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Abstract

The three boids rules of alignment, separation and cohesion,
introduced by Reynolds to recreate flocking behaviour have
become a well known standard to create swarm behaviour. In
this paper we want to demonstrate how similar flocking be-
haviour can be created by a local, agent based model, follow-
ing a principle of information maximisation. The basis for
our model is an extension of Vergassola’s infotaxis model,
where agents determine their actions based on the highest ex-
pected reduction of entropy. We adapted this approach to a
grid world-based search task, and extended the agents abil-
ities so they could not only perform a Bayesian update with
information gained from the environment, but also with infor-
mation gained from other agents. The resulting global flock-
ing behaviour is then analysed in regard to how well it resem-
bles the basic boids rules.

Introduction
Flocking behaviour is a natural phenomenon found in a di-
verse selection of life forms, such as birds, fish, herd animals
and insects. And, as demonstrated by Dyer et al. [8], in spe-
cific circumstances even humans exhibit similar behaviour.
One of the first models to create this behaviour in a com-
puter simulation is the boids steering model, introduced by
Reynolds [14]. The model is a prime example of a power-
ful artificial life idea, namely how local self organisation can
create emergent global phenomena. Originally developed to
animate the movement of fish and birds for graphical pre-
sentation, the boids model has developed into a “de facto”
standard for flocking algorithms.

The three basic rules, alignment, separation and cohesion,
are agent based and local, so they allow every agent to de-
termine its own actions by itself, using only local data:

• Alignment: steer towards the average heading of local
flock mates

• Separation: steer to avoid crowding local flock mates

• Cohesion: steer towards the average position of local
flock mates

This model, or variations thereof, are not only the basis
for many fcurrent flocking and swarm simulations, but are
also a powerful example for how simple, local rules can lead
to the emergence of complex, life-like properties.

What we want to probe further in this paper is how the
global phenomenon of self-organised flocking can be ex-
plained; but instead of motivating the individual atomic
rules, we intend to challenge the notion that those rules are
necessarily atomic. As an alternative, we offer a model
where the individual agent‘s actions, and the resulting global
flocking behaviour, is created and motivated by obtaining as
much relevant information about the environment as possi-
ble. This is an additional result of our previous efforts to ex-
tend information theoretic-behaviour generation in general,
and in particular the biologically inspired infotaxis model by
Vergassola et al. [25], to a multiagent system. In the origi-
nal model the sensor inputs from the environment are used,
via a Bayesian Update, to update an internal probabilistic
model about a specific location. Actions are chosen based
on how much expected information gain they provide for
the internal model. In the multiagent model, the actions of
other, observable agents are treated with the same Bayesian
update, and the resulting agent movement starts to resemble
flocking behaviour.

In this paper we are first going to describe our model, and
how the single principle of maximal information gain can be
used to generate agent behaviour. We shall then demonstrate
how information, both from the environment and from other
agents, is integrated into the Bayesian model of the agent.
The resulting behaviour of those models is then analysed by
measuring how well it resembles certain basic characteris-
tics of boids flocking behaviour. We also offer a less formal
explanation on how the mechanism of information maximi-
sation leads to flocking behaviour, and how this could be
generalised.

Related Work
Information Theory was originally conceived by Shannon
[17] to deal with the limits of transatlantic communication;
the main focus being the optimal use of a limited commu-



nication channel. But its considerable mathematical versa-
tility, since it can be applied on any system that can be for-
malised in terms of random variables, also allows for the
analysis of a diverse variety of systems in terms of their in-
formation theoretic properties and limitations [5].

A recent information theoretic analysis of a boids-like
swarm model by [4] demonstrated the ability for informa-
tion transfer between the flocking agents. Few “informed”
agents were capable of steering a swarm. Corresponding
results have been observed in the flocking behaviour of hu-
man crowds by [8]. If we take a closer look at coordinated
systems in nature, it is not surprising that there is a certain
degree of mutual information between the organised compo-
nents. Organisation requires a certain degree of causal de-
pendence, and if we follow the argument of [12], this leads
to a certain degree of mutual information between the appro-
priate variables. Similar conclusion can be drawn for the ne-
cessity of information flow, as defined in [2]. The mere pres-
ence of some non-vanishing correlation, i.e. nonzero mutual
information in nature is, of course, not surprising. However,
it is striking that there are many indications that biological
organisms tend indeed to operate close to the physical limits
for sensory and informational capacities [11, 15]. This can
be formulated as an information optimality principle which
provides a constructive way to generate behaviours. The
use of information theory to model the complexity of cogni-
tive processes [18, 21] has lead to systematic approaches to
model agent decision making [22, 23, 6] utilizing informa-
tion theory in a constructive way, beyond the use as a merely
analytic tool. To mention a few examples; it has been used to
optimize behaviour in a Reinforcement Learning-like con-
text by [20]. Also, for behaviour generation, there is the
predictive information maximization [1] which is related to
the dynamical systems homeokinesis principle by [7].

Another example is the idea of empowerment by [9],
where an agent tries to act as to maximise the channel ca-
pacity between its actuators and sensors which essentially is
an optimization of its sensorimotor niche. [3] demonstrates
that this principle on its own can already leads to coordinated
multiagent behaviour. Note that this shows how, seemingly
in opposition to the original philosophy behind information
theory which had been designed to carry no semantics, our
current work is based on ideas that one is able to distinguish
between relevant and non-relevant information.

The information bottleneck perspective by [19] demon-
strates how the notion of Shannon information can be im-
bued with relevance, and this can be achieved either through
the presence of goals or reward structures [13, 24] or, al-
ternatively, imprinted by the agent-environment interaction
itself [10].

This concept of relevant information[13] is one we refer
to when we later talk about an agent maximising informa-
tion. Relevant information is interpreted here according to
the information bottleneck formalism [19, 13]. It quantifies

not all information (i.e. possible reduction of uncertainty) in
the environment, but only that information which identifies
the selection of optimal actions by the agent. Under this per-
spective, any information in the environment beyond that is
ignored.

Information Theory
We consider random variables X which can assume concrete
values x. Write P (X = x), or p(x) by abuse of notation,
for the probability of X assuming the specific value x. We
can now define the entropy H(X) of the random variable X
as

H(X) = −
∑
x

P (X = x) · logP (X = x) (1)

This is often used to describe the uncertainty about the out-
come of X . An alternative, equivalent interpretation is to
consider H(X) as the average expected ”surprise” or the in-
formation gained if one was to observe the state of X , if all
one knows about X is only its distribution P (X).

The entropy has a number of important properties.
Among others, as it is an a priori uncertainty, the entropy
is larger if the outcomes are more evenly distributed than if
the outcomes are more concentrated on a particular value —
in other words, concentrated values are easier to predict (and
less uncertain) than uniformly spread ones.

Consider now two jointly distributed random variables, X
and Y ; then we can calculate the conditional entropy of X
given a particular outcome Y = y as:

H(X|Y = y) =
∑
x

P (X = x|Y = y)·logP (X = x|Y = y)

(2)
This can also be generalised to the entropy of X , given the
random variable Y in general, and is obtained by averaging
over all possible outcomes of Y :

H(X|Y ) =
∑
y

p(y) ·H(X|Y = y) (3)

This is the entropy of X that remains if Y is known. Finally,
consider H(X) and H(X|Y ), the entropy of X before and
after we learn the state of Y . Thus, their difference is the
amount of information we can learn about X by knowing
Y . Subtracting one from the other, we get a value called
mutual information:

I(X;Y ) = H(X)−H(X|Y ) (4)

This is the value we will refer to if we use the term informa-
tion and it is measured in bits; if one variable is said to have
information about another it means that the mutual informa-
tion between them is non-zero. As the mutual information is
symmetrical ([5]), this works both ways, so one variable A
contains as much information about B, as B does about A.

Importantly, note that this original notion of information
does not include any semantics and only depends on the joint



distribution of X and Y . Therefore, in calculating the en-
tropy and the mutual information measures, the labels of the
values of the variables are not relevant.

In the specific model described in the next section, we will
maximise the information in respect to a specific location of
a resource, but the model is entirely general and the infor-
mation could correspond to any kind of information about
the state of the agent’s environment needed for the agent to
increase it performance.

Experimental Model
Scenario
We consider a model consisting of agents situated in a torus-
shaped grid world of size n × m with periodic boundary
conditions. Each location in this world is in the set W =
Z/nZ × Z/mZ. There is one single location of interest
F ∗, defined also over the set W . To contextualise, we will
call the location the food source, but one can interpret it as
any other relevant location information, such as position of
shelter or mates. The goal of the agents is to determine (not
reach) this location in the shortest possible time. The agents’
initial location, and the location of the food are randomly
generated at the start of the simulation, and each time step an
agent can execute a move action which moves it one cell up,
down, left or right. The agent then gets new sensor inputs;
it is able to see the state of the world in all cells not more
than r cells away from it. Its sensor signal for each cell is
a two-state random variable that indicates either that those
cells are empty or that they contain the (here unique) food
source. After this observation, the agent decides where to
move next. This behaviour is repeated until the agent finds
the food.

Once the agent finds the food, the agent disappears. An
agent that has disappeared does not block other agents, can-
not be observed, and its behaviour is not taken into account
for the statistical measurements. Note that the food source
itself is unaffected from agents finding it.

The above scenario determines the basic properties of our
setting. Now, as we are interested in flocking behaviour,
for an effective evaluation, the simulation will be run con-
tinuously, so the agents have time to form a swarm. Thus,
instead of reinitializing the simulation every time one or all
agents find the food source, at each time step there is a 3 %
chance that the food will be randomly relocated. In this case,
all agents’ internal model is reset, so they start a new search.
Those agents which have disappeared because they found
the food will also be put back into the world in the location
they previously disappeared from. The purpose of this is
to allow swarms that have already formed to continue their
coordinated movement.

Agent Behaviour
In our model, the agents determine their actions by using
an internal probability distribution F , which stores informa-

tion about the world. This internal distribution implements
a Bayesian model for the location of the food source. More
precisely F is also defined over W , and P (F = f) corre-
sponds to the probabilty of the food source beeing in loca-
tion f , given the agent’s current information.

Initially, all cells have the same probability of ∀f ∈ W :
p(f) = 1/(n ·m), since the agent has no information about
the location f . However, as the agent moves around, it can
observe different locations in W , and discovers that some
locations are either empty or contain the food source. If f
contains the food, then p(f) = 1. If f is empty, then p(f) =
0.

In both cases the probabilities of the other locations are
normalised accordingly, so the sum of probabilities is al-
ways one. This operation is functionally identical to actually
performing a Bayesian update with the observable environ-
mental random variables, namely, the food state of the cells
within the agent’s sensor range.

The remaining uncertainty of the agent about the location
of the food source is reflected by the internal probability dis-
tribution and can be measured in terms of entropy H(F ),
where F is the agent-internal random variable correspond-
ing to the expected position of the food.

Infotaxis Search
To generate the agent’s behaviour, we adopt a greedy in-
formation gain-maximisation algorithm, called Infotaxis by
[25]. Infotaxis was shown to provide a biologically plausible
principle as to how a moth could use the very sparse infor-
mation provided by their olfactory sensors to determine the
source of pheromones inside a wide area. The main idea is
to act in a way that increases the expected gain in informa-
tion at each time step. We adapted the infotaxis approach for
our discrete grid world scenario.

Infotaxis behaviour is generated by the followig steps:

1. Determine which action a will likely lead to the largest
reduction in entropy H(F ), the uncertainty regarding the
position of the food source.

2. Take action a and update F with the resulting sensor in-
put.

3. If H(F ) > 0, then repeat from step 1.

In step 1 the agent has to determine the likely reduction of
entropy based on F , the agent’s current ”knowledge” about
F ∗.

Depending on the position w ∈ W of the agent, there is a
set S ⊆ W of the locations that are visible to the sensor of
the agent. The visible location are those within the agent’s
sensor range, meaning they are r or less cells away from
the agent’s position. If the agent, starting from the current
position, takes the action a from its set of available actions
A, it will enter a new state wa. In this new state the agent
can now sense a new set of locations, denoted by Sa.



To calculate the expected entropy reduction of action a,
∆H(a), two cases have to be considered. In the first case,
the actual location of the food source f ∈ W would be in-
side the newly observed set of positions Sa, inside the sensor
range after the action a was taken by the agent. The agent
assumes that this occurs with the probability of

P (f ∈ Sa) =
∑
f∈Sa

P (F = f) (5)

in reference to the agent internal model F . In this case the
agent’s uncertainty after carrying out action a, H(Fa) would
be reduced to zero, and the reduction of entropy would be
the difference H(F )−H(Fa) = H(F ).

In the other case, the location f of the food source is not
in Sa. This occurs with a probability of 1 − P (f ∈ Sa).
In that case, we have to calculate an updated probability
distribution for F , called Fa. According to Bayes’ rule,
P (Fa = f) = 0 for all f ∈ Sa, the resulting probabilty
for all observed, empty locations to contain the food source
is zero, and the remaining locations are normalized accord-
ingly by:

∀(f /∈ Sa) : P (Fa = f) :=
P (F = f)∑

w/∈Sa P (F = w)
(6)

This divides the remaining non-zero probabilities, by the
sum of their probabilities, normalizing the overall sum of
all probabilities to 1. This updated version of Fa can then be
used to calculate the reduction of entropy in the second case,
which is given by the difference H(F ) −H(Fa). If we put
all this together, the expected reduction of entropy for taking
action a is:

∆H(a) = P (F ∈ Sa)·H(F )+P (F /∈ Sa)·
(
H(F )−H(Fa)

)
(7)

To summarize, each step the agent selects the action a that
maximises ∆H(a). If several actions lead to the same ex-
pected entropy reduction, the agent selects one of them at
random. The sensors are then updated as described above,
and this behaviour is repeated until the food source is lo-
cated. Essentially, this behaviour implements a version of
Vergassola et al.’s infotaxis search and we will refer to it as
such in the subsequent text.

Social Bayesian Update
Earlier studies of single agent infotaxis behaviour in [16]
demonstrated that the agent’s actions contain information
about the food source location. If we look at Fig.2, we see
how the probability of the food source location is distributed
conditioned on an agent moving north. More importantly,
every agent which has to take in (a minimum amount of) rel-
evant information to attain a certain performance level also
must necessarily encode at least that amount of information

Figure 1: Graph showing P (F |A = north), the probability
distribution of F , the food source position, given a specific
agent movement (in this case north). The data was obtained
from 10000 single agent simulations in a 20×20 grid world,
agent position is (11, 11). Note that there is a peak north of
the agent, meaning that it is more likely for the food source
to be directly north of the agent when it moves north.

in its actions, and this is the case even if it does not have an
explicit intention to communicate. This digested informa-
tion, as discussed in [16], has several properties which are
interesting for an observing agent with similar goals:

1. Actions must contain relevant information, even if the
agent does not want to communicate

2. Better agent performance requires more, or the same
amount of relevant information

3. The actions of an agent are likely to exhibit a higher den-
sity of relevant information than other parts of the envi-
ronment

4. The actions of an agent might contain information that is
not available in the current space or time.

From these properties it follows that a reasonable next
step in our information maximisation model would be for
the agent to use this digested information and incorporate
it in their internal probability distribution. We extend the
model so the agent can now, for all cells in its sensor range,
detect whether one or more agents are in that cell and where
they came from. So, the four new sensor states for each cell
are agent that moved in from the north, . . . south, . . . east,
. . . west. Each observed move will lead to an adjustment of
the assumed internal probability distribution, using a similar



form of Bayesian update already used to integrate the infor-
mation from the environment. This adjustment of probabili-
ties can be comfortably integrated into our existing infotaxis
search.

Note that for the now described simulation all agents are
equipped with those new “social” abilities and all of them
use the other agents’ actions to update their internal world
models. But they only use this ability if they accidentally
encounter another agent. They do not deliberately seek out
other agents.

Bayesian Update
Let F denote the agent’s current internal probability model
for the location of the food source F ∗, and a the state of the
random variable A that encodes the last move action of an-
other agent it’s observing. The agent then use Bayes’ The-
orem to update the probability distribution of F , with the
observed action a.

What the agent is interested in is the probability of the
food source to be in a specific location, given the evidence of
another agent’s action and relative position P (F ∗ = w|A =
a). According to Bayes’ Theorem this is calculated for every
potential location f of the environment as:

P (F = f |A = a) =
P (A = a|F ∗ = f)

P (A = a)
· P (F = f) (8)

Whenever an agent encounters one or several agents it
uses this formula to adjust its internal probability P (F = f)
for every location of f ∈ W .

• P (F = f), the a priori probability, is the internal model
of the agent for mapping the probability distribution of
F ∗, as gained by their own experience so far;

• P (A = a) is the probability of an agent taking the move
action a. Rotational symmetry suggests a probability
of 1/4 for each action a ∈ {north, west, south, east}.
Measurements in our single agent simulation confirm this.
This is a normalisation factor, so the overall sum of prob-
abilities is still one.

• P (A = a|F ∗ = f) is the probability of another agent per-
forminging action a if the food is in position f . Note that
the position f in this case will always be calculated in re-
lation to the position of the observed agent. So, the ques-
tion we are asking is for example “If the food is known to
be 3 cells north of the agent, what is the probability of the
agent performing move action a”. We then record all the
cases in the past where an agent has been observed 3 cells
south of a food source together with the action it took.

To obtain these statistics for the computer simulation, we
observed 10000 single infotaxis agents searching for the
food. Note that the agents we used were non-social and thus

“blind” to the actions of other agents. They behaved accord-
ing to the “Infotaxis” part of this paper. So, even though
all the agents in the infotaxis simulation have the ability to
sense other agents and update their internal world models,
they still calculate their Bayesian update under the assump-
tion that all others were non-social agents. We used the data
obtained from non-social agents to create the statistics for
the probabilities P (A = a) and P (A = a|F ∗ = f).

After the agent updates F , it resumes the previously de-
scribed infotaxis behaviour to generate its next move ac-
tion. Note that agents which have successfully located the
food stopped moving and were neither perceivable by other
agents, nor blocking them. This was done to increase the
challenge since it would have been trivial for another agent
to infer from seeing another non-moving agent that the food
must be within sensor range of that agent. As a result, the
agents could not “cheat” by observing any agents which al-
ready knew where the food was.

This model, which includes the Bayesian update not only
based on environmental variables, but also on other agents
they encounter will be called the Social Bayesian model.
Apart from the update of the internal model before the next
infotaxis action is chosen, it is identical to the infotaxis
model.

Measurements
While flocking behaviour might be intuitively visible at this
point in our model, defining an objective overall measure
which quantifies the emergent flocking behaviour seems dif-
ficult. Instead, we aimed to measure the immediate effects
of behaving according to the boids rules should have. We
defined the following three measurements:

Alignment
To quantify the alignment of the different agents, we added
up all the agents’ movements and took the length of the re-
sulting vector and normalised it. I.e., every agent x ∈ X has
an associated vector

~vx ∈ {(1, 0), (0, 1)(−1, 0)(0,−1)} (9)

corresponding to the last direction it moved in. The global
alignment is then calculated as the length of the sum of all
agent‘s vectors, divided by the number of agents:

alignment =
|
∑

x∈X ~vx|
|X |

(10)

This results in a value between 1.0 and 0.0. The max-
imum value is reached when all agents move in the same
direction, and the lowest value of 0.0 is attained when the
movement of all agents is distributed evenly between those
moving north and south, and those moving west and east, re-
spectively. Note again that agents which have found the food
are not taken into consideration for this measurement, since



it would be irrelevant to measure how well aligned they are,
once they are not moving anywhere.

This measurement are taken for every simulation step,
and an average over all simulation steps is calculated for the
whole simulation.

Cohesion
To measure cohesion, we simply count, for every agent, how
many other agents are within the agent‘s sensor range for
any given time step. This value is then averaged over all
agents, and over all time steps, and the result we call the
local agent density, or simply density. This value, different
from the global alignment, is only taken locally, and reflects
how well agents keep other agents within their own sensor
range.

Separation
The hardest value to measure is separation, since it basi-
cally quantifies an objective of what should not happen. To
approximate this, we measure how often one agent tries to
enter the cell of another agent, and thus colliding with it. In
this case, the agent trying to move will simply fail doing so.
The resulting number of overall collisions is then divided
by the number of time steps, providing an average amount
of collisions per round, or simply collisions. This number
is of course also dependent on the number of agents in the
simulation, but this correlation if not linear, is therefore not
normalised with respect to agent number. Thus, one needs
to take care to only compare values where similar amounts
of agents have been involved. Again, agents who have found
the food are not considered for collisions detection.

Results
All measurements were taken in a open ended simulation
where the food had a 3 % chance of being moved every time
step. When this happens, all agents’ internal models are re-
set, and those agents who have already found the food are
put back into the simulation. The simulations were run for
100,000 time steps, with 20 agents, in a 20×20 torus-shaped
grid world. As a baseline for comparison, we also measured
those values for a group of agents that chose their actions at
random, only stopping if they chanced upon the food source.

Alignment Density Collisions
Random 0.23 1.03 0.72
Infotaxis 0.29 1.33 1.31

Social B. Update 0.39 1.68 0.49

Table 1: Flocking indication measurements taken for three
behaviour models. (Random, Infotaxis, Social Bayesian

If we move from the random behaviour to the single agent
infotaxis search, we see both the local agent density and the
number of collisions increase. Since agents are not yet react-
ing to each other in the plain infotaxis model, this seems to

Figure 2: Two screen shots from a social infotaxis simula-
tion with 15 agents, sensor range 5 in a 50 x 50 world. The
grey box is the food source, the black boxes are agents. The
lines indicate the vector of movement in the last 9 turns, in
steps of 3.

be a result of the improved search algorithm. If we measure
how long it takes, on average, for a random agent to find
the food (ca. 450 time steps), and compare it to the time it
takes an infotaxis agent to find the food (ca. 70 time steps),
we see that the infotaxis search has a much better perfor-
mance, resulting in agents actually finding the food before it
changes position. This in turn leads to a local concentration
of agents, which is likely to result in increased density and
collisions. Note, however, that if we look at the alignment
indicator we also see, that even for a group of agents that
moves at random the average alignment is not 0.0, but 0.23.
This is a statistical effect and not surprising, since it would
actually take coordination to ensure that all agent‘s move-
ments are always balanced between the different directions.

The interesting comparison is now between the two sim-
pler models and the Social Bayesian Update. In the lat-
ter, we see a further increase in alignment, indicating that
a high number of agents now move in similar directions dur-
ing most of the simulation. Keep in mind that to achieve an
average of 1.0, all agents would have to move in that same
direction, in every turn. We also get a further increase in lo-
cal agent density, while at the same time the number of col-
lisions is reduced. So while there are now even more agents
within the sensor range of each other, the agents manage to
collide much less.

Interpretation
We presented a model were the agents’ behaviour is mo-
tivated by one single principle or goal, namely to gain as
much information about a relevant variable in the environ-
ment. To achieve this, the agents take any kind of sensor
variable, be it an environmental variable, such as the state
of a grid world cell, or the action variables of another agent,
and performs a naive Bayesian update on its internal proba-



bilistic model about said relevant variable. The agent’s own
actions are chosen in regard to which of them provides the
greatest expected reduction of entropy, based on the agents’
own internal model.

In this section, we would now like to discuss possible
explanations on how this information maximisation model
leads to the three different rules which create the boids-like
flocking behaviour.

Alignment
When an agent is controlled by non-social infotaxis be-
haviour moves, then its action contains information about
the relative position of the food source. If we take a look at
an agent moving north (due to rotational symmetry, the ac-
tual direction is exchangeable), then the food is more likely
to be in a position north of the agent, and less likely to be
in a position south of it. This effect, even though the agent
does not know where the food is, results from the fact that
the agent knows where the food is not. As seen in Fig. 2, the
probability distribution has its highest peak directly north of
the agent, and the minimum of the distribution is in the area
south of the agent. Both peaks flatten out the further the cells
are away from the agent.

Another agent who observed the first agent move north
would perform a Bayesian update on its own assumed prob-
ability distribution of the food source. Everything else being
equal, this would lead him to “believe” that the food is more
likely to be north. The resulting move action would also be
to rather move north than in any other direction. A flock
of agents, each observing each other, could thereby create
a “travelling wave” of high probability immediately outside
of their sensor range, driving them all in a similar direction.

The generalised principle here is that an agent 1 observing
actions by an agent 2 assumed to have similar goals would
lead the original agent 1 to conclude that agent 2 has infor-
mation that would make such an action reasonable, and in
turn, this would make the same action more reasonable for
agent 1.

Separation
Whenever agent 1 observes an agent 2 moving in our grid
world model, it performs a Bayesian update for the posi-
tion of the food source. The biggest impact of this up-
date is on the probabilities of the area immediately around
agent 2. The cells of the world agent 2 observed in its pre-
vious turn are definitely empty, so most of the current area
around agent 2 cannot contain any new information for the
observer. So while observing another agent is an efficient
way to gain information, the immediate environment around
that agent becomes informationally unrewarding afterwards.
An information-driven search would therefore try to steer
away from the immediate area around an observed agent.

In general, if an agent 2 in a specific position reveals in-
formation it gets from being in that position to agent 1, then

the more information agent 1 gets from that agent, the less
informationally interesting does being in that position be-
come.

Cohesion
In our current model, most of the cohesion seen in our agent
groups seems to be a direct result of the high amount of
agent alignment. If agents that meet each other move into
a similar direction, with similar speed, then they also hap-
pen to stay together. In general, it would actually be reason-
able to include a further term into the infotaxis mechanism
which would account for the amount of information gained
from other agents. Following from the “digested informa-
tion” principle, it is informationally advantageous to keep
other agents in sensor range, to be able to use them for a So-
cial Bayesian Update. Seeing another agent, and being able
to use the information in its actions increases each agent’s
expected entropy reduction.

All in all, if we take into account both separation and co-
hesion, the best solution in terms of information gain seems
to be to keep other agents just inside your own maximum
sensor range.

Future Work
Since all agents observe each other we suspect there is the
distinct possibility that a positive feedback loop can emerge,
which detaches itself completely from the environmental in-
formation. As an example, an agent might take, for lack of
better information, a random action; for example to move
up north. Another agent might observe the first, and if it
did not know anything apart from the fact that another agent
moved north, he also would move north. The first agent in
turn might now see the second, observe that the other agent
moved north, and take this as good reason to also move
north. This vicious feedback circle then continues, reaffirm-
ing both agents internal beliefs that “they are doing the rea-
sonable thing”. This phenomenon warrants further study,
since it could illuminate how in social settings seemingly
reasonable assumptions lead to strong “convictions” that are
utterly wrong and detached from reality.

Furthermore, it might also be interesting to move the
present model from a grid world scenario into a continuous
world. This would not only create more realistic animations,
but would also be necessary to establish that the observed ef-
fects are not just artefacts of the grid world model. The chal-
lenge here would be the extension of previously described
information theoretic tools to the continuous domain.

Conclusion
We found that information-based social observation mecha-
nisms are able to reproduce several postulated mechanisms
of flocking. This is confirmed both by qualitative observa-
tion as well as using quantitative measures. Starting with
the assumption that every agent needs to obtain some kind



of relevant information from the environment to act intelli-
gently, then most of the arguments follow directly from that.
Infotaxis seems to be not only conceptually grounded, but
both biological plausible ([25]), as it leads to behaviour that
is very similar to actual moth behaviour, and reasonably effi-
cient for some scenarios; its performance in these scenarios
is close to that of an optimal strategy ([16]). Our extension
to also include the information offered by other agent’s ac-
tions is well motivated by the properties of “digested infor-
mation”, and the result is a performance increase beyond the
level achievable for a single lone agent ([16]).

At this point in the argument, we already observe emer-
gent flocking behaviour, only motivated by one single utility,
the maximum information gain. Note that the relevant infor-
mation we have been discussing does not necessarily have to
be the location of a food source. It could refer to the position
of predators, or the location of mates or other types of desir-
able states, and might lead to similar flocking behaviour via
similar mechanisms. The relevant information hypothesis
can also be applied to a wide variety of agent types, whether
birds, fish, herd animals or humans, and could offer a possi-
ble ab initio explanation for an immediate evolutionary gra-
dient leading to flocking behaviour for a diverse spectrum of
organisms.
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