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On the lateral expansion of GRB jets
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ABSTRACT

The dynamics of GRB jets during the afterglow phase have an important

effect on the interpretation of their observations and for inferring key physical

parameters such as their true energy and event rate. Semi-analytic models gener-

ally predict a fast lateral expansion, where the jet opening angle asymptotically

grows exponentially with its radius. Numerical simulations, however, show a

much more modest lateral expansion, where the jet retains memory of its initial

opening angle for a very long time, and the flow remains non-spherical until it be-

comes sub-relativistic, and only then gradually approaches spherical symmetry.

Here we suggest a new analytic model based on a new physically derived recipe

for the lateral expansion. We also generalize the model by relaxing the com-

mon approximations of ultra-relativistic motion and a narrow jet opening angle.

We find that the new analytic model fits much better the results of numerical

simulations, mainly because it remains valid also in the mildly relativistic, quasi

spherical regime. This model shows that for modest initial jet half-opening an-

gles, θ0, the outflow is not sufficiently ultra-relativistic when its Lorentz factor

reaches Γ = 1/θ0 and therefore the sideways expansion is rather slow, showing no

rapid, exponential phase. On the other hand, we find that jets with an extremely

narrow initial half-opening angle, of about θ0 ≪ 10−1.5 or so, which are still suf-

ficiently ultra-relativistic at Γ = 1/θ0, do show a phase of rapid, exponential

lateral expansion. However, even such jets that expand sideways exponentially

are still not spherical when they become sub-relativistic.
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1. Introduction

The ultra-relativistic outflows that power gamma-ray bursts (GRBs) are thought to be

collimated into narrow jets (for reviews see Piran 2005; Granot 2007; Granot & Ramirez-Ruiz

2011). The evidence for this is rather indirect, however, since their images are usually un-

resolved, and in the best case (GRB 030329) the late time radio afterglow image was only

marginally resolved (Frail et al. 1997; Taylor et al. 1997, 2004; Pihlström et al. 2007). The

different lines of evidence for jets in GRBs include analogy to other astrophysical relativis-

tic outflow sources such as active galactic nuclei or micro-quasars (e.g. Rhoads 1997), the

difficulty in transferring enough energy to ultra-relativistic ejecta in a spherical explosion

of a massive star (for long duration GRBs; Tan, Matzner & McKee 2001; Perna & Vietri

2002; Granot 2007), extremely large isotropic equivalent energies in some GRBs (with

Eγ,iso ≈ 4.9M⊙c
2 in GRB080916C Abdo et al. 2009), and an achromatic steepening of the af-

terglow lightcurves of some GRBs that is attributed to a jet (known as a “jet break”; Rhoads

1997, 1999; Sari, Piran & Halpern 1999; Fruchter et al. 1999; Harrison et al. 1999; Kulkarni

1999; Halpern et al. 2000; Price et al. 2001). Therefore, there is very little direct observa-

tional information about the jet angular structure and dynamics, which make it difficult to

interpret GRB afterglow observations and infer from them important physical parameters

such as the jet energy and opening angle, the external density profile, and the microphysical

parameters of the relativistic collisionless shock powering the afterglow emission.

Most studies of GRB jet dynamics during the afterglow phase have focused on a roughly

uniform jet with well defined, sharp edges. We shall also focus on such a uniform jet, and

only briefly remark on the expected relation to jets with a smoother angular structure (also

known as “structured jets”). The jet dynamics have been studied both analytically (Rhoads

1999; Sari, Piran & Halpern 1999; Panaitescu & Mészáros 1999; Kumar & Panaitescu 2000;

Moderski, Sikora & Bulik 2000; Piran 2000; Oren, Nakar & Piran 2004; Granot 2007) and

numerically, using two dimensional special relativistic numerical simulations (Granot et al.

2001; Cannizzo et al. 2004; Zhang & MacFadyen 2009; van Eerten et al. 2010; Meliani & Keppens

2010; Wygoda et al. 2011; van Eerten & MacFadyen 2011), as well as an intermediate ap-

proach where the dynamical equations are integrated over the radial profile of the thin

shocked region, thus reducing the set of partial differential equations to one dimension (Kumar & Granot

2003).

Let us consider a uniform double-sided jet of total energy Ejet, initial half-opening angle

θ0, and initial Lorentz factor Γ0. GRB observations suggest that typically Γ0θ0 ≫ 1. At

early times, as long as Γ ≫ θ−1
0 , the bulk of the jet is causally disconnected from its edge and

thus evolves as if it where part of a spherical flow with an energy Eiso = (1− cos θ0)
−1Ejet ≈

2θ−2
0 Ejet, following the spherical Blandford & McKee (1976) self-similar solution. This early
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phase corresponds to radii R < Rj, where the jet radius Rj is defined as the radius where

Γ = 1/θ0 for a spherical flow with E = Eiso. At R > Rj the bulk of the jet is in causal

contact with its edge and the jet can in principal rapidly expand sideways. However, the

degree of lateral spreading at this stage, which strongly affects the dynamics, is not well

known. Therefore, the jet dynamics at R > Rj are still controversial. In particular, the

radius RNR at which the flow (or jet) becomes non-relativistic, still remains uncertain.

The Sedov length for a spherical flow with the true jet energy, E = Ejet (i.e. the radius

where it sweeps up a rest mass energy equal to its own energy and becomes non-relativistic),

RS(Ejet), is very close to Rj . Therefore, in order for the jet to be already close to spherical

when it becomes non-relativistic (i.e. at RNR), it must expand sideways very quickly and

become close to spherical already near Rj [i.e. RNR cannot be ≫ Rj ∼ RS(Ejet)]. This is

indeed roughly what happens in simple analytic models, where the jet half-opening angle,

θj , starts growing exponentially with radius near Rj, and the jet quickly becomes close to

spherical and non-relativistic at a radius RNR ∼ (1− ln θ0)Rj ∼ (1− ln θ0)RS(Ejet), which is

larger than Rj only by a logarithmic factor1, while at R > RNR the flow quickly approaches

the Newtonian, spherical, self-similar Sedov-Taylor solution.

Numerical simulations, however, suggest that most of the energy remains within the

initial jet half-opening angle θ0 until the flow becomes mildly relativistic, and only then does

the flow start to gradually approach spherical symmetry (Granot et al. 2001; Cannizzo et al.

2004; Zhang & MacFadyen 2009; van Eerten et al. 2010; Meliani & Keppens 2010). Under

the crude approximation that the jet does not expand sideways and keeps evolving as a coni-

cal section of a spherical flow up until the radius where it becomes non-relativistic, the latter

is given by RNR ∼ RS(Eiso) = θ
−2/(3−k)
0 Rj . In this case the flow is still highly non-spherical at

RNR, and only very gradually approaches spherical symmetry (Granot, Ramirez-Ruiz & Loeb

2005).

This clearly shows that without lateral expansion RNR is significantly larger, by a factor

of ∼ θ
−2/(3−k)
0 /(1 − ln θ0) (which is ≫ 1 for θ0 ≪ 1), than if there is fast lateral expansion

at R > Rj . Thus, the dynamics of the flow at small radii (R ≪ Rj) and at large radii

(R ≫ RS(Eiso)) are reasonably well known, while at intermediate radii (Rj . R . RS(Eiso))

they are still controversial. For typical values of θ0 ∼ 0.1 this range of radii may appear rather

small, RNR/Rj ∼ 1− ln θ0 ∼ 3.3 for exponential lateral expansion and RNR/Rj ∼ θ
−2/(3−k)
0 ∼

4.6 for no lateral expansion up to RNR ∼ RS(Eiso) with k = 0. However, it corresponds to a

1The mild discrepancy, by a logarithmic factor, between RNR and RS(Ejet) ∼ Rj likely arises from the

fact that in simple analytic models the swept-up mass at the radius where the jet becomes spherical is smaller

than the external rest mass within a sphere of the same radius.
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large range in observed times (over which the corresponding afterglow emission reaches us),

of tobs,NR/tobs,j ∼ (1 − ln θ0)θ
−2
0 ∼ 330 and ∼ θ

−(8−2k)/(3−k)
0 ∼ 460, respectively, since the

observed time scales as tobs ∼ R/cΓ2, and Γ decreases by a large factor (of θ−1
0 ) within this

range of radii.

Most simulations so far were for θ0 = 0.2, or even wider initial jet half-opening an-

gles. Recently, however, Wygoda et al. (2011) and later van Eerten & MacFadyen (2011)

have performed simulations also for narrower initial jets, θ0 = 0.05, 0.1, 0.2. Wygoda et al.

(2011) have found that significant lateral spreading starts when Γ drops below θ−1
0 , as pre-

dicted by analytic models, and tried to reconcile the apparent discrepancy with analytic

models by attributing it to their small range of validity after significant lateral spread-

ing starts (1 ≪ Γ < θ−1
0 ) for the typical modest values of θ0 used in the simulations.

van Eerten & MacFadyen (2011) disagree with this conclusion, and we address this dispute

in § 7. More recently, Lyutikov (2011) has argued that significant lateral spreading is ex-

pected only at a later stage, when Γ drops below θ
−1/2
0 (rather than θ−1

0 as obtained in

simple analytic models), based on an analytic consideration (which we address in § 3 and

Appendix A, and find to be in error). Thus, there appears to be an ongoing debate on these

important issues.

Here we try to reconcile the apparent differences between the analytic and numerical

results, in light of this recent debate. The different relevant critical radii are discussed in

§ 2. In § 3 we discuss the recipe for lateral expansion used by analytic models, and derive

a new recipe that takes into account the non-spherical nature of the shock driven by the jet

into the external medium. In § 4 we construct an analytic relativistic model, which includes

both the traditional recipe and our new recipe for the jet lateral expansion. It is also

shown that while the region of interest and validity of the analytic model (corresponding to

1 ≪ Γ < θ−1
0 ) increases as θ0 decreases, θj reaches lower values, resulting in a narrower jet at

the time when the analytic solution becomes invalid. Because this relativistic model breaks

down in a region of interest (both for typical GRB parameters and for comparison with

simulations), in § 5 we generalize it so that it would be valid also at low Γ and high θj , using

two different assumptions on the accumulation of the swept-up external mass (in § 5.1 and

§ 5.2). According to the results of these models (§ 5.3), a phase of rapid exponential lateral

expansion exists only for sufficiently narrow initial jet half-opening angles, of approximately

θ0 ≪ 0.05, 0.03, 0.01 for k = 0, 1, 2, respectively. In § 6 we compare our analytic models to

numerical simulations (with a modest θ0 = 0.2) and find reasonably good agreement (with no

exponential lateral expansion in both cases), where the differences between the two recipes

for the lateral spreading have a smaller effect on the agreement with numerical simulations

compared to the generalization of the model to small Γ and large θj . The implications of

our results are discussed in § 7.
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2. The different critical radii, and two extreme assumptions for the jet

dynamics

Using the approximate equation for energy conservation (for Γ ≫ 1), E ≈ Γ2M(R)c2,

where M(R) is the swept-up rest mass at radius R for a spherical flow in an external density

ρext = AR−k (with k < 3), and the definition of the jet radius Rj as the radius where Γ = θ−1
0

for a spherical flow of energy Eiso, we obtain

Rj =

[

(3− k)Ejet

2πAc2

]1/(3−k)

= 21/(3−k)RS(Ejet) . (1)

Similarly, the Sedov radius of a spherical flow with E = Eiso is

RS(Eiso) =

[

(3− k)Eiso

4πAc2

]1/(3−k)

= θ
−2/(3−k)
0 Rj =

(

θ20
2

)−1/(3−k)

RS(Ejet) . (2)

Two extreme assumptions on the degree of lateral spreading, which likely bracket the

true jet dynamics are: 1. mildly relativistic lateral expansion in the jet co-moving frame, and

2. no lateral spreading until the jet becomes non-relativistic. Assumption 1, which is made

in most semi-analytic models, results in exponential growth of θj(R), until the jet becomes

quasi-spherical and non-relativistic at

RNR,1 ∼ (1− ln θ0)Rj (fast lateral spreading) . (3)

Assumption 2 was so far studied mainly by Granot, Ramirez-Ruiz & Loeb (2005), and leads

to

RNR,2 = RS(Eiso) = θ
−2/(3−k)
0 Rj (no lateral spreading) . (4)

In this case the jet is still very far from spherical symmetry at RNR, and thus approaches

spherical symmetry only after the radius grows by a factor b2, of a few or several. Moreover,

since the radius of the Sedov-Taylor solution scales as

RST(E, t) ∼ RS(E)

[

ct

RS(E)

]2/(5−k)

∼
(

Et2

A

)1/(5−k)

, (5)

and at the non-relativistic transition time, tNR,2 ∼ RNR,2/c = RS(Eiso)/c, the Sedov-Taylor

radius of a spherical flow with the true jet energy is much smaller than the jet radius at

that time, RST(Ejet, tNR,2)/RNR,2 ∼ θ
−2/(5−k)
0 ≪ 1, the flow approaches spherical symmetry

only at the time tsph,2 when RST(Ejet, tsph,2) = b2RNR,2 = b2RS(Eiso), which corresponds to

tsph,2/tNR,2 ∼ θ−1
0 b

(5−k)/2
2 ≫ 1 (see Eq. 6 of Granot, Ramirez-Ruiz & Loeb 2005). Note that

this is much smaller than the factor (b2) by which the radius grows over the same time. For
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R || ≈
 ct

R ⊥
 ≈ 

θ 0
ct

RST(E jet) ∝
 t2

/(5−k)

Rj ∼  RS(Ejet)
t j 

≈ 
R

j /
 c

RNR1 ∼  (1−logθ0)Rj

t N
R

1 
≈ 

R
N

R
1 

/ c

RNR2 = RS(Eiso) = θ0
 −2/(3−k)Rj

t N
R

2 
≈ 

R
N

R
2 

/ c RST(Ejet)

assumption 1, R||

assumption 1, R⊥
assumption 2, R||

assumption 2, R⊥

Fig. 1.— A schematic figure showing the evolution of the jet radius R = R‖ (i.e. its

extent along its symmetry axis) and lateral size R⊥ as a function of the lab frame time t

for two extreme assumptions on its degree of lateral spreading: (1) mildly relativistic lateral

expansion in the jet co-moving frame, and (2) no lateral spreading until the jet becomes

non-relativistic. The jet becomes spherical when R‖ and R⊥ become equal, which occurs

well after the jet becomes non-relativistic, and then joins the Sedov-Taylor solution.

assumption 1 similar arguments imply tsph,1/tNR,1 ∼ (1 − ln θ0)
(3−k)/2b

(5−k)/2
1 , where b1 < b2

can be expected.

Fig. 1 shows the jet radius R = R‖ (i.e. its extent along its symmetry axis) and lateral

size R⊥ as a function of the lab frame time t for these two assumptions. The region where

the dynamics for these two extreme assumptions differ is basically where the dynamics are

most uncertain, and corresponds to the range of radii RS(Ejet) < R < b2RS(Eiso) (i.e. a

factor of fR ∼ θ
−2/(3−k)
0 b2 in radius), and (lab frame) times RS(Ejet)/c < t < tsph,2 ∼

θ−1
0 b

(5−k)/2
2 RS(Eiso)/c (or a factor of ft ∼ f

(5−k)/2
R ∼ θ

−(5−k)/(3−k)
0 b

(5−k)/2
2 in time).
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Altogether, the ordering of the different radii is

RS(Ejet) ∼ Rj < RNR,1 < RS(Eiso) = RNR,2 , (6)

or

1 ∼ RS(Ejet)

Rj
∼ (1− ln θ0)

−1RNR,1

Rj
∼ θ

−2/(3−k)
0

RS(Eiso)

Rj
= θ

−2/(3−k)
0

RNR,2

Rj
. (7)

3. Analytic recipe for lateral expansion

The “traditional” basic underlying model assumptions used for the analytic modeling of

relativistic jet dynamics during the afterglow phase (e.g., Rhoads 1999; Sari, Piran & Halpern

1999) are (i) a uniform jet within a finite half-opening angle θj with an initial value θ0 that

has sharp edges, (ii) the shock front is part of a sphere at any given lab frame time t, (iii)

the outer edge of the jet is expanding sideways mildly relativistically, with u′
θ ∼ 1 in the

local rest frame of the jet (where quantities are denoted with a prime), (iv) the jet velocity

is always in the radial direction and θj ≪ 1. Under these assumptions, the jet dynamics are

obtained by solving the 1D ordinary differential equations for the conservation of energy and

particle number.2

The lateral expansion speed in the lab frame (i.e. the rest frame of the central source and

the external medium) is βθ = uθ/Γ = u′
θ/Γ, where uθ = Γβθ is its lateral component of the 4-

velocity (which is Lorentz invariant, so that u′
θ = uθ), while ur = Γβr is its radial component.

Primed quantities are measured in a frame moving at βrr̂ in the radial direction, so that β ′
r =

0 and β ′ = [1− (Γ′)−2]1/2 = β ′
θ. The usual assumption (Rhoads 1999; Sari, Piran & Halpern

1999) is that u′
θ ∼ 1, which corresponds to

βθ ∼
1

Γ
. (8)

As is shown in the next section, βθ ≈ dθj/d lnR directly determines the jet lateral expansion

rate in the lab frame.

Here we derive a new physically motivated recipe. It relies on the fact that for any

shock front, with an arbitrary shape, the local velocity vector of the material just behind

2For the adiabatic energy conserving evolution considered here, the equation for momentum conservation

is trivial in spherical geometry, and does not constrain the dynamics. For a narrow (θj ≪ 1) highly relativistic

(Γ ≫ 1) jet, the equation for the conservation of linear momentum in the direction of the jet symmetry axis is

almost identical to the energy conservation equation. When the jet becomes sub-relativistic the conservation

of energy and linear momentum force it to approach spherical symmetry, and once it becomes quasi-spherical

then again the momentum conservation equation becomes irrelevant.
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the shock front as measured in the rest frame of the upstream fluid ahead of the shock (i.e.

the lab frame in our case), ~β, is normal to the shock front (i.e. in the direction of the shock

normal, n̂, at that location; Kumar & Granot 2003), namely

β̂ = n̂ . (9)

A simple way to understand this result is that as each fluid element passes through the shock

it samples only the local conditions (and is not aware of the large scale or global shock front

geometry) and locally the shock normal is the only preferred direction in the upstream rest

frame (e.g., the pressure gradients that accelerate the fluid element are in the −n̂ direction

and thus accelerate it in the n̂ direction). For an axisymmetric shock (with no dependence

on the azimuthal angle φ), Eq. (9) immediately implies that the angle α between the shock

normal, n̂, and the radial direction, r̂, which is defined by cosα ≡ n̂ · r̂ = β̂ · r̂, satisfies

tanα =
βθ

βr
= − 1

R

∂R

∂θ
= −∂ lnR

∂θ
, (10)

where θ is the polar angle measured from the jet symmetry axis. Since R ∼ βct, we have

∂ lnR/∂θ ∼ ∂ ln β/∂θ = Γ−2∂ ln u/∂θ ∼ −1/Γ2∆θ, where ∆θ is the angular scale over which

u varies significantly, and we have assumed that u decreases with θ, as is usually expected.

Since for Γ ≫ 1 and α ≪ 1 we also have βr ≈ 1, Eq. (10) implies that βθ ∼ 1/Γ2∆θ. For a

roughly uniform jet of half-opening angle θj we have ∆θ ∼ θj , and therefore

βθ ∼
1

Γ2∆θ
∼ 1

Γ2θj
, (11)

which is our new recipe for lateral expansion.

Eq. (11) was first derived in the context of GRBs by Kumar & Granot (2003). Recently

it was rederived by Lyutikov (2011), based on an earlier work by Shapiro (1979). Lyutikov

(2011) has argued that Eq. (11) implies a negligible lateral expansion as long as Γ >

1/
√

θj suggesting that with this model one obtains a slow sideways expansion, as seen in

the numerical simulations. However, as we show later, this formula results in a slower lateral

expansion (compared to the usual recipe, i.e. Eq. [8]) only as long Γ > 1/θj (the standard

condition for the onset of significant lateral expansion), but once Γ < 1/θj this formula leads

to a faster sideways expansion. We also show later that other factors, namely the break

down of the ultra-relativistic and small angle approximations, are the main cause for the

discrepancy between the existing simple analytic models and the numerical simulations. For

completeness we discuss the details of Lyutikov’s and Shapiro’s work in Appendix A.
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4. A simple relativistic model

We turn now to compare the traditional recipe for the lateral expansion speed, βθ ∼ 1/Γ

(Eq. [8]), with our own new simple recipe, βθ ∼ 1/Γ2θj (Eq. [11]), which was derived in the

previous section. These recipes are implemented here within the semi-analytic model for the

jet dynamics of Granot (2007). The main results are provided here and we refer the reader to

that work for more details on that model. Broadly similar semi-analytic models, with some

variations, were used earlier by other authors (e.g., Rhoads 1997, 1999; Sari, Piran & Halpern

1999; Panaitescu & Mészáros 1999; Kumar & Panaitescu 2000; Moderski, Sikora & Bulik

2000; Oren, Nakar & Piran 2004).

The lateral size of the jet, R⊥, and its radius, R = R‖, are related by R⊥ ≈ θjR. The

evolution of R⊥ is governed by

dR⊥ ≈ θjdR + βθcdt ≈ (θj + βθ) dR , (12)

and therefore

dθj
d lnR

≈ βθ ≈
1

Γ1+aθaj
, a =







1 (β̂ = n̂) ,

0 (u′
θ ∼ 1) ,

(13)

where we have conveniently introduced the parameter a that enables us to analyze these two

different recipes together.

The external density is assumed to be a power law in radius3, ρext = AR−k. The total

swept-up (rest) mass, M(R), is accumulated as

dM

dR
≈ 2π(θjR)2ρext(R) = 2πAR2−kθ2j (R) , (14)

where the factor of 2 is since a double sided jet is assumed. As long as the jet is relativistic,

energy conservation takes the form Ejet ≈ Γ2Mc2, which implies that Md(Γ2) = −Γ2dM ,

and
dΓ

dR
= − Γ

2M

dM

dR
= −πAR2−kθ2j (R)

Γ(R)

M(R)
. (15)

One can numerically integrate equations (13), (14), and (15) thus obtaining θj(R), M(R),

and Γ(R). Alternatively, one can use the relation Ejet ≈ Γ2Mc2 (energy conservation) which

3We consider here and throughout this review only k < 3 for which the shock Lorentz factor decreases with

radius for a spherical adiabatic blast wave during the self-similar stage of its evolution (Blandford & McKee

1976).
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reduces the number of free variable to two, and solve equations (13) and (15). Changing to

normalized dimensionless variables θ ≡ θj/θ0, γ ≡ Γθ0 and r ≡ [(3− k)/2]1/(3−k)R/Rj , gives

dθ

dr
= r−1 γ−1−a(r) θ−1(r) , (16)

dγ

dr
= − r2−k γ3(r) θ2(r) , (17)

where the initial conditions at some small radius r0 ≪ 1 (just after the deceleration radius)

are

θ(r0) = 1 , γ(r0) =

√

3− k

2
r
−(3−k)/2
0 . (18)

Note that by definition, γθ = Γθj . Eqs. (16) and (17) imply

d(γθ)

dr
=

1

r(γθ)a
− r2−k(γθ)3 =

1− r3−k(γθ)3+a

r(γθ)a
. (19)

For r ≪ 1 the second term on the r.h.s of Eq. (19) dominates, implying (γθ)2 ≈ 3−k
2
rk−3,

which is consistent with Eq. (18). This suggests that the two terms become comparable at

r ≈ rc that is given by

rc =

(

3− k

2

)(3+a)/[(1+a)(3−k)]

. (20)

While rc > 1 for k < 1, it can reach very low values (rc ≪ 1) as k approaches 3. We

are interested here mainly in k ≥ 2, for which rc ∼ 1 still approximately holds. We do

note, however, that the lower values of rc for higher values of k result in an earlier onset of

significant lateral expansion for such higher k-values. Now let us examine what happens at

r ≫ rc ∼ 1. If we assume that the first term becomes dominant then Eq. (19) would imply

γθ ≈ [(1 + a) ln r]1/(1+a), which in turn implies that the second term would be dominant

(since (γθ)3+ar3−k ≈ [(1 + a) ln r](3+a)/(1+a)r3−k ≫ 1), rendering the original assumption

inconsistent. The same applies if the opposite assumption is made, that the second term

is dominant (in this case γθ ≈
√

3−k
2
r(k−3)/2 which implies that the first term would be

dominant, (γθ)3+ar3−k ≈
(

3−k
2

)(3+a)/2
r(k−3)(1+a)/2 ≪ 1). This implies that the two terms

must remain comparable, implying γθ ∼ r(k−3)/(3+a). A similar conclusion can be reach by

taking the ratio of equations (16) and (17) which implies that

d(θ3+a) = rk−3d(γ−3−a) . (21)

A more careful examination shows that they must cancel each other to leading order, and

the first two leading terms for r ≫ 1 are given by

γθ ≈ r(k−3)/(3+a) +
3− k

(3 + a)2
r(k−3)(2+a)/(3+a) . (22)
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Substituting equation (22) into equations (16) and (17) yields

d ln θ

d ln r
≈ r(3−k)(1+a)/(3+a) − (3− k)(1 + a)

(3 + a)2
, (23)

d ln γ

d ln r
≈ −r(3−k)(1+a)/(3+a) − 2(3− k)

(3 + a)2
, (24)

and

θ ≈ b r
−

(3−k)(1+a)

(3+a)2 exp

[

(3 + a)

(3− k)(1 + a)
r

(3−k)(1+a)
(3+a)

]

, (25)

γ ≈ 1

b
r
− 2(3−k)

(3+a)2 exp

[

− (3 + a)

(3 − k)(1 + a)
r

(3−k)(1+a)
(3+a)

]

, (26)

where the normalization coefficient b is determined numerically. For r ≪ 1 we have

γθ ≈
√

3− k

2
r

k−3
2 +

(

3− k

2

)
−2−a

2 r
a(3−k)

2

(3 + a)
. (27)

Fig. 2 shows the results of our model in terms of the normalized jet half-opening angle

θ = θj/θ0 and Lorentz factor γ = Γθ0 (as well as their product, γθ = Γθj) as a function of

the normalized radius r = [(3− k)/2]1/(3−k)R/Rj . The results are shown both for a uniform

external medium (k = 0), which is the main focus of this work, as well as for a stellar wind

(k = 2; this is included mainly for completeness and is only briefly discussed in § 7). The

dynamical range in this figure is unrealistically large, and it is shown mainly in order to

demonstrate the properties of this solution, and show how well our analytic approximation

for r > 1 works (the dashed green lines in the middle and bottom panels, which are practically

on top of the numerical results). The excellent agreement between our semi-analytic results

(the numerical solution of Eqs. [16] and [17]) and analytic formulas (Eqs. [25] and [26]) shows

that our analytic results (including Eqs. [22] and [27]) can be safely used in order to analyze

the result of this model. This good agreement was also used in order to find the exact

values of the numerical coefficient b that determines the normalization for θ and γ., which

were found to be b(k = 0, a = 0) ≈ b(k = 0, a = 1) ≈ 0.60, b(k = 2, a = 0) ≈ 0.395 and

b(k = 2, a = 1) ≈ 0.45. Our new recipe for the lateral expansion speed (Eq. [11]) results in

a slower initial lateral expansion compared to the old recipe at r ≪ 1, where Γθj = γθ ≫ 1.

However, at larger radii, r & 1, where Γθj < 1 it results in a faster lateral expansion.

Figure 3 shows similar results for a uniform external medium (k = 0) and for three

different values of the initial jet half-opening angle, θ0 = 0.05, 0.1, 0.2. Since the dynamical

equations (Eqs. [16] and [17]) involve only the normalized variables θ, γ and r, and the

initial conditions (Eq. [18]) for θ and γ depend only on the initial normalized radius r0, the
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Fig. 2.— The jet dynamics according to our relativistic analytic model (see text in § 4

for details), for either a uniform (k = 0) or a wind-like, stratified (k = 2) external density

profile, and for either the old (a = 0) or our new (a = 1) recipe for the jet lateral expansion

speed. The dynamical range in this figure is unrealistically large, and it is shown mainly

in order to demonstrate the properties of this solution, and show how well our analytic

approximation for r > 1 works (the dashed green lines in the middle and bottom panels,

which are practically on top of the numerical results).
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Fig. 3.— Similar to Fig. 2 but only for a uniform external density (k = 0) and for three

different values of the initial jet half-opening angle: θ0 = 0.05 (green), θ0 = 0.1 (red) and

θ0 = 0.2 (blue). The old (a = 0) and new (a = 1) recipes for the jet lateral expansion are

sown by dashed and solid lines, respectively. In the top two panels the lines for different θ0
and the same a values coincide (see text for details). The values of RS(Eiso) are indicated in

the bottom panel for reference.
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lines for these normalized variables in the top two panels for the different θ0 values exactly

coincide.4 The two bottom panels show the un-normalized quantities θj and Γ for our three

values of θ0. In the bottom panel we have added for comparison the Sedov radius, RS(Eiso),

for a spherical flow with the same isotropic equivalent energy the jet started with. We define

RNR for our model as the radius where formally Γ = 1 (at which point this model clearly

breaks down). Figure 4 is similar to Fig. 3 but the jet radius R is normalized by the radius

RS(Eiso) = θ
−2/(3−k)
0 Rj instead of [(3− k)/2]−1/(3−k)Rj = [(3− k)/4]−1/(3−k)RS(Ejet).

Fig. 5 shows RNR/Rj and θj(RNR) as a function of θ0. It can be seen that RNR de-

pends on θ0 only logarithmically (as can also be seen from Eq. [26]), while RS(Eiso)/Rj =

θ
−2/(3−k)
0 is simply a power of θ0. It is also evident that θj(RNR) < 1 for θ0 ≪ 1, and

its value increases with θ0 (while θj(RNR)/θ0 decreases with θ0). This can also be seen

from Eq. (22), using the leading order term in r and the definition Γ(rNR) = 1, which im-

ply that θj(rNR) = r
−(3−k)/(3+a)
NR , while rNR (or RNR) decreases (logarithmically) with θ0.

For k = 2 the jet becomes non-relativistic and the model breaks down at smaller values

of r = [(3 − k)/2]1/(3−k)R/Rj compared to k = 0, which is consistent with the fact that

the jet also starts to spread sideways significantly at smaller values of r, of the order of

rc ≈
(

3−k
2

)(3+a)/[(1+a)(3−k)]
. However, we are primarily interested here in k = 0.

The model breaks down when Γ drops to 1 (or even slightly earlier). As can be seen

from Figs. 2–4, it breaks down earlier for larger θ0 values, and its region of validity (especially

at R & Rj) decreases as θ0 increases. In particular, for the value of θ0 = 0.2, which was

most widely used so far in numerical simulations (Granot et al. 2001; Zhang & MacFadyen

2009; van Eerten et al. 2010, while an even larger value of θ0 = 20◦ ≈ 0.35 rad was used in

some works – Meliani & Keppens 2010; van Eerten et al. 2011), this dynamical range is very

narrow, and the asymptotic exponential growth of θj with R is not reached before the model

breaks down (at Γ . 1.5−2 or θj & 0.5−1). Even for θ0 = 0.05, which was used in the most

recent simulations (Wygoda et al. 2011; van Eerten & MacFadyen 2011) and is at the low

end of the values inferred from afterglow observations, the asymptotic exponential regime

is only barely reached before the model breaks down (in agreement with the conclusions

of Wygoda et al. 2011). Note that in this (limited) region of validity of this semi-analytic

model our new recipe might still result in smaller or comparable values of θ(r) (i.e. of θj for a

fixed θ0, at a given radius for a fixed Ejet) compared to the old recipe. The discussion about

when this model breaks down is expanded in § 6, where we compare the analytic models

to numerical simulations. Because of this important limitation of our relativistic analytic

model, in the next section we generalize it so that it would not break down when the jet

4This is since the same value of r0 = 0.4 was used, but in the limit r0 ≪ 1 the dependence of the solution

on r0 goes away at r ≫ r0.
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2
0 is the isotropic equivalent energy in the jet, while Ejet is its true

energy.
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where our simple analytic relativistic model breaks down.
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becomes sub-relativistic or wide.

5. Generalized models valid for arbitrary Γ and θj

In order to avoid the breakdown of the model at small Lorentz factors Γ or large jet

half-opening angles θj , we construct here simple generalizations of the analytic model studied

in the previous section, which do not require the jet to be very narrow (θj ≪ 1) or highly

relativistic (u ≈ Γ ≫ 1). Two variants are introduced, named the trumpet model (in § 5.1)

and the conical model (in § 5.2), according to the shape of the region from which the external

medium is assumed to have been swept up by the jet (before it becomes spherical).

The rate at which the jet half-opening angle, θj , increases depends on the lateral velocity

at the edge of the jet, βθ, as dθj = βθcdt/R = (βθ/βr)dR/R, or

dθj
d lnR

=
βθ

βr
. (28)

A crude approximation for for the comoving 4-velocity of the lateral expansion (u′
θ), which

would roughly correspond to the sound speed both in the relativistic and in the Newtonian

regimes, is u′
θ ∼ β = u(1 + u2)−1/2. This would modify the traditional recipe to βθ =

u′
θ/Γ ∼ β/Γ = u/(1 + u2) or βθ/βr ∼ βθ/β ∼ 1/Γ = (1 + u2)−1/2. In our recipe5 βθ/βr =

−∂ lnR/∂θ ∼ −∂ ln β/∂θ ∼ −Γ−2∂ ln u/∂θ ∼ 1/Γ2∆θ ∼ 1/Γ2θj = 1/[(1 + u2)θj ]. Therefore,

just as before, we still have

dθj
d lnR

=
βθ

βr
≈ 1

Γ1+aθaj
, a =







1 (β̂ = n̂) ,

0 (u′
θ ∼ 1) .

(29)

5.1. The “trumpet model”

In this model we follow the usual assumption that the external rest mass is swept-up

by a working area consisting of the part of an expanding sphere of radius R within a half-

opening angle θj(R). Thus, the total swept-up (rest) mass, M(R), for a double-sided jet is

5Note that we use ∂ lnu/∂θ = u−1∂u/∂θ ∼ −1/∆θ since the 4-velocity u, unlike β or Γ, generally varies

significantly with θ both in the relativistic and in the Newtonian regimes, so that ∂u/∂θ ∼ −u/∆θ in both

regimes, while ∂Γ/∂θ ∼ −Γ/∆θ only in the relativistic regime and ∂β/∂θ ∼ −β/∆θ only in the Newtonian

regime.
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accumulated as

dM

dR
≈ [1− cos θj(R)]4πR2ρext(R) = [1− cos θj(R)]4πAR2−k . (30)

Energy conservation takes the approximate form Ejet ≈ u2Mc2, implying Md(u2) = −u2dM ,

and
du

dR
= − u

2M

dM

dR
= −2πAc2

Ejet
R2−k[1− cos θj(R)]u3(R) . (31)

Thus, in terms of r = [(3− k)/2]1/(3−k)R/Rj we have

dθj
d ln r

≈ 1

(1 + u2)(1+a)/2θaj
,

du

dr
= −r2−ku3(r)2[1− cos θj(r)] , (32)

where the initial conditions at some small radius R0 ≪ RS(Ejet) ∼ Rj (just after the decel-

eration radius), corresponding to r0, are given by

θj(r0) = θ0 , u(r0) =

√

3− k

4(1− cos θ0)
r
−(3−k)/2
0 . (33)

5.2. The “conical model”

Here we note that the usual assumption that leads to Eq. (30) neglects the external

matter at the sides of the jet. Because of this, when eventually θj reaches π/2 at Rsph and

is thus assumed to be fully spherical, the amount of swept-up external rest mass at Rsph

calculated according to Eq. (30) will be significantly smaller than that originally within a

sphere of the same radius. Therefore, here in the conical model we adopt an alternative

approach of using for the rest mass of the swept-up matter, that originally within a cone of

half-opening angle θj ,

M(R) ≈ [1− cos θj(R)]
4π

(3− k)
AR3−k . (34)

This still has the drawback of assigning the same Lorentz factor to all of the swept-up

external matter, even though that at the sides of the jet should have a significantly smaller

4-velocity than that near the head of the jet. Using a slightly different normalized radius,

rS = R/RS(Ejet) = 21/(3−k)R/Rj = [4/(3 − k)]1/(3−k)r, energy conservation (Ejet ≈ u2Mc2)

and Eq. (29) imply

u(rS) =
r
−(3−k)/2
S

√

1− cos θj(rS)
,

dθj
d ln rS

≈ 1

[1 + rk−3
S (1− cos θj)−1](1+a)/2θaj

, (35)
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where the initial conditions at some small radius R0 ≪ RNR,sph(E) ∼ Rj , corresponding to

rS,0, are given by

θj(rS,0) = θ0 , u(rS,0) =
r
−(3−k)/2
S,0√
1− cos θ0

. (36)

5.3. Results for the generalized models

Figures 6, 7 and 8 depict a comparison of these two models with the relativistic model.

All three models agree at early times, while the jet is still highly relativistic, narrow and

hardly expanded sideways. The approximations of our relativistic model hold well at this

stage and the difference in the swept-up mass between the trumpet and conical models is

still very small. At later times, however, the three models show a different behavior. The

main effect of the relaxation of the small θ and ultra-relativistic approximations is that for

typical values of θ0 & 0.05 the region of exponential growth of θj with R largely disappears,

and is replaced by a much slower, quasi-logarithmic growth. This can most clearly be seen

by comparing the results of the relativistic model (from § 4; solid lines in Figs. 6 and 8,

and green, red or blue lines in Fig. 7) and the trumpet model (from § 5.1; dot-dashed lines

in Figs. 6 and 8, and black, magenta or cyan lines in Fig. 7). These two models share the

same assumption on the accumulation of the swept-up external medium, and differ only by

relaxing in the trumpet model the requirements of Γ ≫ 1 and θj ≪ 1. The results of these

two models are very close at early times while Γ ≫ 1, but diverge as Γ becomes more modest

and the simple relativistic model reaches the exponential regime. This can also be seen in

Fig. 8 through the fact that θj(r) for the two models start diverging when θj becomes modest

and the small angle approximation breaks down.

The main difference between the trumpet and conical models is that for the conical

model the swept up mass at a given radius R is larger than for the trumpet model, resulting

in a smaller Γ and therefore also a larger θj , i.e. a faster evolution of θj and Γ with R. Since

the larger swept-up mass comes from the sides of the jet, it becomes important only once

the jet starts expanding sideways significantly, which occurs at rc (see Eq. [20]). This can

be clearly seen in Fig. 8, where the dot-dashed (or solid, which practically coincide at early

times) and dashed lines, for the trumpet (or relativistic) and conical models, respectively,

start diverging near rc. Note that this remains valid for all k-values, while rc decreases

with k. Fig. 8 also shows that for sufficiently small values of θ0, roughly θ0 ≪ 0.05 for

k = 0 and even somewhat smaller θ0 values for larger k values, there is still a phase of

quasi-exponential lateral expansion for rc . r . r(θj ∼ 10−0.5) or 1.5θ0 . θj . 10−0.5. For

such extremely small values of θ0 the difference between the conical and trumpet models
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Fig. 6.— Comparison between our relativistic (solid lines), trumpet (dot-dashed lines) and

conical (dashed lines) models, where all models use our new recipe for the lateral spreading

of the jet (a = 1), and for a uniform external medium (k = 0). Results are shown for three

different values of the jet initial half-opening angle: θ0 = 0.05 (in green), θ0 = 0.1 (in red),

and θ0 = 0.2 (in blue). For reference we also indicate the values of Γθj = 1 in the top panel,

some relevant values of θj in the two middle panels, as well as the values of RS(Eiso) and

Γ = 1, 2 in the bottom panel.
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Fig. 7.— Similar to Fig. 6 but shown (1) only for our relativistic model (green, red, and

blue lines for θ0 = 0.05, 0.1, and 0.2, respectively) and trumpet model (black, magenta, and

cyan lines for θ0 = 0.05, 0.1, and 0.2, respectively), (2) for both the old recipe (a = 0;

dashed lines) and our new recipe (a = 1; solid lines) for the jet lateral expansion, and

(3) as a function of the jet radius R normalized by RS(Eiso) = Rjθ
−2/(3−k)
0 instead of of

[(3− k)/2]−1/(3−k)Rj = [(3− k)/4]−1/(3−k)RS(Ejet).
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conical (dashed lines) models in terms of the evolution of the jet half-opening agle θj with

the normalized radius r, for k = 0, 1, 2 (top to bottom panels), where all models use our

new recipe for the lateral spreading of the jet (a = 1). Results are shown for log10(θ0) =
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radius rc (given by Eq. [20], where the lateral spreading is expected to become significant)

are shown for reference.
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Fig. 9.— The jet dynamics according to our different analytic models, for θ0 = 0.1 and

k = 0. We show the jet 4-velocity, u (upper panel), half-opening angle, θj (middle panel), as

well as its normalized radius r‖ = r and lateral size r⊥ = r sin θj (bottom panel), as a function

of the normalized lab frame time, t/tj , for our relativistic (green lines; until it breaks down

at Γ ≈ 1), trumpet (red lines) and conical (blue lines) models. The solid and dashed lines

are, respectively, for our new recipe (a = 1; Eq. [11]) and the old recipe (a = 0; Eq. [8]) for

the jet lateral expansion.
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Fig. 10.— Similar to Fig. 9 but as a function of the observed time, Tlos, at which photons

from the front of the jet reach an observer located along its symmetry axis, normalized by

its value at the jet break time Tlos,j.
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becomes large during the exponential sideways expansion phase, where the lateral expansion

is faster in the conical model. We note, however, that such extremely narrow initial jet

half-opening angles are below the smallest values that have so far been reliably inferred from

GRB afterglow modeling, so that they might not be very relevant in practice.

Figs. 9 and 10 show the jet dynamics according to our different analytic models, for

θ0 = 0.1. It can be seen the the differences between the various models are rather small

until the point where our relativistic model breaks down. The behaviour of the jet radius

(R = R‖) and lateral size (R⊥) as a function of the lab frame time (t) shows a lot of similarities

to the analytic expectations (compare the bottom panel of Fig. 9 to Fig. 1). This, again,

demonstrates that our new recipe for the lateral spreading of the jet results in slower lateral

expansion compared to the old recipe (and is closer to assumption 2 of no lateral spreading

– dashed red lines in Fig. 1) at early times when Γ > θj but faster lateral expansion at late

times when Γ < θj (i.e. closer to assumption 1 of fast lateral spreading – solid blue lines in

Fig. 1).

6. Comparison with numerical simulations

We turn now to a comparison of our analytic models with the results of full 2D special

relativistic hydrodynamic simulations. To do so one needs first to define which quantities

should be compared. This, however, is not unique and can be done in different ways. For

the 4-velocity, u, and as one (out of a few) reference value for the jet half-opening angle, θj ,

we use the weighted mean over the energy E in the lab frame (excluding rest energy) of u

and θ, respectively,

〈u〉E =

∫

dE u
∫

dE
, 〈θ〉E =

∫

dE θ
∫

dE
. (37)

For the jet radius (or parallel size, R‖ = R) and lateral size (R⊥) we use:

〈R‖〉 = 〈z〉E =

∫

dE z
∫

dE
, 〈R⊥〉 = 〈x〉E = 〈y〉E =

2

π
〈rcyl〉E =

2

π

∫

dE rcyl
∫

dE
. (38)

These averages reduce to R‖ = R⊥ (or 〈R‖〉 = 〈R⊥〉) for a spherical flow.

In order to perform a proper comparison to our analytic models, we need to calculate

similar averages for our jet, which at any given time is the part of a thin spherical shell

within a cone of half-opening angle θj . Thus, the radial integration drops out and we are

left only with an integral over µ between µj = cos θj and 1,

R‖

R
=

∫ 1

µj
dµ µ

∫ 1

µj
dµ

=
sin2 θj

2(1− cos θj)
,

R⊥

R
=

2

π

∫ 1

µj
dµ

√

1− µ2

∫ 1

µj
dµ

=
2θj − sin(2θj)

2π(1− cos θj)
. (39)



– 26 –

We can see that R‖ = R⊥ for θj = π/2, as it should.

Similarly, one can calculate 〈θ〉E as a proxy for θj in our models,

〈θ〉E =

∫ 1

µj
dµ arccos(µ)
∫ 1

µj
dµ

=

∫ θj
0

dθ θ sin θ

1− cos θj
=

sin θj − θj cos θj
1− cos θj

. (40)

This shows that 〈θ〉E ≈ (2/3)θj for θj ≪ 1, while 〈θ〉E = 1 for θj = π/2 (which is the

value for any spherical flow, also one with a radial profile) and (2/3)θj < 〈θ〉E < (2/π)θj for

0 < θj < π/2. One can also calculate the angle out to which a fraction f of the energy is

contained (or the energy 100f percentile),

θf = arccos [1− f(1− cos θj)] , (41)

and compare it to the corresponding value from the numerical simulations.

Figures 11 and 12 show a comparison (for k = 0 and θ0 = 0.2) between the results of our

analytic models and of 2D special relativistic hydrodynamic simulations (from De Colle et al.

2011a,b), when quantifying all of them as discussed above. As can be seen from Fig. 11, our

models provide a reasonable overall description of the full hydrodynamic simulations, and

thus appear to catch the basic underlying physics, despite their obvious simplicity.

Fig. 12 shows three different ways of quantifying the jet half-opening angle, namely the

weighted mean over the energy, 〈θ〉E (bottom panel), and two different energy percentiles,

θ0.75 (middle panel) and θ0.95 (top panel), i.e. the values of θ up to which 75% and 95% of the

energy, respectively, is contained. It can be seen that θ0.95 provides the best match between

our analytic model and the numerical simulations. For θ0.75 or 〈θ〉E the match is not as good

(though even then the difference is not very large). This might be attributed to the fact that

our analytic models assume a uniform energy per solid angle, ǫ = dE/dΩ, within the jet

opening angle (θ < θj), while in practice (or in the numerical simulations) it drops towards

the outer edge of the jet. The drop in ǫ from the jet axis towards its edge causes both smaller

values of 〈θ〉E and smaller values of θf for the lower energy percentiles (or f -values) relative

to a uniform jet with the same θf for a large energy percentile (or f -value; e.g., f = 0.95 in

our case). The results for our new recipe for the jet sideways expansion are somewhat closer

to the numerical simulations compared to the usual recipe for 〈θ〉E and θ0.75, while the usual

recipe is perhaps slightly closer for θ0.95.

Both the analytic models and the numerical simulations show that the flow becomes

spherical more than a decade in time after it becomes sub-relativistic (which may be quan-

tified as the time when 〈u〉E = 1). This can be attributed to the fact that once the flow

becomes sub-relativistic its sound speed quickly drops, and so does the rate of lateral expan-
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Fig. 11.— Comparison, for θ0 = 0.2 and k = 0, between our analytic models (thin lines)

and the results of 2D special relativistic hydrodynamic simulations (from De Colle et al.

2011a,b) of a jet with initial conditions of a conical wedge of half-opening angle θ0 taken

out of the Blandford & McKee (1976) self-similar solution (thick dot-dashed black line), in

terms of the jet 4-velocity (u), half-opening angle (θj) as well as normalized parallel (r‖) and

perpendicular (r⊥) sizes. The green, red and blue lines are for our relativistic, trumpet, and

conical models, respectively. Thin solid lines are for our new recipe for lateral expansion

(a = 1) while thin dashed lines are for the old recipe (a = 0).
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Fig. 12.— Similar to Fig. 11 but for three different ways of quantifying the jet half-opening

angle, θj . The top panel and middle panel show two different energy percentiles, θ0.95 and

θ0.75, respectively, i.e. the values of θ up to which 95% and 75% of the energy is contained.

The bottom panel shows the weighted mean over the energy, 〈θ〉E.
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sion. Moreover, as the flow gradually becomes more spherical the lateral gradients become

smaller, which makes the flow approach spherical symmetry more slowly.

The numerical simulations show that θf corresponding to lower energy percentiles (or

f -values) approach their asymptotic values for a spherical flow at later times. This shows

that the transfer of energy to larger θ-values is the slowest near the center of the jet and

larger near its edges, which may in turn be attributed to the lateral gradient (say, of ǫ) in

the jet, which are smallest near its center and largest near its edge.

7. Discussion

In this work we have introduced a new, physically motivated recipe for the lateral

expansion of the jet (in § 3). It is based on the jump conditions for oblique shocks of

arbitrary 4-velocity, which imply that the velocity of fluid just behind the shock front (in the

downstream region) is in the direction of the local shock normal (i.e. perpendicular to the

shock front at that location; β̂ = n̂, Eq. [9]) in the upstream rest frame (which in our case

is identified with the rest frame of the external medium and the central source). Our new

recipe for the lateral expansion rate of the jet (βθ ∼ 1/Γ2θj , Eq. [11]) has an extra factor

of Γθj in the denominator relative to the usual recipe that has been used so far (βθ ∼ 1/Γ,

Eq. [8]). This results in slower lateral expansion relative to the usual (or old) recipe at early

times when Γ > θj , but faster lateral expansion at later times when Γ < θj , i.e. once the

lateral expansion becomes significant.

Next (in § 4), we have implemented our new recipe as well as the old recipe in a simple

analytic model for the jet dynamics, which is valid only for high Lorentz factors (Γ ≫ 1) and

narrow jet half-opening angles (θj ≪ 1). This model shows an exponential lateral expansion

for Γ < θ0, like previous analytic models of this type. However, we demonstrate that for

typical values of the initial jet half-opening angle (0.05 . θ0 . 0.2) this model is valid only

over a very limited dynamical range for Γ < θ0, so that the asymptotic exponential lateral

expansion regime is hardly reached before the model breaks down. This leads to a reasonable

agreement with numerical simulations over this limited range (as shown by Wygoda et al.

2011 and in § 6).

This motivated us (in § 5) to generalize our relativistic model so that it would be valid

for any values of Γ and θj . This was done by switching to the 4-velocity u (instead of Γ)

as the dynamical variable that we evolve (so that it would vary significantly in both the

relativistic and the Newtonian regimes), and systematically not relying on any relativistic or

small angle approximations. Moreover, we have implemented two different assumptions for
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the accumulation of the swept-up external rest mass, corresponding to a different variant of

the model. The trumpet model makes the usual assumption that the working surface is the

part of a sphere of radius R within a cone of half-opening angle θj(R) . The conical model

assumes that all the mass within a cone of half-opening angle θj(R) was swept-up, so that

once the flow becomes spherical the swept-up mass is equal to that originally within a sphere

of the same radius.

Our relativistic, trumpet and conical models all agree at early times when the jet is still

highly relativistic, narrow and hardly expanded sideways (Γ > θ−1
0 ≫ 1). At this stage the

approximations of our relativistic model hold well and there are only very small differences in

the swept-up mass between the trumpet and conical models. However, at later times when

Γ < θ−1
0 the relativistic model enters a phase of rapid, exponential sideways expansion and

it quickly breaks down, before becoming spherical. We note, however, that for a stratified

or stellar wind like external medium (k = 2) the jet is closer to being spherical than for a

uniform or ISM like external medium (k = 0; see bottom panel of Fig. 5) when the relativistic

model breaks down.

For the trumpet and conical models, which are valid for any Γ or θj , the phase of

rapid, exponential sideways expansion largely disappears for typical values of θ0 & 0.05.

This occurs because the jet is no longer ultra-relativistic soon after Γ drops below θ−1
0 , and

once it becomes mildly or sub-relativistic its sound speed and therefore its rate of lateral

expansion decrease compared to the ultra-relativistic regime. The conical model evolves

somewhat faster than the trumpet model, since it accumulates external rest mass also from

the sides of the jet, and thus it slows down faster. The smaller Γ results in turn in even

faster lateral expansion rate and a larger θj (at a given radius R or lab frame time t).

We compared (in § 6) our analytic models to the results of 2D special relativistic hydro-

dynamic simulations (from De Colle et al. 2011a,b), finding that they provide a reasonable

description of the numerical results at all times. Therefore, they can be used for analytic

calculations of the afterglow emission, and would provide more realistic results compared to

previous analytic models. The main factor that significantly improves the agreement with

simulations compared to previous analytic models is the fact that we have generalized the

model to be valid also at modest Lorentz factors Γ and large jet half-opening angles θj .

Both our analytic generalized (trumpet and conical) models and the numerical simulations

show that the jet first becomes sub-relativistic and only then gradually approaches spherical

symmetry over a long time.

For typical initial half-opening angles (θ0 & 0.05) the phase of rapid exponential lateral

spreading is largely eliminated and it is replaced by a quasi-logarithmic increase in θj with

radius R or lab frame time t. van Eerten & MacFadyen (2011) have stressed that while
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noticeable sideways expansion starts for Γ < θ−1
0 , this initially involves only a small fraction

of the total jet energy in its outer parts, and the central parts of the jet that carry most of its

energy take longer to start spreading their energy to wider angles. While it is true that the

jet does not remain uniform, the differences in the early growth of the angles θf containing

different fractions f of the jet energy, normalized by their initial value, is not very large –

less than a factor of 2 in lab frame time or radius between f = 0.95 and f = 0.5, and tend to

become smaller for narrower θ0. This can be seen from Figure 4 of van Eerten et al. (2011b),

which also shows that as θ0 is gradually decreased down to 0.05, its initial growth becomes

steeper and it looks as if an early phase of exponential growth starts to develop, contrary

to what is claimed in van Eerten & MacFadyen (2011). Therefore, we conclude that (i)

although the uniform jet approximation used in our analytic models is obvious rather crude,

it nonetheless provides a reasonable description of the energetically dominant part of the jet,

and (ii) the prediction of our analytic models that an early exponential sideways expansion

phase should exist for sufficiently small θ0 is not only consistent with the existing simulations,

but these simulations even show a hint for the development of such a phase. This should

obviously be tested more thoroughly by simulations that reach even lower values of θ0.

A phase of exponential lateral spreading was first found by Rhoads (1999) and Piran

(2000) using a simple analytic model. Later, Gruzinov (2007) found a self-similar solution

with a similar scaling. Our main conclusion (which is in agreement with Wygoda et al. 2011)

is that such a phase will occur in practice only for jets that are initially extremely narrow

(with θ0 ≪ 0.05 or so), while for more modest values of θ0 & 0.05 that are more typically

inferred in GRB jets, such a phase effectively does not exist. This basically reconciles the

long lasting apparent discrepancy between analytic models and numerical simulations.

We thank Fabio De Colle for sharing the results of his numerical simulations. This

research was supported by the ERC advanced research grant “GRBs”.
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A. Appendix: Comparison to previous works

We compare here our formulation for the jet lateral expansion rate, Eq. (11), with earlier

work. This formula was first derived within the context of GRBs by Kumar & Granot (2003),

who provided two different derivations. The first follows our line of argument and is based

on the orthogonality of the shock front and the velocity of the fluid just behind it in the rest

frame of the fluid ahead of the shock (Eq. [9]). The second derivation involves an analysis

of the dynamical equations integrated over the radial profile.

A result similar to Eqs. (10) and (11) was also recently derived by Lyutikov (2011), based

on an earlier work by Shapiro (1979). Lyutikov (2011) has argued that it implies a negligible

lateral expansion as long as Γ ≫ 1 unless ∆θ < 1/Γ2, suggesting that with this model one

obtains a slow sideways expansion, as seen in the numerical simulations. However, we note

that the condition ∆θ < 1/Γ2 corresponds to βθ ∼ 1. This requirement is too extreme since

βθ ∼ 1 would result in a quasi-spherical flow within a single dynamical time (since in that

case βθ & βr). As is well known (see also § 4), the traditional recipe for lateral expansion

(Eq. [8]), namely βθ ∼ 1/Γ, already gives an asymptotic exponential growth of θj with R

(i.e. very rapid lateral expansion).

The earlier work by Shapiro (1979) discusses two possible approximations for the dy-

namics of a non-spherical relativistic blast wave, both based on a thin shell approximation

for the layer of shocked external medium that carries most of the energy, but with different

additional assumptions: (i) the quasi-radial approximation (used in the Newtonian regime

by Laumbach & Probstein 1969) in which each part of the shock is assumed to move in a

radial trajectory as if it were part of a spherical flow with the same local conditions (and

in particular the same energy per solid angle, excluding rest energy, ǫ = dE/dΩ), and (ii)

the Kompaneets (1960) approximation, that the pressure behind the shock is uniform, i.e.

the same at all locations behind the shock and is proportional to the average energy density

in the region bounded by the shock front. The first approximation assumes that the energy

per solid angle in the flow (excluding rest energy) does not change and remains equal to

its initial value, ǫ(t, θ) = ǫ(t0, θ). In this sense, it basically assumes no lateral expansion

(as the jet retains its initial angular structure in ǫ(θ) indefinitely), so that this is a model

assumption in this case rather than a result.

The second approximation, which was originally used by Kompaneets (1960) in the

Newtonian regime, does not appear to be very appropriate for the relativistic regime where

the angular size of causally connected regions is ∼ 1/Γ ≪ 1, so that that the local dynamics

of a small portion of the flow should not be affected by the average energy per unit volume

in the whole flow, which may be dominated by regions that are not in causal contact with

it. A simple example of how the Kompaneets (1960) approximation violates causality in the
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relativistic regime is that for a uniform external medium it implies that the velocity of the

shock front is uniform (i.e. depends only on the lab frame time, but not on the location

along the shock front; Shapiro 1979), which necessarily implies that the flow must approach

spherical symmetry within a few dynamical times.6 This obviously violates causality, since

as we discussed in the introduction, a roughly uniform jet with reasonable sharp edges cannot

expand sideways significantly as long as Γθ0 ≫ 1, from causal considerations (since its bulk is

not in causal contact with its edges, and it does not “know” that it is not part of a spherical

flow and should thus start expanding sideways).

Shapiro (1979) reaches the conclusion that the two approximations give the same result

in the extreme relativistic limit only because he explicitly assumed that in the quasi-radial

approximation the energy per solid angle, ǫ = dE/dΩ, is not only independent of time, but

also independent of the location along the shock front (this can be seen from the fact that his

energy integral is independent of θ). This assumption quickly leads to a quasi-spherical flow

for a spherical external density profile, and the non-spherical solutions obtained by Shapiro

(1979) arise since he considered an exponential atmosphere, which is a highly non-spherical

external density profile. The problem of interest for us, namely the dynamics of GRB jets

during the afterglow phase, involves a non-uniform initial distribution of the energy per solid

angle, ǫ(t0, θ), and in such a case the two approximations are not equivalent in the extreme

relativistic limit. Therefore, we conclude that neither of these two approximations appears to

be appropriate for studying the dynamics or degree of lateral spreading of GRB jets during

the afterglow phase.

6The direction of the velocity of the fluid just behind the shock, which is along the shock normal, might

be initially non-radial, but since the shock velocity is the same everywhere and highly relativistic, it quickly

approaches spherical symmetry, similar to the wave left by a stone thrown into water, where the velocity of

the surface water wave is uniform and the wave front quickly forgets the shape of the stone and becomes

circular as its radius becomes larger than that of the stone. In our case, within a few dynamical times ǫ

becomes essentially independent of θ, since its local value is dominated by the recently shocked material,

where the shock Lorentz factor is uniform.
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