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Abstract. A novel technique is described for analysing human 
movement in outdoor scenes. Following initial detection of the humans 
using active contour models, the contours are then re-represented as 
normalised axis crossover vectors. These vectors are then fed into a neural 
network which determines the typicality of a given human shape, allowing 
for a given human’s motion deformation to be analysed. Experiments are 
described which investigate the success of the technique being presented.

Keywords: Human, Motion Analysis, Shape, Snake, Active Contour, 
Neural Network, Axis Crossover Vector

1 Introduction

This paper outlines a mechanism for analysing the motion and deformation of 
walking humans. A method based upon active contour models, snakes [1], and a 
neural network for categorisation is used [2, 3]. In previous papers we have discussed 
the classification of human shape in isolated static images taken from a motion 
sequence; in this study we discuss an individual’s shape deformation during motion. 
The method discussed is part of a larger system designed to track moving 
pedestrians, a problem that has been the subject of much research [4, 5, 6]. We show 
that the periodic nature of human walking is clearly discernible from the deformation 
pattern, and that individual humans have a specific temporal pattern.

The paper is divided into 6 sections. Section 2 discusses the use of active 
contour models for detecting walking humans. Section 3 discusses the issues faced 
when using active contour data to train neural networks, and presents a solution in 
the form of the axis crossover vector. Section 4 summarises previous experimental 
findings using neural networks to identify human shapes, which leads into current 
work on human motion analysis using neural networks (section 5), along with 
experimental methods and results. Finally section 6 discusses the findings of this 
paper and details future work in this area.



2 Identifying and Tracking Moving Humans using 
Snakes

2 . 1 Snakes

In order to identify and track human outlines, the basic human shape must first be 
identified, and we use active contour models, ‘snakes’. A snake is an energy 
minimising spline which can detect objects in an image and track non-occluded 
objects in a sequence of images. Snakes can be optimised for detecting and tracking 
particular classes of objects by customising their energy function so that detection of 
the desired characteristics, for example the curvature of an object’s outline, or the 
presence of a particular colour, results in a reduction of the snake’s overall energy. 
This reduction in energy has the effect of attracting the snake towards these desired 
features. Examples of a snake tracking a human can be seen in Figure 1. The active 
contour model used in these experiments was based on the Fast Snake model [7] as 
it allows for more autonomous object detection and tracking than the original model 
[1], although the techniques discussed in this paper are independent of the particular 
active contour model being used.

Figure 1: A target human detected and tracked in a sequence of frames, depicted here by 
the results of two discontiguous frames, using an active contour model. The target human 

has been dimmed in this figure to increase the snake’s visibility.

Once the snake’s energy function has been defined, the user clicks an initial 
polygonal contour around the target object in the first frame of a movie. The snake 
then minimises its contour’s energy according to its energy function, causing it to 
lock onto features in the image which are defined as salient by the energy function. 
Once the snake has stopped moving it is copied, in its relaxed position, into the 
next frame of the movie, where it again minimises its energy in an attempt to lock 



onto the target object in its new location in the image. This process continues until 
the end of the movie is reached. The success of the snake in detecting and tracking 
the target object is largely dependent on the relevance of the snake’s energy function 
to the target class of object; the image quality following image preprocessing; the 
frame rate and speed of movement of the target object; the distance the contour’s 
control points are from each other; and the level of occlusion of the target object. 
Once a snake loses focus from the target object, it rarely regains the successful 
detection and tracking of that target object.

A more detailed discussion of active contour models and their energy 
functions can be found in [8] and [9].

2 . 2 Tracking Walking Humans

In order to produce a clean and reasonably varied set of data, the 3D modelling and 
animation package ‘Poser’ [10] was used to simulate human movement. Snakes 
were relaxed around simulated humans in 30 different movies, all of which contained 
a single human walking from left to right. Each movie contained a different walk 
style and/or human build, providing a range of simulated human shapes and 
motions. All movies were 120 frames in duration, which allowed for at least 2 paces 
per person, despite individual differences in the length of stride and speed of 
movement from one human to another.

As described earlier, a snake is initialised around the human in the first 
frame of the movie. In subsequent frames, the snake is allowed to autonomously 
relax around the walking human, using its position in the previous frame as an 
initialisation in the next frame. In such a fashion the human is identified and tracked.
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Figure 2: A target human detected and tracked through a sequence of 120 frames using 
an active contour. The frame numbers are shown below each frame; intermediate frames 

have been omitted. Above each frame is the pose identifier, referred to in the results 
sections of this paper. The target human has been dimmed in this figure to increase the 

snake’s visibility.

Figure 2 shows the results of a snake tracking a sample human over 120 
frames of video footage. No objective measure exists of an active contour’s success 



at tracking objects [8], but here the model was clearly successful as the humans were 
tracked in all of the 30 different instances. Speed is not a primary concern in this 
work, but it is worth noting that the relaxation times for the snakes in moving from 
one frame to another was often very fast.

As can be seen from Figure 2, the snake only obtains the outer edge of an 
object; ‘holes’ in between the human’s legs do not form part of the contour. Despite 
the variation that humans adopt as they walk, their outer contour is identified in all 
cases. 

3 Axis Crossover Vectors for Representing Human 
Shapes

3 . 1 Representation

[196, 134, 63, 77, 72, 31, 49, 206, 
21, 204, 45, 39, 68, 90, 103, 159]

1   axis

16   
axis

[0.95, 0.65, 0.31, 0.37, 0.35, 0.15, 0.24, 1.0, 
0.1, 0.99, 0.22, 0.19, 0.33, 0.44, 0.5, 0.77]

s t

th

Figure 3: A human contour being re-represented as a 16-axis crossover vector. The 
snake’s contour (left) has 16 axes projected from the contour’s centre to its edges, giving 
16 measurements (top vector). This vector is then normalised (bottom vector), to make it 
scale invariant, providing a compact representation for use in neural networks (visualised 

on right).

Once the target object has been detected and tracked in a movie, each frame’s 
resultant contour can be stored as a vector of that contour’s control points ((x,y) 
coordinates in the image), with vector length n where n is the number of control 
points along the snake’s spline. However, this vector is not ideal for the purposes of 
shape analysis. By storing the absolute (x,y) locations of the control points, the 
active contour is location dependent; identically shaped contours in different parts of 
the image will have different vectors. The contour’s vector is scale dependent too; 
differently sized contours which share the same shape will consist of different 
vectors. The contour is also rotation dependent; two identically shaped and sized 
contours will appear to have different vectors if they both consider different control 



points to be the ‘first’, as it is this control point which appears first in the vector. 
Finally, the length of the vector is determined by the number of control points along 
the contour, therefore identically shaped and sized contours which contain different 
numbers of control points will result in vectors of different lengths.

All of these factors make the comparison and analysis of active contours 
difficult. For the purposes of being used in neural networks, the native active 
contour vector is additionally unsuitable because it contains pairs of data, the x and y 
coordinates of the control point, requiring the network to associate an x coordinate 
with the correct y coordinate before analysis can take place.
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Figure 4: Axis length deformations over time, taken from a single walking human. The 
graph shows the differences in lengths of 3 of the 16 axes, at 0°, 180° and 205° from 

vertical, during two paces.

One possible solution to the problem of analysing active contours is the 
axis crossover representation, presented in [2] and shown in Figure 3. A number of 
axes are projected outwards from the contour’s centre, with the distance along those 
axes from the centre to the furthest edge the axis meets being stored in a vector. This 
vector is then normalised by its largest element, making the vector scale, location 
and rotation invariant. Furthermore such axis crossover vectors are independent of 
the number of control points on the contour, as the crossover vector’s length is 



equal to the number of axes being projected, not to the number of control points on 
the snake. For more complicated situations the axis crossover representation offers 
more flexibility than discussed here; a more detailed description of its features can be 
found in [2].

3 . 2 Analysing Deformation

Having tracked the object with a snake, the relaxed contours are then converted into 
axis crossover vectors as described in Section 3.1. Figure 4 shows the deformation 
of 3 axes as a human walks along. Note that each axis’ pattern of deformation is 
cyclical, closely repeating itself once per pace. Furthermore some axes are deformed 
more than others. The axis at 0°, which typically measures the distance from the 
contour’s centre to the top of the head, shows little difference in movement during 
the walking motion. This reflects the fairly constant height that the head keeps from 
the centre of the body while walking. Conversely the axis at 180°, which typically 
measures the distance from the contour’s centre to the crotch or feet (in the case 
where the legs are upright and the feet lie below the crotch), varies radically within 
each pace, reflecting the opening and closing of the human’s legs. The length of the 
axis situated at 205° is has negative correlation to the 180° axis, where the opening 
and closing of the leg is again responsible for the axis growing and shrinking. Thus, 
when the leg is outstretched, the 180° axis is short whereas the 205° axis is long, 
and conversely when the human is standing up straight, the 180° axis is long and the 
205° axis is short. Both the 180° and 205° axes extend and shrink only once per 
pace, coinciding with the stride being taken.

4 Identifying Human Shapes with Neural Networks

A range of neural network experiments have been performed to validate the axis 
crossover’s ability to represent human contours in a scale-, location- and rotation- 
invariant manner [3]. Axis crossover vectors of different sizes were used, ranging 
from 4 axes to 24 axes, to identify the most appropriate axis crossover description 
for human shapes. The number of axes used has a direct relationship with the 
number of input units in the neural network: each axis’ length is the input for one 
input unit. In the double output case one output unit was trained to represent human 
shapes, and the other non-human shapes. A range of hidden layers between 2 and n-1 
units, where n is the number of input units in the network, were tested in order to 
identify the best generalisation ability. 

Training data contained 150 human shapes, and 150 non-human shapes 
which consisted of ‘outdoor furniture’ shapes such as cars and streetlights. Active 
contours were relaxed around these shapes, and were then re-represented as axis 
crossover vectors, which could then be fed into the neural network.

Test data contained 10 unseen human shapes, and 10 unseen non-human 
shapes, again of outdoor furniture.

As is summarised in Figure 5, the experiments found that 16 axes offered 
the most suitable level of detail for encoding human contours using axis crossover 



vectors. Consequently a 16 input unit network was chosen for all further 
experimentation. In addition, by using two units in the network’s output layer, a 
confidence value can be obtained which allows a crude measure of how ‘human’ the 
network considers the given axis crossover vector to be. The confidence value is 
simply the difference of the two output units’ values.
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Figure 5: Results of neural networks classifying human and non-human axis crossover 
vectors. Left: Axis crossover vectors which used 16 axes were found to give the best 

results. Right: The mean confidence value when presented with human shapes (left pair of 
columns) and non-human shapes (right pair of columns).

5 Human Motion Analysis using Neural Networks

As described in the previous section, a trained neural network, when presented with a 
human shape represented as an axis crossover vector, can produce a scalar value 
measuring the confidence of the network that the shape is human. The network used 
in section 4 was tested with 30 different simulated human motion sequences, each 
varying in weight and / or gait.

The motion patterns are periodic, repeating here after the 60th frame, or at 
the start of the second pace. This can be seen in Figure 6, where two consecutive 
paces are superimposed for each of the 3 humans. The frequency of a human’s 
motion pattern is attuned to the frequency of their walking, so that the speed of 
walking can be identified from the confidence value/time graph.

A human’s motion pattern forms a signature specific to that human. Whilst 
the motion pattern for a human is not identical from one pace to another, in the 
same way that poses A and E in Figure 2 are not identical, it can be seen from 
Figure 7 that motion patterns for a given human are more similar to each other than 
to other humans’ motion patterns.



0.9

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
-0.1

-0.2

1.0

-0.3

C
on

fid
en

ce

Human 1 Motion Human 2 Motion Human 3 Motion

Figure 6: Analysis of human motion signatures. Each graph shows the neural network’s 
confidence values over time for a given simulated human, with two consecutive paces for 

a corresponding simulated human being superimposed over one another. The graph on the 
left shows the signature for a simulated human with average overall confidence, whilst the 

middle and right graphs show the signatures for the simulated humans with highest and 
lowest overall confidence.
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Figure 7: Neural network confidence value plotted against time for three simulated 
humans. 120 F rames corresponds to two paces. The pose identifiers labelled along the 

top of graph correspond to those in Figure 2.

As the human walks, this confidence value will change, reflecting the fact 
that the typicality of the shape of a walking human varies over time. This can be 



clearly seen in Figure 7, where for some poses the network classes the humans as 
more non-human than human. See for example humans 2 and 3 in poses B and F. 
Moreover, there is considerable differences between humans so that, for example, 
human 1 is consistently classed as more human than humans 2 and 3 across all 
frames.

6 Discussion

In this paper we have shown how snakes can be used to identify human contours in 
an image, and then to track a moving simulated human. These contours can then be 
re-represented as fixed length, scale-, rotation- and location-invariant vectors. When 
the vector for a walking human is analysed over time, the deformation pattern of the 
human contour is observable , clearly showing a differential deformation pattern. 

With a suitable set of images, a training set can be formed from the axis 
crossover vectors for a neural network classifier that identifies shapes as human or 
non-human, and it is the time dependent output of this network that can be used to 
analyse the motion pattern of a single walking human. As shown in Section 6, the 
output of the network is periodic, identifying single paces, so that speed of motion 
can be gauged. Moreover, individual differences between humans are apparent and 
these signatures could be used as identification tags. We are interested in extending 
this work to deal with the problems associated with occlusion. Our aim is to 
produce a model that will combine active contour models and neural networks and 
which will be able to track humans even during differing levels of occlusion, which 
will combine with previous studies on occluded human shapes [2]. This will involve 
prediction of the motion deformation pattern of a given human, which will in turn, 
involve the collection of a wider range of real human data, including footage of 
humans walking towards or away from the viewing point, and of real world noisy 
images.
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