the performance was measured.
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Figure 6.5: Filtering on prediction by using post-processing

In this study, different threshold values (from 4 bps to 7 bps) had been used rather

than only one to explore possible feasible threshold sizes. This post-processing

can obviously only be carried out on the biological test set, since that is the

only test set which is still contiguous and still a subset of the original genome

whereas filtered test set contains random data vectors. Figure 6.5 shows how the

post-processing performed on the prediction with threshold value 4 bps.

6.4.5 Cross-validation

In all the previous experiments mentioned in 6.2 and some of experiments pre-

sented in this thesis, standard cross-validation technique has been used. In stan-

dard cross-validation, the data has been divided in five subsets for 5-fold cross

validation. Then four subsets are taken as training during cross-validation and the

rest of the data part is used as the validation set. However, the cross-validation

method used so far may not be efficient for the kind of problem that I am dealing

within this thesis. As mentioned, the data I have used is imbalanced in nature, the

data is needed to be processed before training to make it balanced (discussed in

Section 4.5). But the unseen test set is still imbalanced. During cross-validation,

the validation set is also balanced which is not the same as the test set used finally

for prediction. So the nature of the test set is quite different from the validation

set used during cross-validation. The differences are two-fold:
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• In the validation data the minority class is oversampled and the majority

class is under-sampled. This is not the case in the test set.

• In the test data, short sequences of binding site predictions are removed.

This is not the case in the validation set.

Therefore, a modified cross-validation method has been devised (mentioned in

Section 4.4.1) in which the model is validated in exactly the same way, as it will

be tested. The model is validated with non-sampled validation sets and short

predictions were removed. In this new modified version, the data is divided in

five subsets for 5-fold cross validation and four subsets are taken as training during

cross-validation, but now the validation set is not drawn from the rest of the pre-

processed data. Rather it is taken from the corresponding original dataset. The

training set in the cross-validation undergoes the same pre-processing to make

it balanced. The prediction from the validation also undergoes post-processing

(described in Section 6.4.4 in details). The pseudo-code of this modified cross-

validation method is given below:

Pseudocode 2 Finding the best hyper-parameters with modified cross-validation
method.

1: Split the training data into 5 partitions
2: This gives 5 different training sets (4 of 5) and the corresponding validation

sets (1 of 5)
3: for each of the 5 training set do
4: Pre-process the data to produce balanced training set
5: end for
6: for each combination of hyper-parameter values do
7: for each of the pre-processed 5 training sets do
8: Train an SVM
9: Measure performance on the corresponding validation set, exactly as the

final test will be measured. So use a Performance Measure, after the
predictions on the validation set have been filtered (post-processing)

10: end for
11: Average the Performance Measure
12: end for
13: Choose the combination of hyper-parameter with the best average
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One thing should be noted, in all the previous experiments, Accuracy was used as

the cross-validation criterion or performance measure as shown in the pseudocode

above. As F-score is more feasible a performance measures than Accuracy (see

Section 4.5.3) for the problem I am dealing with, I have used it as the cross-

validation criterion in all the experiments undertaken in this thesis. However,

this code is flexible enough to allow any criteria of performance. Therefore,

Accuracy has also been used as a cross-validation criterion for comparison in this

chapter.

Having set up the training and test data as described above some results for

the two-class SVM have been produced. Section 6.5 will have the results from the

yeast dataset, which are just repeats of those done in Sun et al. (2005, 2006a,b,

2009a,a,b); Robinson et al. (2006, 2007a,b). Section 6.6 will give the results for

the mouse data. These results are all new to me so a much more detailed set of

experiments were carried out, which involved both the filtered and the biological

test data. Finally in Section 6.7, I will look at the results produced using the

enhancement to the cross-validation process described in this section.

6.5 Results for Two-class SVM on the Yeast

Data using Standard Cross-validation (bi-

ological test set)

The standard cross-validation procedure is to analyse the performance in terms

of the Accuracy value. This is the default setting, though later with the mouse

data this cross-validation criterion was changed to F-score. As the results pre-

sented in this section have been repeated from the previous studies mentioned

in Section 6.2, the new modified cross-validation procedure has not been used.

The confusion matrix of the best algorithm (Fuzznuc), among the 12 prediction

algorithms (see Table 5.5), is as follows:
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Predictive Negatives Predictive Positives

Actual Negatives TN = 83% FP = 10%

Actual Positives FN = 4% TP = 3%

Table 6.2: Confusion matrix of the best base algorithm Fuzznuc on the yeast

data.

The Performance measure of Fuzznuc is:

Recall Precision F-score FP-rate

Fuzznuc 0.4 0.222 0.245 0.245

Table 6.3: Performance measures of the best base algorithm Fuzznuc on the yeast

data.

From Table 6.2, it can be seen that the False Positives are three times more than

the True Positives, which makes the best algorithm unreliable.

The results of combining prediction results using an SVM are given in Ta-

ble 6.4. The results are generated from the prediction made on the biological test

set.

Recall Precision F-score FP-rate

yeast 0.305 0.317 0.334 0.044

yeast+w3 0.132 0.628 0.218 0.008

yeast+w5 0.207 0.511 0.295 0.017

yeast+w7 0.221 0.499 0.307 0.019

Table 6.4: Results of two-class SVM (cross-validation criterion: Accuracy) on the

yeast data.

Figure 6.6 shows the comparisons between the F-scores of the best prediction

algorithm and the two-class SVM approaches (cross-validation criterion: Accu-

racy). In most of the cases, the F-scores are higher than that of the original

prediction algorithm, but not by much.
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Figure 6.6: Comparison of F-scores between Fuzznuc and the two-class SVM

approach (cross-validation criteria: Accuracy) on the yeast data.

Figure 6.7 shows the comparisons between the FP-rates of the best prediction

algorithm and the two-class SVM approaches (cross-validation criterion: Accu-

racy). In all the cases, the FP-rate is lower than that of the original prediction

algorithm. These results also show that while windowing improves the FP-rates,

it does not improve the F-scores.

Figure 6.7: Comparison of FP-rate between Fuzznuc and two-class SVM approach

(cross-validation criteria: Accuracy) on the yeast data.
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6.6 Results for Two-class SVM on the Mouse

Data using the Standard Cross-validation

For the mouse data, I have chosen two different criteria for cross-validation: i)

Accuracy and ii) F-score and compared the performances. I have also run the

trained model on both the filtered test set (containing no repetitions and in-

consistencies) and the biologically meaningful test set. Again the new modified

cross-validation process has not been used here. One thing should be noted; I

have explored a set of ratios (negative examples: positive examples) for under

sampling the negative examples and in the results given below the ratio that has

given the best classification performance has been used.

6.6.1 Results for the best original algorithm

Before presenting the experimental results, let us see how the original base al-

gorithms perform for identifying cis-binding sites. The results are given for the

best algorithm called EvoSelex (see Table 5.6). From Section 5.5.2, the confusion

matrix is as follows:

Predictive Negatives Predictive Positives

Actual Negatives TN = 79.25% FP = 16.60%

Actual Positives FN = 2.70% TP = 1.44%

Table 6.5: Confusion matrix of the best base algorithm EvoSelex on the mouse

data.

Therefore, the Performance measures of EvoSelex is:

Recall Precision F-score FP-rate

EvoSelex 0.348 0.08 0.13 0.173

Table 6.6: Performance measures of the best base algorithm EvoSelex on the

mouse data.

From the results in Tables 6.5 and 6.6, it is evident that the FP-rate is very high,

but that Precision is not that high. As a result the F-score is also not high.
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This happens because the algorithm tries to annotate many non-binding sites as

binding sites. This leads to a high Recall but leaves the Precision low.

6.6.2 Results for two-class SVM on the filtered test set

Initially the standard cross-validation procedure using Accuracy is used and thus

the results for the filtered test set are as follows:

TP FP FN TN Recall Precision F-score FP-rate

mouse 177 1452 524 9881 0.253 0.109 0.152 0.128

mouse+w3 156 889 603 14169 0.206 0.149 0.172 0.059

mouse+w5 171 1717 591 14269 0.224 0.091 0.129 0.107

mouse+w7 147 1406 618 15117 0.192 0.095 0.127 0.085

Table 6.7: Results of filtered test set from the mouse dataset (cross-validation

criterion: Accuracy).

Next the cross-validation criterion was changed to F-score and the results are as

follows:

TP FP FN TN Recall Precision F-score FP-rate
mouse 149 1412 552 9921 0.213 0.095 0.132 0.125

mouse+w3 156 891 603 14167 0.206 0.149 0.173 0.059
mouse+w5 431 3892 331 12094 0.556 0.099 0.169 0.244
mouse+w7 419 3672 346 12851 0.548 0.102 0.173 0.222

Table 6.8: Results of filtered test set from the mouse dataset (cross-validation
criterion: F-score).

The results are mixed and show some improvements on the best original algo-

rithm. However, the results are not as good as expected. Changing to using

F-score as the cross-validation criterion in the cross-validation method has not

done much to improve the results.
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6.6.3 Results for two-class SVM on the biological test set

6.6.3.1 Using Accuracy as the cross-validation criterion

Table 6.9 shows the results of two-class SVM approaches where the cross-validation

criterion is Accuracy.

TP FP FN TN Recall Precision F-score FP-rate

mouse 167 1313 617 16811 0.213 0.113 0.148 0.073

mouse+w3 140 648 644 17436 0.179 0.178 0.178 0.036

mouse+w5 117 937 667 17107 0.149 0.111 0.127 0.052

mouse+w7 90 691 694 17313 0.115 0.115 0.115 0.038

Table 6.9: Results of biological test set from the mouse dataset (cross-validation

criterion: Accuracy).

If these results are compared with the previous result in Table 6.6, we can see that

the SVM has improved the prediction results. The FP-rate has decreased and the

F-score value has increased. Using only mouse data gives a slightly better F-score

and the FP-rate has also decreased. But mouse+w3 gives decreased FP-rate with

the best F-score, which makes it the best prediction in Table 6.9.

Figure 6.8: Comparison of F-scores between EvoSelex and the two-class SVM

approach (cross-validation criteria: Accuracy) on the mouse data.

Figure 6.8 shows the comparisons between the F-scores of the best prediction
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algorithm and the two-class SVM approaches (cross-validation criterion: Accu-

racy). In only two cases is F-score better than that of the original prediction

algorithm, with the 3 window mouse data showing the best result.

Figure 6.9: Comparison of FP-rates between EvoSelex and the two-class SVM

approach (cross-validation criteria: Accuracy) on the mouse data.

Figure 6.9 shows the comparisons between the FP-rates of the best prediction

algorithm and the two-class SVM approaches (cross-validation criterion: Accu-

racy). In all the cases, the FP-rate is lower than that of the original prediction

algorithm.

6.6.3.2 Using F-score as the Cross-validation Criterion

The same experiments were run taking F-score as the cross validation criterion.

Table 6.10 shows the results of the two-class SVM approaches where the cross-

validation criterion is F-score.

TP FP FN TN Recall Precision F-score FP-rate
mouse 167 1313 617 16811 0.213 0.113 0.148 0.073

mouse+w3 140 648 644 17436 0.179 0.178 0.178 0.036
mouse+w5 341 2430 443 15614 0.435 0.123 0.192 0.135
mouse+w7 373 2518 411 15486 0.476 0.129 0.203 0.139

Table 6.10: Results of biological test set from the mouse dataset (cross-validation
criterion: F-score).

106



Sixth Chapter

Figure 6.10: Comparison of F-scores between EvoSelex and the two-class SVM

approach (cross-validation criteria: F-score) on the mouse data.

Figure 6.10 shows the comparisons between the F-scores of the best prediction al-

gorithm and the two-class SVM approaches (cross-validation criterion: F-score).

In all the cases, the F-score is higher than that of the original prediction algo-

rithm.

Figure 6.11: Comparison of FP-rates between EvoSelex and the two-class SVM

approach (cross-validation criteria: F-score) on the mouse data.

Figure 6.11 shows the comparisons between the FP-rates of the best prediction

algorithm and the two-class SVM approaches (cross-validation criterion: F-score).

In all the cases, the FP-rate is lower than that of the original prediction algorithm.
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It can be seen that the best results in Table 6.10 are very similar to the

best results of Table 6.9. It can be concluded that using the F-score instead

of the Accuracy has not brought that much benefit. However, this approach of

integrating algorithmic predictions gave better result than the individual base

algorithm.

6.7 Using the Modified Cross-validation Method

I have used standard cross-validation method in all the two-class SVM experi-

ments described so far. As we mentioned earlier, datasets with an imbalanced

nature has been used. To balance the data for training an oversampling technique

has been used. So the oversampled data for training contains a lot of synthetic

data produced during oversampling, which may hamper the model in predicting

from the test set that contains just biological data.

For this reason, I will now use the modified cross-validation process as de-

scribed in Section 6.4.5. Here, both F-score and Accuracy were being used as the

cross-validation criteria (with the biological validation set) and the results are

compared. These results are for the biologically meaningful test set only.

Previously, I have explored a set of ratios (negative examples: positive ex-

amples) for under sampling the negative examples and have used the ratio that

gave the best classification performance. However, from previous experiments

mentioned above, it was observed that only the two ratios 1:1 and 2:1 for under

sampling the negative examples give better results than any other ratios I had

used. Therefore I will only use these two ratios for under sampling the negative

examples from now on. Again I have used the ratio that gave the best classifica-

tion performance in the results presented below. This will be the same for both

the yeast and the mouse data.

6.7.1 Results of Two-class SVM on Yeast Data using Mod-

ified Cross-validation (biological test set)

Table 6.11 shows the results on yeast data using the modified cross-validation

using F-score and Accuracy.
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Cross-validation TP FP FN TN Recall Precision F-score FP-rate

criterion

Accuracy+ 524 876 2284 18910 0.187 0.374 0.249 0.044

post-processing

F-score+ 643 1409 2165 18377 0.229 0.313 0.265 0.071

post-processing

Table 6.11: Results of two-class SVM on the yeast data using modified cross-

validation method.

Figure 6.12 shows the comparison between F-scores and FP-rates while using

the new modified cross-validation method. Here, both F-score and Accuracy

have been used as cross-validation criteria. It is quite clear that using F-score as

a cross-validation criterion gives a slightly better F-score than where Accuracy

is used as a cross-validation criterion. This may indicate that the SVM could

identify the True Positives better in this case. On the other hand the FP-rate

increases while using F-score as a cross-validation criterion. So the results are

mixed regarding this new cross-validation process.

Figure 6.12: Comparison of F-scores and FP-rates using modified cross-validation

method using both Accuracy and F-score as cross-validation criteria for the yeast

data.

In conclusion the original method in Table 6.4 has better results than the new

results in Table 6.11, but not by much, and besides all the results are fairly poor.
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6.7.2 Results of two-class SVM on the mouse data using

modified cross-validation (biological test set)

Table 6.12 shows the results on the mouse data using the modified cross-validation

using F-score and Accuracy.

Cross-validation TP FP FN TN Recall Precision F-score FP-rate

criterion

Accuracy+ 157 976 627 17148 0.200 0.139 0.164 0.054

post-processing

F-score+ 191 908 593 17216 0.244 0.174 0.203 0.050

post-processing

Table 6.12: Result of two-class SVM on mouse data using modified cross-

validation method

Figure 6.13 shows the comparison between F-scores and FP-rates while using the

new modified cross-validation method. For the mouse data, the same improve-

ment occurs in F-score like that of the yeast data. The FP-rate did not increase

as in case of the yeast data, which is quite promising.

Figure 6.13: Comparison of F-scores and FP-rates using modified cross-validation

method using both Accuracy and F-score as cross-validation criteria for the mouse

data.
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In conclusion the new results in Table 6.12 are slightly better than the original

results in Tables 6.9 and 6.10. Therefore, for the mouse data the new cross-

validation process is perhaps worth considering more in later experiments.

6.8 Methodology for the One-class SVM

A number of one-class classification experiments were run using a one-class SVM.

The same yeast and mouse data, described in Section 5.3, have been used in these

experiments. One thing should be noted is that the one-class SVM has been used

with different kernels on each dataset.

In addition, some pre-processings (data division, normalisation and sampling)

were undertaken on the training set and post-processing on the prediction set.

These steps are almost the same as those described in Section 6.4 except in the

case of making the training sets. Here, we took out all the negative examples

(not annotated as binding sites) and thus the training set contained only positive

examples, as required by a one-class SVM. The new modified cross-validation

method was used during training the data.

6.9 Results for One-class SVM (biological test

set)

As mentioned earlier, experiments using different kernels were run to see the

effects on training and prediction. The run time for the one-class SVM was quite

quick, so the training and prediction could be run with the same training and

test dataset on a wide range of parameters to determine the best kernel with

parameter values that would give better prediction.

6.9.1 One-class SVM result for the yeast data (biological

test set)

The results of using the one-class SVM on the yeast data are as follows:
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Kernel Type Recall Precision F-score FP-rate

Linear 0.136 0.151 0.143 0.058

RBF 0.663 0.076 0.136 0.61

Sigmoid 0.411 0.117 0.183 0.234

Polynomial(degree = 2) 0.769 0.075 0.137 0.72

Polynomial(degree = 3) 0.423 0.072 0.123 0.533

Table 6.13: One-class SVM results on the yeast data with different kernels.

The results (in Table 6.13) show that, for the yeast data the sigmoid kernel

gives better classification results than the other kernels as measured by F-score.

Although the other kernels have very similar F-score values, they have greater

values of FP-rates than the sigmoid apart from the linear kernel, which has the

lowest FP-rate.

Figure 6.14: Comparison of F-scores from the one-class SVM on the yeast data

with different kernels.

Figure 6.14 shows the comparisons between the F-scores from one-class SVM

approaches on the yeast data with different kernels. Here the prediction using

sigmoid kernel gives the best F-score.
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Figure 6.15: Comparison of FP-rates from the one-class SVM on the yeast data

with different kernels.

Figure 6.15 shows the comparisons between the FP-rates from one-class SVM

approaches on the yeast data with different kernels. Here the prediction using

linear kernel has the lowest FP-rate.

Interestingly, all the better results were produced using smaller values of γ.

The smaller values of gamma correspond to the smaller number of outliers and

as a result they can cover most of the training points. This makes the one-class

SVM really sensitive to proper parameter choice.

6.9.2 One-class SVM result for the mouse data (biological

test set)

The results of using one-class SVM on the mouse data are as follows:

Kernel Type Recall Precision F-score FP-rate

Linear 0.291 0.143 0.191 0.076

RBF 0.327 0.152 0.207 0.079

Sigmoid 0.394 0.128 0.193 0.116

Polynomial(degree = 2) 0.979 0.041 0.149 0.99

Polynomial(degree = 3) 0.171 0.124 0.144 0.052

Table 6.14: One-class SVM results on the mouse data with different kernels
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The one-class SVM results (Table 6.14) for the mouse data show that, unlike

the yeast data, the Gaussian kernel (RBF) yields the best classification results.

The Gaussian kernel produces both a better F-score and FP-rate than the other

kernels. The linear kernel gives very similar results to the Gaussian kernel. The

FP-rate is the same, but the Gaussian kernel produces a better Precision value,

which may lead to detection of some novel patterns in mouse data. One thing

should be noted that, the polynomial kernel (with degree = 2) produced the

worst results among all the kernels. This can be due to the fact that the training

model using polynomial kernel (degree =2) tried to predict everything as positive

examples, therefore it produces a very high Recall along with low Precision and a

very high FP-rate. The result for the yeast data using polynomial kernel (degree

= 2) followed the same trend.

Figure 6.16 shows the comparisons between the F-scores from one-class SVM

approaches on the mouse data with different kernels. Here the prediction using

RBF kernel gives the best F-score.

Figure 6.16: Comparison of F-scores from the one-class SVM on the mouse data

with different kernels.

Figure 6.17 shows the comparisons between the FP-rates from one-class SVM

approaches on the mouse data with different kernels. Here the prediction using

linear and RBF kernels have the lowest FP-rate.
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Figure 6.17: Comparison of FP-rates from the one-class SVM on the mouse data

with different kernels.

6.10 Discussion

In order to determine the appropriate parameters to use in an SVM a standard

cross- validation procedure was carried out. The cross-validation criteria previ-

ously used were based on Accuracy (percentage of right classifications). But for

the datasets used here, where positive examples are far fewer than negative exam-

ples, Accuracy may not be a very good measure. The cross-validation based on

Accuracy can give classification choice with higher Accuracy, but it may not yield

a better classification result for our datasets. F-score was then tried as an al-

ternative cross-validation criterion. This method improved results in some cases,

but the overall result is not consistent. So choosing different cross-validation

criteria may not produce better results as I had expected. Along with this, a

modified cross-validation method was also used for getting improved predictions.

Now we are going to compare the best results from the experiments that have

been undertaken so far.
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6.10.1 Prediction Algorithm vs. Two-class SVM vs. One-

class SVM (biological test set)

The results from the two-class SVM and the one-class SVM need to be compared

with that of original algorithm and those from the previous studies where the

algorithms has been combined and used in a two-class SVM.

First we look at the yeast data. Table 6.15 has the results for the biological

test set with the following rows:

i The first are the results from the best original algorithm (Fuzznuc) – Table 6.3

ii The second are the results from previous studies using a two-class SVM with

the standard cross-validation using Accuracy – Table 6.4

iii The third are the results from the two-class SVM with the modified cross-

validation (cross-validation criterion: F-score) – Table 6.11

iv The fourth are the results from the one-class SVM with the modified cross-

validation (cross-validation criterion: F-score) and a sigmoid kernel – Ta-

ble 6.13

In each case, the results presented are the best of that type.

Recall Precision F-score FP-rate

Fuzznuc 0.400 0.222 0.245 0.106

Two-class SVM 0.305 0.371 0.334 0.044

(standard cross-validation)

Two-class SVM 0.229 0.313 0.265 0.071

(modified cross-validation)

One-class SVM 0.411 0.117 0.183 0.234

(modified cross-validation)

Table 6.15: Comparison of the best results of base algorithm, two-class SVM and

one-class SVM approaches for the yeast data.
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If the best result from one-class SVM is compared with other results, it becomes

clear that one-class classification does not give better classification result for the

yeast dataset. It does not even give better result than the original algorithm.

Figure 6.18: Comparison of the F-scores of the best base algorithm, two-class

SVM and one-class SVM approaches for the yeast data.

Figure 6.19: Comparison of the FP-rates of the best base algorithm, two-class

SVM and one-class SVM approaches for the yeast data.

To my surprise, the two-class SVM using standard cross-validation gives the best

result. The two-class SVM using the modified cross-validation gives results not

much better than the original algorithms in that it improves the FP-rate but
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has slightly worse F-score. However, it does produce better Precision than the

original algorithm.

Next let us look at the mouse data. Table 6.16 has the results for the biological

test set with the following rows:

i The first are the results from the best original algorithm (EvoSelex ) – Ta-

ble 6.6

ii The second are the results from the two-class SVM with the standard cross-

validation (cross-validation criterion: F-score) – Table 6.10

iii The third are the results from the two-class SVM with the modified cross-

validation cross-validation criterion: F-score) – Table 6.12

iv The fourth are the results from the one-class SVM with the modified cross-

validation (cross-validation criterion: F-score) and a Gaussian kernel – Ta-

ble 6.14

In each case, the results presented are the best of that type.

Recall Precision F-score FP-rate

EvoSelex 0.348 0.080 0.130 0.173

Two-class SVM 0.476 0.129 0.203 0.139

(standard cross-validation)

Two-class SVM 0.244 0.174 0.203 0.050

(modified cross-validation)

One-class SVM 0.327 0.152 0.207 0.079

(modified cross-validation)

Table 6.16: Comparison of the best results of base algorithm, two-class SVM and

one-class SVM approaches for the mouse data.

From these results (see Table 6.16) it is evident that, overall the two-class SVM

(using the modified cross-validation method) gives the best result and it is cer-

tainly better than the original algorithms. The result from the one-class SVM is

also very similar but its FP-rate is lower than the two-class SVM (using the mod-

ified cross-validation). The two-class SVM (using the modified cross-validation
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method) can characterise the positive example more efficiently than other meth-

ods; as a result, the Precision is higher as well as the FP-rate being lower than

other methods. Whereas the Precision from the one-class SVM is slightly lower

and the Recall is higher.

Figure 6.20: Comparison of the F-scores of the best base algorithm, two-class

SVM and one-class SVM approaches for the mouse data.

Figure 6.21: Comparison of the FP-rates of the best base algorithm, two-class

SVM and one-class SVM approaches for the mouse data.

Though slightly better result can be obtained for the one-class SVM in the case

of mouse data, better results have not been achieved in case of the yeast data

(compared to the base algorithms). So, the question arises, is the one-class SVM
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that has been devised too specific for certain dataset? This may not be the case.

There can be many reasons for getting undesired results for the yeast data. One

problem with Schölkopf’s method is that it is sensitive to parameter selection.

Sensitivity of the parameters sometimes makes the method difficult for general-

isation. This is the reason that different set of data required different kernels

to produce better classification. The number of features is also crucial for this

method. In the one-class SVM method any feature that is not representative for

classification could be removed. A better choice of feature selection could im-

prove the classification. Also selection of kernels depends upon the feature size.

Linear and sigmoid kernel did not seem to be sensitive to this and gave steadier

results than other kernels. Polynomial kernels gave poor results for all the data

indicating that this type of kernel is not feasible for this data.

Schölkopf’s method also needs a lot of positive examples to determine the

boundary between the positive class and other classes. After removing the in-

consistent and repetitive data, the number of positive examples decreased a lot

which may be an obstacle for getting better classification result. For this reason,

experiments were run without removing inconsistent and repetitive data points,

which gave even worse classification results. The result can be due to the fact

that some positive examples were wrongly classified as other classes. Finally I

tried oversampling the positive example using SMOTE for the training set. But

it again reduced the classification performance.

Five fold cross validation (using Accuracy as cross-validation criterion) has

been used. This can be another problem, as the nature of data does not support

Accuracy as the optimum metric for judging classification performance. However,

the modified cross-validation method failed to produce promising result for yeast

data. The reason could be the dataset itself. The yeast data, which I have been

using, is quite old and lacks in proper annotations, for this reason a new yeast

dataset has been produced and the results of the experiments on this new dataset

will be presented in Chapter 8.
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6.11 Summary

In this chapter, I have described the two-class and one-class classification ap-

proaches on the combination of predictions from basic algorithms. I have given a

brief description of different techniques (pre-processing) involved before an SVM

has been introduced for training. The results on the yeast have been disap-

pointing. All the changes tried, namely using F-score instead of Accuracy as

the cross-validation criterion, using the same method in the cross-validation as

will be used for the final test set and using a one-class SVM have all failed to

improve the results given by the standard cross-validation method used previ-

ously. It seemed to me that the improvements in the cross-validation procedure

should have improved the results, but I have been proved wrong. Particularly

disappointing was the trial of the one-class SVM so much that I have decided to

ignore it from now on. Results for the mouse are not much better, but showed

some possible potential for the new modified cross-validation procedures.

The inconsistencies in results for the yeast have given a reason to think about

the dataset. The same yeast data has been used in this chapter as used in

the previous studies and will be again used in the following chapter. But in

Chapter 8, an updated yeast dataset will be introduced and I am going to re-run

the whole experiments again to see the impact on the results. In the next chapter

other changes in procedures will be tried out and as we shall see considerable

improvements are then found.
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Improving Transcription Factor

Binding Sites Predictions by

Using Negative Examples from

Different Sources

7.1 Introduction

From the results and discussion of Chapter 5, we observed that computational

approaches are not of of good quality and typically prone to predicting many false

positives, which significantly limit their utility. In the earlier research (described

in Chapter 6), the results from different predictors have been combined together

to produce a prediction by using a meta-classifier, an SVM. It has been confirmed

that the results from the combination of predictions are better than that of any

of the individual algorithm and improved results have been achieved from the

previous studies.

However, these improvements are not as significant as expected. The results

showed that this approach is still generating lots of false predictions if we compare

them to original the annotated binding sites. This raises some questions : a)

are the methods (mentioned in Chapter 6) being used properly? b) are reliable

datasets being used? In this chapter, I will address these issues and investigate

122



Seventh Chapter

some alternative approaches. In detail, I will describe the effect of inconsistent

and repetitive data vectors (described in Section 6.4.1) and the sources of negative

examples (sequences of DNA that are not believed to be transcription factor

regulatory regions) in the process. I have already introduced the new modified

cross-validation procedure in Chapter 6, but will now use it with different sets of

negative examples. I will extend this work by replacing the promoter negative

examples with ones taken further from the promoter region and ones produced

by a randomisation process. In this chapter, I will give results that will show

major improvement shown on original algorithms.

7.2 Anticipated Problems and Solutions

As mentioned in the previous chapter, the improvements achieved were marginal

and this leads to the belief that there might be some problems in our technique

or with the reliability of the dataset. So the anticipated problems can be divided

into two categories:

1. problems with the dataset; and

2. problems with the technique.

7.2.1 Problems with the dataset and solution

In the datasets that I have used so far, one can be reasonably confident that

the base pairs labeled as being part of a binding site are accurate. But no such

confidence can be extended to the rest of the promoter region. There may be

many, as yet undiscovered, sites therein. This implies that the base pairs labeled

as not being part of a binding site could be incorrect. From Table 7.1 (a summary

of Table 6.1), we can see that in both datasets (yeast and mouse) there are a

number of vectors that are repeated and inconsistent, and about 69% of the

yeast data and 20% of the mouse data are inconsistent.
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Species Original Inconsistent Unique Repeat

Yeast 67,782 46,695 (69%) 6,521 (9.6%) 18,858 (27.8%)

Mouse 60,851 12,119 (20%) 32,747 (54%) 20,969 (34.5%)

Table 7.1: Summary of yeast and mouse dataset. All the numbers in the table

are in base pairs.

The yeast dataset has many inconsistent data points, and this suggests that this

dataset is particularly unreliable. So far to deal with inconsistent and repeated

data, I have taken the simplest approach by removing all such vectors (keeping

one copy of the consistent vectors). As a result, nearly 90% of the yeast data and

46% of the mouse data has been lost. However, the inconsistent and repeated

vectors may be kept in the test set to make it more biologically meaningful whilst

using the above mentioned approach for training sets only.

The unreliability of the promoter negative examples and the over-abundance

of inconsistent and repeated data points can both be dealt with by introducing

the concept of synthetic negative examples. This chapter will detail the results

produced by this approach. One of the major changes in the experimental ap-

proach and one of the main contributions to knowledge contained in this thesis

was to vary the source of the negative examples. In both the yeast and mouse

datasets described so far negative examples are just the promoter regions that

are not annotated as TFBSs (referred to as promoter negative examples). Here

I will introduced two further sources of negative examples namely: distal nega-

tive examples and randomised negative examples. The details of these negative

examples are explained below.

7.2.1.1 Distal Negative examples

For this source of negative examples, selected regions have been taken from the

mouse genome that are at least 4500 – 5000 bps away from their associated genes.

Care has been taken to avoid overlap with other genes and promoter regions. This

set of negative examples has been used only for the mouse data from the previous

studies. . For the yeast genome the issue is rather complicated as the genes are

relatively close together and identifying distal negative examples is not trivial.
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This issue is, however, addressed in Chapter 8, where a more up-to-date set of

yeast data is examined.

Figure 7.1: Sources of promoter and distal negative examples.

The negative examples were taken from the distal regions of the genome that

is from 250 non-coding upstream sequences of the mouse genome and therefore

referred to as distal negative examples (see Table 7.2 for details). The first 500bp

was picked from each of the distal sequences so that the extracted sequences

should be non-coding. Since they are far away from the promoter region, we can

be reasonably confident that these regions also have non-regulatory properties.

There are in total 124,467 nucleotides in this negative dataset.

Total number of sequence 250

Total sequence length 124,467 bps

Average sequence length 497.87 bps

Table 7.2: Summary of the mouse dataset that contain distal negative examples.

This second set of mouse data was constructed with the same positive examples

(annotated TFBSs) as before taken from ABS and ORegAnno database.

7.2.1.2 Randomised Negative Examples

The distal negative examples may still have some properties, which may have the

function of a binding site and thus may still act as noisy data. To produce the

randomised negative examples, all the data vectors labeled as non-binding sites,

from distal negative examples, have been placed into a matrix with a column for
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each base algorithm. Each column is then independently randomly reordered.

This randomises each column vector but maintains the overall statistical proper-

ties of each algorithm since all the original algorithm values are still there. It is

Figure 7.2: Creating randomised negative examples.

unlikely that a real binding site would elicit such randomly joint predictions. The

vectors are now correctly labeled as negative, as all the information in the orig-

inal non-binding site data has been completely lost. These randomised negative

examples have been used for both mouse and yeast data. For the mouse data,

the dataset for randomised negative examples has been generated by randomly

reordering the distal negative examples dataset. This type of dataset was not

available for yeast. Therefore, the dataset of randomised negative examples for

yeast has been generated by randomly reordering the original yeast dataset.

7.2.2 Problem with the current approach and proposed

solution

As previously described (in Section 6.4), we combined the results from different

algorithms and performed the pre-processing (discussed in Section 6.4.1) before

training. This pre-processed data was then trained to create a model by using

standard cross-validation method (described in Section 4.4.1) and made predic-

tion on the biological data. Post-processing (discussed in Section 6.4.4) was done

on the predictions to filter out false positives as much as possible. But while

establishing a prediction model using standard cross-validation, both the train-

ing and validation sets were generated from the same pre-processed data. The

validation set was not biologically meaningful whilst the test set being used for

final prediction was biologically meaningful. The datasets used so far in all the
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experiments are imbalanced in nature. Pre-processing makes a balance between

two types of examples (positive and negative), which lead to a balanced valida-

tion set also. Whereas the final test set is still imbalanced. Thus the training

models being used for prediction were not fully attuned for predicting biological

data. This could be one reason that the validation rate is so high and in contrast

the prediction performance is poor.

To remove this discrepancy during cross-validation, a new modified cross-

validation method has been devised (described in Section 6.4.5). This new cross-

validation process used validation data of the same type as the final test set includ-

ing using F-score to evaluate performance and using post-processing. However

in this chapter we are also changing the training data by using different sources

of negative data. It is important to use the real data for the validation set dur-

ing the cross-validation. Therefore, the negative data is replaced by the original

promoter negative data while using this part of the dataset as a validation set.

7.3 Methodology When Replacing Negative Ex-

amples

In this method, negative examples have been replaced with either randomised or

distal negative examples in the dataset. However, one copy of the real dataset

is kept and it will be the source of test sets and validation sets. After mixing

the positive examples with the synthetic negative examples, the new dataset is

then divided into three parts. The first two-third is used as a training set. The

training set undergoes all the pre-processing routines like removing inconsistent

and repetitive data points, normalisation, over sampling the minority class and

under sampling the majority class, etc.

This training set builds an SVM model using LIBSVM tools, which can then

be used to test further data. As mentioned earlier, the cross-validation method

used is the new modified cross-validation method. During the cross-validation

process, the original dataset provides me with the ability to reconstitute the

validation sets for testing. In order to compare results I have used four versions of

the cross-validation method. I have either used Accuracy or F-score as the metric
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and have performed cross-validation both with post-processing and without post-

processing. In all cases, I have used the resultant model to predict binding sites in

the original data using post-processing to filter out short predictions. Figure 7.3

shows a complete workflow of the whole process.

For the yeast data, I have undertaken one experiment namely:

• Replacing the negative examples with randomised negative examples

For the mouse data, I have undertaken two experiments namely:

• Replacing the negative examples with distal negative examples

• Replacing the negative examples with randomised negative examples

Figure 7.3: Workflow of applying two-class SVM when replacing negative exam-

ples.
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7.4 Results When Replacing Negative Exam-

ples

In this experiment, the negative examples have been replaced in the training

set with distal and randomised negative examples (discussed in Section 7.2.1). I

have explored two ratios (negative examples: positive examples) 1:1 and 2:1 for

under sampling the negative examples and given the result, which has the best

classification performance. Distal negative examples have only been used for the

mouse data and randomised negative examples have been used for both yeast and

mouse data. The results are produced using both filtered and biological test set

and post-processing is used only in case of biological test set, as it is obviously not

possible to use post-processing on filtered test set as explained in Section 6.4.4.

7.4.1 Results using filtered test Set

7.4.1.1 Replacing negative examples with distal negative examples

Table 7.3 shows the result of classifier performance on filtered test set from the

mouse data while using distal negative examples and Table 7.4 shows a brief

comparison between the best result from the previous chapter and this.

Cross-validation TP FP FN TN Recall Precision F-score FP-rate
criterion
Accuracy 299 240 822 10673 0.267 0.555 0.361 0.022
F-score 705 436 439 10454 0.616 0.619 0.618 0.040

Table 7.3: Results of two-class SVM using the distal negative examples with
modified cross-validation methods in the mouse dataset (filtered test set).
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TP FP FN TN Recall Precision F-score FP-rate

Mouse+promoter 177 1452 524 9881 0.253 0.109 0.152 0.128
(standard

cross-validation)

Mouse+distal 705 436 439 10454 0.616 0.619 0.618 0.040
(modified

cross-validation)

Table 7.4: Comparison between the best results for the mouse data (promoter

negative examples vs. distal negative examples) using filtered test set.

The results are very interesting. The first thing to note is that changing the

negative examples from proximal to distal brings immediate benefit. Comparing

the first row of Table 7.3 and the first row of Table 7.4 we see that the precision

has been increased from 0.109 to 0.555 without losing recall. And this is due to

the fact that the FPs have fallen from 1452 to 240. With the new data the SVM

predicts the presence of binding sites much less often, which is good since most

of its original predictions were wrong.

This is the first time in this body of work that a serious dent has been made

in the number of FPs produced by any of our predictors.

The next important point to note is that changing the cross-validation crite-

rion with the distal negative examples gives another major jump in performance.

This can be seen from rows one and two of Table 7.3. The major change here

is that the TPs rises and the FNs falls. It appears that now previously missed

binding sites are being found. Overall this produces a huge jump in Recall, which

more than doubles and a concomitant jump in F-Score to 0.618 by some way

the best predictor so far found for mouse TFBSs. It is interesting to observe

that changing the cross-validation criterion with the original promoter negative

examples did not bring much benefit at all (see Section 6.7).

Finally, Table 7.4 gives an overall comparison of the new meta classifier against

the original SVM. The major improvement in the performance of the trained

model is obvious.

It is really exciting to see that, the new cross-validation method with using

distal negative examples bring a huge improvement in the classifiers performance.
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The Recall improves from 25% to 62% and the Precision from a merely 11% to an

impressive 62%. As a result the F-score also observes considerable improvement.

7.4.1.2 Replacing negative examples with randomised negative exam-

ples

I now examine whether similar effects can be produced using randomized negative

examples. The first set of results in Table 7.5 shows the classifier performance on

the filtered test set using the yeast data.

Cross-validation TP FP FN TN Recall Precision F-score FP-rate
criterion

Accuracy 9 8 505 9355 0.018 0.529 0.034 0.001

F-score 335 652 179 8711 0.652 0.339 0.446 0.070

Table 7.5: Results of two-class SVM using the randomised negative examples

with modified cross-validation methods in the yeast dataset (filtered test set).

As the first row of the data in Table 7.6 is taken from previous studies(Sun

et al., 2009a), the confusion matrix was not obtainable. Therefore, no confusion

matrices are presented in Table 7.6.

Recall Precision F-score FP-rate

Yeast+promoter 0.321 0.245 0.278 0.075

(standard

cross-validation)

Yeast+ randomised 0.652 0.339 0.446 0.070

(modified

cross-validation)

Table 7.6: Comparison between the best results for the yeast data (promoter

negative examples vs. randomised negative examples) using filtered test set.

The first thing to note in Table 7.5 is the very poor performance of the model

optimised using Accuracy. It has simply learnt to predict the negative class

for almost all vectors. However when the model is optimised using F-Score a
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much better classifier is produced, and once again this is the best predictor of

yeast binding sites that I have so far produced. Having said that is not as big

an improvement as was produced (see Table 7.6) using distal negatives on the

mouse genome. The next set of results addresses the question of whether the

randomised data works as well with the mouse data as did the distal negatives.

Table 7.7 shows the result of classifier performance on filtered test set from

the mouse data while using randomized negative examples and Table 7.8 shows

a brief comparison between the best result from the previous chapter and this.

Cross-validation TP FP FN TN Recall Precision F-score FP-rate
criterion
Accuracy 119 676 456 10783 0.796 0.787 0.791 0.021
F-score 836 176 191 10831 0.814 0.827 0.821 0.016

Table 7.7: Results of two-class SVM using the randomised negative examples
with modified cross-validation methods in the mouse dataset (filtered test set).

TP FP FN TN Recall Precision F-score FP-rate

Mouse+promoter 177 1452 524 9881 0.253 0.109 0.152 0.128
(standard

cross-validation)

Mouse+ randomised 836 176 191 10831 0.814 0.827 0.821 0.016
(modified

cross-validation)

Table 7.8: Comparison between the best results for the mouse data (promoter

negative examples vs. randomised negative examples) using filtered test set.

The main result here is that the classifier simply does extremely well with this

data set. Optimising using F-Score is a little better than Accuracy and the best

classifier has both very high Recall and Precision. Table 7.8 shows the dramatic

improvement over my original mouse predictor.

The following section will present this impact of new negative examples and

cross-validation method on the biological test set. Replacing the negative exam-

ples in mouse and yeast data caused huge improvement in performance of SVM.
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In the next section, I will observe how this result can be extended on biological

test set.

7.4.2 Results using biological test set

7.4.2.1 Replacing negative examples with distal negative examples

Table 7.9 shows the results of using distal negative examples in the mouse data

with different versions of the new modified cross-validation method and Table 7.10

shows a brief comparison between the best result from the previous chapter and

this.

Cross-validation TP FP FN TN Recall Precision F-score FP-rate
criterion

Accuracy 289 10 495 18114 0.369 0.967 0.534 0.0006

F-score 513 3 271 18121 0.654 0.994 0.789 0.0002

Accuracy + 530 2 254 18122 0.676 0.996 0.806 0.0001
post-processing

F-score + 530 2 254 18122 0.676 0.996 0.806 0.0001
post-processing

Table 7.9: Results of two-class SVM using the distal negative examples with

modified cross-validation methods in the mouse dataset (biological test set).

TP FP FN TN Recall Precision F-score FP-rate

Mouse+promoter 191 908 593 17216 0.244 0.174 0.203 0.050
(modified

cross-validation)

Mouse+ distal 530 2 254 18122 0.676 0.996 0.806 0.0001
(modified

cross-validation)

Table 7.10: Comparison between the best results for the mouse data (promoter

negative examples vs. distal negative examples) using biological test set.

It is exciting to see that the results improve considerably when using distal neg-

ative examples rather than the previous results using promoter negative exam-
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ples. It shows that introducing distal negative examples helps the classifier to

characterise positive and negative examples properly. However, it is not only

introducing distal negative examples that is beneficial but also the new modi-

fied cross-validation technique has played a vital role as well. In the absence of

post-processing the use of F-score in the cross-validation improves results a lot.

However filtering out short predictions during cross-validation improves the result

in all cases. This may be due to the fact that removing short predictions in the

validation set could determine the best parameters for the meta-classifier. A full

comparison of results between this chapter and the previous chapter is given in

Section 7.6.

7.4.2.2 Replacing negative examples with randomised negative exam-

ples

Table 7.11 shows the results of using the randomised negative examples with

different versions of the modified cross-validation methods in the yeast dataset

and Table 7.12 shows a brief comparison between the best result from the previous

chapter and this.

Cross-validation TP FP FN TN Recall Precision F-score FP-rate
criterion

Accuracy 1426 49 1382 19736 0.508 0.967 0.666 0.003

F-score 1594 65 1214 19720 0.568 0.961 0.714 0.003

Accuracy+ 1748 67 1060 19718 0.622 0.963 0.756 0.003
post-processing

F-score+ 1748 67 1060 19718 0.622 0.963 0.756 0.003
post-processing

Table 7.11: The result of using the randomised negative examples with varying

cross-validation methods in the yeast dataset (biological test set).

As the first row of the data in Table 7.12 is taken from previous studies(Sun et al.,

2005, 2006a,b, 2009a,a,b; Robinson et al., 2006, 2007a,b), the confusion matrix

was not obtainable. Therefore, no confusion matrices are presented in Table 7.12.
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Recall Precision F-score FP-rate

Yeast+promoter 0.305 0.371 0.334 0.044

(standard

cross-validation)

Yeast+ randomised 0.622 0.963 0.756 0.003

(modified

cross-validation)

Table 7.12: Comparison between the best results for the yeast data (promoter

negative examples vs. randomised negative examples) using biological test set.

The results using the yeast data are again greatly improved from the previous

promoter negative data of the last chapter.

Table 7.13 shows the results of using randomised negative examples in the

mouse data with different versions of the new modified cross-validation method

and Table 7.14 shows a quick comparison between the best result from the pre-

vious chapter and this. Using randomised negative examples on mouse data has

further improved the result.

Cross-validation TP FP FN TN Recall Precision F-score FP-rate
criterion

Accuracy 602 264 182 17860 0.768 0.695 0.730 0.020

F-score 542 19 242 18105 0.691 0.966 0.806 0.001

Accuracy+ 594 0 190 18124 0.758 1.0 0.862 0.00
post-processing

F-score+ 594 0 190 18124 0.758 1.0 0.862 0.00
post-processing

Table 7.13: The result of using the randomised negative examples with varying

cross-validation methods in the mouse dataset (biological test set).
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TP FP FN TN Recall Precision F-score FP-rate

Mouse+promoter 191 908 593 17216 0.244 0.174 0.203 0.050
(modified

cross-validation)

Mouse+ randomised 594 0 190 18124 0.758 1.0 0.862 0.00
(modified

cross-validation)

Table 7.14: Comparison between the best results for the mouse data (promoter

negative examples vs. randomised negative examples) using biological test set.

Here replacing promoter negative examples with randomised negative examples

that have very low probability of being the part of a binding site, has char-

acterised the data more efficiently than using distal negative examples. One

important observation is there are very few false predictions and in case of us-

ing post-processing during cross-validation, the FP-rates are zero. There is also

no difference between using Accuracy and F-score as cross-validation criterion

when using post-processing during cross-validation for both yeast and mouse

data. However, the F-score does improve without post-processing during cross-

validation, and is therefore a better candidate as a cross-validation criterion than

Accuracy.

7.4.3 Visualisation of the Predictions

Apart from assessing the prediction based on performance measures, I have pro-

duced a visualisation of the predictions on the mouse data to see if our predictions

are as good as are reflected in our results. The predictions on the yeast data have

not been presented due to the lack of proper annotations in the dataset. A fraction

of the mouse genome (upstream region of the gene MyoD1, Q8CFN5, Vim, and

U36283 ) has been taken and compared best results from different experiments

along with prediction algorithms and annotations.
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Figure 7.4: Visualization of prediction results on the mouse data.
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In Figure 7.4, the upper seven results are from the original prediction algorithms

(described in Section 5.4.2) and the next one is experimentally annotated binding

sites from ABS or ORegAnno. The last three results are our best prediction

results from three different types of experiments

Experiment 1 is using promoter negative examples (described in Section 6.7.2);

Experiment 2 is using distal negative examples (described in Section 7.4.2.1);

Experiment 3 is using randomised negative examples (described in Section 7.4.2.2).

The figure shows that the prediction algorithms generate a lot of false predictions.

On the other hand, using original mouse data (Experiment 1) does not make good

predictions. Whereas, using distal or randomised negative examples (Experiment

2 or 3) improves the predictions considerably. The predictions are almost identical

to the annotations with the experiment with randomised negative example giving

slightly better predictions than that with distal negative examples.

The results in this section are exceptionally pleasing and justify all the ex-

periments using different methodologies. In the next two sections I will expand

and analyse the results further and then a full discussion of the results is given

in Section 7.6.2.

7.5 Effect of Repetitions and Inconsistent Vec-

tors

Adding new sources of negative examples has a considerable impact on the result.

There is one further issue that needs to be investigated. As noted in Table 7.1,

there are a lot of repetitive and inconsistent data in the full dataset. These are

removed from the training set prior to training. Since the biological test set has

the full set of contiguous data replaced in it there is an obvious question that

arises regarding whether these repeats bias the results. For this reason, I need to

repeat the experiment for the filtered test set since this no longer has the bias of

all the repetitions.

While doing so I explored an alternative method of generating training data.

Up to this point all the repeated and inconsistent data are removed from the
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training set after changing the source of the negative data. When the negative

data is taken either from distal regions or by randomising the number of repe-

titions and inconsistent data vectors is likely to be a lot less after this has been

done. The question arises whether it makes a difference if the repetitive and

inconsistent vectors are removed before replacing the negative examples or after.

So I intended to compare the results obtained when removing the repetitions and

inconsistencies either before or after using new negative vectors. However, the

results generated by this method did not show much improvement in predictions.

The methodology, statistics for the dataset sizes under the different replacement

and the results on both filtered and biological test sets are given in Appendix C.

7.6 Comparison of Results and Discussion

7.6.1 Comparisons between the base algorithm and all the

two-class SVM results

Now let us compare all the results that have been gathered so far on the yeast and

mouse datasets using the two-class SVM. Here I have accumulated best results of

the base algorithm from Chapter 5, best results of two-class SVM with standard

and modified cross-validation method from Chapter 6 and compared with the

results obtained in this chapter. In all cases the biological test set has been used.

Table 7.15 shows the comparison between results obtained from different types

of experiments using the two-class SVM methods on the yeast data. From the

results, it is evident that using randomised negative examples with the modified

cross-validation method improved the results substantially for the yeast dataset.

The F-score improved from 29% to 76%.
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Recall Precision F-score FP-rate

Fuzznuc 0.400 0.222 0.285 0.106

Yeast+ standard 0.305 0.371 0.334 0.044

Yeast+ w 0.221 0.499 0.307 0.019

Yeast+ mod 0.229 0.313 0.265 0.071

Yeast+ mod +rand 0.622 0.963 0.756 0.003

Table 7.15: Comparison of performance measures between the best base al-

gorithm, two-class SVM, and two-class SVM with replacing negative examples

(yeast data).

In Table 7.15:

Fuzznuc = Best base algorithm

Yeast+standard = Yeast data using standard cross-validation

Yeast + w = Yeast data using windowing

Yeast + mod = Yeast data using modified cross-validation

Yeast + mod + rand = Yeast data with randomised negative examples using

new modified cross-validation

Figure 7.5 shows the comparison between F-scores obtained from the best base

algorithm and different two-class SVM methods on the yeast data. Initially,

using the original promoter negative examples produces a poor classification per-

formance, some worse than the base algorithm (Fuzznuc). But after replacing

negative examples with the randomised negative examples the results improve

dramatically. Therefore, we can see that using randomised negative examples

and using the new modified cross-validation give by far the best F-score.
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Figure 7.5: Comparison of F-score between the best base algorithm, two-class

SVM, and two-class SVM with replacing negative examples (yeast data).

Figure 7.6: Comparison of FP-rate between the best base algorithm, two-class

SVM, and two-class SVM with replacing negative examples (yeast data).

Figure 7.6 shows the comparison between FP-rate obtained from the best base

algorithm and different two-class SVM methods on the yeast data. The last
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method where negative examples have been replaced by randomised negative

examples using modified cross-validation has the lowest FP-rate. Here, the FP-

rate has decreased considerably. This proves that using negative examples that

completely lack biological properties can characterise the data quite well, as the

classifier could predict the binding sites in the unseen test set properly. It indi-

cates that the new method of cross validation is efficient enough to find the best

hyper-parameter for training the model for any cross-validation criterion with

post-processing.

Table 7.16 shows the comparison between results obtained from different two-

class SVM methods on the mouse data. Clearly, using randomised negative ex-

amples with modified cross-validation method improved the results substantially

for the mouse dataset. The F-score improved from 13% to 86% while comparing

to the best base algorithm.

Recall Precision F-score FP-rate

EvoSelex 0.348 0.080 0.130 0.172

Mouse+ standard 0.213 0.113 0.148 0.073

Mouse+ w 0.476 0.129 0.203 0.139

Mouse+ mod 0.244 0.174 0.203 0.050

Mouse+ mod +dist 0.676 0.996 0.806 0.0001

Mouse+ mod +rand 0.758 1.0 0.862 0.000

Table 7.16: Comparison of performance measures between the best base al-

gorithm, two-class SVM, and two-class SVM with replacing negative examples

(mouse data).

In Table 7.16:

EvoSelex = Best base algorithm

Mouse = Mouse data using standard cross-validation

Mouse + w = Mouse data using windowing

Mouse + mod = Mouse data using modified cross-validation
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Mouse + mod + dist = Mouse data with distal negative examples using new

modified cross-validation

Mouse + mod + rand = Mouse data with randomized negative examples us-

ing new modified cross-validation

Figure 7.7: Comparison of F-score between the best base algorithm, two-class

SVM, and two-class SVM with replacing negative examples (mouse data).

Figure 7.7 shows the comparison between F-scores obtained from the best base

algorithm and different two-class SVM methods on the mouse data. The last

method where negative examples have been replaced by randomised negative

examples using modified cross-validation has the best F-score. Unlike the yeast

data, the new modified cross-validation method clearly gave better classification

performance than that of the base algorithm (EvoSelex ) and the two-class SVM

method with standard cross-validation. The use of distal negative data is nearly

as good as using the randomised negative data.
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Figure 7.8: Comparison of FP-rate between the best base algorithm, two-class

SVM, and two-class SVM with replacing negative examples (mouse data).

Figure 7.8 shows the comparison between FP-rate obtained from the best base

algorithm and different two-class SVM methods on the mouse data. The last

method where negative examples have been replaced by randomised negative

examples using modified cross-validation has the lowest FP-rate, with the results

using distal negative examples not far behind.

7.6.2 Discussion

In previous studies, it was shown that basic algorithms individually could not

produce accurate predictions and consequently produced many false positives.

Though the combination of these algorithms using two-class SVM (described in

Chapter 6) gave better results than each individual prediction algorithm, there

were still a lot of false positives due to the vulnerability of the negative examples

in the datasets. Therefore, the idea of replacing negative examples is introduced

in this chapter. At first I use a filtered test set for this approach to understand

how good the classifier is after training it with new negative examples along with

the modified cross-validation method. Tables 7.4 and 7.8 show remarkable im-

provements on the classifier performance on the mouse data. While using distal
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negative examples in the mouse data the F-score improves from 17% to almost

62%. This is due to the fact that the classifier improved almost all the measures

(TP, FP, and FN except TN) in the confusion matrix. The True Negative predic-

tion is decreased by 50% as the previous classifier (mouse+promoter (standard

cross-validation)) tried to predict everything as negative examples. However, the

False Positive prediction decreases three times which increases the proportion

of correct predicted positive examples. The same is true when using random

negative examples in the mouse data (see Table 7.8).

By extending the same approach to the biological test sets, we actually observe

the same trend of improvements. Due to the nature of the dataset (containing

a lot of repeats), the prediction performances are more improved than that of

with the filtered test sets. Accumulating all the results together (see Tables 7.15

and 7.16), we can observe that a more than two times improvement in F-score

occurred by using randomised negative examples for the yeast data. This is due

to a huge drop in false predictions (FNs and FPs). The False Negative prediction

is decreased by four times and there is very little False Positive prediction, in

the case of mouse data it is even zero. The mouse data also observed a huge

improvement in F-score as well. However as there is a big reduction in FP-rate,

the possibility of predicting new novel sites become less. This can be due to

the fact that the algorithms combined can characterise the annotated examples

(examples from the positive class), but cannot do the same promoter negative

examples well. These negative examples act as noisy data for the classifier, which

is an obstacle to the classifier performance. However, this combination technique

works fine with other negative examples (distal and randomised), which have less

possibilities of having binding sites in them. This also proves that the provided

annotation that had been used are quite correct. As my technique could success-

fully predict both the binding sites and non-binding sites in promoter regions,

this can be a very interesting application on unlabelled data for predicting novel

binding sites.

My present results show that a change in the provenance of the negative ex-

amples significantly improves the resulting predictions and that implementation

of the new cross-validation technique can bring further improvements. Conse-

quently the major result presented here is the beneficial effect of changing the
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source of the negative examples used in the training data. Along with the mod-

ified cross-validation method our procedure can be a step in the right direction

for dealing with this type of biological data.

7.7 Summary

In this chapter I have introduced a new technique for generating negative ex-

amples along with a new modified cross-validation method. The results have

improved considerably from those reported in Chapter 6. It is not only the new

cross-validation method that is improving the result but also these dramatic im-

provement actually come after using negative examples in the training set either

from distal or randomised negative examples. The original yeast dataset that

I inherited from the previous research is now fairly dated and newer prediction

algorithms have recently been applied to yeast genome. I, therefore, have decided

to create a new yeast dataset containing predictions from more recent algorithms

and replicate all the experiments on the updated yeast dataset in the next chap-

ter.
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Chapter 8

Application of Varying Negative

Examples on Updated Yeast

Datasets

8.1 Introduction

In the previous chapters (Chapters 6 and 7), I gave a comprehensive description

of approaches where biological sources of evidence were combined together and

this input was classified using a meta-classifier for improving the prediction of

transcription factor binding sites. It was shown that the combination of the

predictions from different computational algorithms and evidence gives better

results than those of the algorithms (evidence) independently. Two datasets from

yeast and mouse with several sources of evidence were used in those chapters and

the results considerably improved the prediction of TFBSs.

However, when reviewing the results obtained from the yeast dataset, I did

not feel they were as reliable as the mouse ones. This is due to the fact that the

yeast dataset, its annotated binding sites and the algorithms used in the previous

studies (Sun et al., 2005, 2006a,b, 2007, 2008, 2009a,a,b; Robinson et al., 2006,

2007a,b, 2008) are a number of years old and so lacks the most current set of

annotations and lacks the benefit of all the most recent work done in the yeast

community. The current yeast dataset was mainly used as a test bed to investigate
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new methods of dealing with the classification task. Moreover, this yeast data

has a larger proportion of inconsistent and repetitive vectors in comparison with

the mouse data, that is relatively new and has a lower percentage of inconsistent

and repetitive vectors in the dataset (see Section 7.2.1).

Original Inconsistent Unique Repeat

Yeast 67,782 46,695 (69%) 6,521 (9.6%) 18,858 (27.8%)

Table 8.1: Statistics of inconsistencies in the yeast dataset. All the numbers in

the table are in base pairs.

From Table 8.1, it is noticeable that 69% of the current yeast dataset has in-

consistent vectors which can lead to misleading classifications. Only 9.6% of its

data vectors are unique since the dataset has a lot of repetitions. Therefore, the

improved results obtained in the previous chapters may be due to the training

of a lot of repeated vectors (see Section 6.4.1). In conjunction with this, the

algorithms used for the previous yeast data have also not been updated. The aim

of this chapter is to introduce a new updated yeast dataset, new and updated

prediction algorithms and to incorporate this into the combinatorial approach

that I have described so far in this thesis.

8.2 Genomic Data

8.2.1 Data sources

The yeast data in this chapter has been collected from the resources at the UCSC

Genome bioinformatics website. The majority of data is originally from the Sac-

charomyces Genome Database 1 and is based on the assembly of sequence of the

S288C strain (dated June 2008). As of June 18, 2011, the yeast database contains

more than 6600 genes, among which 74.60% are verified, 13.15% uncharacterised

and 12.24% are annotated as dubious.

1http://downloads.yeastgenome.org/
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The annotations for transcription factor binding sites have been collected from

an open source database for curated, known regulatory elements, ORegAnno.

The locus of transcription factor binding sites in different chromosomes from this

source has been collected from the UCSC Genome bioinformatics website.

8.2.2 Data selection

As seen from the previous section, the yeast data has a large number of verified

protein coding genes. It will be computationally intensive to run the combinato-

rial prediction approach on the full set of yeast genes, so a criterion was set for

choosing a subset of genes. The first 200 genes were selected on the basis of those

genes having the highest frequency of transcription factors binding to them. For

this criterion, I used the mapping of conserved regulatory sites from MacIsaac

et al. (2006) 1. This improved mapping was created by analysing genome-wide

chromatin immuno-precipitation data for 203 transcription factors for yeast, us-

ing two sequence coservation-based motif discovery algorithms, PhyloCon and

Converge (MacIsaac et al., 2006). Detailed information on transcription factors

that have different binding p-values (probability) cutoffs and different levels of se-

quence conservation between different species was obtained from the same source.

There are three types of binding p-value cutoffs reported in the MacIsaac

dataset: 0.001, 0.005 and no cutoff. For conservation, there are also three dif-

ferent levels calculated, which are stringent, moderate, and no conservation. The

combination of these two parameters of the dataset encodes nine different sub-

sets of data with different levels of stringency. From these nine sets of data, I

selected two datasets. One with a p-value cutoff 0.001 and stringent conserva-

tion, and another one with a p-value cutoff 0.005 and moderate conservation.

This has been done to introduce variation in the datasets. From this point, I will

denote the yeast data with the p-value cutoff 0.001 and stringent conservation

as Yeast p0.001 stringent and the yeast data with the p-value cutoff 0.005 and

moderate conservation as Yeast p0.005 moderate.

The Yeast p0.001 stringent contains the most stringent transcription factor

binding sites to search for and thereby the lowest number of examples for training.

1source:http://fraenkel.mit.edu/
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Alternatively, the Yeast p0.005 moderate has more variations in the mapping

than the previous one. The TF-Gene mapping dataset from MacIsaac et al.

(2006) was used to generate the following number of transcription factors versus

genes for both datasets (see Table 8.2).

Number of TFs Number of genes

Yeast p0.001 stringent Yeast p0.001 stringent

21-25 - 3

16-20 1 12

11-15 8 56

6-10 100 247

1-5 1817 2597

Table 8.2: Number of TFs vs. Number of genes for Yeast p0.001 stringent and

Yeast p0.005 moderate datasets.

From Table 8.2, for each dataset the first 200 genes were selected that had the

most transcription factors binding them. One further criterion for selecting genes

was that any associated TFBS had to lie within the 500bps upstream regions

of a gene. Based on this, 176 genes of the initial 200 satisfied this criterion

for Yeast p0.001 stringent set. Using the same criterion, 148 gene promoter se-

quences were selected for Yeast p0.005 moderate set. The details of these datasets

are given below in Table 8.3.

Yeast p0.001 stringent Yeast p0.001 stringent

Total number of promoter sequences 176 148

Total sequence length 88,000 bps 74,000 bps

Average sequence length 500 bps 500 bps

Average number of TBFS sites per sequence 4.05 3.87

Average number of TBFS sites per sequence 12.34 bps 11.68 bps

Total number of TFBS sites 714 573

TBFS density in total dataset 10.01% 9.04%

Table 8.3: Summary of Yeast p0.001 stringent and Yeast p0.005 moderate

datasets.
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In this chapter, I used three types of negative examples apart from the promoter

negative examples:

i. Distal negative examples

ii. Randomised negative examples

iii. Intronic negative examples

For distal negative examples, I have taken intergenic regions from the yeast data

mentioned in Section 8.2.1. The average distance between genes in yeast is around

493 bps and the minimum size for a regulatory region is around 172bps (Chen

et al., 2011). Therefore, to avoid any overlaps with the regulatory regions, I

selected intergenic regions that are more than 1,000bps in length and took 50

bps from either side of the midpoint of the intergenic regions. There are in total

59,994 nucleotides in this negative dataset. The randomised negative example

dataset is produced by randomising this distal negative example dataset.

Following the success in using negative examples from different sources, I have

introduced another new negative examples set named intronic negative examples

in this chapter. For intronic negative examples, I have randomly selected 75

intronic regions from the yeast data mentioned in Section 8.2.1 and trimmed

10bps of either end off a selected intron as there is possibility of some bps that

are close to the end of an exon that have a high degree of sequence conservation.

There are in total 33,091 nucleotides in this negative dataset. The details of these

two non-randomised datasets are given below:

Distal negative Intronic negative

example dataset example dataset

Total number of sequences 594 75

Total sequence length 59,994 bps 33,091 bps

Average sequence length 101 bps 441.21 bps

Table 8.4: Summary of the intronic and distal negative example dataset.

151



Eighth Chapter

8.3 Sources of Evidence

Seven sources of evidence were used as input in this study. Table 8.5 lists the

algorithms and biological evidence used in this chapter.

Strategy Algorithms

Scanning algorithms Fuzznuc

MotifLocator

P-match

Co-regulatory MEME

algorithms AlignACE

Phylogenetic data PhastConsC (conserved)

PhastConsMC (most conserved)

Table 8.5: The seven sources of evidence used with the new yeast dataset.

I have tried to cover algorithms and evidence from different strategies. These

strategies have already been discussed in Chapter 3. After reviewing several

literature sources to find good algorithms for the new yeast dataset, I believe

that the algorithms and sources of evidence that have been used so far are well-

established. Therefore these can be good candidates for using on the new yeast

dataset. The scanning algorithm, Fuzznuc, has been chosen as one of the seven

sources of evidence because it was the best prediction algorithm on the older yeast

data (described in Chapter 5). 91 patterns and regular expressions 1 were searched

using Fuzznuc. MotifLocator was also one of the best prediction algorithms on

the mouse data and therefore was chosen as another candidate algorithm. For

this scanning algorithm, PWMs were used from the Saccharomyces Cerevisiae

Promoter Database (SCPD) 2. The two co-regulatory algorithms (MEME and

AlignACE ) are well-known prediction algorithms. Default parameters were used

for both of the algorithms and all sequences were used together while running

the algorithms. The maximum number of motifs (according to Table 8.2) was

explored while running the MEME. The phylogenetic sources of evidence (Phast-

1source:http://biochemie.web.med.uni-muenchen.de/YTFD/
2http://rulai.cshl.edu/SCPD/
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ConsC for conserved and PhastConsMC for most conserved) were downloaded

from the UCSC genome bioinformatics website.

The only new prediction algorithm that has been introduced in this chapter is

P-match (Chekmenev et al., 2005) 1. P-match is based on the simultaneous use of

a position weight matrix (PWM) taken from TRANSFAC. It uses 142 matrices

from TRANSFAC public database (Chekmenev et al., 2005). The matrix is

derived from the alignment of a set of experimentally determined TFBSs and

then calculates d-score from all the PWMs. A d-score measures the similarities

between subsequences by calculating from the weights of the specific nucleotide

of a sequence from its corresponding PWM. Two types of d-score are calculated

one for the whole sequence and another for the single core position of the binding

site. Two independent cut-off values are estimated for these d-scores to reduce

false-negatives and false-positives. The overlapping regions are removed by taking

the site, which has the highest d-score among those sites. A further description

of this algorithm is available in Chekmenev et al. (2005).

8.4 Statistics of the Algorithms

This section details the results, on the sources of evidence, obtained during the

course of this research. The performance of each algorithm has been calculated by

comparing the prediction at each individual nucleotide position in the sequence

with the annotated values from ORegAnno. The calculation of the statistical

measures was previously detailed in Section 4.5.3.

8.4.1 Algorithm performance for Yeast p0.001 stringent

These statistics, presented in Table 8.6, were calculated based on the performance

across the biological test dataset only. The test sets were generated in the same

manner as described in Section 6.4.2.Fuzznuc achieves the best F-score closely

followed by MotifLocator and PhastConsC. Though P-match has the strongest

Precision, it has a very low Recall value. Here, MEME has the lowest FP-rate.

1http://www.gene-regulation.com/cgi-bin/pub/programs/pmatch/bin/p-match.cgi
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Algorithm TP FP FN TN Recall Precision F-score FP-rate

Fuzznuc 249 912 647 8192 0.278 0.215 0.242 0.100

MotifLocator 269 1102 627 8002 0.300 0.196 0.237 0.121

P-match 84 275 812 8829 0.094 0.234 0.134 0.030

MEME 9 126 887 8987 0.010 0.067 0.018 0.014

AlignACE 176 1388 720 7716 0.196 0.113 0.143 0.153

PhastConsC 624 3808 272 5296 0.696 0.141 0.234 0.418

PhastConsMC 521 3231 375 5873 0.582 0.139 0.224 0.355

Table 8.6: Performance measures of sources of evidence on Yeast p0.001 stringent.

Figure 8.1 illustrates the variation in Precision, Recall and F-score across the

different algorithms and sources of evidence. Note that larger values are preferable

for all of these measures.

Figure 8.1: Comparison of Recall, Precision and F-score for

Yeast p0.001 stringent

Figure 8.2 shows the FP-rate scores for each of the algorithms and sources of

evidence. Smaller values are to be preferred for this measure.
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Figure 8.2: Comparison of FP-rate for Yeast p0.001 stringent

8.4.2 Algorithm performance for Yeast p0.005 moderate.

Table 8.7 contains the details of the performance of each of the algorithms us-

ing the range of statistics chosen to explore the different facets of classification

performance. These statistics were calculated based on the performance across

the biological test dataset only. In this dataset, PhastConsMC achieves the best

F-score closely followed by PhastConsC and Fuzznuc. Hence, Fuzznuc has the

strongest Precision while P-match has the lowest FP-rate.

Algorithm TP FP FN TN Recall Precision F-score FP-rate

Fuzznuc 250 974 682 8094 0.268 0.204 0.232 0.107

MotifLocator 158 988 774 8080 0.169 0.138 0.152 0.109

P-match 46 228 886 8840 0.049 0.168 0.076 0.025

MEME 100 787 126 8978 0.442 0.112 0.178 0.081

AlignACE 281 1400 651 7668 0.302 0.167 0.215 0.154

PhastConsC 749 4351 183 4717 0.804 0.147 0.248 0.480

PhastConsMC 711 3884 221 5184 0.763 0.155 0.257 0.428

Table 8.7: Performance measures of sources of evidence on

Yeast p0.005 moderate.

Figure 8.3 illustrates the variation in Precision, Recall and F-score across the
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different algorithms and sources of evidence. Note that larger values are preferable

for all of these measures.

Figure 8.3: Comparison of Recall, Precision and F-score for

Yeast p0.005 moderate.

Figure 8.4 shows the FP-rate scores for each of the algorithms and sources of

evidence. Smaller values are to be preferred for this measure.

Figure 8.4: Comparison of FP-rate for Yeast p0.005 moderate.
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8.5 Dealing with Inconsistent and Repetitive Data

Vectors

In Section 7.2.1 of the previous chapter, I discussed the problems of the two TF-

BSs datasets (yeast and mouse), one of which was having inconsistent and repet-

itive data vectors. These data vectors were a major setback to the process. The

new yeast datasets are also not without this problem. Similar characteristics still

persist in the new yeast datasets. Table 8.8 shows the statistics of inconsistent,

repetitive and unique data vectors in both yeast datasets, Yeast p0.001 stringent

and Yeast p0.005 moderate.

Original Inconsistent Unique Repeat

Yeast p0.001 stringent 88,000 34,443 27,567 25,990

(39.14%) (31.33%) (29.53%)

Yeast p0.005 moderate 74,000 28,286 23,470 22,244

(38.22%) (31.72%) (30.06%)

Table 8.8: Statistics of inconsistencies and repeats in new yeast datasets

(Yeast p0.001 stringent and Yeast p0.005 moderate). All the numbers in the ta-

ble are in base pairs.

More than 39% of the Yeast p0.001 stringent dataset are inconsistent vectors and

almost 30% are repetitive data vectors. Similarly, the percentage of inconsistent,

repetitive and unique vectors for the second yeast dataset (Yeast p0.005 moderate)

is almost the same as the first one. Figure 8.5 shows the comparison between the

inconsistent and unique vectors among all of the three yeast datasets.
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Figure 8.5: Comparison of the different data vectors between the old and the new

yeast datasets.

From Figure 8.5, it is apparent that the previous yeast dataset was quite un-

reliable compared to the new yeast datasets. The new yeast datasets have less

inconsistent vectors than the previous one. Therefore, when inconsistent vectors

are eliminated, more than 60% of new the datasets could be retained.

8.6 Methodology for a Two-class SVM on the

New Yeast Datasets

This section describes the four types of experiments that I have run on both of

the new yeast datasets. The experiments are:

a. Using part of the original promoter region deemed to be not a TFBS as neg-

ative examples

b. Replacing negative examples with distal negative examples

c. Replacing negative examples with intronic negative examples

d. Replacing negative examples with randomised negative examples

158



Eighth Chapter

The modified cross-validation method with five-fold cross-validation has been

used in all experiments. In addition some pre-processing (data division, nor-

malisation and sampling) has been undertaken on the training set (described in

section 6.4). Here I have only explored two ratios 1:1 and 2:1 for under-sampling

and reported the results with the ratio, that gave the best classification perfor-

mance. An exhaustive search method using F-score has been used and searched

for the best cost (C) and gamma (γ) values. The best model from training with

the best C and γ values has been used to predict the test set. A post-processing

step (with threshold size= 4, 5, 6, and 7) has been done on the prediction of the

biological validation and test sets.

8.7 Results for a Two-class SVM on New Yeast

Datasets

I have taken the first 30,000 data vectors from both of the new datasets and

run the experiments to make them less computationally intensive. The statis-

tics of the subsets of both of the new yeast dataset (Yeast p0.001 stringent and

Yeast p0.005 moderate) are given below:

Original Inconsistent Unique Repeat

Yeast p0.001 stringent 30,000 10,408 9,837 9,755

(34.70%) (32.79%) (32.52%)

Yeast p0.005 moderate 30,000 10,333 9,791 9,876

(34.44%) (32.64%) (32.92%)

Table 8.9: Statistics of inconsistencies and repeats in subsets of new yeast datasets

(Yeast p0.001 stringent and Yeast p0.005 moderate). All the numbers in the ta-

ble are in base pairs.

Two-third of the both datasets (Yeast p0.001 stringent and Yeast p0.005 moderate)

are taken as training sets (containing 20,000 data vectors) and one-third is used

as a test set (containing 10,000 data vectors). In this case, the test sets are bi-

ological test sets containing contiguous data points. Varying different negative
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examples (mentioned in Section 8.6) on the training sets will form four training

sets for each of the two yeast datasets. The statistics for each of these cases are

given below in Table 8.10:

Type Description Dataset Size (bps)

Training set Test set

(after sampling)

Original Yeast data containing Yeast p0.001 stringent 13,752

promoter negative examples Yeast p0.005 moderate 13,874

Distal Non-binding sites drawn Yeast p0.001 stringent 14,209

from distal regions Yeast p0.005 moderate 13,540 10,000

Randomised Non-binding sites formed Yeast p0.001 stringent 16,015

by random permutations Yeast p0.005 moderate 15,297

Intronic Non-binding sites drawn Yeast p0.001 stringent 13,209

from intronic regions Yeast p0.005 moderate 12,336

Table 8.10: Statistics of training and biological test sets when varying negative

examples.

Now I will present the results of the two-class SVM on the new yeast datasets

when varying the source of the negative examples.

8.7.1 Using promoter negative examples

The new modified cross-validation procedure (introduced in Section 6.4.5) was

used to analyse the performance in terms of the F-score value for both of the

new yeast datasets. For the dataset Yeast p0.001 stringent, Fuzznuc has the best

performance according to the F-score among the seven sources of evidence:

Recall Precision F-score FP-rate

Fuzznuc 0.278 0.215 0.242 0.100

Table 8.11: Best results from original algorithm (Fuzznuc) for

Yeast p0.001 stringent.

The results of combining prediction results using an SVM with the new modified

cross-validation are given below. The results are generated from the predictions

made on the same biological test set mentioned in Section 8.4.1. The confusion

matrix for the result is as follows:
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Predictive Negatives Predictive Positives

Actual Negatives TN = 6699 FP = 2405

Actual Positives FN = 378 TP = 518

Table 8.12: Confusion matrix for Yeast p0.001 stringent.

Recall Precision F-score FP-rate

Yeast p0.001 stringent 0.578 0.177 0.271 0.264

Table 8.13: Results of the two-class SVM on Yeast p0.001 stringent.

Figure 8.6 shows the comparisons between the F-scores and FP- rates of the

best base algorithm (Fuzznuc) and the two-class SVM approach using promoter

negative examples for Yeast p0.001 stringent. The F-score is only slightly higher

than that of the best prediction algorithm. However, the FP-rate has worsened

in comparison to that of the original prediction algorithms.

Figure 8.6: Comparison between F-scores and FP-rates of the best base algorithm

(Fuzznuc) and Yeast p0.001 stringent.

For the dataset Yeast p0.005 conserved, PhastConsMC has the best performance

according to F-score among the seven sources of evidence:
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Recall Precision F-score FP-rate

PhastConsMC 0.763 0.155 0.257 0.428

Table 8.14: Best results from original algorithm (PhastConsMC ) for

Yeast p0.005 moderate.

The results from combining prediction results using an SVM with the new mod-

ified cross-validation are given below. The results are generated from the predic-

tion made on the biological test set. The confusion matrix for the result is as

follows:

Predictive Negatives Predictive Positives

Actual Negatives TN = 7554 FP = 1514

Actual Positives FN = 488 TP = 444

Table 8.15: Confusion matrix for Yeast p0.005 moderate.

Recall Precision F-score FP-rate

Yeast p0.005 moderate 0.476 0.227 0.307 0.167

Table 8.16: Results of two-class SVM on Yeast p0.005 moderate.

Figure 8.7 shows the comparisons between the F-scores and FP-rates of the best

base source of evidence (PhastConsMC ) and the two-class SVM approach using

promoter negative examples for Yeast p0.005 moderate.
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Figure 8.7: Comparison between F-scores and FP-rates of the best base algorithm

(PhastConsMC ) and Yeast p0.005 moderate.

The F-score is only slightly higher than that of the original prediction algorithm

(PhastConsMC ). However, the FP-rate is still lower than that of the original

prediction algorithms but higher than the lowest FP-rate in Table 8.7. As we

have not observed any significant improvement just by combining the results

of the base algorithms, the next section will show the results after using distal

negative examples in place of promoter negative examples on this combined result.

8.7.2 Using distal negative examples

The result of combining prediction results by replacing the negative examples with

distal negative example using an SVM with the new modified cross-validation are

shown in Tables 8.17 and 8.18. The results are generated from the predictions

made on the same biological test set mentioned in Section 8.4.1. The confusion

matrix from the result is as follows:
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Predictive Negatives Predictive Positives

Actual Negatives TN = 9092 FP = 12

Actual Positives FN = 324 TP = 572

Table 8.17: Confusion matrix of Yeast p0.001 stringent when using distal nega-

tive examples.

Recall Precision F-score FP-rate

Yeast p0.001 stringent 0.638 0.979 0.773 0.001

+distal

Table 8.18: Results of two-class SVM on Yeast p0.001 stringent when using distal

negative examples.

Figure 8.8: Comparison between F-scores and FP-rates of the best base algorithm

(Fuzznuc) and Yeast p0.001 stringent with distal negative examples.

Figure 8.8 shows the comparisons between the F-scores and FP-rates of the best

base algorithm (Fuzznuc) and the two-class SVM approach using distal negative

examples for Yeast p0.001 stringent. The result shows a huge improvement over

the best base algorithm as expected. The F-score has improved from 24% to 77%

and the classifier can predict almost all the positive examples present in the test
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set (as the Precision is almost 98%). There is also a huge reduction in the FP-rate

as only a few predictions as positive examples have been predicted wrongly.

The results using Yeast p0.005 moderate are given in Tables 8.19 and 8.20:

Predictive Negatives Predictive Positives

Actual Negatives TN = 9031 FP = 37

Actual Positives FN = 209 TP = 723

Table 8.19: Confusion matrix of Yeast p0.005 moderatewhen using distal negative

examples.

Recall Precision F-score FP-rate

Yeast p0.005 moderate 0.775 0.951 0.855 0.004

+distal

Table 8.20: Results of two-class SVM on Yeast p0.005 moderate when using distal

negative examples.

Figure 8.9: Comparison between F-scores and FP-rates of the best base algorithm

(PhastConsMC ) and Yeast p0.005 moderate with distal negative examples.

Figure 8.9 shows the comparisons between the F-scores and FP- rates of the

best base source of evidence (PhastConsMC ) and the two-class SVM approach
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using distal negative examples for Yeast p0.005 moderate. Using distal negative

examples on Yeast p0.005 moderate also improves the result tremendously. The

Recall improves four times from that of the base algorithm and the F-score also

improves from 26% to 85%. Now we will see the results when using randomised

negative examples that are generated from the distal negative examples based on

random reordering.

8.7.3 Using randomised negative examples

The result of combining prediction results by replacing the negative examples

with randomised negative example using an SVM with the new modified cross-

validation are shown in Tables 8.21 and 8.22. The results are generated from the

predictions made on the same biological test set mentioned in Section 8.4.1. The

confusion matrix from the result is as follows:

Predictive Negatives Predictive Positives

Actual Negatives TN = 9101 FP = 3

Actual Positives FN = 326 TP = 570

Table 8.21: Confusion matrix of Yeast p0.001 stringent when using randomised

negative examples.

Recall Precision F-score FP-rate

Yeast p0.001 stringent 0.636 0.995 0.776 0.0004

+randomised

Table 8.22: Results of two-class SVM on Yeast p0.001 stringent when using ran-

domised negative examples.
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Figure 8.10: Comparison between F-scores and FP-rates of the best base algo-

rithm (Fuzznuc) and Yeast p0.001 stringent with randomised negative examples.

Figure 8.10 shows the comparisons between the F-scores and FP-rates of the

best base algorithm (Fuzznuc) and the two-class SVM approach using randomised

negative examples for Yeast p0.001 stringent. The result also shows a huge im-

provement over the base algorithms as expected. The F-score has improved from

24% to 78%. There is also a huge reduction in FP-rate as only few predictions

as positive examples have been predicted wrongly. There is a very slight im-

provement in the results compared to that of using distal negative examples (see

Table 8.18).

The results using Yeast p0.005 moderate are given in Tables 8.23 and 8.24:

Predictive Negatives Predictive Positives

Actual Negatives TN = 9059 FP = 9

Actual Positives FN = 219 TP = 713

Table 8.23: Confusion matrix of Yeast p0.005 moderatewhen using randomised

negative examples.
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Recall Precision F-score FP-rate

Yeast p0.005 moderate 0.765 0.988 0.862 0.001

+randomised

Table 8.24: Results of two-class SVM on Yeast p0.005 moderate when using ran-

domised negative examples.

Figure 8.11: Comparison between F-scores and FP-rates of the best base al-

gorithm (PhastConsMC ) and Yeast p0.005 moderate with randomised negative

examples.

Figure 8.11 shows the comparisons between the F-scores and FP- rates of the

best base algorithm (PhastConsMC ) and the two-class SVM approach using ran-

domised negative examples for Yeast p0.005 moderate. Using randomised nega-

tive examples on Yeast p0.005 moderate also improves the result tremendously

and there is a very slight improvement of the results compared to that of using

distal negative examples (see Table 8.24).

As mentioned before, this chapter introduces a new source of negative ex-

amples; intronic negative examples. We will observe the effect of using intronic

negative examples in the following section.
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8.7.4 Using intronic negative examples

The result of combining prediction results by replacing the negative examples with

intronic negative example using an SVM with the new modified cross-validation

are shown in Tables 8.25 and 8.26. The results are generated from the predictions

made on the same biological test set mentioned in Section 8.4.1. The confusion

matrix from the result is as follows:

Predictive Negatives Predictive Positives

Actual Negatives TN = 9068 FP = 36

Actual Positives FN = 235 TP = 661

Table 8.25: Confusion matrix of Yeast p0.001 stringent when using intronic neg-

ative examples.

Recall Precision F-score FP-rate

Yeast p0.001 stringent 0.737 0.948 0.829 0.004

+intronic

Table 8.26: Results of the two-class SVM on Yeast p0.001 stringent when using

intronic negative examples.

Figure 8.12 shows the comparisons between the F-scores and FP-rates of the

best base algorithm (Fuzznuc) and the two-class SVM approach using intronic

negative examples for Yeast p0.001 stringent.
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Figure 8.12: Comparison between F-scores and FP-rates of the best base algo-

rithm (Fuzznuc) and Yeast p0.001 stringent with intronic negative examples.

The result also shows a huge improvement over the base algorithms as expected.

The F-score has improved from 24% to 83%. There is also a very slight improve-

ment of the results compared to that of using distal negative and randomised

examples (see Tables 8.18 and 8.22).

The results using Yeast p0.005 moderate are given in Tables 8.27 and 8.28:

Predictive Negatives Predictive Positives

Actual Negatives TN = 9049 FP = 19

Actual Positives FN = 200 TP = 732

Table 8.27: Confusion matrix of Yeast p0.005 moderatewhen using intronic neg-

ative examples.

Recall Precision F-score FP-rate

Yeast p0.005 moderate 0.785 0.975 0.870 0.002

+intronic

Table 8.28: Results of two-class SVM on Yeast p0.005 moderate when using in-

tronic negative examples.
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Figure 8.13: Comparison between F-scores and FP-rates of the best base algo-

rithm (PhastConsMC ) and Yeast p0.005 moderate with intronic negative exam-

ples.

Figure 8.13 shows the comparisons between the F-scores and FP- rates of the best

base source of evidence (PhastConsMC ) and the two-class SVM approach using

intronic negative examples for Yeast p0.005 moderate. Using intronic negative

examples on Yeast p0.005 moderate also improves the result greatly compared to

the best result of the base algorithm and there is a very slight improvement of

the results compared to that of using distal and randomised negative examples

(see Tables 8.20 and 8.24).

8.8 Comparisons of the Results and Discussion

Now let us compare all the results that have been gathered so far on the new

yeast datasets using the two-class SVM with different negative examples. In

this section, I have collected the results of the best base algorithms and the

two-class SVM with the modified cross-validation method when using negative

examples from the different sources. In all cases the same biological test set has

been used. Table 8.29 shows the comparison between results obtained from the

different types of experiments using the two-class SVM method on the dataset,
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Yeast p0.001 stringent.

Recall Precision F-score FP-rate

Fuzznuc 0.278 0.215 0.242 0.100

Yeast p0.001 stringent 0.578 0.177 0.271 0.264

Yeast p0.001 stringent 0.638 0.979 0.773 0.001

+distal

Yeast p0.001 stringent 0.636 0.995 0.776 0.0004

+randomised

Yeast p0.001 stringent 0.737 0.948 0.829 0.004

+intronic

Table 8.29: Comparison between the performance measures of the best

base algorithm and the two-class SVM with varying negative examples in

Yeast p0.001 stringent.

Figure 8.14 shows the comparisons between the F-scores of the best prediction

algorithm (Fuzznuc) and the two-class SVM approach discussed so far. In all

cases, the F-scores are higher than that of the original prediction algorithm alone.

As before the promoter negative data case is only weakly better, while the much

more reliable negative data taken from the other sources produces exceptional

performances.
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Figure 8.14: Comparison between F-scores of the original algorithm (Fuzznuc)

and Yeast p0.001 stringent with varying negative examples.

Figure 8.15 shows the comparisons between the FP-rates of the best prediction

algorithm (Fuzznuc) and the two-class SVM approach. In all cases, apart from

the unreliable promoter negative data result, the FP-rate is substantially lower

than that of the original prediction algorithm.

Figure 8.15: Comparison between FP-rates of the original algorithm (Fuzznuc)

and Yeast p0.001 stringent with varying negative examples.
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Table 8.30 shows the comparison between results obtained from different types of

experiments using the two-class SVM method on the dataset, Yeast p0.001 moderate.

Recall Precision F-score FP-rate

PhastConsMC 0.763 0.155 0.257 0.428

Yeast p0.005 moderate 0.476 0.227 0.307 0.167

Yeast p0.005 moderate 0.775 0.951 0.855 0.004

+distal

Yeast p0.005 moderate 0.765 0.988 0.862 0.001

+randomised

Yeast p0.005 moderate 0.785 0.975 0.870 0.002

+intronic

Table 8.30: Comparison between the performance measures of the best

base algorithm and the two-class SVM with varying negative examples in

Yeast p0.005 moderate.

Figure 8.16 shows the comparisons between the F-scores of the best prediction al-

gorithm (PhastConcMC ) and the two-class SVM approach on Yeast p0.005 moderate

discussed so far. As before in all cases, the F-scores are much higher than that

of the original prediction algorithm, apart from the unreliable promoter negative

data case.
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Figure 8.16: Comparison between F-scores of the original algorithm (PhastCon-

sMC ) and Yeast p0.005 moderate with varying negative examples.

Figure 8.17 shows the comparisons between the FP-rates of the best prediction

algorithm (PhastConsMC ) and the two-class SVM approach. Again in all cases,

the FP-rate is lower than that of the original prediction algorithm, apart from

the unreliable promoter negative data case.

Figure 8.17: Comparison between FP-rates of the original algorithm (PhastCon-

sMC ) and Yeast p0.005 moderate with varying negative examples.
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From the results, it is evident that using appropriate negative examples together

with an intelligent choice for the modified cross-validation method, as presented

in this thesis, improves the TFBS prediction results substantially. In fact if we

compare the results with that of Fuzzznuc or PhastConsMC, we can see that

combining the results of different sources of evidence has improved the prediction

results better than I could have ever hoped for when I started work on this thesis.

It is clear that when using promoter negative examples, there is only a slight

improvement in F-score and the FP-rate even has a higher value than that of the

base algorithms. Clearly the use of promoter negative examples is unreliable. All

the examples taken from distal regions and using randomised examples are giving

results that are a different order of magnitude in prediction improvement to that

of the promoter examples. For Yeast p0.001 stringent dataset (see Table 8.29),

the F-score jumps to 77% from 24% when using distal negative examples. Using

randomised negative examples improves the result slightly again to nearly 78%.

In the case of the Yeast p0.005 moderate dataset (see Table 8.30), this follows

the same trend of improvement with a best result of 86% using randomised neg-

ative examples. As expected the yeast using moderate conservation and a less

strict cut-off produces higher values of F-score, but this is true across all the

results including the base algorithm and just reflects its more relaxed method of

production.

The substantial improvements in prediction performance when using other

sources of negative data that I had shown for the mouse, as shown in the previ-

ous chapter, I have now also shown in the case of the new, updated yeast data

as well. Interestingly the best results for yeast were for the case where the neg-

ative examples were taken from intronic regions. It gives the best result for the

Yeast p0.001 stringent dataset with 83% F-score and only 0.4% FP-rate, and the

best result for the Yeast p0.005 moderate dataset with 87% F-score and 0.2%

FP-rate. This new source of negative data is an innovation introduced in this

chapter. This proves the claim made in Section 7.6.2 where it was hoped that

combining results from different sources of evidence should substantially improve

the prediction result for the new yeast data as well as for the previous datasets.
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8.9 Visualisation of the Predictions

Similar to Section 7.4.3, I have produced a visualisation of parts of the new yeast

data to see if our predictions are as good as are reflected in our numerical results.

A fraction of the yeast genome has been taken and a comparison of the best

results from the different experiments along with the prediction algorithms and

annotations are shown. For each dataset, upstream regions from five genes have

been chosen randomly. For Yeast p0.001 stringent upstream regions of genes

CDS1, HAP4, MET3, SRL1 are selected.

In Figure 8.18, the upper seven result are tracks from the original predic-

tion algorithms (mentioned in Section 8.3) and the next four tracks are our best

prediction results from the four different types of experiments mentioned in Sec-

tion 8.6

Promoter is using promoter negative examples (from Section 8.7.1)

Distal is using distal negative examples (from Section 8.7.2)

Randomised is using randomized negative examples (from Section 8.7.3)

Intronic is using intronic negative examples (from Section 8.7.4)

The last track contains experimentally annotated binding sites from ORegAnno.

The figures show that the original prediction algorithms generate a lot of false

predictions. Also using promoter negative examples from the original yeast data

does not produce good predictions. Whereas, using distal, randomised and in-

tronic negative examples improves the predictions considerably. The predictions

are almost identical to the annotations with the experiments using randomised

negative example giving slightly better predictions than that with the distal neg-

ative examples and with the intronic negative examples clearly giving the best

results.
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Figure 8.18: Visualisation of computational prediction results on the

Yeast p0.001 stringent dataset.

178



Eighth Chapter

Scale
chr13:

Fuzznuc

AlignACE

MotifLocator

PhastConsC

PhastConsMC

Promoter

Distal

Randomized

Intronic

Known Binding Sites

200 bases
50 100 150 200 250 300 350 400 450

HOR7

Scale
chr5:

Fuzznuc

AlignACE

MotifLocator

PhastConsC

PhastConsMC

Promoter

Distal

Randomized

Intronic

Known Binding Sites

200 bases
50 100 150 200 250 300 350 400 450

MET6

Scale
chr9:

Fuzznuc

AlignACE

MotifLocator

PhastConsC

PhastConsMC

P-Match

Promoter

Distal

Randomized

Intronic

Known Binding Sites

200 bases
50 100 150 200 250 300 350 400 450

RPI1

Scale
chr15:

Fuzznuc

AlignACE

MEME

MotifLocator

PhastConsC

PhastConsMC

Promoter

Distal

Randomized

Intronic

Known Binding Sites

200 bases
50 100 150 200 250 300 350 400 450

SKM1

Figure 8.19: Visualisation of computational prediction results on the

Yeast p0.005 moderate dataset.

For Yeast p0.005 moderate upstream regions of genes HOR7, MET6, RPI1, and

SKM1 are selected. Figure 8.19 shows the visualisations of the base algorithms

along with the predictions by using different negative examples and annotated

179



Eighth Chapter

binding sites from ORegAnno.

The results follow the same trend as that of Yeast p0.001 stringent dataset

with the intronic negative examples again clearly the best. The results are excep-

tionally pleasing and therefore justify all the experiments using different method-

ologies and, in particular, different sources of negative data. The high resolution

figures are available in Appendix D.

8.10 Summary

This chapter established the proof of concept produced in Chapter 7, where using

negative examples from different sources proved extremely beneficial. New yeast

datasets with some variations with binding p-values and conservation stringency

have been used with an improved mapping of binding sites with their transcrip-

tion factors. New, improved and updated algorithms and biological sources of

evidence have been used on these datasets to generate two sets of data for experi-

ments. I repeated the same experiments undertaken in the previous chapter (dif-

ferent negative examples using the appropriate modified cross-validation method

for classification) and the results obtained showed that using negative examples

from different source have a significant effect on improving transcription factor

binding site predictions. A new source of negative examples, originating from in-

tronic regions, has also been introduced and this improves the prediction results

more than that of using the other negative examples. In summary, combining

multiple sources of evidence with more reliable negative examples and an ap-

propriate modified cross-validation method has brought substantial and pleasing

improvements in predicting transcription factor binding sites in yeast.
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Chapter 9

Conclusions

9.1 Discussion

This thesis addresses three distinct areas in the research of transcription factor

binding site (TFBSs) predictions: integrating multiple sources of evidences and

using classification technique to improve TFBS predictions; an improved cross-

validation method; and an investigation of the sources of negative examples.

In fact the major contribution of my research can be stated quite simply:

for the yeast and mouse genome I can predict the position of binding sites with

high confidence. Moreover, my predictions are of much higher quality than the

predictions of the original base algorithms.

In Chapter 5, the performance of individual algorithms or biological sources

evidence, were presented. The results showed that a lot of incorrect predic-

tions had been made. However, different algorithms varied in their strengths and

weaknesses. This encouraged the idea that combining the algorithms might bring

better predictions. As mentioned previously, this idea was already presented in

some earlier works (mentioned in Chapter 6). Most of the previous work was done

using yeast as the model organism and some work was also done using the mouse

genome. This thesis took things forward by undertaking extensive research on

the mouse genome and applying all the techniques for integration (windowing,

post-processing) mentioned earlier in the thesis.

In Chapter 6, I ran the basic experimental techniques and found a slight

improvement in prediction. The best F-score obtained, for the mouse data, was
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improved from 13% to 20%. According to the sources of evidence, it was assumed

that the standard two-class SVM might not be an efficient enough classification

technique for the improvement of the predictions of TFBSs. Moreover, there were

some questions regarding the quality of the negative data set. Therefore it was

interesting to investigate how a one-class SVM performed on this data. However,

using a one-class SVM was not as beneficial as expected and it showed very little

or no improvement relative to that of a two-class SVM. Nonetheless, an original

and important contribution was made in this chapter:

• As mentioned in Chapter 6, the validation data used during the standard

cross-validation method was not of the same type as the test set that had

been used for prediction. The validation data was taken from the set of pre-

processed data whereas the test set was drawn from a contiguous biologically

meaningful data set. Moreover, the prediction made on the biological test

set was also filtered during post-processing. For this reason, I devised a

new modified cross-validation technique, which has biological validation set

and post-processing was implemented during cross-validation. This is an

important contribution for this thesis. Although the use of the modified

cross-validation method did not bring much improvement to results, this

seemed to be the right method for cross-validation due to the nature of the

classification problem undertaken on the course of this thesis.

This marginal improvement in predictions led to the idea that some part of the

negative examples that had been used so far might contain TFBSs, which had not

yet been annotated. Therefore, these might act as noisy data for the classifier.

Taking this into account, the first step was to change the sources of negative

examples. Chapter 7 dealt with this problem and a number of original and

important contributions were made:

• Two types of negative examples were introduced from different sources,

namely distal, and randomized negative examples. However, using stan-

dard cross-validation with these negative examples was not feasible as the

validation set in this case would be just a synthetic data set rather than

a biological one. Hence, modified cross-validation was an ideal candidate

with these new negative examples.
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• Using modified cross-validation with different negative examples gave an

impressive improvement on TFBSs prediction. For the yeast data set, the

F-score jumped from 29% to 76% and for the mouse data set, it jumped

from 13% to 86%.

• Remarkably for the mouse data set all the predicted binding sites were ac-

tually labeled as such: giving a Precision of 100% and no False Positives.

Therefore, the classifier could not find any newer sites. Some false predic-

tions were still available for the yeast data set, where it may be appropriate

to look for novel binding sites.

The question that naturally arises is: why we are now seeing such substantial

improvements. Our original hypothesis that the negatively labeled promoter re-

gions might contain many, as yet undiscovered, binding sites has proved to be

incorrect. The achieved predictions largely coincide with the original label, hence

our high F-score values. The results show that the algorithms collectively can

identify the binding sites in the promoter regions, but collectively they cannot

predict non-binding sites in the promoter regions. However, outside the promoter

region (distal region) the algorithms do collectively characterise these regions as

containing no binding sites, as the results with the distal negative examples show.

It was also found that in fact using randomised negative examples perform even

better than distal negative examples.

One thing should be noted: in both Chapters 6 and 7, two types of test

data set (filtered and biological) had been used. The filtered test set had been

used to demonstrate the classification efficiency of our SVM models on the data

suitable for machine learning. The biological test set demonstrated how good our

prediction model is at predicting binding sites in biological data.

In Chapter 8, a new yeast data set had been used, in order to validate the

techniques I had used in the previous chapter. A new type of negative examples,

namely intronic negative examples, was also introduced. As expected, the idea of

using negative examples from a source different than the promoter region, with

the modified cross-validation method gave much benefit. For both datasets, the

F-score was more than 80% with almost 98% predicted binding sites were correct.

183



9.2 Contributions to Knowledge

I now give a brief overview of the major contributions of my thesis:

• I have shown that a synthetically constructed negative data set can bring

about a substantial improvement in the prediction of binding site locations.

• I have proposed a modified cross-validation method that gives further im-

provement to the performance.

• I have demonstrated that the meta-classifier works with not only with the

yeast genome but also more complex multi-cellular mouse genome.

• I have shown that my approach also works very well with the latest yeast

prediction algorithms and sources of evidence. Here, the best source of

negative data proved to be the intronic region.

9.3 Publications

The results contained in this thesis, except the one in Sections 5.5.1 and 6.5,

were all generated, obtained and analysed by me. Some of these results had been

published in journals and conference proceedings.

• I was a co-author of: Combining experts in order to identify binding sites

in yeast and mouse genomic data was published in the journal, Neural

Networks (2008). The paper contains the results for the mouse data with

windowing mentioned in Section 6.6.3.

• I was the first author and presenter of: Combining experts in order to

identify binding sites in genomic data at the workshop, UKCI 2008. This

paper contains the initial results for the yeast and mouse data presented in

Chapter 6.

• I was the first author of: Using Randomised Vectors in Transcription Factor

Binding Site Predictions presented at the conference, ICMLA 2010. This

paper contains the results of the effect of repetitions and inconsistent vectors
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in the yeast and mouse data, using randomised negative examples on filtered

the test set described in Appendix C.

• Again I was the first author and presenter of my fourth paper entitled Effect

of Using Varying Negative Examples in Transcription Factor Binding Site

Predictions at EvoBIO11 conference. This paper contains the impressive

results obtained by using distal and randomised negative examples on the

mouse data presented in Sections 6.7.2 and 7.4.2.1. This paper was selected

as one of the two best papers in the conference.

A detailed list of publications is given in Appendix E.

9.4 Future Works

According to the knowledge and understanding of the key issues and research

directions in the field of TFBSs predictions gained by undertaking the research

presented in this thesis, there are scopes to extend the research presented here

further. The following main areas would seem to be key starting points for further

research:

• One very important extension of the work is the validation of the predictions

experimentally. Though in some of cases, 100% Precision was achieved, still

some false positives could be observed in the predictions. These false pre-

dictions can be a good source of novel binding sites where experimentalists

could explore. This meets one of the main aims of this thesis about scaling

time and cost of experimental approaches.

• Another important extension can be implementing this technique on ge-

nomic data that is not yet annotated. This may help to find novel binding

sites in the unlabelled data.

• A particularly important extension of this research can be the application

of these strategies to other available genomic data. The initial approach,

using the yeast data, was able to establish the proof of concept on an organ-

ism with simple regulatory organisation. The technique was then assessed
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using the far more complex genome of the eukaryotic organism, the mouse

(which has a more complicated regulatory organisation than that of yeast).

However, while the approach undertaken is proven more generally useful, it

is essential to demonstrate that the method is successful when applied to

a genome with more complex cis-regulatory organisation. Taking this into

consideration, D. melanogaster (fruit fly), C. elegans (worm), R. norvegi-

cus (brown rat), or even H. sapiens (human) can be ideal candidates for

choice of such organisms. There are two large projects (ENCODE and mod-

ENCODE) that have huge amounts of very specific and focused data and

these can be potential sources of both complementary biological evidence

and experimentally verified binding sites.

• It will be interesting to see the effect of the classifier with other species.

Thus the classifier can be applied on phylogenetically close species. For

example: the classifier used for mouse can be used on rat or other close

species.

• It can be expected that the approach presented in this thesis is not restricted

to the problem of finding transcription factor binding sites. This approach

could be applied to other problems with a similar profile. For example, this

integration approach could be used in predicting the tertiary structure of

a protein, given its primary sequence. Therefore, the integrative process

presented in this thesis, if appropriately modified for the problem domain,

could be useful to improve prediction accuracy in other fields too.
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Appendix A

Nucleic Acid Notations

IUPAC nucleotide code Base

A Adenine
C Cytosine
G Guanine

T (or U) Thymine (or Uracil)
R A or G
Y C or T
S G or C
W A or T
K G or T
M A or C
B C or G or T
D A or G or T
H A or C or T
V A or C or T
N any base

. or - gap

Table A.1: IUPAC notations for nucleic acids
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Appendix B

Position Weight Matrix

B.1 Generating position weight matrix

The three sequences are:

Sequence 1 : AGATAA

Sequence 2 : TGATAA

Sequence 3 : AGATAG

The Position Frequency Matrix (PFM) is as follows:
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Figure B.1: Position Frequency Matrix

Wb,i = loge
Ab,i

Bb,i

= loge
(Cb,i + Bb,i)/(Z + 1)

Bb,i

Here,

Ab,i = Conditional probability that the position is found to be base b in the

binding site sequences,

Bb,i = Conditional probability that the position is found to be base b in the

non-binding site sequences.

Cb,i = Number of b nucleotide at position i

Z = Total number of aligned sequences

For i = 1 ,Profile matrix values (assume Bb,i=0.25 for all nucleotides):

WA,1 = loge
(CA,1 + BA,1)/(Z + 1)

BA,1

= loge
(2 + 0.25)/(3 + 1)

0.25
= 0.81
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WC,1 = loge
(CC,1 + BC,1)/(Z + 1)

BC,1

= loge
(0 + 0.25)/(3 + 1)

0.25
= −1.39

WG,1 = loge
(CG,1 + BG,1)/(Z + 1)

BG,1

= loge
(0 + 0.25)/(3 + 1)

0.25
= −1.39

WT,1 = loge
(CT,1 + BT,1)/(Z + 1)

BT,1

= loge
(1 + 0.25)/(3 + 1)

0.25
= 0.22

The scores at other positions can be calculated in the same manner.

Therefore, the Position Weight Matrix (PWM) is:

Figure B.2: Position Weight Matrix
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Effect of Repetitions and

Inconsistent Vectors

C.1 Methodology of Adding Negative Examples

Before/After Making Training Data Con-

sistent

In this experiment, both yeast and mouse data have been used. For the yeast

data only promoter and randomized negative examples have been used and for

the mouse data promoter, distal, and randomised negative examples have been

used.

In each experiment, the data has been divided into three parts. Two parts

are taken as training sets and one part as test set for filtered test set. This is

repeated three times once for each selection of the test set. For the biological

test set, the corresponding part has been reconstructed from the original data set,

which has consecutive data points. In the training set the minority class (positive

examples) has been over-sampled and the majority class (negative examples) has

been under-sampled. Here I have continued to explore two ratios 1:1 and 2:1 for
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under-sampling and quote the results with the best classification performance.

The cross-validation has always been done using F-score to evaluate the results on

the validation set. An appropriate method has been used in the cross-validation

depending on the final test set. That is, for the biological test set the validation

set is reconstructed to contain promoter negative data and is post-processed (with

size = 4, 5, 6, and 7) to remove small predictions. For the filtered test set the

validation set is just reconstructed to contain promoter negative data.

The pseudo-code of the whole process with modified cross-validation using

different negative examples and selection of training and test sets is given below:

In the training set the minority class (positive examples) has been over-sampled

Pseudocode 3 Finding the best hyper-parameters with modified cross-validation
method and and selection of training and test sets i

1: Replace negative examples in the original data set with distal/randomized
negative examples

2: Remove repeats and inconsistent vectors
3: Split data into 3 equal subsets. Take two of the sets as training and one set

from the original data as test set. Do this 3 times
4: for each of 3 training-test set splits do
5: Split the training data into 5 partitions
6: This gives 5 different training sets (4 of 5) and the corresponding validation

sets (1 of 5). The validation set is reconstituted from the corresponding
data in the original data set.

7: Using sampling to produce more balanced training set
8: for each of (cost, gamma) values do
9: for each of the 5 training set do

10: Train an SVM
11: Measure performance (F-score /Accuracy) on the corresponding re-

constituted validation set
12: end for
13: Average the F-score/Accuracy over the 5 trials
14: end for
15: Average the F-score/Accuracy over the 5 trials
16: Reform the complete training set and train an SVM with the best (cost,

gamma)
17: Test the trained model on the unseen test set
18: end for
19: Test the trained model on the unseen test set
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and the majority class (negative examples) has been under-sampled. Here I have

continued to explore two ratios 1 : 1 and 2 : 1 for under-sampling and quote

the results with the best classification performance. The cross-validation has

always been done using F-score to evaluate the results on the validation set. An

appropriate method has been used in the cross-validation depending on the final

test set. That is, for the biological test set the validation set is reconstructed to

contain promoter negative data and is post-processed (with size = 4, 5, 6, and

7) to remove small predictions. For the filtered test set the validation set is just

reconstructed to contain promoter negative data.

C.2 Statistics for the yeast data

For yeast data, three types of experiments have been run to obtain the perfor-

mance measures by applying the model on both the filtered and biological test

set. The three experiments I have undertaken are as follows:

a. Yeast data with non-binding sites drawn from promoter regions, which will be

denoted as Yeast const data with promoter.

b. Making the yeast data consistent and then replacing negative examples by

non-binding sites formed by random permutations, which will be denoted as

Yeast replace rand after making const data.

c. Replacing negative examples by non-binding sites formed by random per-

mutations and then making yeast data consistent, which will be denoted as

Yeast replace rand before making const data.

One thing should be noted is that Experiments a and c had been done before and

the results are described in the previous sections. The main difference with the

previous experiments is that this time I have used three sets of training and test

sets and averaged the result. Whereas in the previous experiments, I only used

one set of training and test data.

A statistics on each of the case has been given in Table C.1.
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Type Dataset Negative data Positive data Size

points (bps) Points (bps) (bps)

Original Yeast data 59677 8174 67851

Randomised Non-binding sites 59608 0 59608

formed by random

permutation

Yeast const data with promoter Consistent yeast data 5675 850 6525

Yeast replace rand after making const data

Yeast replace rand before making const data Consistent yeast data 24155 1410 25565

Yeast const data with promoter Training set 3200 3200 6400

(after sampling) (ratio = 1) 2715 2715 5430

2585 2585 5170

Yeast replace rand after making const data Training set 3200 3200 6400

(after sampling) (ratio = 1) 2715 2715 5170

2585 2585 5170

Yeast replace rand before making const data Training set 10570 5285 15855

(after sampling) (ratio = 2) 8960 4480 13440

8670 4335 13005

Table C.1: Statistics of using negative examples in the training set after and

before removing inconsistent and repetitive data in the yeast dataset

C.3 Statistics for the mouse data

For mouse data, five types of experiments have been run for obtaining the per-

formance measures by applying the model on filtered and biological test set. The

five experiments are as follows:

a. Mouse data with non-binding sites drawn from promoter regions, which will

be denoted as Mouse const data with promoter.

b. Mouse data with replacing negative examples by non-binding sites drawn

from distal regions after making data consistent, which will be denoted as

Mouse replace dist after making const data.
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c. Mouse data with replacing negative examples by non-binding sites drawn

from distal regions before making data consistent, which will be denoted as

Mouse replace dist before making const data.

d. Mouse data with replacing negative examples by non-binding sites formed by

random permutations after making data consistent, which will be denoted as

Mouse replace rand after making const data.

e. Mouse data with replacing negative examples by non-binding sites formed by

random permutations before making data consistent, which will be denoted as

Mouse replace rand before making const data.

One thing should be noted is that Experiments a, c, and e had been done before

and the results are described in the previous sections. The main difference with

the previous experiments is that this time I have used three sets of training and

test sets and averaged the result. Whereas in the previous experiments, I only

used one set of training and test data.

A statistics on each of the case has been given in Table C.2. The key thing to

notice from these tables (Tables C.1 and C.2) is that when removing inconsistent

and repeated vectors after replacing the negative examples then the data set is

much larger. This gives the SVM a better training set.

C.4 Results of Adding Negative Examples Be-

fore/After Making Training Data Consis-

tent

Previously in this chapter all the results were given for the biological test set,

because ultimately it is the biologists that are most interested in the practical

application of our method and they are only interested in biological data. Here,

though, we first give the pure results, with no repetitions in the test set, which

are of interest to machine learning practitioners.
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Type Dataset Negative data Positive data Size
points (bps) points (bps) (bps)

Original Mouse data 59070 1781 60851
Original Non-binding sites 124467 0 124467

drawn from distal
regions

Randomised Non-bindingsites 124467 0 124467
formed by random
permutation

Mouse const data with promoter Consistent mouse 31263 1484 32747
data

Mouse replace dist after making const data Consistent mouse 31263 1484 32747
data

Mouse replace rand after making const data Consistent mouse 31263 1484 32747
data

Mouse replace dist before making const data Consistent mouse 36169 1549 37718
data

Mouse replace rand before making const data Consistent mouse 40577 1546 42123
data

Mouse const data with promoter Training set 9450 9450 18900
(after sampling) (ratio = 1) 6132 6132 12264

5194 5194 10388
Mouse replace dist after making const data Training set 9450 9450 18900

(ratio = 1) 6132 6132 12264
5194 5194 10388

Mouse replace rand after making const data Training set 18900 9450 28350
(ratio = 2) 12264 6132 18396

10388 5194 15582
Mouse replace dist before making const data Training set 16884 8442 25326

(ratio = 2) 13846 6923 20769
12614 6307 18921

Mouse replace rand before making const data Training set 7427 7427 14854
(ratio = 1) 7840 7840 15680

6363 6363 12726

Table C.2: Statistics of using negative examples in the training set after and
before removing inconsistent and repetitive data in the mouse dataset

C.4.1 Results on the Filtered Test Sets

The average of performance measures of yeast data on the filtered test sets is

given below in Table C.3:

Recall Precision F-score FP-rate

Yeast const data with promoter 0.767 0.188 0.289 0.568

Yeast replace rand after making const data 0.632 0.511 0.562 0.084

Yeast replace rand before making const data 0.773 0.33 0.448 0.097

Table C.3: Effect of adding negative examples before/after making training data

consistent (yeast filtered test set)
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Table C.4 shows the average of performance measure of mouse data on the filtered

test set.

Recall Precision F-score FP-rate

Mouse const data with promoter 0.495 0.089 0.142 0.348

Mouse replace dist after making const data 0.489 0.224 0.294 0.061

Mouse replace dist before making const data 0.672 0.468 0.521 0.077

Mouse replace rand after making const data 0.547 0.417 0.473 0.029

Mouse replace rand before making const data 0.771 0.679 0.695 0.031

Table C.4: Effect of adding negative examples before/after making training data

consistent (mouse filtered test set)

From Table C.3, we can see that adding negative examples after removing incon-

sistent and repetitive data actually gives the best result in yeast set. However,

this is quite the opposite of what I had expected. Because, if the negative ex-

amples have been replaced after removing inconsistent and repetitive data, we

may lose some data points that may characterise positive and negative examples.

Therefore, it may become difficult for the meta-classifier to characterise the ex-

amples by finding suitable parameters. Therefore, replacing negative examples

before making the data set consistent should have given better classification per-

formance. However, Table C.4 gives the expected results where replacing distal

and randomised negative examples in the mouse data before making it consistent

gives better results than that of replacing them after making the data set made

consistent.

With this filtered data set here is still a considerable improvement to be seen

in using either distal or randomised examples of negative data in either case.

So the use of a new source of negative data is still of considerable benefit even

for data with no advantageous repetitions. These predictions have been done on

filtered test sets. Now let us discuss the effect on biological test set.
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C.4.2 Results on Biological Test Set

Table C.5 shows the average of performance measure of yeast data on biological

test set.

Recall Precision F-score FP-rate

Yeast const data with promoter 0.359 0.231 0.254 0.248

Yeast replace rand after making const data 0.699 0.974 0.814 0.003

Yeast replace rand before making const data 0.549 0.977 0.701 0.002

Table C.5: Effect of adding negative examples before/after making training data

consistent (yeast biological test set)

Figure C.1: Comparison of F-score by adding negative examples before/after

making training data consistent (biological yeast test set)

In Figure C.1,

(a) is Yeast const data with promoter
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(b) is Yeast replace rand after making const data

(c) is Yeast replace rand before making const data

Figure C.1 shows the comparisons between the F-scores by adding negative ex-

amples before/after making training data consistent in case of biological test set

from yeast dataset. There is an increase in F-score by using randomised nega-

tive examples as expected. However, adding randomised negative examples after

removing the inconsistent and repetitive data vectors still gives the best result.

Figure C.2: Comparison of FP-rate by adding negative examples before/after

making training data consistent (biological yeast test set)

In Figure C.2,

(a) is Yeast const data with promoter

(b) is Yeast replace rand after making const data

(c) is Yeast replace rand before making const data
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Figure C.2 shows the comparison of FP-rate by adding negative examples be-

fore/after making training data consistent (biological yeast test set). There is a

considerable decrease in FP-rate by using randomised negative examples as seen

before.

Table C.6 shows the average of performance measure of mouse data on the bio-

logical test set.

Recall Precision F-score FP-rate
Mouse const data with promoter 0.638 0.139 0.227 0.174
Mouse replace dist after making const data 0.709 0.994 0.819 0.0002
Mouse replace dist before making const data 0.738 0.997 0.846 0.0001
Mouse replace rand after making const data 0.767 0.998 0.866 0.00008
Mouse replace rand before making const data 0.815 0.999 0.883 0.00003

Table C.6: Effect of adding negative examples before/after making training data
consistent (mouse biological test set)

In Figure C.3,

(a) is Mouse const data with promoter

Figure C.3: Comparison of F-score by adding negative examples before/after
making training data consistent (biological mouse test set)
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(b) is Mouse replace dist after making const data

(c) is Mouse replace dist before making const data

(d) is Mouse replace rand after making const data

(e) is Mouse replace rand before making const data

Figure C.3 shows the comparison of F-score by adding negative examples be-

fore/after making training data consistent, in case of the biological test set from

the mouse dataset. There is a large increase in F-score after using distal and

randomised negative examples as expected. The results of replacing negative ex-

amples before making the mouse data consistent produce better results and this

is quite expected. In all the cases, randomised negative examples give better re-

sults than that of distal negative examples for mouse data and this is consistent

with the previous results, showed in Table 7.9 and Table 7.13 in this chapter.

Figure C.4: Comparison of FP-rates by adding negative examples before/after

making training data consistent (biological mouse test set)
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In Figure C.4,

(a) is Mouse const data with promoter

(b) is Mouse replace dist after making const data

(c) is Mouse replace dist before making const data

(d) is Mouse replace rand after making const data

(e) is Mouse replace rand before making const data

Figure C.4 shows the comparison of FP-rate by adding negative examples be-

fore/after making training data consistent, in case of the biological test set from

the mouse dataset. There is a considerable decrease in FP-rate after using distal

and randomised negative examples as expected.

As seen before, the improvement found by using distal or randomised negative

examples was very good in all cases. However the improvement was not as great

when using the filtered data set as when using the biological data set. This can

be seen by comparing Table C.3 with Table C.5 and comparing Table C.4 with

Table C.6. This is as expected. The biological data set contains repetitions that,

once we are predicting them correctly, bias the results upwards.

C.5 Comparison of Results regarding Repeti-

tions and Inconsistent Vectors

Now let us discuss the effect of adding negative examples along with removing

repetitions and inconsistent data vectors. Here, the F-score of Yeast with random

is the best result that has been taken from Table 7.11, where only one set of

training and test sets have been used. The rest of the results, which averages

three sets of training and test sets are taken from Table C.5. The results are

compared in the following table (Table C.7):
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Recall Precision F-score FP-rate

Yeast with random 0.622 0.963 0.756 0.003

Yeast replace rand after making const data 0.699 0.974 0.814 0.003

Yeast replace rand before making const data 0.549 0.977 0.701 0.002

Table C.7: Comparison of the effect of adding negative examples before/after

making training data consistent for the yeast data

Figure C.5: Comparison of F-scores from experiments adding randomised nega-

tive examples before/after making training data consistent (yeast data)

In Figure C.5,

(a) is Yeast with random

(b) is Yeast replace rand after making const data

(c) is Yeast replace rand before making const data

According to the Figure C.5, the F-score has improved when adding randomised

negative examples after eliminating the repetitions and inconsistent data vec-

tors. This means the SVM can characterise the positive examples better after
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removing its repetitions and inconsistent vectors. But as we remove the repeti-

tions and inconsistent data vectors the number of positive vectors also decreased

considerably, which may not be enough to characterise the positive examples.

Figure C.6: Comparison of FP-rates from experiments adding randomised nega-

tive examples before/after making training data consistent (yeast data)

In Figure C.6,

(a) is Yeast with random

(b) is Yeast replace rand after making const data

(c) is Yeast replace rand before making const data

The FP-rates are almost the same in each case shown in Figure C.6 It should

be noted that the scale on the vertical axis means most of the results are nearly

zero.

One interesting observation should be noted that the classifier performance

improved even by just using three sets of training and test sets. This implies that

the new cross-validation technique along with replacing negative examples is an

efficient method to identify the cis-binding sites.
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Recall Precision F-score FP-rate
Mouse with distal 0.676 0.996 0.806 0.001
Mouse replace dist after making const data 0.709 0.994 0.819 0.0002
Mouse replace dist before making const data 0.738 0.997 0.846 0.0001
Mouse with random 0.758 1.0 0.862 0.00
Mouse replace rand after making const data 0.767 0.998 0.866 0.00008
Mouse replace rand before making const data 0.815 0.999 0.883 0.00003

Table C.8: Comparison of the effect of adding negative examples before/after
making training data consistent for the mouse data

With the mouse data, in both cases (distal negatives examples and randomised

negative examples) a desirable result has been obtained (see Table C.8). Since

both results are good, I have combined them in one graph. The F-score of

Mouse with distal and Mouse with random are taken from Tables 7.9 and 7.13

respectively. The other results, which are average from three sets of training and

test sets, are taken from Table C.6. The results are compared in Table C.8. In

Figure C.7,

(a) is Mouse with distal

Figure C.7: Comparison of F-scores from experiments adding distal and ran-
domised negative examples before/after making training data consistent (mouse
data)
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(b) is Mouse replace dist after making const data

(c) is Mouse replace dist before making const data

(d) is Mouse with random

(e) is Mouse replace rand after making const data

(f) is Mouse replace rand before making const data

Figure C.7 shows that replacing negative examples after removing the repetitions

and inconsistent data vectors can bring further improvement to the method in

both cases of using distal and randomised negative examples. However, it is not

better than the method where distal negative examples are replaced before remov-

ing the repetitions and inconsistent data vectors (Figures C.7(b) and C.7(c)). The

later process gives enough negative and positive examples to the meta-classifier

to characterise the data. On the other hand, using randomised negative examples

also exhibits the same type of results. Replacing randomised negative examples

before eliminating repetitions and inconsistent data rows actually produces the

best F-score so far (see Figure C.7(f)). The F-score is even better than the best

results obtained by using the modified cross-validation method with replacing

randomised negative examples (see Table C.8). In Figure C.8,

(a) is Mouse with distal

(b) is Mouse replace dist after making const data

(c) is Mouse replace dist before making const data

(d) is Mouse with random

(e) is Mouse replace rand after making const data

(f) is Mouse replace rand before making const data

Figure C.8 shows the comparisons between FP-rates. The FP-rates are almost

the same in each case (shown in Figure C.8) and they are all very small in

magnitude. The best result (Figure C.8(d)) exhibits no false positives. Replacing

both distal and randomised negative examples before and after making the mouse
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Figure C.8: Comparison of FP-rates from experiments adding distal and ran-
domised negative examples before/after making training data consistent (mouse
data)

data consistent shows some false positives, which are also almost negligible. The

results from the yeast data are not as consistent as that of the mouse data set.

It has been already mentioned that this may be due the nature of the data set as

it is not updated and may not properly annotated.
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Visualisations
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Appendix E

List of Publications

E.1 Journal

1. Mark Robinson, Cristina Gonzlez Castellano, Faisal Rezwan, Rod Adams, Neil

Davey, Alistair Rust, Yi Sun (2008). Combining experts in order to identify

binding sites in yeast and mouse genomic data. Neural Networks, 2008: 856-

861.

E.2 Selected Conferences

1. Faisal Rezwan, Rod Adams, Neil Davey, Yi Sun, Alistair G. Rust, Mark Robin-

son (2011). Effect of Using Varying Negative Examples in Transcription Factor

Binding Site Predictions: Proceedings of 9th European Conference on Evolu-

tionary Computation, Machine Learning and Data Mining in Bioinformatics

(EvoBIO11). Torino, Italy.

Nominated for the best paper award

2. Faisal Rezwan, Rod Adams, Neil Davey, Yi Sun, Alistair G. Rust, Mark Robin-

son. Using Randomised Vectors in Transcription Factor Binding Site Predic-

tions: Proceedings of IEEE The Ninth International Conference on Machine
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Learning and Applications (ICMLA 2010). Hyatt Regency Bethesda, Wash-

ington DC, USA.

3. Faisal Rezwan, Rod Adams, Neil Davey, Yi Sun, Alistair Rust, Mark Robinson

(2008). Combining experts in order to identify binding sites in genomic data:

Proceedings of the 2008 UK Workshop on Computational Intelligence (UKCI

2008). De Montfort University, Leicester, UK.
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