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sparse and non-symmetrical connections, have been shown to 
have, like the perceptron, a capacity of 2k patterns, k being the 
number of connections to each neuron (Diederich and Opper, 
1987; Gardner, 1988).

In the present paper, building on our previous work (Davey 
and Adams, 2004; Calcraft et al., 2006, 2007, 2008; Davey et al., 
2006; Chen et al., 2009), we use computer simulations to address 
three other biological constraints for sparsely connected networks. 
Firstly, how does the topology of the wiring pattern affect memory 
performance? Secondly, can memories be retrieved by a network 
of spiking neurons with connection delays? Thirdly, taking into 
account wiring length, which wiring pattern has the highest cost 
efficiency?

Materials and Methods
the network Model for associative MeMory
Network connectivity
For each model investigated, a collection of N artificial neurons is 
placed on a line such that the nodes are equally spaced. To avoid 
edge effects we consider the ends of the line to meet, so that we have 
a so-called periodic boundary. This gives the network a ring topol-
ogy. For simplicity we define the distance between neighboring 
neurons to be 1. To aid in visualization we represent the networks 
as a ring, but they are always actually 1-D. Once the neurons have 
been positioned they can be connected to one another in a vari-
ety of fashions. However, there are three common features shared 
among all network models. Firstly, the networks are regular, so that 
each neuron has k incoming connections. To maintain this fan-in 
during rewiring, only the index of the source (afferent) neuron 
of a connection could be changed. Therefore although the con-
nection strategy varies in the present study, the values of N and 
k are constant. Secondly, the networks are sparse, so that with a 
network of N units, k = N, resembling the sparse connectivity of 

introduction
Network models for associative memories store the information 
to be retrieved in the values of the synaptic weights. Weighted 
summation of their synaptic inputs then allows the neurons to 
transform any input pattern into an associated output pattern. 
Network models for associative memories come in two flavors. In 
pure feedforward models, like the one-layer perceptron, a static 
input pattern in the afferent fibers is in one step transformed, 
by weighted summation, into a static pattern of activity of the 
neurons in the output layer. For instance Purkinje cells in the 
cerebellum have been proposed to recognize in this way patterns 
of activity in the mossy fibers (Marr, 1969; Tyrrell and Willshaw, 
1992; Steuber et al., 2007). In feedback models, which are the 
subject of the present paper, the memory is stored in the weights 
of recurrent connections between the neurons. The input pat-
tern (one input for each neuron) initializes the neurons, after 
which the network is left free to run until the neuronal activities 
potentially converge to a stable pattern, which no longer changes 
over time. The main advantage of feedback networks is that they 
can work self-correctively: noisy input patterns can converge 
to the original attractor pattern. The main questions are how a 
desired memory can be stored by making it an attractor of the 
network (the learning rule determining the synaptic weights) 
and how many patterns can be stored and retrieved, within a 
given error margin, in a network with a given number of neurons 
and synapses.

These questions were solved analytically for the so-called 
Hopfield network (Hopfield, 1982), which, however, takes sev-
eral simplifications that are biologically unrealistic. The Hopfield 
network, in its original formulation, consists of two-state (bipo-
lar) neurons that are fully connected to each other, with each 
pair connected bi-directionally with identical weights. More 
biologically realistic adaptations of the Hopfield network, using 
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the mammalian cortex. Thirdly, the connections are directed, so 
if the connection from i to j exists, this does not imply that the 
reciprocal connection from j to i also exists.

With this configuration, two extreme cases are widely known 
and commonly studied. The first case is a completely local net-
work, or lattice, whose nodes are connected to those nodes that 
are closest to it. An example of a local network is the cellular 
neural network (CNN), where units are connected locally in 2-D 
(Brucoli et al., 1996). Alternatively the network can be connected 
in a completely random manner, where the probability of any 
two nodes being connected is k/N, independently of their posi-
tion. Locally connected networks have a minimum wiring length, 
but perform poorly as associative memories, since pattern correc-
tion is a global computation and full local connectivity does not 
allow easy passage of information across the whole network. In 
randomly connected networks, on the other hand, information 
can readily move through the network, and consequently pat-
tern correction is much better and in fact cannot be improved 
with any other architecture. However, in real biological networks 
such as cerebral cortex, completely random connectivity suffers 
from the restriction of high wiring cost and therefore may not be 
the desirable choice. An optimized connectivity is one that gives 
a performance comparable to random networks, but with more 
economical wiring. The existence of such connectivity, as well as its 
construction strategy, has been of great interest in recent research. 
One family of network connectivities, the so-called small-world 
networks (Watts and Strogatz, 1998), has been suggested to exhibit 
this optimization.

Our first connection strategy is adapted from the method pro-
posed by Watts and Strogatz (1998). The Watts–Strogatz small-
world network starts from a local network, where each unit has 
incoming connections from its k nearest neighbors (to simplify 
results, networks studied in this paper have no self-connectivity). 
The local network is then progressively rewired by randomly re-
assigning a fraction (p) of the afferent neurons. The network is 
transformed into a completely random network when p reaches 1 
(Figure 1). In the rest of the paper we refer to networks constructed 
in this way as small-world networks.

Another connection strategy investigated by us exhibits 
Gaussian connectivity, where each unit has k incoming connec-
tions from neurons whose distances form a Gaussian distribution 
(see Figure 7). The connectivity of such a network is parameterized 
by the SD of its distance distribution, σ. We have shown in earlier 
work (Calcraft et al., 2007) that both small-world and Gaussian 
networks can perform optimally as associative memories and that 
tight Gaussian distributions give very parsimonious networks with 
efficient use of connecting fiber.

The biological context of this connectivity comes from the 
mammalian cortex, which is thought to have a similar connectiv-
ity between individual neurons (Hellwig, 2000).

The modularity of mammalian cortex, commonly referred to 
as the hypothesis of cortical columns (Mountcastle, 1997), is also 
considered in our investigation. Three different types of modular 
connectivity are studied. The first one, named the Fully Connected 
Modular network, contains m internally fully connected subnet-
works, defined as modules. Initially there is no interconnection 
between modules, thus each module can be treated as an isolated 

fully connected associative memory model. The subnetworks 
establish connections by randomly rewiring the intra-modular 
connections to form random connections from anywhere across 
the whole network. A fraction p denotes the proportion of rewired 
connections. The network has the same type of connectivity as the 
Watts–Strogatz small-world network, when p reaches 1. Figure 2 
gives an example of networks with this connectivity.

Another modular network we have investigated is called the 
Gaussian-Uniform Modular Network. In such a network, the 
intra-modular connections within each module have a Gaussian-
distributed connectivity with a SD of σinternal

, which is proportional 
to the number of internal connections per unit, k

internal
. Each unit 

in the network also has a number of external connections (defined 
by k

external
) from units in other modules. The connectivity of the 

external network is uniformly random. Although k
internal

 and k
external

 
vary in different configurations, the total number of connections 
per unit, k = k

internal
 + k

internal
, is maintained so that the performances 

of different networks can be compared.

Figure 1 | The rewiring process in a Watts–Strogatz small-world 
network. In this example, the network contains 30 units and four afferent 
connections to each unit. Initially all units are locally connected, as p = 0. Then 
a proportion of connections of each unit are randomly rewired (p = 0.5). As the 
rewiring rate increases, the network becomes a completely random network 
(p = 1). Note that the connections are formed on a one dimensional line but 
are drawn in 2-D figures for better visualization.
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learning threshold T increases, irrespective of the value of k. However, 
increasing T also means a longer training time, and the improvement 
is insignificant for very high values of T. Here we set T = 10, based on 
results from our previous study (Davey and Adams, 2004).

For threshold unit models we use the standard bipolar +1/−1 
representation. For the spiking networks we use 1/0 binary patterns, 
as they can be easily mapped onto the presence or absence of spikes.

Threshold unit models and integrate-and-fire spiking neuron 
models require different update dynamics. For threshold unit mod-
els, we use the standard asynchronous dynamics: units output +1 
if their net input is positive and −1 if negative. As the connectiv-
ity is not symmetrical there is no guarantee that the network will 
converge to a fixed point, but, in practice these networks normally 
exhibit straightforward dynamics (Davey and Adams, 2004) and 
converge within hundreds of epochs (one epoch is a full update 
of every unit in the network in a fixed order). We arbitrarily set a 
hard limit of 5000 epochs, at which we take the network state as 
final even if it may not be at a fixed point. Networks with spiking 
neurons, on the other hand, were numerically integrated, and their 
state was evaluated after 500 ms (see below).

Due to the intrinsic model complexity, associative memory 
models with spiking units require careful tuning so that the per-
formance is comparable to threshold unit models. We use a leaky 
integrate-and-fire neuron model which includes synaptic integra-
tion, conduction delays, and external current charges. The mem-
brane potential V of each neuron in the network is set to a resting 
membrane potential of 0 mV if no stimulation is presented. The 
neuron can be stimulated and change its potential by either receiv-
ing spikes from other connected neurons, or by receiving externally 
applied current. If the membrane potential of a neuron reaches 
a fixed firing threshold, T

firing
, which is set to 20 mV, the neuron 

emits a spike and the potential is reset to the resting state (0 mV) 
for a certain period (the refractory period, set to 3 ms). During 
this period the neuron cannot fire another spike even if it receives 
very strong stimulation.

A spike that arrives at a synapse triggers a current; the density 
of this current (in A/F), I

ij
(t), is given by

I t
t t t t

ij

ij

s

ij( ) =
− +( )









−
− +( )spike spikedelay delay

τ
exp 1

ττs











,

where i refers to the postsynaptic neuron and j to the presynaptic 
neuron. τ

s
 = 2 ms is the synaptic time constant, t

spike
 is the time 

when the spike is emitted by neuron j, and t
spike

 + delay
ij
 defines 

the time when the spike arrives at neuron j. Two delay modes were 
implemented in our study. The fixed-delay mode gives each con-
nection a fixed 1 ms delay. In the second mode, the delay of spikes 
in a connection is defined by

delay msij ijd= 3

where d
ij
 is the connection distance which is defined as the mini-

mum number of steps between neuron i and j along the ring, since 
the distance between neighboring neurons is 1, as described in 
Section “The Network Model for Associative Memory.” The for-
mula is a rough mapping from a one dimensional structure to a 
realistic 3-D system.

The neuron model, learning, and dynamics
The best connection strategy for an associative memory network 
may be dependent on details of the neuron model. For instance, the 
wiring length of a connection may have no significant impact on 
simple threshold neuron models, but is important in a spiking model 
simulating geometry-dependent time delays. To reveal the intrinsic 
principles that may govern network construction, this paper investi-
gates connection strategies in various associative memory networks 
with either the traditional threshold unit models or the more bio-
logically realistic, leaky integrate-and-fire spiking neuron models.

Each model needs to be trained before any measure of performance 
can be obtained. Canonical associative memory models with threshold 
units, for example the Hopfield net, commonly use a one-shot Hebbian 
learning rule. This, however, does not perform well if the networks are 
sparse and non-symmetric (Davey et al., 2006). In this paper, we adapt 
a more useful approach using standard perceptron learning.

A set of random, bipolar, or binary vectors is presented as train-
ing patterns, where the probability of any bit on the pattern being 
on (+1), referred to as the bias of the pattern, is 0.5. The patterns 
can be learned by the following learning rule:

Begin with zero weights
Repeat until all units are correct
 Set state of network to one of the  training 
pattern ξp

For each unit, i, in turn:
   Calculate its net input, hi

p.

  If ξi
p

i
pon h T= <( )and  or ξi

p
i
poff h T= > −( )and

   then change all the weights to unit i 
 according to:

    w w kij ij j
p= + ξ /  when ξi

p
i
pon h T= <( )and

    w w kij ij j
p= − ξ /  when ξi

p
i
poff h T= > −( )and

The value ξi
p on=  denotes the ith bit of pattern p being +1, and the 

value ξi
p off=  denotes the value −1 or 0 according to the type of 

network. Network performance improves till saturation when the 

Figure 2 | The construction of a Fully Connected Modular network. Each 
network has 30 units and four afferent connections to each unit. The network 
is initialized as six discrete modules with fully connected internal networks 
(left, with rewiring rate p = 0). To connect these modules, internal connections 
are then rewired randomly across the whole network (right, with rewiring rate 
p = 0.5). Note that the regularity of the network is maintained during the 
rewiring (each node always has four afferent connections).
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The EC of a particular network is determined as follows:

Initialize the number of patterns, P, to 0
Repeat

Increment P
Create a training set of P random patterns
Train the network
For each pattern in the training set
  Degrade the pattern randomly by adding 60% of noise
  With this noisy pattern as start state, allow the network to converge
   Calculate the similarity of the final network state with the 

 original pattern
EndFor
Calculate the mean pattern similarity over all final states
until the mean pattern similarity is less than 95%

The Effective Capacity is then P-1.

The EC of the network is therefore the highest pattern loading 
for which a 60% corrupted pattern has, after convergence, a mean 
similarity of 95%, or greater with its original value.

The EC measure needs modification to suit the spiking model. We 
adopt the concept of memory retrieval from Anishchenko and Treves 
(2006). For p training patterns, the memory retrieval, M, is defined by

M
p

O t O t

O t

p

= ( ) − ( )
− ( )











=
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µ
µ
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Oμ(t) is the overlap of the network activity and pattern μ at time 
t, more particularly the cosine of the angle between both vectors,
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where r
i
(t) is the number of spikes emitted by unit i during a time 

window [t − t
w
, t] (we use a window of 10 ms). O tchance

µ ( ) is the chance 
level of overlap with other patterns when the external currents are 
injected to the network based on pattern μ

O t
p

O tchance
µ µ

µ µ
( ) =

−
( )′

′≠
∑1

1

The memory retrieval measure was designed for sparse patterns where 
the chance overlap is important. In our case the patterns are unbiased 
so the chance overlap is close to 0. The memory retrieval M ranges 
between 1 and −1, in which a high value indicates better performance. 
The 95% pattern similarity in the threshold unit model corresponds 
to a 0.9 memory retrieval value M in the spiking neuron model, thus 
we use these two values as the EC criteria in this investigation.

connectivity Measures
In recent years connectivity measures from Graph Theory have 
been used in the investigation of both biological and artificial neural 
networks. We use two of these measures to quantify our connectiv-
ity strategies.

A common measure of network connectivity is Mean Path 
Length. The Mean Path Length of a network G, L(G), is defined as:

L G
N N

pij
i j G

( ) =
−( ) ≠ ∈

∑1

1

The change of membrane potential is defined by

dV

dt

V
C I W I

m
ij ij ij

i j G

= −






+ +
≠ ∈
∑τ external

In this equation, −(V/τ
m
) is the leak current density, while τ

m
 = 50 ms 

is the membrane time constant. I
external

 is the external current density 
which will be discussed later. The internal current is summed by 
Σ

i ≠ j ∈ G
C

ij
I

ij
W

ij
 where C

ij
 = 1 indicates the presence of a connection 

from j to i, and C
ij
 = 0 otherwise. W

ij
 is the weight of the connection 

from neuron j to i trained by the above learning rule.
In networks trained with a learning threshold T = 10, a single 

spike from an excitatory (positive-weight) connection generates a 
postsynaptic potential (EPSP) of about 3 ∼ 4 mV on average, and 
inhibitory (negative-weight) connections generate similar voltage 
deflections of negative sign (IPSPs). Since the proportion of excita-
tory and inhibitory connections is balanced (the network is trained 
with unbiased patterns), it requires the excess of six to seven spikes 
at excitatory connections to trigger the firing of a unit. Scaling down 
the connection weights to reduce the EPSPs also reduces the IPSPs 
proportionally, resulting in little or no improvement on the network’s 
associative memory performance. The whole network is silenced, 
however, when all weights are scaled down to less than 20% of their 
original trained values, due to the current leak in the neuron model.

External currents are injected into the network in order to trig-
ger the first spikes in the simulation. Each current injection trans-
forms a static binary pattern to a set of current densities. Given an 
input pattern, unit i receives an external current if it is on in that 
pattern, otherwise the unit receives no external current. An exter-
nal current has a density of 3A/F and is continually applied to the 
unit for the first 50 ms of simulation. This mechanism guarantees 
that the first spiking pattern triggered in the network reflects the 
structure of the input pattern. After the first spikes (about 7–8 ms 
from the start of a simulation), both internal currents caused by 
spikes, and the external currents, affect the network dynamics. 
Spike activity continues after the removal of external currents, as 
the internal currents caused by spike trains become the driving 
force. The network is then allowed to run for 500 ms, after which 
time the network activity has stabilized, before its spiking pattern 
is evaluated.

Measures of MeMory perforMance
The associative memory performance of the threshold unit network 
is measured by its effective capacity (EC; Calcraft, 2005). EC is a 
measure of the maximum number of patterns that can be stored in 
the network with reasonable pattern correction still taking place. 
In other words, it is a capacity measure that takes into account the 
dynamic ability of the network to perform pattern correction. We 
take a fairly arbitrary definition of reasonable as the ability to correct 
the addition of 60% noise (redrawing 60% of the pattern bits) to 
within a similarity of 95% with the original fundamental memory, 
that is, 95% of the bits are identical. Varying these 2% figures gives 
differing values for EC but the values with these settings are robust 
for comparison purposes. For large fully connected networks the EC 
value is about 0.1 of the conventional capacity of the network, but 
for networks with sparse, structured connectivity EC is dependent 
upon the actual connectivity pattern.
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of such a network with threshold units is known to be 2k = 500 
for unbiased random patterns, although in practice the capac-
ity reduces due to pattern correlations. As mentioned in Section 
“The Neuron Model, Learning, and Dynamics,” we set the learning 
threshold at T = 10 and the maximum number of updating epochs 
at 5000. For each network connectivity, results are averages over 
10 runs. Errors bars are too small to be visible and therefore are 
omitted from the figures. The characteristics of different networks 
and their EC performances are tabulated in Section “Appendix.” The 
first column of each table contains the values of the independent 
variable that was varied to construct different networks with the 
same connection strategy.

path length as a predictor of perforMance
As pattern correction is a global computation intuitively one might 
expect networks with shorter mean path lengths to perform better 
than those with longer mean path lengths. Our results, shown in 
Figure 3A to some extent confirm this. The two networks with 
only local connections (to the right of the graph) and thereby long 
path lengths, do perform poorly. However path length does not 
discriminate amongst the majority of network architectures. This is 
mainly due to the fact that mean path length saturates very quickly 
once a few long-range connections, which act as global shortcuts, 
are introduced to a local network. The Tables in Section “Appendix” 
show that almost all the networks examined here have very similar 
mean path lengths of around two steps, in spite of the great vari-
ation of the independent variables.

clustering coefficient as a predictor of perforMance
Once again intuition suggests that performance could be related to 
clustering. In a highly clustered network global computation could 
be difficult: with information staying within clustered subnetworks 
and not passing through the whole network. This is confirmed by 
our results in Figure 3B. The networks plotted on the left side of 
the graph, which are highly clustered, show poor performance. But 
perhaps what is most noticeable about these results is the obvious 
linear correlation between the clustering coefficient and perform-
ance. So the clustering of a network, regardless of the details of its 
architecture (small-world, modular, Gaussian) completely predicts 
its ability to perform as an effective associative memory. A purely 
static property of the connection matrix appears to determine the 
ability of a sparsely connected recurrent neural network to perform 
pattern completion. We will return to why this might be the case 
in the discussion.

the integrate-and-fire network Model
We now examine how well our results generalize to the more com-
plicated integrate-and-fire model. Because the EC evaluation of 
this network takes much longer to compute than for the threshold 
unit model, we reduced the number of incoming connections per 
unit, k, to 100. For the same reason, only the Watts–Strogatz Small-
World network, the Gaussian network, and the Fully Connected 
Modular network were simulated using integrate-and-fire models. 
It is interesting to study whether the non-spiking network provides 
a qualitative and/or quantitative prediction of the much more com-
plex spiking model. Figure 4 compares the performance of three 
different types of dynamics: non-spiking, spiking with fixed-delay, 

where p
ij
 is the length of the shortest connecting path from unit j to 

unit i. It is important to note here that the length of a path in the 
graph G is the number of edges that make up the path – it has no 
relation to the physical distance between the nodes, d

ij
.

The Mean Path Length was originally used to define the “small-
world” phenomenon found in social science (Milgram, 1967). This 
refers to the idea that, if a person is one step away from each person 
they know and two steps away from each person who is known 
by one of the people they know, then everyone is an average of 
six steps away from each person in a region like North America. 
Hence everyone is fairly closely related to everyone else giving a 
“small-world.”

A fully connected network has the shortest and unique Mean 
Path Length of 1, whilst in sparse networks the measure varies for 
different types of connectivity (see Tables in Appendix). A locally 
connected network has a high Mean Path Length, since each unit 
is only connected to its nearest neighbors and it is difficult to reach 
distal units. On the other hand, completely random networks usu-
ally have short Mean Path Lengths. Intermediate cases, for example 
the Watts–Strogatz small-world network, have Mean Path Lengths 
similar to completely random networks, but significantly lower 
than the ones of lattices.

Although commonly used as a connectivity measure of neural 
networks, our investigation reveals that the Mean Path Length is 
insensitive to connectivity changes if the network is far from local. 
Another measure, named the Clustering Coefficient, is found to be 
more sensitive to connectivity changes, and exhibits a good cor-
relation with the associative memory performance.

The definition of Clustering Coefficient is as follows. First we 
define neighbors of a node in a graph as its directly connected nodes.

Then we define G
i
 as the subgraph of the neighbors of node i 

(excluding i itself). C
i
, the local Clustering Coefficient of node i, 

is defined as:

C
G

Gi
i

i

= #  of edges in 

maximum possible # of edges in 

which denotes the fraction of all possible edges of G
i
 which exist. 

The Clustering Coefficient of the graph G, C(G), is then defined 
as the average of c

i
, over all nodes of G:

C G
N

Ci
i G

( ) =
∈
∑1

The Clustering Coefficient of a fully connected network is 1, since 
each node is connected to all others directly. Locally connected 
sparse networks have high Clustering Coefficients whilst in a com-
pletely random networks it is usually low. Interestingly, the so-called 
small-world networks usually have high Clustering Coefficients, 
similar to local networks, but short Mean Path Lengths, like com-
pletely random networks. Such types of connectivity (short Mean 
Path Length, high Clustering Coefficient) are also observed in natu-
ral networks, for instance, the mammalian cortex.

results
All networks in our study have 5000 units. The first set of results are 
for the non-spiking model with 250 incoming connections per unit, 
that is, N = 5000 and k = 250. The theoretical maximum capacity 
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patterns of connectivity is very similar, whilst in the cube-root 
delay models, the performance of the Gaussian connectivity var-
ies more linearly than that of the other two connectivities. This is 
because the other two types of connectivity have more distal con-
nections due to their uniform rewiring, consequently increasing the 
distance-dependent delay of the networks. Overall the Clustering 
Coefficient can still be used as a reasonable predictor of associative 
memory performance.

and spiking with distance-dependent delays. The comparison is 
illustrated for Gaussian connectivity patterns. Similar comparisons 
can be made for other connection strategies from the data given in 
Section “Appendix.” The connectivity of the networks furthest to 
the left has a very tight Gaussian distribution (σ = 0.4). Interestingly 
all three networks give a similar EC value of about 25. In all three 
networks performance then improves as some distal connections 
are introduced, until the non-spiking network attains its best per-
formance of EC = 42. However the spiking networks show further 
improvements reaching EC values of over 50. But perhaps the most 
striking feature of this result is that the simple threshold model 
provides a good approximation of the much more complex spik-
ing neural network.

Figure 5 presents the results of EC against Clustering Coefficient 
for spiking models with fixed time delay (1 ms) and cube-root 
delay. The linear correlation between EC and Clustering Coefficient 
is not absolutely maintained in the spiking models, however the 
results still show that the EC increases as the Clustering Coefficient 
decreases. In the fixed-delay models, the performance of all three 

Figure 3 | Connectivity measures and memory performance of non-
spiking network models. (A) Effective Capacity against Mean Path Length for 
Watts–Strogatz small-world (with varying amounts of rewiring), Gaussian-
Distributed and Fully Connected Modular connectivity strategies. The two local 
networks have a significantly higher Mean Path Length of about 10, whilst Mean 

Path Lengths for all other networks are low and do not vary greatly. (B) Effective 
Capacity against Clustering Coefficient for a variety of networks. Number labels 
of different series indicate the kinternal − kexternal configuration of that network 
series. The correlation is highly similar and linear for different types of 
connectivity.

Figure 4 | A comparison of the non-spiking network and two versions of 
the spiking network. All networks have Gaussian connectivity with varying 
σ. The differences between the three types of the network for large σ are 
significant. Results for other networks can be found in Section “Appendix.”

Figure 5 | Correlation between effective Capacity and Clustering 
Coefficient for spiking network models. For detailed results see Section 
“Appendix.” (A) Fixed 1 ms delay spiking associative memory models with 
different connectivity. (B) Cube-root distance delay.
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prediction is independent of the connection rule used. We further dem-
onstrated that when the cost of wiring is taken into account, by penaliz-
ing long-range connections, networks with local Gaussian-distributed 
connections perform best, and even outperform small-world networks. 
Finally, these findings also hold when memory is stored and retrieved 
in networks of spiking neurons with connection delays.

These results were obtained with random uncorrelated patterns, 
hence without taking into account the statistics of a natural envi-
ronment. The patterns were stationary (no sequences) and so was 
largely the dynamics of the network (no oscillations or temporal 
patterns). Our study was conducted on a ring of neurons, but the 
results can be extended to 2-D networks (Calcraft et al., 2008).

In the network of spiking neurons, the resulting feedback excita-
tion and inhibition forced the neurons into persistent UP or DOWN 
states. The network lacked, however, dynamical behavior like gain 
control, synchronization, or rhythm generation, for which separate 
populations of excitatory and inhibitory neurons would be required 
(Sommer and Wennekers, 2001; de Almeida et al., 2007). In addition, 
the spiking network used the same synaptic weights as obtained 
with the perceptron-rule for bipolar neurons, and was only tested 
for memory retrieval. Learning in such networks would require a 
more advanced algorithm like spike-timing-dependent plasticity.

clustering as a negative predictor of MeMory perforMance
Clustering (the occurrence of connections between the targets of 
the same neuron) may make some connections functionally redun-
dant or induce loops. Cycling through loops may hamper conver-
gence to an attractor. In addition, Zhang and Chen (2008) formally 
demonstrated that loops also induce correlations between states, 
or equivalently, they induce noise in the form of an interpattern 
crosstalk term to a neuron’s input, and hence affect pattern separa-
tion. Note that this does not directly imply that inducing clustering 
by adding local connections would worsen memory performance, 
since the added connections would increment k and hence the 
maximum capacity as well.

MeMory storage with local connectivity
An unexpected finding was that for a given wiring cost, Gaussian-
connected networks performed better than small-world networks. 
Although very-long-range connections speed up the convergence 
to an attractor during memory retrieval (Calcraft et al., 2007), 
they do not enhance the steady-state performance of the network. 
Moreover, the width (SD) of the Gaussian connection kernel can 
be small (Figure 4), and does not scale with network size.

relation to brain connectivity
The connectivity of the brain, and more particularly of neocortex, 
is sparse, but certainly not random (see Laughlin and Sejnowski, 
2003). Counting the close appositions between axonal and dendritic 
trees of reconstructed pyramidal cells assembled in a computer 
network, Hellwig (2000) estimated that connection probability 
decreased with inter-neuron distance as a Gaussian function of 
about 500 μm width (the order of magnitude of a cortical column; 
see Figure 7). Recent experiments using distant release of caged 
glutamate by photo-stimulation extend this range, indicating a 
still considerable excitation from distances up to 2 mm (Schnepel 
et al., 2010).

connection strategies for optiMizing wiring cost and 
perforMance
In nature, the construction of associative memory networks is 
restricted by resource, thus a connection strategy that optimizes 
both wiring cost and performance would be preferable. We define 
the wiring cost of two connected nodes in the network simply as 
the distance between them, and average it over all connected nodes 
in the network. Note that this is a quite different measure to mean 
path length, which measures steps along the connection graph. 
This measure is also different from the connection delay used in 
the spiking network models, where the cube-root of d was taken to 
avoid unrealistically long delays. For simplicity this section focuses 
on the performance of the threshold unit models.

Figure 6 plots the EC against the Mean Wiring Cost for different 
connectivity patterns. The Gaussian-distributed network has the 
most efficient connectivity, that is, for a given mean wiring cost, it 
has the highest EC. The fully connected Modular network is the least 
efficient one, whilst the Watts–Strogatz small-world network, and 
Gaussian-uniform Modular network lay between them. Effective 
Gaussian networks can be constructed with very low wiring cost 
because the width of the distribution can be quite small. In fact a 
width of just 2k (here 500) gives good performance at low cost. We 
also found that the distribution does not need to increase in width 
as the network gets bigger (Calcraft et al., 2007).

discussion
Our study of memory performance in networks with varying con-
nection strategies extends previous work on the effect of connectiv-
ity on network dynamics (Stewart, 2004; Percha et al., 2005), wiring 
economy and development (Chklovskii et al., 2004), and disease 
(Belmonte et al., 2004; Lynall et al., 2010; Stam, 2010).

Main findings and liMitations
The main finding of the present study is that for networks with a 
fixed number k of connections, and hence a theoretical maximum 
storage capacity of 2k random patterns, the degree of clustering can 
be regarded as a negative predictor of memory performance. This 

Figure 6 | effective Capacity against Mean Wiring Cost for different 
connectivity strategies. The best networks occupy the top left of the graph. 
The Gaussian-Distributed network is the most efficient connectivity among 
those investigated connectivity, whilst the Fully Connected Modular network 
is the least efficient one.
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of a genuine small-world connectivity, the observed clustering 
of  connections may also have a function in the dynamics of the 
network, or be a consequence of the multidimensional representa-
tion of the visual field onto neocortex, mapping not only stimulus 
position but also higher-order stimulus attributes like orientation. 
Nevertheless, neocortex is assumed to have a small, but significant, 
small-worldness (Gerhard et al., 2010), as based on a metric using 
the ratio of clustering over relative path length (Humphries and 
Gurney, 2008).

conclusion
We studied the capacity of memory storage and retrieval in 
networks of bipolar and spiking neurons, and compared dif-
ferent connection strategies and connection metrics. The single 
metric best predicting memory performance, for all strategies, 
was the clustering coefficient, with performance being highest 
when clustering was low. In large networks, the best connection 
strategy was a local Gaussian probability function of distance, 
both in terms of avoiding clustering and of minimizing the 
cost of wiring.

Within a column, Song et al. (2005) found an overrepresenta-
tion of bi-directional connections and local three-neuron clus-
ters in rat visual cortex. Whereas such clustering may be a sign 

Figure 7 | estimated connection probability between two layer-3 
pyramidal neurons of rat visual cortex. Copied from Hellwig (2000) with 
permission of Springer-Verlag. The best-fitting Gaussian has a SD of 296.7 μm.
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appendix

non-spiking network results
Network size: 5000 units, 250 connections per unit.

W–S small-world network.

rewiring MPL CC WC eC

0 10.540 0.745 63 63.3

0.1 2.030 0.481 187 79.3

0.2 1.959 0.320 311 88.2

0.3 1.951 0.218 432 94.7

0.4 1.950 0.152 553 99.7

0.5 1.950 0.108 672 103.5

0.6 1.950 0.080 790 105.9

0.7 1.950 0.063 902 106.9

0.8 1.950 0.054 1022 107.4

0.9 1.950 0.050 1132 107.5

1 1.950 0.050 1250 107.8

gaussian network.

σ MPL CC WC eC

0.4 2.632 0.501 91 76.2

0.6 2.626 0.378 117 86.8

0.8 2.580 0.299 147 91.6

1 2.522 0.247 179 94.8

2 2.218 0.131 341 101.6

3 1.989 0.089 504 104.8

4 1.952 0.069 656 106.6

6 1.950 0.054 869 107.4

8 1.9502 0.052 979 107.4

10 1.9502 0.051 1043 107.4

Fully connected modular network.

rewiring MPL CC WC eC

0 undefined 1.000 167 39

0.1 2.035 0.638 284 62.8

0.2 1.959 0.418 400 83.8

0.3 1.951 0.279 515 91.8

0.4 1.950 0.189 627 97.6

0.5 1.950 0.129 736 102.4

0.6 1.950 0.091 843 105

0.7 1.950 0.067 948 106.4

0.8 1.950 0.055 1051 106.8

0.9 1.950 0.050 1151 107.2

1 1.950 0.050 1250 107.2

gaussian modular network.

σ MPL CC WC eC

iNTrA-ModuLAr CoNNeCTioNS = 150,
iNTerModuLAr  CoNNeCTioNS = 100.

0.4 1.950 0.154 595 98.8

0.6 1.950 0.135 607 101.2

0.8 1.950 0.124 616 102.8

1 1.950 0.119 623 103

2 1.950 0.117 636 103

4 1.950 0.117 641 103.2

8 1.950 0.117 643 103.6

10 1.950 0.116 644 103.6

iNTrA-ModuLAr CoNNeCTioNS = 200, 
iNTerModuLAr  CoNNeCTioNS = 50.

0.4 1.957 0.287 353 91.2

0.6 1.957 0.254 369 93.4

0.8 1.957 0.245 379 94.2

1 1.957 0.242 385 94.4

2 1.957 0.242 396 94.4

4 1.957 0.242 400 94.6

8 1.957 0.242 402 94.8

10 1.957 0.242 402 95

iNTrA-ModuLAr CoNNeCTioNS = 225, 
iNTerModuLAr  CoNNeCTioNS = 25.

0.4 2.019 0.398 234 82.8

0.6 2.020 0.361 250 86

0.8 2.020 0.353 260 87

1 2.020 0.351 265 87

2 2.020 0.350 275 87

4 2.020 0.350 280 87

8 2.020 0.350 281 87.2

10 2.020 0.350 282 87.6

CC, clustering coefficient; EC, effective capacity; EC_Cuberoot, effective 
capacity for cube-root distance-dependent delay spiking network; EC_Fixed, 
effective capacity for fixed-delay spiking network; MPL, mean path length; WC, 
wiring cost.
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spiking network results
Network size: 5000 units, 100 connections per unit.

W-S small-world network.

rewiring MPL CC WC eC eC_Fixed eC_ 

      Cuberoot

0 25.495 0.737 25 22 17 19.4

0.1 2.629 0.484 138 28.6 27 28.6

0.2 2.438 0.313 264 35.4 34.2 31.8

0.3 2.317 0.205 390 39 40 35

0.4 2.239 0.133 513 41.2 44.4 37.6

0.5 2.187 0.085 638 42.2 48 40

0.6 2.153 0.054 761 44 50.8 43.2

0.7 2.132 0.035 884 44.6 52.4 45.2

0.8 2.117 0.024 1006 44.4 54.4 48

0.9 2.111 0.020 1129 44 54.8 50

1 2.110 0.020 1252 44 55.2 51.6

gaussian network.

σ MPL CC WC eC eC_Fixed eC_

      Cuberoot

0.4 2.889 0.484 52 28 24.2 27.4

0.6 3.012 0.371 53 32.6 29 31

0.8 3.102 0.295 61 36.2 32.4 34.8

1 3.142 0.244 72 38.4 34.8 36.8

2 3.074 0.130 131 41.8 44.4 44.8

3 2.865 0.089 192 42 46.8 46.8

4 2.642 0.067 254 42.6 50 49.6

6 2.396 0.045 377 43.8 51.6 50

8 2.274 0.034 500 44 54 51.6

10 2.193 0.028 616 44.2 54.8 51.6

Fully connected modular network.

rewiring MPL CC WC eC eC_Fixed eC_ 

      Cuberoot

0 undefined 1.000 34 9.2 6.2 8.6

0.1 2.671 0.651 146 18.8 19.2 23.2

0.2 2.468 0.418 271 31 30 30

0.3 2.339 0.271 394 37.2 37 33.4

0.4 2.256 0.173 518 40.1 42.8 36.6

0.5 2.200 0.108 642 42 47.2 39.4

0.6 2.164 0.066 765 44 49.4 42.8

0.7 2.139 0.040 886 44 51.8 46

0.8 2.124 0.026 1009 44.2 52.2 48

0.9 2.116 0.021 1130 44 53.8 50.4

1 2.116 0.020 1250 44 55 51.4

CC, clustering coefficient; EC, effective capacity; EC_Cuberoot, effective 
capacity for cube-root distance-dependent delay spiking network; EC_Fixed, 
effective capacity for fixed-delay spiking network; MPL, mean path length; WC, 
wiring cost.
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