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4Dept. of Physics & Astronomy, University of California, Irvine, CA 92697, USA
5Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
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ABSTRACT
Dusty, star forming galaxies contribute to a bright, currently unresolved cosmic far-infrared
background. Deep Herschel-SPIRE images designed to detect and characterize the galaxies
that comprise this background are highly confused, such that the bulk lies below the classi-
cal confusion limit. We analyze three fields from the HerMES programme in all three SPIRE
bands (250, 350, and 500 µm); parameterized galaxy number count models are derived to
a depth of ∼ 2 mJy/beam, approximately 4 times the depth of previous analyses at these
wavelengths, using a P (D) (probability of deflection) approach for comparison to theoretical
number count models. Our fits account for 64, 60, and 43 per cent of the far-infrared back-
ground in the three bands. The number counts are consistent with those based on individually
detected SPIRE sources, but generally inconsistent with most galaxy number counts models,
which generically overpredict the number of bright galaxies and are not as steep as the P (D)-
derived number counts. Clear evidence is found for a break in the slope of the differential
number counts at low flux densities. Systematic effects in the P (D) analysis are explored. We
find that the effects of clustering have a small impact on the data, and the largest identified
systematic error arises from uncertainties in the SPIRE beam.

Key words: Submillimeter Galaxies – Cosmology: Observations

1 INTRODUCTION

The cosmic far-infrared background (hereafter CFIRB) provides
unique information on the history of energy injection in the Uni-
verse by both star formation and active galactic nuclei. First de-
tected by the COBE satellite (Puget et al. 1996; Fixsen et al. 1998),
the CFIRB contains a large amount of energy, indicating that the
total luminosity from thermal dust emission is comparable to the
integrated UV/optical energy output of galaxies (Guiderdoni et al.
1997).

Galaxy surveys, both from the ground (with SCUBA,
LABOCA, Bolocam, AzTEC, and MAMBO at 850 µm, 870 µm,
1.1 mm, 1.1 mm, and 1.3 mm, respectively) and from space us-
ing IRAS (at 12, 25, 60 and 100 µm), ISO (at 15, 90, and 170
µm), and Spitzer (at 3.6 to 160 µm), found high number counts
compared to non-evolving galaxy number counts models. This im-
plied that strong evolution of the source populations must have oc-
curred, challenging contemporary galaxy evolution models (Saun-
ders 1990; Scott et al. 2002; Lagache et al. 2003). Deeper number
counts test galaxy formation models more severley. By stacking
Spitzer MIPS 24 µm sources, at least 80% of the CFIRB was re-
solved at 70 µm and 65% at 160 µm (Dole et al. 2006; Béthermin et
al. 2010a). A small fraction (10-20%) has been resolved in the sub-
millimeter in blind sky surveys from ground-based observatories,
but it is possible to go deeper by taking advantage of gravitational
lensing. At 850 µm this approach has resolved 60% or more of the
background in small fields (Smail et al. 2002; Zemcov et al. 2010).

A P (D) – probability of deflection – analysis of Bolocam
observations of the Lockman Hole (Maloney et al. 2005) demon-
strated that a fluctuation analysis can provide more stringent con-
straints on source number counts than those derived by extract-
ing individual sources, for which the threshold must be set high
enough to ensure a minority of false detections. P (D) techniques
were first developed for application to radio observations (Scheuer
1957), but have since been widely applied to other regimes. P (D)
was used to account for the majority of the X-ray background long
prior to the availability of sufficiently deep imaging to resolve in-
dividual sources (Barcons 1994), to extend deep infrared counts
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(Oliver et al. 1997), and in the sub-mm to SCUBA (Hughes et
al. 1998), LABOCA (Weiß et al. 2009), and AzTEC (Scott et al.
2010) data. The depth of a P (D) analysis is set by the flux den-
sity at which the number of sources per beam becomes large. The
resulting contribution to the P (D) becomes that of a Poissonian dis-
tribution with a large mean, which becomes difficult to distinguish
from the nearly-Gaussian instrumental noise. An often-used rule of
thumb for the maximum depth is one source per beam, but the pre-
cise limit depends on the survey area, the shape of the underlying
counts, and how precisely the instrumental noise is known. In prac-
tice, for rapidly rising source counts at faint fluxes, this is consider-
ably deeper than the limits for a source-extraction approach. Fluc-
tuation analyses are well-suited to determination of source number
counts in the case where the dynamic range of detected sources is
not large because of confusion. Deep number counts are interest-
ing because they allow us to measure the sources responsible for
the bulk of the CFIRB, and because they probe intrinsically fainter
galaxies which may have better matching counterparts in the local
Universe.

Recently, a P (D) analysis was performed on 250, 350, and
500 µm observations of a 10 deg2 field (GOODS-S) with a 0.8 deg2

deep inner region from the balloon-borne BLAST telescope, using
duplicate SPIRE detector technology (Patanchon et al. 2009, here-
after P09). Differential number counts were estimated down to 20,
15, and 10 mJy in the three bands, respectively. Below these thresh-
olds, upper limits were provided. Combined with 24 µm observa-
tions, Devlin et al. (2009) concluded that a large fraction (> 1/2) of
the CFIRB comes from galaxies with z > 1.2. Also from BLAST
observations, Marsden et al. (2009) concluded that 24 µm-selected
galaxies can account for the entire CFIRB based on a stacking anal-
ysis. These results confirm that fluctuation and stacking analyses
have substantial power in elucidating the sources of the CFIRB.
Such techniques will also be necessary for SPIRE observations be-
cause galaxy models predict that at the confusion limit SPIRE is
expected to resolve only a small fraction of the CFIRB (Lagache et
al. 2003; Fernandez-Conde et al. 2008). A recent source extraction-
based analysis of the SPIRE Science Demonstration Phase (SDP)
data – the same data used in this paper – directly resolved 15, 10,
and 6 per cent of the CFIRB at 250, 350, and 500 µm, respectively
(Oliver et al. 2010). At shorter wavelengths, Berta (2010) directly

c© 0000 RAS, MNRAS 000, 000–000



HerMES P (D) Fluctuation Analysis 3

resolved 52 and 45 per cent of the CFIRB at 100 and 160 µm using
Herschel-PACS SDP data.

2 DATA

The observations used in this analysis were obtained with the
SPIRE instrument (Griffin et al. 2010) on the Herschel Space Ob-
servatory (Pilbratt et al. 2010) as part of the HerMES programme1

(Oliver et al. 2010, in prep) during the SDP. SPIRE observes simul-
taneously in three passbands: 250, 350 and 500 µm. The on-orbit
beam sizes, including the effects of the scanning strategy, are 18.1,
25.2, and 36.6 arcseconds, respectively, with mean ellipticities of
7 - 12%. The calibration is based on observations of Neptune, and
is described in Swinyard et al. (2010). Observations of five fields
were obtained during SDP, but only three are used in this analysis:
GOODS-N, Lockman-North, and Lockman-SWIRE. Their proper-
ties are summarized in table 1. The Lockman-North region are con-
tained within the shallower Lockman-SWIRE field. The HerMES
SDP fields omitted from this analysis are: FLS, which was left out
because it is the same depth as the much-larger Lockman-SWIRE
field and is significantly contaminated by infrared cirrus, and Abell
2218, because the strong lensing in this field complicates the inter-
pretation of the background number counts.

The detector (bolometer) timelines were processed using the
standard SPIRE pipeline, which detects cosmic rays and removes
instrumental signatures and temperature drifts (Dowell et al. 2010).
The maps were produced using the SMAP package (Levenson et
al. 2010, in prep) using 1/3 beam-FWHM pixels (6, 8 1/3, and
12 arcsec); this is a compromise between adequately sampling
the beam and maintaining even coverage over the map. Samples
flagged as contaminated by cosmic-rays were excluded. Each map
was masked to form an even-coverage region and was mean sub-
tracted. In addition to the even-coverage mask, a small amount of
additional masking was required, as there are five resolved sources
in the Lockman-SWIRE field. These sources are relatively bright,
but are not the brightest in the field. Since the P (D) formalism is
based on unresolved point sources, we mask these objects with a
2 arcmin circular mask, and then correct our final number counts
using the measured flux of each excluded source. Our instrumental
noise estimates are based on the technique of Nguyen et al. (2010),
and are assumed to have 5% uncertainty, which represents only the
uncertainty for a fixed calibration. The overall SPIRE calibration
error is discussed in § 5.1. The resulting pixel flux density his-
tograms are shown in figure 1.

Smoothing the maps by the beam (via cross-correlation) is
beneficial for finding isolated point sources. For BLAST obser-
vations, Chapin et al. (2010) show that the standard point-source-
optimized filter should be modified in the presence of confusion
noise. However, there is no guarantee this will benefit a P (D) anal-
ysis. Smoothing the map has the effect of broadening the effective
beam, which decreases the depth that the P (D) can probe, while
also reducing (but correlating) the instrumental noise. We empiri-
cally determined if smoothing is beneficial for our analysis by fit-
ting simulated data with and without smoothing and comparing the
scatter in the recovered model parameters to the error estimates,
and found that it helps for all but our deepest map (GOODS-N);
note that our GOODS-N data are several times deeper (relative to
the confusion noise) than the deepest BLAST observations. It is

1 http://www.hermes.sussex.ac.uk/
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Figure 1. Histogram of pixel flux densities for the three fields considered
in this paper in 5 mJy bins. The Lockman-SWIRE field is considerably
shallower than the others, but it is the only field large enough to probe the
bright end of the source distribution. The maps have been mean subtracted.
The binning here is for display purposes and does not correspond to the
binning used in the actual analysis, which is much finer. In all cases the
pixel histograms show clear non-Gaussianity despite the Gaussian nature of
the noise, indicating that a significant point-source contribution is present.

likely that some amount of spatial de-convolution would be benefi-
cial for the GOODS-N field, but since this would significantly com-
plicate the instrumental noise properties of our maps, and hence re-
quire extensive testing, we do not pursue de-convolution here, but
do beam-smooth the two shallower fields. In addition, we have ap-
plied a 6 arcmin high-pass spatial filter to our maps to reduce the
effects of clustering on our results. The motivation for this is dis-
cussed in § 3.3.

A P (D) analysis is critically dependent on measurements of
the effective beam (which includes the effects of the map making
and reduction, as well as any smoothing applied). Our beam map
is based on in-flight fine-scan (highly oversampled) observations of
Neptune with a large number of repeats and small offsets between
each scan. These observations allowed us to measure the beam with
finer resolution than our data maps to properly match the SPIRE
calibration (which is timestream rather than map based), and to
build beam maps for the individual bolometers. We corrected these
observations for the relative motion of Neptune during the scans
using the HORIZONS2 ephemeris computation service at the orbit
of Herschel. The Neptune observations are deep enough that the
third Airy ring is clearly detected for the array-averaged beams. As
discussed later (§ 5.1), beam uncertainties are our largest identified
systematic.

3 METHOD

We first describe the basic P (D) framework, then discuss our par-
ticular implementations and the filtering we have applied to limit
the effects of clustering.

3.1 Description of P (D)

If dN/dS (S ) is the differential number counts per solid angle and S
the flux density, then the mean number density of sources per unit
solid angle with observed flux densities between x and x + dx is

R (x) dx =

∫
Ω

dN
dS

( x
b

)
b−1 dΩ dx (1)

2 http://ssd.jpl.nasa.gov/?horizons
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4 J. Glenn et al.

Table 1. HerMES SPIRE Science Demonstration Phase observations used in this paper

Field Size RA Dec Scan Rate Repeats σ250 σ350 σ500
deg2 deg2 deg2 arcsec/s mJy/beam mJy/beam mJy/beam

GOODS-N 0.29 189.23 62.24 30 30 1.77 1.59 1.89
Lockman-North 0.41 161.50 59.02 30 7 3.58 3.16 4.41
Lockman-SWIRE 13.6 162.0 58.11 60 2 9.47 8.47 11.99

The σ values for each band and field are the instrumental noise per pixel before any filtering or smoothing is
applied. The confusion noise (the signal in this analysis) is ∼ 6 mJy/beam in all bands (Nguyen et al. 2010).

where b is the beam function (not necessarily peak normalized).
Ignoring clustering, the probability distribution of sources is Pois-
sonian. The probability distribution function (pdf) for the observed
flux in each sky area unit (usually a map pixel) is the convolution of
the pdfs for each flux interval over all fluxes; this quantity is called
the P (D). Rewriting the above in terms of characteristic functions
and denoting the inverse Fourier transform by F−1

ω ,

P (D) = F−1
ω

[
exp

(∫ ∞

0
R (x) exp (iωx) dx −

∫ ∞

0
R (x) dx

)]
. (2)

The mean of the P (D) is

µ =

∫
xR dx =

∫
b dΩ

∫
S dN/dS (S ) dS ,

and the variance is

σ2
P =

∫
b2dΩ

∫
S 2dN/dS (S ) dS .

For real observations, the instrumental noise contribution must also
be included. Our observations are not sensitive to the mean flux in
the maps. Therefore, it is useful to subtract off the mean of the P (D)
during construction. Only in the case of very simple models for
dN/dS combined with trivial beams is it possible to compute P (D)
analytically – an example is given in Scheuer (1957), but even this
is only valid for a restricted range of parameters. For an effective
beam that is not strictly positive (due to filtering, for example), the
P (D) is the convolution of the individual P (D)s for the positive
beam and for the negative beam (P09). Azimuthally averaging the
beam does not preserve the P (D), so it is necessary to use the full
2D beam map.

The log likelihood (logL) of a dataset relative to a particular
model is given (to within an irrelevant normalizing constant) by

logL =
∑

i

log P (Di) ,

where Di is the value of the ith pixel. Usually it is more convenient
to bin the data. As long as the individual bins are small compared to
the width of the P (D), the two formulations are practically equiva-
lent. Then

logL =
∑

k

hk log P (xk) , (3)

where hk is the number of pixels in the histogram bin centred at
flux density xk. The alternative of using the χ2 as the fit statistic
under-weights bins with a small number of pixels in them because
the uncertainty in such a bin is not well modeled by

√
hk, and is not

recommended.
This treatment assumes that different pixels are uncorrelated,

which is not true unless the beam is much smaller than a pixel.
A source at one location will affect neighbouring values over an
area about equal to the area of the beam. The result is that, if ap-
plied naively, fits based on the above likelihood will underestimate

the model errors. Properly treating this effect requires developing
the P (D) formalism in terms of multi-variate Poisson distributions,
which is computationally infeasible. P09 recommend dividing the
likelihood by the beam area in pixels (L 7→ L/Ab) in order to cor-
rect for this effect, which amounts to approximately correcting the
likelihood for the number of independent samples in the map. This
is an ad hoc approach, but in the absence of a better alternative, we
have adopted a similar method. However, based on Monte-Carlo
simulations of synthetic data sets, we find that this correction fac-
tor is overly conservative, as discussed below.

Another approximation in the above treatment which is not
valid for real data is that the sources are not Poisson distributed due
to clustering. Our approach to this effect is described in § 3.3.

3.2 Implementation

We have developed two independent P (D) analysis packages and
checked them against each other. Given the large number of pa-
rameters and the non-linear nature of the problem, both make use
of Markov Chain Monte Carlo (MCMC) methods. Overviews of
MCMC methods can be found in MacKay (2002); Lewis & Bridle
(2002); Dunkley et al. (2005). The important aspects of an MCMC
implementation are the burn-in criterion and the proposal density.
The burn-in criterion is the rule used to determine whether the fit
has converged on the region of maximum likelihood. Once the fit
has converged, subsequent steps are drawn from the posterior prob-
ability of the model given the data, and only these steps are used to
measure the errors and values of the parameters. The proposal den-
sity is used to propose the next step in the Markov Chain from the
current step. Any proposal density that can visit all valid parame-
ters is correct, but a well chosen density can dramatically improve
the efficiency of the fitting procedure.

The first code is written in IDL3 and the burn-in criterion is
based on the power spectrum of the single chain (Dunkley et al.
2005). The first chain step within ∆ logL = 2 of the best-fit pa-
rameters is taken as the start of the converged sampling. A Fisher-
matrix approximation to the P (D) fit is used for the proposal den-
sity. This code interpolates in log space from a moderate number
(∼ 80) of flux densities to calcluate the P (D). The other code is
written in C++, and is explicitly parallel. It uses the Gelman-Rubin
criterion for burn-in (Gelman & Rubin 1992), which is based on
computing the variance between chains and directly provides the
point of convergence. This code does not use interpolation when
computing the P (D), but supports a more limited range of models.
The proposal density is a multi-variate Gaussian estimated from
the previous fit steps, and is frozen in at burn-in. We have checked
these codes against each other on simulated data, and find good
agreement.

3 Interactive Data Language: http://www.ittvis.com/ProductServices/IDL.aspx
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Our P (D) methodology is almost identical to that described in
P09 except as follows. First, P09 explicitly fit for the mean of pixel
values in the map (µ). Since we can analytically predict the mean of
the P (D) for a given set of model parameters, we simply shift the
mean to zero explicitly during construction. The input map is also
mean-subtracted, and the uncertainty in this subtraction contributes
negligibly to our error budget. Second, P09 fit to the instrument
noise explicity for each field except for the deepest section of their
map. Instead, we marginalize over the noise for all fields in our full
fits, but use the measurements of Nguyen et al. (2010) as a prior,
assuming an Gaussian uncertainty of 5%. At low flux densities, the
number of sources per beam is large, and hence the contribution
to the P (D) is almost Gaussian. Therefore, the values of dN/dS
for the faintest flux densities probed and the noise level are nearly
degenerate, and hence fixing the noise will tend to under-estimate
the uncertainties in the model parameters at the faint end.

We have developed a simple simulation framework to test
these codes and their sensitivity to various effects such as 1/ f noise.
As inputs we consider two types of catalogs that should be repre-
sentative of the sub-mm sky: the P09 models, and the simulations
of Fernandez-Conde et al. (2008). The fits to the P09 models are
easier to compare with the inputs, but the Fernandez-Conde et al.
(2008) models include clustering effects.

A fake sky is generated from the input catalogue, and scanned
using the pointing information from the actual SPIRE observations.
Different noise levels (white and 1/ f ) can be specified. These data
are then run through the same map-making pipeline as the real
data. In addition to the simulated science data, we also simulate
observations of Neptune using the same framework to determine
the beams we use when fitting the simulated data. These simula-
tions use simple Gaussian beams with FWHMs similar to those
measured on-orbit, and account for characteristics of the data in-
troduced by the mapping pipeline, but do not simulate errors in the
lower-level SPIRE pipeline (pointing errors, crosstalk-corrections,
etc.). We use them to quantify the effects of 1/ f noise, uneven cov-
erage, clustering, and smoothing by the beam on our maps. The
SPIRE 1/ f knee frequency is a few mHz, corresponding to a spa-
tial scale of approximately 3 degrees for a scan speed of 30 arcsec-
onds per second, and our map-making algorithm reduces this al-
ready small amount as discussed in Levenson et al. (2010, in prep).
We find that the remaining amount, as well as the uneven coverage,
introduces negligible bias in our fits, but that clustering can have
measureable effects on our largest maps, as discussed in § 3.3.

In addition, we have determined the appropriate correction
for pixel-pixel correlations using the same framework and a large
number of simulated HerMES datasets. We find that the correct
normalization factor varies with signal-to-noise ratio of the map,
and whether it has been additionally smoothed with the beam. If
the map is beam-smoothed, then the beam area factor is approxi-
mately correct, if slightly conservative for deeper fields; note that
all of the maps in P09 were beam-smoothed. However, for deep,
unsmoothed maps, this procedure clearly overestimates the uncer-
tainties (by about a factor of 2 for GOODS-N). Rather than de-
rive individual correction factors for each field, we have taken the
more conservative approach of finding the largest correction factor
(which therefore increases the uncertainties the most) for all of our
fields, and applying it to all un-smoothed data. For the GOODS-N
and Lockman-North observations, the correct normalization factor
(without smoothing) is less than Ab/3. Because we do not have
an exact formulation for this correction, we conservatively adopt
2Ab/5. For the smoothed observations, we adopt the Ab normaliza-
tion, also conservatively; this means that the two Lockman fields

have the same correction factors, but the (un-smoothed) GOODS-
N field has a different one.

3.3 Filtering

Clustering will affect the P (D) distribution in two ways. First, the
presence of clustering implies sample variance effects, so that the
SDP fields may not be representative of the all-sky number counts.
Second, the fact that the underlying counts are not Poisson dis-
tributed would change the shape of the P (D) distribution even if
we were somehow lucky enough to select a precisely average re-
gion of sky. This effect can be modeled if all of the n-point statis-
tics of the source distribution are known (Barcons 1992). The ef-
fect on the width of the P (D) is discussed in Appendix A of P09,
although clustering is not purely limited to changing the width of
the distribution. Only the 2-point function has been measured for
the population sampled by SPIRE, and even this is not known at
the flux densities important for our results. The first issue is dis-
cussed in § 5.1, and the second here. There are two effects: clus-
tering on small scales between individual SMGs, and clustering on
larger scales between groups of SMGs.

The framework for the clustering contribution to the P (D) is
given in Barcons (1992); Takeuchi & Ishii (2004). The contribu-
tion to the nth moment is proportional to

∫
Pn (k) b̃ (k)n d2k, where

Pn (k) is the power spectrum of the n-point correlation function,
and b̃ (k) is the Fourier transform of the beam. b̃ falls rapidly with
|k| (e.g., an 18 arcsecond FWHM Gaussian beam has a 1/e value at
k = 1.2 arcmin−1, and the higher powers fall off even more rapidly).
Thus, small scale clustering, which is implied by the measurements
of, e.g., Blain et al. (2004), is filtered out by the beam on scales of
less than about one to two arcminutes in our data.

Generically, Pn falls rapidly with |k|, suggesting that high-pass
filtering the maps may mitigate large-scale clustering effects. In
particular, in the far-IR the power spectrum of the two point cor-
relation function (P2) shows excess power above Poissonian noise
at scales larger than 10′ (Lagache et al. 2007; Viero et al. 2009;
Cooray et al. 2010). In order to reduce ringing, our filter consists
of a high-pass filter with a turn on at 6 arcmin convolved with a
σ = 1.8 arcmin Gaussian. Only the Lockman-SWIRE field is large
enough to be significantly affected because the other fields are not
much larger than this scale. Since the benefit of P (D) analyses is at
faint flux densities where most of the CFIRB arises, and the shal-
low Lockman-SWIRE field has little constraining power here, our
main scientific results are minimally affected by non-Poissonian
clustering effects even if we ignore them. In fact, we find that the
differences between fits to simulated data with and without cluster-
ing are well within the statistical errors even without filtering.

Analysis of simulated data from Fernandez-Conde et al.
(2008), which has linear clustering based on the assumption that
infrared galaxies are tracers of dark-matter fluctuations, shows that
a high-pass filter is quite effective at removing clustering signal
for this data set. We construct two sets of simulated maps: one with
clustering, and another using the same catalogue but with clustering
removed by randomizing the source positions. We then compare
fits and pixel histograms for both maps. Because filtering will af-
fect the P (D) even in the absence of clustering, comparing these to
unclustered, unfiltered maps is not useful. The fits recover the input
model accurately in both cases, whereas if we do not filter dN/dS
is slightly underestimated at low flux densities for the largest maps.
Smaller maps show no evidence for bias. A pixel histogram from
such a simulation is shown in figure 2. Such filtering is also effec-
tive at removing infrared cirrus, although we have not tested this
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Figure 2. Comparison of the pixel histogram for simulated Lockman-
SWIRE data with and without clustering, in the absence of high-pass filter-
ing (left) and with a high-pass filter applied as described in the text (right).
The top panel shows the resulting pixel histograms, and the bottom shows
the fractional difference between the clustered and unclustered pixel his-
tograms. The thick line in the bottom panel shows the average difference
smoothed over a 3 mJy scale. Without filtering, there is a clear trend in
the fractional difference, but with filtering the difference is consistent with
zero for the bulk of the pixel fluxes. Even without filtering, the effect on the
measured counts is smaller than the statistical errors.

explicitly in terms of the recovered fit parameters. However, it is
possible that clustering signal on scales between one and six ar-
cminutes could affect our results. This regime is currently not well
characterized and thus we could not model it quantitatively in our
analysis.

4 MODEL

The best approach for comparing a particular model to SPIRE data
using P (D) is to generate pixel histograms as a function of the
model parameters and compare directly with our data. However, not
all models have smoothly adjustable parameters, and furthermore,
if the model is a poor fit to the data this may provide little insight
as to at which flux densities the model disagrees with observations.
Hence, we have followed P09 and fit simple, non-physical paramet-
ric models to our data. These models are defined by the values of
the differential number counts dN/dS at a set of fixed flux densities
(knots). Observationally we can never do more than place a lower
limit on the total number of sources fainter than S , N (< S ) be-
cause we can never measure all the way down to zero flux density,
but dN/dS is better behaved because it only depends on the num-
ber of sources in some small range. The actual fit parameters are
log10 dN/dS at the knot positions. The differential number counts
must become shallower than S −2 at low flux densities or else the
contribution to the CFIRB diverges. However, this turn-over may
lie below the flux densities probed by our data. Therefore, in order
to avoid biasing our fits by excluding models which are too steep
within the range of our measurements (i.e., would overpredict the
CFIRB if integrated down to zero flux density), we assume that the
number counts outside the largest and smallest knot are zero; the
problem of choosing the limits is discussed below.

A P (D) fit requires that the number counts model is continu-
ous. Therefore, we must choose a method of interpolating between

the knots, and for a finite number of knots, the interpretation of
our results depends on the interpolation method. We consider two
methods of interpolation in this paper: first, as in P09, using power
law extrapolation between each knot (these are multiply-broken
power-law fits), and second, using a cubic spline in log-log space.
The first code supports both methods, and the second only the for-
mer. We do not expect the fit parameters (i.e., dN/dS at the knot
positions) of these models to be identical, since they have different
meaning.

It is important to understand that the results of this paper are
model fits. The fit results are not simply dN/dS at the flux densi-
ties of the knots, but instead are effectively integral constraints over
some region surrounding each knot. Any excursion in the number
counts that lies entirely between two knots will affect at least both
neighboring knots, and likely others as well. The flux density range
that each fit parameter is sensitive to depends on the interpolation
scheme, with the spline response more local to the knot. Therefore,
simply reading off the values predicted by a theoretical or empiri-
cal number counts model at the knot positions and comparing that
with our fit parameters is wrong since they are integral constraints
over a region surrounding the knot. This is also true for more tradi-
tional methods (i.e., simple number counts derived from individual
galaxy detections) because of the importance of the de-boosting
corrections for low signal-to-noise ratio detections. A preferable
approach is to first find the best approximation to the differential
counts of the theoretical (or empirical) number counts model cho-
sen for comparison using either of our parametric models (for ex-
ample, by fitting a multiply-broken power law to the dN/dS of the
theoretical model giving equal weighting to all fluxes, not just the
values at the knots) and comparing the parameters of that approxi-
mation to our results.

The highest and lowest knot positions must be chosen with
some care because the differential number counts are assumed to
be zero outside this range. Our criterion is based on examining the
effects of cutting the number counts at a given level on a selection
of galaxy evolution models from the literature. We compare the pre-
dicted P (D) for each literature model truncated below a specified
flux level with the P (D) without truncation, and find that our data
are not sensitive to a cut-off of less than 0.1 mJy at 250 µm. A sim-
ilar analysis shows that truncating the fit above 1 Jy is also unde-
tectable, with similar values for the other passbands. From simula-
tions, we find that we can obtain good constraints if the second knot
lies approximately at the 1σ instrumental noise. Because the num-
ber counts below our flux limit are unlikely to be well described
by a single knot all the way down to 0.1 mJy, the fit value for this
point should be treated with care; simulations indicate that this is
not a problem for the 2 mJy knot. In order to avoid over-tuning
our fits to represent literature models, we adopt approximately log-
arithmically spaced knots between these extremes. The choice of
the number of knots is somewhat arbitrary. Neighboring knots are
very strongly correlated, and as the number increases the correla-
tions increase. We have tried to chose the number of knots to be as
large as possible while keeping the correlations reasonably small.

5 RESULTS

We fit all three fields simultanously, but each band independently.
The uncertainty in the instrumental noise is modeled as a single
multiplicative factor having a Gaussian prior with σ = 5%. Note
that we are making the assumption that the timestream instrumen-
tal noise is the same for all three fields as found in Nguyen et al.
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Table 3. Differential Number Counts Constraints For a Multiply-Broken
Power-Law Model with the FIRAS prior

250 µm 350 µm 500 µm

Knot log10 dN/dS Knot log10 dN/dS Knot log10 dN/dS

[mJy] [deg−2Jy−1] [mJy] [deg−2Jy−1] [mJy] [deg−2Jy−1]

0.1 < 9.38 (1σ) 0.05 < 5.42 (1σ) 0.05 < 4.37 (1σ)

2 7.39+0.06
−0.17 2 7.87+0.08

−0.19 2 7.70+0.09
−0.21

5 5.83+0.15
−0.25 5 5.24+0.32

−0.56 5 5.50+0.29
−0.52

10 5.978+0.027
−0.071 10 5.87+0.05

−0.10 10 5.13+0.10
−0.21

20 5.13+0.02
−0.04 20 4.960+0.028

−0.067 20 4.686+0.039
−0.094

45 4.041+0.014
−0.034 45 3.744+0.026

−0.062 45 2.82+0.07
−0.15

100 2.591+0.027
−0.062 100 1.82+0.07

−0.16 100 1.10+0.19
−0.35

200 1.42+0.06
−0.14 200 0.81+0.16

−0.29 200 −0.08+0.54
−0.97

450 0.58+0.12
−0.22 750 −0.69+0.16

−0.29 600 −1.45+0.99
−2.01

1000 −0.44+0.32
−0.62

Marginalized fit parameters for a multiply-broken power-law model from
a joint analysis of all three fields including the FIRAS CFIRB prior of
Fixsen et al. (1998). Quoted uncertainties are 68.3% confidence intervals,
except for the first knot where 1σ upper limits are given. The systematic
uncertainties are the same as in table 2.

(2010). In addition to the SPIRE data, we also explore the effects
of including the FIRAS CFIRB prior (Fixsen et al. 1998) by inte-
grating S dN/dS for our model down to the lowest knot and adding
a term to the likelihood that compares that value with the FIRAS
measurement and its error. This assumes that the CFIRB is entirely
due to discrete sources, and that flux densities outside the range of
our model contribute only negligibly. We integrate the Fixsen et al.
(1998) spectrum through the SPIRE passbands and adopt the rel-
ative errors given in Marsden et al. (2009). The uncertainty in the
relative calibration between FIRAS and SPIRE significantly affects
the utility of this prior.

The best fit multiply broken power-law fit is compared with
the GOODS-N data in figure 3, and the parameters are given in ta-
bles 2 and 3, and for the spline interpolation fits in tables 4 and
5. The correlations between adjacent knots are large and negative4,
with typical correlation coefficients of −0.5 to −0.8. The two mod-
els are compared with each other in figure 4. The two interpolating
models (spline and multiply-broken power-law) produce very sim-
ilar results. As discussed previously, these are model fits, not inde-
pendent number counts, and since the parameterizations differ, di-
rectly comparing the values at the knot positions is not entirely cor-
rect. Nonetheless, the agreement is clear. Also, because the models
were fit to the same data their results should not be coadded: they
are both presented to demonstrate that similar results are obtained
with using independent codes.

Since the agreement is so good, we express no preference
of one model versus the other (multiply-broken power-law versus
spline). However, we note that the spline model has a narrower flux
density window function about each knot, and thus represents the
differential number counts of the knot position slightly more accu-
rately locally than the power-law model. For comparison to other
number counts models, one can either (i) select the fits with the FI-
RAS prior, which assumes that the remaining portion of the CFIRB
unaccounted for by our priorless fits is encompassed in the range

4 Covariance matrices are provided at http://www.hermes.sussex.ac.uk/

Table 5. Differential Number Counts Constraints For a Spline Model with
the FIRAS prior

250 µm 350 µm 500 µm

Knot log10 dN/dS Knot log10 dN/dS Knot log10 dN/dS

[mJy] [deg−2Jy−1] [mJy] [deg−2Jy−1] [mJy] [deg−2Jy−1]

0.1 < 8.743 (1σ) 0.05 < 7.63 (1σ) 0.05 < 6.81 (1σ)

2 7.281+0.067
−0.081 2 7.335+0.066

−0.077 3.4 6.578+0.064
−0.083

4.3 6.565+0.082
−0.094 4.3 6.26+0.23

−0.26 7.3 5.37+0.14
−0.22

9.1 5.817+0.049
−0.052 9.1 5.78+0.10

−0.11 15.5 4.91+0.090
−0.093

19.5 5.241+0.027
−0.028 19.5 4.983+0.058

−0.063 33.2 3.55+0.09
−0.10

41.8 4.023+0.033
−0.031 41.8 3.831+0.054

−0.055 71 1.82+0.15
−0.16

89.3 2.786+0.045
−0.049 89.3 2.13+0.10

−0.11 500 −0.63+1.11
−1.80

191 −0.08+0.26
−0.32 191 0.95+0.16

−0.18
408 0.957+0.065

−0.075 1000 −2.12+1.06
−1.83

1000 0.186+0.084
−0.088

Marginalized fit parameters for a spline interpolation model from a joint
analysis of all three fields including the FIRAS CFIRB prior of Fixsen et
al. (1998). The systematic uncertainties are the same as in table 4.

between the upper limit on dN/dS at 0.1 mJy and the 2 mJy knot (at
250 µm) – this method is simpler; or (ii) select the fits without the
CFIRB prior, in which case the prior should be applied indepen-
dently. The latter does not require that the model share the same
assumptions about the number counts at low flux densities as our
fits.

Our fits are compared with other measurements in figures 5
and 6. Ignoring the lowest knot (where only an upper limit is
available), our fits predict a CFIRB flux density of 0.54 ± 0.08,
0.39 ± 0.06, and 0.16 ± 0.03 MJy sr−1 from all sources down to 2
mJy in the three bands; the dominant error in all cases is due to the
15 per cent calibration uncertainty of SPIRE. The contribution from
each flux range is shown in figure 7. The CFIRB from Fixsen et al.
(1998) integrated over the SPIRE bands is 0.85± 0.19, 0.65± 0.19,
and 0.39± 0.10 MJy sr−1, respectively, so our fits therefore account
for 64±16, 60±20 and 43±12 percent in the SPIRE 250, 350, and
500 µm bands, respectively. We expect to resolve a smaller fraction
of the CFIRB at longer wavelengths because the size of the SPIRE
beam is proportional to wavelength, and hence the 500 µm band is
more confused. Here the errors are dominated by the uncertainty in
the FIRAS measurement. We find marginalized values for the in-
strumental noise that are 1.02, 1.1, and 1.01 times the values given
in table 1 at 250, 350, and 500 µm, respectively, giving a χ2 of 4.2
for 3 degrees of freedom. Hence, our instrumental noise values are
consistent with the Nguyen et al. (2010) prior.

5.1 Systematic Effects

Our basic tool for estimating the importance of a particular system-
atic is to compute the ∆ logL between the P (D) with and without
the effect for maps the same size and depth as our data. We use
the P09 best fit model as a basis for this computation. Recall that a
∆ logL of 0.5 corresponds roughly to a 1σ statistical error.

Because different parts of the map are sampled by different
bolometers, and the beam shape varies across the bolometer ar-
ray, the effective beam will vary over the map. We evaluated this
effect by choosing 200 random pixels in our maps and comput-
ing the fractional contribution of each bolometer to each pixel. We
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Table 2. Differential Number Count Constraints For a Multiply-Broken Power-
Law Model

250 µm 350 µm 500 µm

Knot log10 dN/dS Knot log10 dN/dS Knot log10 dN/dS

[mJy] [deg−2Jy−1] [mJy] [deg−2Jy−1] [mJy] [deg−2Jy−1]

0.1 < 11.08 (1σ) 0.05 < 11.20 (1σ) 0.05 < 11.28 (1σ)

2 7.05+0.33
−0.57 ± 0.19 2 6.94+0.13

−0.27 ± 0.11 2 6.82+0.11
−0.25 ± 0.12

5 6.25+0.04
−0.13 ± 0.05 5 6.08+0.13

−0.25 ± 0.08 5 5.65+0.19
−0.38 ± 0.09

10 5.919+0.028
−0.063 ± 0.011 10 5.78+0.05

−0.11 ± 0.04 10 5.39+0.09
−0.18 ± 0.03

20 5.139+0.013
−0.035 ± 0.025 20 4.976+0.026

−0.061 ± 0.024 20 4.57+0.05
−0.12 ± 0.03

45 4.038+0.015
−0.033 ± 0.031 45 3.742+0.026

−0.061 ± 0.051 45 2.91+0.07
−0.16 ± 0.04

100 2.596+0.025
−0.058 ± 0.044 100 1.80+0.07

−0.16 ± 0.10 100 0.96+0.22
−0.38 ± 0.06

200 1.42+0.05
−0.14 ± 0.08 200 0.87+0.14

−0.28 ± 0.08 200 0.00+0.51
−0.92 ± 0.07

450 0.57+0.13
−0.24 ± 0.26 750 −0.65+0.39

−0.78 ± 0.30 600 −1.43+0.96
−2.09 ± 0.29

1000 −0.45+0.31
−0.60 ± 0.20

Marginalized fit parameters for a multiply-broken power-law model from a joint
analysis of all three fields without using the FIRAS CFIRB prior. The quoted
uncertainties are the 68.3% confidence intervals for the statistical error followed
by the estimated systematic uncertainty, except for the first knot where the 1σ
upper limit is given.
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Figure 3. Comparison of the GOODS-N pixel histograms (solid lines) to the best fit model to all three fields (dashed
lines) using the multiply-broken power law fit and not including the FIRAS prior.

Table 4. Differential Number Counts Constraints For a Spline Model

250 µm 350 µm 500 µm

Knot log10 dN/dS Knot log10 dN/dS Knot log10 dN/dS

[mJy] [deg−2Jy−1] [mJy] [deg−2Jy−1] [mJy] [deg−2Jy−1]

0.1 < 10.29 (1σ) 0.05 < 11.43 (1σ) 0.05 < 10.91 (1σ)

2 7.26+0.10
−0.17 ± 0.19 2 7.18+0.15

−0.28 ± 0.11 3.4 6.36+0.13
−0.18 ± 0.10

4.3 6.54+0.10
−0.12 ± 0.06 4.3 6.24+0.21

−0.21 ± 0.09 7.3 5.31+0.19
−0.21 ± 0.05

9.1 5.837+0.059
−0.056 ± 0.013 9.1 5.831+0.081

−0.090 ± 0.042 15.5 4.961+0.074
−0.085 ± 0.029

19.5 5.230+0.029
−0.032 ± 0.024 19.5 4.959+0.053

−0.061 ± 0.025 33.2 3.511+0.094
−0.095 ± 0.034

41.8 4.036+0.032
−0.036 ± 0.030 41.8 3.849+0.051

−0.050 ± 0.048 71 1.85+0.14
−0.16 ± 0.063

89.3 2.802+0.045
−0.050 ± 0.040 89.3 2.11+0.10

−0.11 ± 0.076 500 −0.64+1.25
−1.80 ± 0.028

191 0.20+0.24
−0.34 ± 0.080 191 0.96+0.16

−0.19 ± 0.075
408 1.002+0.064

−0.068 ± 0.26 1000 −2.34+1.82
−1.92 ± 0.31

1000 0.18+0.09
−0.10 ± 0.20

Marginalized fit parameters for a spline model from a joint analysis of all three
fields. Quoted uncertainties are as in table 2.
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Figure 4. Comparison of the multiply-broken power-law (solid lines) and spline (dashed lines) P (D) fits for the
differential number counts to the three SDP fields simultaneously, without the FIRAS prior; 1σ upper limits are
shown as arrows. For this comparison, only statistical errors are shown.
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Figure 5. Comparison of Euclidean-normalized multiply-broken power law differential number counts fits (solid
lines and circles) with previous balloon-based measurements from BLAST, not using the FIRAS prior. The BLAST
P (D) analysis (P09) is shown as dashed lines and stars, the stacking analysis of Béthermin et al. (2010b) as triangles
and the source extraction analysis from the same reference as squares. Here the combined statistical and systematic
errors are shown.
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Figure 7. The contribution to the cosmic far-infrared background from each
flux range for the multiply-broken power-law model versus the log of the
flux density. The results for the spline interpolation model are almost iden-
tical. The integral of the curve over the log flux density is proportional to
the total flux contribution in each band.

then built per-bolometer maps from our Neptune observations, and
combined these to find the effective beam at each of these locations.
The beam varies across the map in a complicated fashion because

even in our deepest map each pixel only samples a limited sub-
set of bolometers. This produces significant variation in the P (D)
with position. In general, the P (D) computed for the bolometer-
averaged beam does not have to be the same as the P (D) computed
for each bolometer and then averaged across the array (which is
the P (D) of the entire map). To evaluate the importance of this
variation, we compare the P (D) for the average beam to the P (D)
computed for all 200 pixels and then averaged. The ∆ logL of this
comparison is < 0.01, so for our analysis this is negligible.

Although we masked each map to exclude the low-coverage
edges, the HerMES SDP observations were not dithered between
repeats so there are significant variations in the number of measure-
ments per pixel even within the high-coverage regions (∼ 20%).
This will introduce slight non-Gaussian tails to the instrument noise
distribution. We simulated this effect in two ways. First, we gen-
erated random realizations of the instrument noise, including the
uneven coverage, and compared the P (D) using the resulting noise
to the P (D) assuming the noise is purely described by the average
σ, and found negligible ∆ logL . Second, our end-to-end simula-
tions (also including 1/ f noise) implicitly include uneven coverage
effects, and we found no bias in the recovered parameters. Future
HerMES observations will include dithering, which will also have
the benefit of improving the homogeneity of the beam.

Nguyen et al. (2010) explore the noise characteristics of the
SDP maps by carrying out ‘Jack-Knife’ tests on the data. Their
findings are generally consistent with the expected noise properties,
but it is difficult to rule out some additional level of non-Gaussian
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Figure 6. Comparison of Euclidean normalized SPIRE P (D) differential number counts (solid lines/circles and
dashed lines/squares for the multiply-broken power law and spline models, respectively, not using the FIRAS prior
in both cases) with other SPIRE number counts: first, an analysis of the same data using source extraction techniques
(Oliver et al. 2010, red stars), and second the H-ATLAS source extraction on an independent field (Clements et al.
2010, triangles). The errors are the combined statistical and systematic errors.

noise beyond the 1/ f behavior we have simulated. Directly com-
puting the effects of the Jack-Knife noise histograms on our model
shows that any additional non-Gaussianity has negligible effects for
the SDP data, down to our lowest constrained knot (2 mJy). This
may not be true for future observations where the larger field sizes
will reduce the statistical error considerably.

To test the sensitivity to the beam model, we use an alternative
set of Neptune observations with a much smaller number of repeats
and coarser sampling. Furthermore, the pointing of these observa-
tions is not corrected for the small offset between the Herschel and
SPIRE clocks, and hence they suffer from pointing drift relative to
the maps of the science fields5. The pipeline nominally corrects for
this offset. However, to be conservative, we allow for the possib-
lity that the pointing drift might not affect the beam maps in the
same way as the science maps: we repeat the fits using the alter-
native beam, and use the difference in the results as an estimate of
the beam systematic. This is the dominant identified systematic ef-
fect, with ∆L ∼ 0.3. We take the differences between the recovered
parameters between the two beams as the systematic error on each
knot as given in tables 2 and 4. As our understanding of the SPIRE
beams improves, it should be possible to decrease this error.

To further explore issues of pointing drift, we have constructed
a simple drift model for the GOODS-N field using Jack-Knife com-
parisons. We then generate simulated maps with and without apply-
ing this model. Because the effect of the model is largely to twist
successive observations relative to each other, this has very little
effect on the P (D), amounting to ∼ 0.1σ relative to the statistical
errors.

While our results should represent the number counts in our
fields quite well, sample variance means that they may not perfectly
represent the number counts we would obtain with an infinitely
large field. If we make the strong assumptions that the SPIRE clus-
tering properties measured in Cooray et al. (2010) apply equally at
all flux densities (and, in particular, to depths 10 times greater than
they were measured), that the redshift distribution of our sources is
independent of measured brightness, and that the source population
peaks at z = 1.5, then a simple analytic computation suggests that
sample variance could be a 20 per cent effect on the total number

5 The SPIRE clock speed differs by a very small amount from the Herschel
clock, resulting in a cumulative pointing drift with time in SPIRE maps. The
magnitude of the effect is 0.7 arcseconds per hour, with rephasing occuring
when “PCAL” internal calibrations are made.
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Figure 8. Comparison of 250 µm differential number counts derived from
the three fields for the multiply-broken power-law model. Only statistical
errors are shown and the FIRAS prior is not included.

counts in GOODS-N. More empirically, if we split the Lockman-
SWIRE field into sub-regions there is evidence for variation in the
pixel histogram from sub-field to sub-field. However, after applying
our high-pass filter the variations are no longer statistically sign-
ficant; that is, the difference between sub-fields lies in the mean
rather than the shape of the histograms. Alternatively, mean sub-
tracting each sub-field produces the same effect. This suggests that
the fact that our measurements are not sensitive to the mean map
values (and therefore are mean-subtracted) may provide some pro-
tection against sample variance effects. Since estimating the size of
this effect is highly model dependent, we have not attempted to in-
clude this in our error budget. We do, however, fit the three fields
independently at 250 µm and compare the results, although the dif-
ferent depths complicate this somewhat. For simplicity, we do not
marginalize over the instrument noise in this fit, since the only pur-
pose is to compare the three fields. This is shown in figure 8. Within
the uncertainties, the fits are consistent. The post-SDP HerMES ob-
servations will allow sample variance effects to be better quantified.

We do not include the effects of the SPIRE calibration uncer-
tainty (∼ 15% across all bands) in our error budget, except when
using the CFIRB prior or computing the fraction of the FIRAS mea-
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surement accounted for by our model. However, any updates to the
SPIRE calibration are easily incorporated into our results without
refitting: if the flux scale is multiplied by a factor α the knot posi-
tions Ki 7→ αKi and the knot values decrease by − log10 α.

6 DISCUSSION

In general, our results agree well with those of P09, except for the
faintest fluxes fully constrained by their analysis. For example, at
250 µm they find log10 dN/dS = 5.58+0.07

−0.11 at 20 mJy, while our
result is 5.139+0.012

−0.033 ± 0.025. However, as discussed earlier, they did
not marginalize over the instrumental noise for their deepest field,
so their errors may be somewhat underestimated here. There is also
some evidence from simulated data that the small number of knots
and knot placement right at the break in the number counts may
have biased this knot in the P09 analysis. We find good agreement
with the stacking analysis of the BLAST data, but see some mild
disagreement at higher fluxes for direct counts of the same data
(Béthermin et al. 2010b) as shown in figure 5.

The deepest number counts available at these wavelengths are
the result of a semi-traditional source extraction method on the
same HerMES data set (Oliver et al. 2010). These are compared
in figure 6. Where there is overlap, the agreement is good. A simi-
lar analysis was carried out using H-ATLAS SDP data by Clements
et al. (2010); this is also shown. Unlike the HerMES source extrac-
tion and P (D) analysis, the H-ATLAS counts are 250 µm-selected
at all wavelengths, and hence may not entirely probe the same point
source population. Nonetheless, again the agreement with the Her-
MES results is good.

A few features are worth noting. First, we clearly detect a
break in the number counts around at 20 mJy in all bands at
high significance. However, the SPIRE data alone do not detect
the change in slope in dN/dS necessary to keep the CFIRB fi-
nite, as the differential counts continue to rise to the lowest limit
of our analysis more steeply than S −2. When the FIRAS prior is
added, a break is present, but this mostly affects the lowest flux
knot, for which we can only provide an upper limit (the effects on
the other knots are mostly due to the strong correlations between
knots; the FIRAS prior changes the structure of the correlations
significantly at low flux densities). Second, there is possible weak
(∼ 1σ) evidence for a ‘bump’ in the differential counts around 400
mJy at 250 µm. There is no evidence at 350 and 500 µm around
this flux density, but the error bars are large. However, this bump is
present in the independent H-ATLAS field (Clements et al. 2010)
at 250 µm. The cause is unclear; lensing is an intriguing possibility,
but we would expect the signature of lensing to be larger at 500 µm
due to stronger negative K-correction effects (e.g. Negrello et al.
2007).

We can compare our model fits to the confusion noise esti-
mates of Nguyen et al. (2010) measured using a different technique.
The often-used criterion of one source per every n beams is difficult
to use, since its translation into the effects on observations depends
strongly on the underlying model (Takeuchi & Ishii 2004). Hence,
we adopt the square root of the variance of the source contribution
to the pixel distribution (σconf) as our measure. We find values of
6.5/6.4/6.1 ± 0.2 mJy in the three bands, slightly higher than the
Nguyen et al. (2010) values, but by less than 2σ.

Our fits are compared with a selection of literature models in
figure 9. No currently available model entirely fits our counts, es-
pecially when all three bands are considered. There is a general
discrepancy in the galaxy number count models in that the theoret-

ical models generically overpredict the number of bright galaxies
(in the several × 10 to several × 100 mJy range, limited at the up-
per end by uncertainties in the P (D) number counts) compared to
the number counts from the P (D) analysis. The best match overall
across all three SPIRE bands is given by the model of Valiante et
al. (2009).

We interpret the discrepancy in the context of the theoreti-
cal models of Lagache et al. (2003) and Fernandez-Conde et al.
(2008) (figure 9). In Figure 10 the redshifts and FIR luminosities
of galaxies are plotted versus their observed flux densities for the
Fernandez-Conde et al. (2008) simulations. The transitions from lu-
minous to ultra-luminous infra-red galaxies (LIRGs to ULIRGs, at
1012L�) with increasing observed flux densities occurs at approxi-
mately 12, 6, and 3 mJy, in the 250, 350, and 500 µm SPIRE bands,
respectively. Thus, the discrepancy at the bright end likely results
from the presence of too many ULIRGs in the theoretical models.
It should be noted that the intrinsic luminosities of the underly-
ing galaxy population that contribute to any given bin in observed
flux density depend on the redshift distributions and spectral energy
distributions; however, the very brightest galaxies are likely either
intrisically extremely luminous (ULIRGs or brighter), low redshift,
or strongly lensed. There is a large dispersion in redshifts repre-
sented by galaxies in each observed flux density bin, with means in
the range z = 1 − 2, with the average flux densities only mildly in-
versely correlated with redshifts (due to the negative K-correction).

In all three bands at and below 2 mJy, the P (D)-derived num-
ber counts are consistent with the theoretical galaxy number count
models. This is not surprising because: (i) the theoretical galaxy
number count models are constrained not to overpredict the CFIRB,
which arises, in large part, from numerous faint galaxies; and (ii)
the upper limits of the lowest flux density knot in each band lies
well above the theoretical number counts models.

Another more subtle feature also seems apparent in the mea-
sured counts. The results from both fitting methods – lending some
confidence to their credence – have depressions at the third-lowest
flux density knots with respect to the theoretical number count
models at low-to-moderate significance (depending on the theoreti-
cal model), which are exclusively concave down in this range (a few
mJy to a few times 10 mJy). The stacking analysis of Béthermin
et al. (2010a) is not deep enough at 250 or 350 µm to verify this
feature, although the turnover in S 2.5dN/dS from the peak at ap-
proximately 10 mJy downward is clear at 250 µm. At 500 µm, the
stacking analysis does not display the depression. This flux density
range is approximately at the confusion limit (where the flux den-
sity is equal to the confusion noise, σconf = 6 mJy) and multiple
galaxies contribute to the flux density in each beam. Thus, refer-
ring to the Fernandez-Conde et al. (2008) models (figure 10), this
flux density range corresponds to the transition from ULIRGS to
LIRGs, suggesting that LIRG number counts may also be overrep-
resented by the theoretical galaxy number counts models.

7 CONCLUSIONS

We have measured the differential galaxy number counts from
Herschel-SPIRE Science Demonstration Phase HerMES observa-
tions at 250, 350, and 500 µm using P (D) techniques and two sim-
ple parametric models. The number counts were measured down to
2 mJy, approximately a factor of 3 below the 1 σ confusion noise.
We find that 64 ± 14 per cent of the measured CFIRB is accounted
for by point sources at 250 µm , falling to 43 ± 12 per cent at 500
µm. The errors on the fraction of the CFIRB accounted for by these
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spectively) for the Lagache et al. models (Lagache et al. (2003); Fernandez-
Conde et al. (2008)). The error bars give the interquartile range for each bin.

sources are now dominated by those of the FIRAS measurement.
However, because of the remaining fraction not accounted for by
our fits, this is still not a competitive method for measuring the to-
tal CFIRB. We find clear evidence of breaks in the slope of the dif-
ferential number counts at approximately 10–20 mJy in all bands,
which have been hinted at by previous analyses.

Where they overlap, our fits agree well with other Herschel re-
sults. Comparing with a selection of literature models, however, we
find that no model entirely reproduces our observed number counts.
As found by Oliver et al. (2010) and Clements et al. (2010), most
published models significantly over-predict the number of bright
sources at these wavelengths and have shallower slopes. We find
somewhat better agreement at fainter fluxes, at or below the break,
but the agreement is still not perfect.

Our main systematic uncertanties arise from our understand-
ing of the SPIRE beams. We find that a high-pass filter is effective

in removing the signature of clustering from our counts, but in the
future it may be preferable to attempt to directly marginalize over
clustering using simple models.

These observations represent only ∼ 60 hours of the 900 hours
of observations that HerMES will ultimately obtain (although not
all of these are with SPIRE). The final dataset will cover a wide
range of depths and areas. This will significantly increase our abil-
ity to constrain dN/dS . Having a number of well-seperated deep
fields will also allow a direct measurement of sample variance.
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