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Abstract—
Background: There has been much discussion amongst auto-
mated software defect prediction researchers regarding use of
the precision and false positive rate classifier performance metrics.
Aim: To demonstrate and explain why failing to report precision
when using data with highly imbalanced class distributions may
provide an overly optimistic view of classifier performance.
Method: Well documented examples of how dependent class
distribution affects the suitability of performance measures.
Conclusions: When using data where the minority class repre-
sents less than around 5 to 10 percent of data points in total,
failing to report precision may be a critical mistake. Furthermore,
deriving the precision values omitted from studies can reveal
valuable insight into true classifier performance.

I. INTRODUCTION

It is surprisingly difficult to characterise appropriately the
performance of data mining classification algorithms from
the field of machine learning. Deciding which performance
measures to use involves taking several factors into account,
including the costs associated with misclassification, and the
class distribution. We believe the inappropriate use of classifier
performance measures to be a current problem in the reporting
of defect prediction research, and this short paper explains
why.

In January 2007 the Menzies et al. paper ‘Data Mining
Static Code Attributes to Learn Defect Predictors’ was pub-
lished in the IEEE Transactions on Software Engineering
(Menzies, Greenwald & Frank 2007). In this study many
defect prediction experiments were carried out. Classifier
performance was reported using the two metrics used in
receiver operating characteristic (ROC) analysis, the true
positive rate and the false positive rate. In the journal these
metrics were referred to as the probability of detection (pd)
and the probability of false alarm (pf), respectively. The use
of these metrics motivated a comments paper by Zhang and
Zhang (Zhang & Zhang 2007). They argued that the prediction
“models built in (Menzies, Greenwald & Frank 2007) are not
satisfactory for practical use”. This was because the precision;
the proportion of modules predicted as being defective which
were also originally labeled as being defective, was low for
7 out of the 8 data sets (between 2.02 and 31.55 percent).
The authors conclude by suggesting that, for reporting on the
performance of software defect prediction models, the true
positive rate be used with precision rather than with the false
positive rate.
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The Zhang and Zhang comments paper motivated a response
by two of the original journal authors and two others (Menzies,
Dekhtyar, Distefano & Greenwald 2007). Here the main argu-
ments were that “detectors learned in the domain of software
engineering rarely yield high precision”, and that low precision
predictors can be useful in practice. While it is true that low
precision predictors can be useful in certain contexts, and that
lowering precision in order to increase the true positive rate
may be desirable depending on your objectives, it is clearly
inappropriate in a classification domain to disregard precision
completely.

In this paper we demonstrate that when using data with
a highly imbalanced class distribution, relying on true pos-
itive rates and false positive rates alone (this includes ROC
analysis) may provide an overly optimistic view of classifier
performance. We demonstrate this by showing that even when
pairs of values for these measures appear to be near optimal,
there is still considerable room for improvement in practical
terms. This is not a novel finding. However, many defect
prediction researchers have continued to report their classifi-
cation results inappropriately since the publication of (Zhang
& Zhang 2007). The contribution made here is the intuitive
and easily comprehensible presentation of the examples given
in Section III.

The rest of this paper is laid out as follows: Section II
provides a background to machine learning classifier perfor-
mance metrics. Section III describes the problem at hand, and
why precision is required to appropriately describe classifier
performance in highly imbalanced domains. Our conclusions
and advice for researchers is presented in Section IV.

II. BACKGROUND

This section presents an overview of machine learning
classifier performance metrics. In this study we limit our scope
to that of binary classification problems. For each data point
predicted during binary classification, there can be only one
of four possible outcomes:

• A true positive (TP) occurs when a data point labeled as
positive (typically ‘defective’ in this domain) is correctly
predicted as positive.

• A true negative (TN) occurs when a data point labeled
as negative (typically ‘non-defective’ in this domain) is
correctly predicted as negative.

• A false positive (FP) occurs when a negative labeled data
point is incorrectly predicted as positive.

• A false negative (FN) occurs when a positive labeled data
point is incorrectly predicted as negative.

These values can be put into a confusion matrix (Figure 1).



labeled positive labeled negative
predicted positive TP FP
predicted negative FN TN

Fig. 1. A confusion matrix.

It is worth pointing out that there is a symmetry between
the positive and negative classes. However, the positive class
typically refers to the class of most interest (‘defective’ mod-
ules), which is commonly (in this domain and many others)
the minority class.

Useful data statistics and commonly used classifier perfor-
mance metrics can be derived from a confusion matrix. A
subset of these are defined in Table I. Note that in this table,
the last two measures defined (f-measure and balance) are
in their most commonly used form. It is however possible
to weight them in order to favour either of their comprising
measures (Jiang, Cukic & Ma 2008). Additionally note that
the balance measure was defined in (Menzies, Greenwald &
Frank 2007), it is a measurement of distance from a point on
a ROC curve to the ideal point, which is typically defined as
where the true positive rate is 1 and the false positive rate is
0.

The three measures of most interest in this paper are:
the true positives rate, the false positive rate, and precision.
The true positive rate describes the proportion of data points
labeled as positive which were correctly predicted as such;
the optimal value is 1. The false positive rate describes the
proportion of data points labeled as negative which were in-
correctly predicted as positive; the optimal value is 0. Precision
describes the proportion of modules predicted as defective
which were correct; the optimal value is 1.

In addition to observing classifier performance with a fixed
set of parameters, it may also be desirable to observe how
performance varies across a range of parameters. Doing so can
be especially beneficial when performing classifier compar-
isons. ROC curve analysis is commonly used for this task, and
involves exploring the relationship between the true positive
rate and the false positive rate of a classifier while (typically)
varying its decision threshold. A trade-off commonly exists
between the true positive rate and the false positive rate, and
this is demonstrated by ROC analysis via a two dimensional
plot of the false positive rate on the x-axis and the true positive
rate on the y-axis. The area under the ROC curve (AUC-ROC)
is commonly used to summarise a ROC curve in a single
measure. The optimal AUC-ROC value is 1.

Precision and recall (PR) curves can be used in the same
manner as ROC curves. On a PR curve, recall is on the x-
axis and precision on the y-axis. A trade-off commonly exists
between these two measures, and is thus shown on a PR curve.
Note that recall is another alias for the true positive rate used
in ROC analysis. PR curves are “an alternative to ROC curves
for tasks with a large skew in the class distribution” (Davis &
Goadrich 2006). The area under the PR curve (AUC-PR) can
be computed and used similarly to AUC-ROC.

Alias / Aliases Defined As

Testing Set No. Instances TP + TN + FP + FN

No. Instances in Class 1 (Positive Class) TP + FN

No. Instances in Class 2 (Negative Class) TN + FP

Accuracy + TP + TN

TP + TN + FP + FN
Correct Classification Rate

1 - Error Rate

Error Rate - FP + FN

TP + TN + FP + FN
Incorrect Classification Rate

1 - Accuracy

True Positive Rate +
TP

TP + FN

Recall
Sensitivity

Probability of Detection (pd)
1 - False Negative Rate

True Negative Rate + TN

TN + FP
Specificity

1 - False Positive Rate

False Positive Rate -
FP

FP + TN

Type 1 Error Rate
Probability of False Alarm (pf)

1 - True Negative Rate

False Negative Rate - FN

FN + TP
Type 2 Error Rate

1 - True Positive Rate

Precision +
TP

TP + FP

F-Measure + 2 ∗Recall ∗ Precision

Recall + PrecisionF-Score

Balance +
1−
√

(0−pf)2+(1−pd)2√
2Distance from ROC optimal point

TABLE I
A SUBSET OF STATISTICS DERIVED FROM A CONFUSION MATRIX.
MEASURES MARKED WITH ‘+’ HAVE AN OPTIMAL VALUE OF 1.
MEASURES MARKED WITH ‘-’ HAVE AN OPTIMAL VALUE OF 0.

III. WHY CLASS DISTRIBUTION AFFECTS THE
SUITABILITY OF MEASURES

Consider a perfectly balanced data set with 1000 data points,
500 in each class. If we achieve a classification performance
of true positive rate (TPR) = 1 and false positive rate (FPR)
= 0.01, it appears as though our classifier has performed very
well. All of the data points in the positive class have been
correctly classified (TPR = 1), and only 1 percent of data
points in the negative class (5 data points) have been incor-
rectly classified (FPR = 0.01). If we calculate the precision
of such a classifier, it works out to 0.99 (to two significant
figures). Thus 99 percent of data points predicted to be in the
positive class turned out to be correct. In this first example,
where we have a balanced class distribution, using the TPR
and FPR provided an honest and accurate representation of
classifier performance, as a near optimal pair of values likewise
resulted in a near optimal precision. A confusion matrix for
this example is presented in Figure 2.



labeled positive labeled negative
predicted positive TP = 500 FP = 5
predicted negative FN = 0 TN = 495

Fig. 2. TPR = 1, FPR = 0.01, Precision = 0.99

Now consider a data set with a highly imbalanced class
distribution, 1000 data points in total but with only 10 data
points in the positive class (1 percent). If we again achieve
TPR = 1 and FPR = 0.01, classifier performance appears to
be equal to that of the previous classifier. This is inappropriate,
misleading, and exaggerates the classifiers real performance, as
the precision of this classifier is 0.50 as opposed to 0.99. Thus,
because of the imbalanced class distribution (i.e. much more
data in one class than the other), the same supposedly near
optimal TPR and FPR (or point on a ROC curve) represented
vastly different performance. In the first example 99 of every
100 positive predictions were correct, whereas in the second
example, the same TPR and FPR represented a classifier where
only half of all positive predictions were correct. A confusion
matrix for this example is presented in Figure 3.

labeled positive labeled negative
predicted positive TP = 10 FP = 10
predicted negative FN = 0 TN = 980

Fig. 3. TPR = 1, FPR = 0.01, Precision = 0.50

Turning attention toward the domain of software defect
prediction, researchers often use data sets where the minority
class represents less than 1 percent of data points in total (see
(Menzies, Greenwald & Frank 2007), (Lessmann, Baesens,
Mues & Pietsch 2008) and (Jiang & Cukic 2009), for exam-
ple). We now present an example using the most imbalanced
of the NASA Metrics Data Program data sets1, PC2. This
data set contains 5589 data points, each consisting of module
product metrics and the associated fault data. Just 23 of the
data points are labeled as ‘defective’, 0.4 percent of data points
in total. Thus, with a TPR of 1 all 23 data points labeled
as ‘defective’ would be correctly classified. An FPR of 0.01
means that 1 percent of the 5566 data points labeled as ‘non-
defective’ were incorrectly classified. With approximately 56
false positives, a total of 79 modules would be predicted to
require further attention. This works out to a precision of 0.29
(to two significant figures), despite the other metrics implying
near optimal performance. A confusion matrix for this example
is presented in Figure 4.

labeled positive labeled negative
predicted positive TP = 23 FP = 56
predicted negative FN = 0 TN = 5510

Fig. 4. TPR = 1, FPR = 0.01, Precision = 0.29

1http://mdp.ivv.nasa.gov/

In this domain, where the cost of false positives is typically
not prohibitively large (see (Menzies, Dekhtyar, Distefano &
Greenwald 2007)), such a classifier would, in most environ-
ments, be very attractive. Observe however that because of
the highly imbalanced class distribution, small changes in the
FPR have a large effect on the actual number of false positives.
Thus if classifier performance changes to TPR = 1 and FPR
= 0.05, the number of false positives increases to 280. The
precision in turn drops to 0.08 (to two significant figures). In
some environments examining 100 modules to find 8 of them
to be defective would not be feasible. A confusion matrix for
this example is presented in Figure 5.

labeled positive labeled negative
predicted positive TP = 23 FP = 280
predicted negative FN = 0 TN = 5286

Fig. 5. TPR = 1, FPR = 0.05, Precision = 0.08

As defect predictors do not achieve performance even close
to TPR = 1 and FPR = 0.05, are these theoretical experiments
valid? Zhang and Zhang (Zhang & Zhang 2007) indirectly
answer this question by highlighting the precision achieved
in (Menzies, Greenwald & Frank 2007) on data set PC2.
Here, despite results appearing to be acceptable (TPR = 0.72,
FPR = 0.14), and claims of the naive Bayes classifiers being
“demonstrably useful”, the precision was just 2.02 percent.
The classifier predicted that approximately 796 modules were
in the ‘defective’ class, of which only approximately 17
actually were. This highlights the poor predictive performance
achieved, and raises the question of whether such a classifier
could be of any practical worth. An optimistic approximation
of the confusion matrix for the entire data set (the results in
the study were generated after 10 repeated runs of 10-fold
cross-validation) is presented in Figure 6.

labeled positive labeled negative
predicted positive TP = 17 FP = 779
predicted negative FN = 6 TN = 4787

Fig. 6. TPR = 0.74, FPR = 0.14, Precision = 0.02

Note that an identical confusion matrix to the one in Figure
6 can be obtained by simply ranking all data points in data set
PC2 by their lines of code total attribute (descending order),
and predicting the first n = 796 data points only as defective.
It is a similar case for 2 more of the 8 data sets used in
(Menzies, Greenwald & Frank 2007), where n is the approxi-
mate average number of ‘defective’ predictions made. This is
known as LOC module-order modelling (see (Khoshgoftaar &
Allen 2003) and (Mende & Koschke 2009)), and highlights
both the poor predictive performance of the classifiers, and
that research into making defect predictors ‘effort aware’ is
worthwhile (see (Arisholm, Briand & Fuglerud 2007) and
(Mende & Koschke 2010)).

Table II presents statistics for each of the 13 NASA Metrics
Data Program data sets. These data sets were chosen as they
have been heavily used in software defect prediction research.



NASA Data
Set Alias

No. Data
Points

No. Positive (Minority)
Class Data Points

Percentage of Positive
Class Data Points

Percentage Precision @
TPR=1, FPR=0.01

Percentage Precision @
TPR=1, FPR=0.05

PC2 5589 23 0.4 29.11 7.64

MC1 9466 68 0.7 41.98 12.64

PC5 17186 516 3.0 75.55 38.22

PC1 1107 76 6.9 88.37 59.38

MW1 403 31 7.7 88.57 62.00

KC3 458 43 9.4 91.49 67.19

CM1 505 48 9.5 90.57 67.61

PC3 1563 160 10.2 91.95 69.57

PC4 1458 178 12.2 93.19 73.55

KC1 2107 325 15.4 94.75 78.50

JM1 10878 2102 19.3 95.98 82.72

MC2 161 52 32.3 98.11 91.23

KC4 125 61 48.8 98.39 95.31

TABLE II
EACH OF THE NASA METRICS DATA PROGRAM DATA SETS RANKED IN ASCENDING ORDER OF PERCENTAGE DATA POINTS IN MINORITY CLASS.

The table shows class distribution details for each data set as
well as the precision when TPR = 1, FPR = 0.01 and when
TPR = 1, FPR = 0.05. Note that the false positives in these
calculations were rounded to the nearest integer. The data sets
are ranked in ascending order of the percentage of modules
in the positive (minority) class. From the table it can be seen
that for the three data sets with the highest class imbalance
especially, near optimal values of TPR and FPR results in
classifiers which are far from optimal in practical terms, or in
terms of precision.

Thus, relying on TPR and FPR or methods based around
them, including: ROC analysis, AUC-ROC, and the balance
metric, “can present an overly optimistic view of an algo-
rithm’s performance if there is a large skew in the class
distribution” (Davis & Goadrich 2006). Precision is required
to give a more accurate representation of true performance in
this context.

IV. CONCLUSIONS

Precision matters, especially when class distributions are
highly skewed. When performing any kind of data mining
experiment we believe it is very important to document the
characteristics of the data being used: where it came from,
what pre-processing has been carried out, how many data
points and features are present, what is the class distribution,
etc. This makes it more accessible for other researchers to
check the validity of the claimed results. For example; if such
data characteristics are given, it is often possible to derive
measures that are not explicitly reported, as done here. The
inspiration for the work carried out here came from (Zhang
& Zhang 2007), where precision values omitted in (Menzies,
Greenwald & Frank 2007) were derived using the TPR, FPR,
and class distribution data.

If classifier performance is to be reported with a single
set of (hopefully validated and thus suitable) parameters, we
believe defect prediction researchers should be reporting a
minimum of recall (TPR) and precision, in addition to the data
characteristics just described. It is of no harm to also report
the false positive rate. Note that it is necessary to take both
recall and precision into account when accessing performance,
a single one of these measures will not suffice. This is because
an optimal recall can be achieved by simply predicting all
data points as belonging to the positive class, and an optimal
precision can be achieved by only making a single positive
prediction, which turns out to be correct. The f-measure (see
Table I) is commonly used to combine both measures into
a single value, and can simplify performance quantification.
When classifier performance is to be reported over a range
of parameters, we believe precision and recall (PR) curves to
be more suitable in this domain than ROC curves. This is
because class distributions are often highly skewed (Menzies,
Dekhtyar, Distefano & Greenwald 2007).

Lessmann et al. carried out a large scale benchmarking
defect prediction experiment with 22 classifiers (Lessmann
et al. 2008). The top 17 of these classifiers were reported
to have statistically indistinguishable performance using the
AUC-ROC performance measure, and a statistical approach
proposed by (Demšar 2006). The data used in the study came
from 10 of the NASA Metrics Data Program data sets. Davis
and Goadrich in (Davis & Goadrich 2006) point out that with
highly imbalanced data sets, PR-curves are more powerful at
distinguishing the performance of classification methods than
ROC curves. Thus, we think it would be interesting for the
experiment by Lessmann et al. to be replicated with PR-curves
and AUC-PR.



In a recent paper by Menzies et al. (Menzies, Milton,
Turhan, Cukic, Jiang & Bener 2010), it is stated that the “stan-
dard learning goal” of defect predictors it to maximize AUC-
ROC. We would argue that this should not be the standard
learning goal of defect predictors. As shown here, by (Davis
& Goadrich 2006) and by (Zhang & Zhang 2007), precision is
required in a typically imbalanced domain. Moreover, (Davis
& Goadrich 2006) prove “that an algorithm that optimizes the
area under the ROC curve is not guaranteed to optimize the
area under the PR curve”.

In addition to the comments made about defect predictor
learning goals, the Menzies et al. paper also states “that accu-
racy and precision are highly unstable performance indicators
for data sets . . . where the target concept occurs with relative
infrequency”. While it is commonly reported within the data
mining literature that accuracy is not suitable for imbalanced
data sets, the same can not be said (at all) for precision. This
is true other than in the context of experiments to explore the
class imbalance problem (see (Batista, Prati & Monard 2004)),
where the FPR is better suited than precision.
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