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Abstract. This paper presents TreeGNG, a top-down unsupervised
learning method that produces hierarchical classification schemes. Tree-
GNG extends the Growing Neural Gas algorithm by maintaining a time
history of the learned topological mapping. TreeGNG is able to recover
from poor decisions made during the construction of the tree, and pro-
vides the novel ability to influence the general shape of the hierarchy.

1 Background

In this paper we present TreeGNG, a new hierarchical clustering algorithm
based on a time audit trail of the graph connectivity of the Growing Neural
Gas (GNG) [4] algorithm. GNG grows and prunes the network components
in response to incremental learning. The dynamic nature of the network can
produce disjoint graph structures, and these disconnected graphs “can be used
to identify clusters in the input data” [5]. By maintaining a time audit trail of
the graph connectivity, we can uncover hierarchical structure within the data.

The use of unsupervised learning techniques to discover the hierarchy of
concepts from unlabelled data, primarily focus on extensions to Kohonen’s Self-
organising Feature Map (SOM) [8]. Recently, two hierarchical neural clusterers,
HiGCS [1] and TreeGCS [6], have been proposed, both based on Bernd Fritzke’s
Growing Cell Structures (GCS) [3]. However, there are some limitations of
GCS, which are detailed in [7] and [1], and the results of our own evaluation of
GCS concur with these findings.

The models produced by the GCS and SOM algorithms are a topological
mapping only if the topology of the graph matches the topological structure
of the manifold from which the data are drawn. In [9], it was shown that
an algorithm for the homogeneous distribution of the network nodes combined
with the competitive Hebb rule produces the induced Delaunay triangulation of
the manifold. GNG is an incremental implementation of this node distribution
and competitive Hebbian learning concept, and the resultant graph structures
are a topology preserving map of the manifold. It was reported in [2], that
GNG converges rapidly and the quality of the clustering has little dependence



on the network parameters. The results of our own evaluation of GNG agree
with these findings.

2 TreeGNG

Inspired by the claimed capabilities of TreeGCS, we investigated its perfor-
mance. Whilst we believe the TreeGCS event auditing approach has potential,
the resultant trees are binary, and we remain unconvinced as to the suitabil-
ity of GCS as the underlying algorithm. In TreeGNG (Fig.1), we use GNG
as the partitioning algorithm, and whilst the tree growth and pruning mech-
anisms follow the general outline of TreeGCS, we believe the inclusion of a
growth window can improve the quality of the tree representation of data, as
the resultant TreeGNG trees are not necessarily binary.

For each input

Identify the tree node X that now points to multiple graphs

Create a tree node for each new graph and grow as children of Y

If (number of graphs has increased)
Run GNG and generate graph structure

Until stopping criterion is satisfied

Open X Growth-Window

Else If (number of graphs has decreased)

Remove the tree nodes associated with the deleted graphs   

 

Remove singleton tree nodes
End If
For tree node X in all tree nodes

If (X Growth-Window < 0) Close X Growth-Window
If (X Growth-Window is open) Reduce X Growth-Window

End program

End For
End For

For tree node Y in all ancestors of X

Remove X

If (Y Growth-Window is open)

Else
Create a tree node for each new graph and grow as children of X

End If
End For

Insert a new tree node as a child of ancestor of the deleted graphs   

Figure 1: The TreeGNG Algorithm

The standard GNG algorithm begins with a graph of two nodes joined by
a single edge, and the TreeGNG tree is initialised with the root node pointing
to this graph. As the GNG node and edge insertion routines grow the graph
structure, the root node maintains the pointer to the revised graph. As a part
of the GNG dynamics, edges are aged, and old inactive edges are periodically
deleted. A graph edge deletion event can result in a graph splitting into two
sub-graphs, and it is this splitting that initiates tree growth. As a graph splits
into two sub-graphs, a growth window is activated for the tree node that pointed
to the original graph. Any subsequent splitting of the sub-graphs that occurs
whilst this window is open, results in tree nodes being inserted into the tree as
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Figure 2: TreeGNG Growth Mechanism. In (i), GNG is initialised with two
nodes joined by a single edge. The tree consists of a single root node R. In (ii),
following a period of standard GNG dynamics, the dashed edge is marked for
deletion in the GNG graph. As the edge is deleted in (iii), the graph splits and
node R grows two children A and B to represent the increase in the number of
graphs. A growth window is opened for node R. After a further period of GNG
dynamics, the growth window for node R closes (iv) and any subsequent graph
splitting will result in tree growth under nodes A or B. In (v), the dashed edge
is marked for deletion, and in (vi), the edge is deleted producing child growth
beneath node A. The growth window for node A is opened. In (vii), the dashed
graph edge is marked for deletion, and the natural tree growth should occur as
children of node C, but because the growth window for node A is still open, the
new node is inserted as a child of node A, i.e. a sibling of node C. Following
a period of GNG dynamics and the growth of two children of B, the final tree
structure is shown in (viii).

siblings of the sub-graph tree node rather than as its children (Fig. 2). Without
this window, the tree growth is event driven and is always binary.

Tree pruning occurs as a result of an edge insertion event occurring in
the GNG graph, merging two graphs into a single super-graph. The merging
graphs may not be siblings in the tree, and so a new tree node pointing to
the new super-graph is created as a child of the common ancestor of the two
merged graphs. The tree nodes pointing to the original two merged graphs are
removed from the tree. Finally, singleton tree nodes are removed (Fig. 3). In
the resultant tree, only leaf nodes of the tree maintain pointers to the GNG
graph structures.
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Figure 3: The TreeGNG Pruning Mechanism, also demonstrating how the
algorithm can recover from poor decisions made in the construction of the tree.
In (i), TreeGNG has formed a poor tree structure in which tree nodes B and C
are siblings. With the standard GNG dynamics, it is likely that an input would
cause graphs a and b to merge as the dashed edge is inserted. To maintain the
correct tree structure, this requires tree nodes A and B to merge (ii). In (iii),
as the graphs a and b are merged, then a new tree node AB (pointing to the
merged ab graph) is inserted into the tree as a child of the common ancestor of
A and B. The dashed tree nodes (A and B) are removed from the tree. Finally,
in (iv), the intermediate singleton tree node between R and C is removed.

3 Results

We chose to demonstrate the utility of our approach on synthetic data. In
addition to the GNG network parameters, TreeGNG requires a growth window
parameter for child growth. With a small growth window, for example every
iteration, then the expectation was for the resultant tree to be binary. With a
very large growth window, such that the tree is generated only when the user-
defined stopping criterion is satisfied, then the expectation was for the tree
structure to be either a single root node if the GNG graph structure contains
no sub-graphs, or the tree to have a branching factor corresponding to the
number of sub-graphs, and a ply of 1. The aim of our investigation was to
determine if between these two extremes, the tree structure that was produced
corresponded to our expectations of an appropriate tree.

We report the results for a data set consisting of 9 Gaussian sources in
R

2 arranged in, what we consider to be, 3 large clusters, each consisting of 3
smaller clusters. The expectation with these data was for the ideal tree to have
a branching factor of 3, and a maximum ply of 2. We assessed the quality of
a tree by an examination of the branching factors at each ply. Its accuracy
was determined by how well it conformed to our expectations. Fig. 4 shows
typical resultant trees for a range of growth windows, and the accuracy of the
branching factor at differing ply. For each set of parameters, we repeated the
test 10 times, and we report the average accuracy achieved over these runs.
We were looking for 3 children beneath the root node, and we achieved 100%
accuracy with the growth window in the range 1 to 3 epochs. The wide range
for the growth window, and the level of accuracy, was encouraging. Examining
the nodes at ply one, we found the peak accuracy at a growth window of 2.5
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Figure 4: TreeGNG results for a range of growth windows. The scatter plot
on the upper left shows the data and the GNG graphs after 100 epochs, with
a GNG node insertion rate of two nodes per epoch (maximum of 50 nodes),
and a GNG edge deletion age of 1/10 of an epoch. With a growth window of
one iteration the tree was binary, and with a growth window of 10 epochs, the
tree structure was essentially flat. Of more interest, is that a growth window
of approx. 2.5 epochs consistently produced a tree broadly in-line with our
expectations of an appropriate hierarchical representation. The accuracy of
the tree branching factor at the root and ply one nodes, are shown in the lower
graph.

epochs, where 87% of the nodes had the required branching factor of three.
We have repeated these tests on a range of synthetic data sets, and our pre-

liminary results suggest that TreeGNG is capable of generating tree structures
broadly in-line with our expectations.



4 Conclusion

TreeGNG incrementally learns and adjusts the tree structure in response to the
input data and produces a stable hierarchical representation for a broad range
of network parameters. The periodic edge removal and competitive Hebbian
learning of the GNG algorithm allows the network to recover from poor deci-
sions in the generation of the hierarchy, and thus overcomes one of the problems
with TreeGCS and the divisive statistical methods. The algorithm provides the
novel ability to influence the general shape of the hierarchy, and for a range of
growth windows, produces trees that we consider to be representative of the
data structure.

Work is continuing to clarify the relationships between the GNG node inser-
tion rate, GNG edge deletion age and growth window duration; and in future
work, we shall assess the performance of TreeGNG on real-world data.
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