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This paper deals with the problem of point-to-point readlitslin multi-linear systems. These sys-
tems consist of a partition of the Euclidean space into aefiniitmber of regions and a constant
derivative assigned to each region in the partition, whiabegns the dynamical behavior of the sys-
tem within it. The reachability problem for multi-linearstgms has been proven to be decidable for
the two-dimensional case and undecidable for the dimerbi@e and higher. Multi-linear systems
however exhibit certain properties that make them veryablétfor topological analysis. We prove
that reachability can be decided exactly in the 3-dimeradioase when systems satisfy certain con-
ditions. We show with experiments that our approach can tersiof magnitude more efficient than
simulation.

1 Introduction

During the last decades a lot of devices have been develbpeddnsist of computers interacting with
a physical environment. Computers perform discrete ojpmstwhile a physical environment has con-
tinuous dynamics. Such systems are called hybrid systerany Mif the applications of hybrid systems,
such as intelligent highway systems, air traffic manageragstems and others asefety criticaland
require the guarantee of a safe operation.

Formally verifying safety properties of hybrid systems sists of building a set of reachable states
and checking if this set intersects with a set of unsafe statderefore one of the most fundamental
problems in the analysis of hybrid systems is s@chability problem.

The reachability problem is known as being difficult. It hasb shown to be decidable for special
kinds of hybrid automate [1,/ 7, 9, 10,111] including timedamata [1], some classes of rectangular
hybrid automata 7] and o-minimal hybrid automata [9].

Since only certain kinds of hybrid systems allow for the éxammputation of the reachable set,
approaches for safety verification include the approxiomatif reachability analysis and abstraction
techniques. But these techniques are easy to fail wheneapilarge systems since the complexity
rises up very quickly with an increase in system size.

One of the drawbacks of approximation and propagation fqales is that too little attention is paid
to the geometric properties of the systems under analykisTBere are two main approaches in this
direction: 1) methods that use topological properties efglane [[12], and 2) techniques based on the
existence of integrals and the ability to compute them [5].

In this paper we considemulti-linear system¢ML) also often calledbiecewise constant derivative
systemgPCDs) in the literature. They are a special kind of hybristesn, where the number of dimen-
sions refers to the number of continuous variables. Sudemgssatisfy the following restrictions: A
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discrete state is defined by a set of linear constraints aswlade transitions do not change continuous
variables. ML systems have been proven to be decidable éamtb-dimensional case [12], whereas the
results presented ihl[2] state that such systems are uratideitbr the dimension three and higher.

The decidability results for the 2-dimensional case relytmnexistence of a periodic trajectory after
a finite number of steps. This property does not hold for higlivaensions. Nevertheless, 3-dimensional
systems also feature some sort of regularity. And, as in tdEn2nsional case, 3-dimensional multi-
linear systems exhibit certain properties that make them sigitable for topological analysis.

Contribution We consider a subclass of multi-linear systems, that wienwalki-linear A-systems.
These systems satisfy the following property: If there iy@lic trajectory, then the the points of each
cycle iteration intersecting the same boundary elementpaiighedron lie on a straight line. A straight-
forward consequence of this assumption is that the dissame®veen the corresponding boundary points
of different rounds are proportional {property). We introduce the notion of a hypercycle, a geliwa-
tion of a cycle. The infinity criterion for 2-dimensional easefer tol[12], has an analog in 3 dimensions.
We show that theé -property holds also for hypercycles, and the reachalzliy be decided exactly if
the derived infinity criterion for 3 dimensions holds for gieycycle.

We have implemented our approach and compared it with stimnlaAs soon as our algorithm de-
tects a cycle (or a hypercycle) for which the given infinititemion holds, the algorithm requires constant
number of steps. While the number steps for simulation grexp®nentially with the distance between
points. Algorithms for computing reachable states arendftesed on floating point computations that
involve rounding errors and the correctness of such alyostcan be violated. Since our algorithm takes
significantly less steps, it leads to more exact computstion

A complete version of the paper containing all proofs anddiimils of the benchmarks is available
at [14].

2 Multi-Linear Systems

Multi-linear systems consist of a partition of the Euclidespace into a finite number of regions and a
constant derivative assigned to each region in the pantitio this section we define these systems in a
way similar to [12].

We consider am-dimensional Euclidean spacg" with a metric d and points in it denoted by
andy. In the following, we specify the position of any point in 8vknsional space by three Cartesian
coordinates. Ainear half spaces a set of all point inZ" satisfyingAx+ B < 0, wherexie {<, <, >, >},

Alis a rational vector anB is a rational number. A polyhedron is a subset@fobtained by intersecting
a finite number of linear half spaces. Since we have a finitebeurof linear half spaces that divide the
completen-dimensional Euclidean space, there are polyhedra thatcafeounded from all sides.

Definition 2.1 (Polyhedral partition) Given a finite set of linear half spaceg& = {Ax+ B < 0,1 <
i <n}, we say that??(.¥) = {Py,...,Pm} is a polyhedral partition of#Z" by .7 if. 1) U™, P = %",
and2) PiNP;j = Ofor distinct i, j € {1,...,m}.

When it is convenient we will us¢”? instead of%?(.’) to denote a polyhedral partition. Given a poly-
hedral partition?(.¥), we define the set of its boundary points as

Bd(Z(¥)) ={ye Z" | I(Ax+Bx0) € . : Ay+ B=0}.
For each polyhedroR € #(.¥), we define the set of the boundary points as
Bd(P) =Bd(#(.¥))NP.
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Figure 1. a) A simple 3-ML and b) a possible trajectory

Note that, depending on the partition, the set of boundaigtpof some polyhedra can be empty.

Definition 2.2 (Boundary element) Given a polyhedral partitiorn?(.#) and a polyhedron B Z(.%),
we say that e is a boundary element of P if the following holds.

(1) eC Bd(P), and
(2) There is(Ax+ B 0) € . such that if yc e then Ay B = 0.

An n-dimensional multi-linear system consists of a partitoniZ?(.#’) = {Px,...,Pm} of the space
2" into a finite set of polyhedral regions and a constant deviway; assigned to each regidh. We
define such systems and a trajectory similar o [12].

Definition 2.3 (Multi-linear system) We define a multi-linear system c#" as a pair 7 = (£, f),
where Z is a polyhedral partition ofZ" and f: &2 — %" is a function that assigns a vector c to each
Pe 2.

In the following we concentrate on 3-dimensional multielim systems. A simple 3-dimensional
multi-linear system is depicted in Figure 1. The trajeasrof such systems are sequences of line seg-
ments, where the break points belong to the boundaries ghedia. Multi-linear systems are determin-
istic in a sense that for each initial point there is exactig corresponding trajectory.

We assume that the assigned derivative vectors of two neigitppolyhedra may not be directed
towards the same boundary, since this would lead to Zenovimrhahen a system performs infinitely
many transitions in a finite period of time.

In the rest of the paper we use the following notations.cBye denote the empty sequence. We use
s1.S, to denote the concatenation of sequerggeands,, (si){il is a shortcut for the sequensk.....s™.
Given a sequencg we denote bys® a (possibly infinite) sequences. ... if sis repeated at least two
times. Bys; C s, we mean thag, = s,.51.S, for some sequences,s,,s,,s, and at most one of, and
s, is not the empty sequence.

In the following definitions for simplicity and without logg generality we can assume that a trajec-
tory always starts at a boundary element.

Definition 2.4 (Trajectory ) Let.s# be a ML, and ¥ € 2" be a point.

1. Atrajectory starting atis a sequence = Xg.X1.Xz.... Where for i> 0 there is Pe &2 such that
X € Bd(R) and for ye]x_1,x| there is no Pe & such that ye Bd(P"). We denote by Te7’) the
set of all trajectories of77.
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Figure 2: A schematic representation of a hypercycle

2. A sub-trajectory of, written ast® C 1, is a finite (possibly empty) sequence= x;.X1..... Xj.
We denote by Tithe set of all sub-trajectories of.

Definition 2.5 (Signature of a trajectory) Let .77 be a ML, and ¥ € 2" be a point. We assume a
trajectory T = Xp.X1.%2.... . We say that a sequence of boundary elemerits = ep.e;.€.... is a
signature oft if x; € g for i > 0. We denote b¥(7¢) the set of signatures of all trajectories &’ and
by Z3(¢) the set of signatures of all sub-trajectories.f.

Definition 2.6 (Simple trajectory) Let.# be a ML. We say that € Tr(.7) is a simple trajectory if
o(1).o(1") Z o(t) for eacht’ € Tr5(2#) such thato(1') C o(1) and 7’ # €. We denote byr(.#) the
set of all simple trajectries and B(.7#) the set of signatures of all simple trajectories#f.

For each multi-linear system, the number of polyhedra incthreesponding polyhedral partition is
finite. Hence, we conclude that the number of signaturegspanding to the simple trajectories is also
finite.

Lemma 2.7 For each MLJ#Z, 3(#) is a finite set.

The notion of a cycle plays an important role in the next sectDue to the finiteness of the number
of polyhedra in the polyhedral partition of each multi-lbmesystem, each trajectory either reaches a
region it never leaves or its subtrajectories form cyclelsafndary elements.

Definition 2.8 (Cycle) Let.# be a ML. We say that, a (sub)trajectory of#, is a cycle if Sigir) = 0*
for o € £(7). We denote by C7) the set of all cycles of7.

Multi-linear systems for the dimension two have a nice prgpthat makes the analysis simpler:
Each trajectory has an ultimately periodic structure, ager finite number of steps it forms a cycle in
terms of visited boundary elements. This property does alat for higher dimensions. Therefore, we
introduce a notion of a hypercycle. This is a generalizatitacycle in the following sense: a hypercycle
contains (several) cycles adjoined by simple trajectofiegach iteration of the hypercycle the number
of passes through each cycle may vary but the sequence fdvisbundary elements is preserved.

Definition 2.9 (Hypercycle) Let 7 = (22, f) be a multi-linear system. We say that a trajectoris a
hypecycle ifo (1) = (07.07.....00.00)* form> 1, i € () and 0] € 2(#) U{¢e} and at least one
of the following holds.

e There isl <i < m such thao] # ¢,

e M>2.

We denote by 'E‘(%”) the set of all hypercycles of°.

In fact, the notion of a hypercycle can be generalized furttyeconsidering cycles of hypercycles.

But in this paper we restrict the class of systems under derafiion to the systems such that each
trajectory is either a cycle or a hypercycle after finite nemdrf steps.
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Figure 3: A-cycle: a)di/d; = dy/d3, and b)d; /dy = d} /dj

3 Deciding Reachability for a Special Class of Multi-LinearSystems

In this section we analyze topological properties of a sagxbf multi-linear systems. This subclass is
defined by a generalization of properties of 2-dimensionkldystems.

Namely, we assume that if there is a cyclic trajectory, thHenpgoints of each cycle iteration in-
tersecting the same boundary element of a polyhedron lie straght line, called th& -property. A
straightforward consequence of this assumption is thadlidtances between the corresponding bound-
ary points of different rounds are proportional.

If there is a cyclic trajectory, then the points of each cyitdeation intersecting the same boundary
element of a polyhedron not necessarily lie on a straiglet lim general case, even the angle between
the corresponding line segments is not preserved. Nevest)ewe tend to think that for sufficiently
many systems, especially for systems having some symmretheir description, the trajectories obey
the A-property.

3.1 The Reachability Problem

In the following to be able to perform exact computations,assume that all coefficients in a system are
rationals.

Since a solution of a differential equation is unique for @egiinitial point in combination with
rationality of coefficients, we obtain the following properGiven a multi-linear system and a rational
initial point x, it is possible to compute the poipteachable fronx after time intervalAt exactly.

Definition 3.1 (Reachability problem) Given a multi-linear system? = (£, f) and two points x and
y, the problem of point-to-point reachability Re&g#, x,y) is stated as follows: Given two pointsyx
%3, is there a trajectoryr (7, x) such that ye 1(J7,X).

3.2 Reachability for Multi-Linear A-Systems

Now we define formally a subclass of multi-linear systems woms@er.

Definition 3.2 (A-cycle andA-line) Let.Z = (7, f) be a ML. Suppose far e Tr® the following holds.

o T=(x..... xé)tj:1 where forl <i <s,1< j <t there are Pc &2 and ¢ € Bd(P) such that#ke g.

o X = A X W for L Xt 1<i<s 1< <t
Then we say thatis aA-cycle. We say that a ling is aA-line of T with respect to gif x) ™, xJ x/ ™
1<i<s,l<j<t.

el
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Figure 4: A-hypercycle: The ratio of the distances betwdelines of consequitive rounds of a hyper-
cycle is preservedd; /dy = dy/d3

The notion ofA-cycle can be extended to a hypercycle. In the followingegitwo parallel lines
L; and Ly, we denote by Digt 1,L,) the distance betweemn land Ly, i.e. the length of a line segment
[X1,%2] such thatx; € L, X € Ly and([x,%p] L Lj.

Definition 3.3 (A-hypercycle) Let 57 = (£, f) be a ML. Suppose a trajectonyis a hypercycle, i.e.
o(1) =(0y.07.....00.05)" for 6,0/ € Z(A). Letforl <i<m, ec gj, and Ly_2, Lp_1, Lp and Ly41
are A-lines for e of the corresponding consecutive rounds)b— 1, b and b+ 1 of 1. We say that is
a A-hypercycle if
oy _ b
dy o1’
where ¢ = Dist(La—1,La), b—2<a<b+1.

Definition 3.4 (A-system) Let /7 = (£, f) be a ML. We say that# is a A-system if for eachr the
following holds: 1) Ift is a cycle therr is aA-cycle. 2) Ift is a hypercycle them is a A-hypercycle.

As the next step, we define computable properties that wdlael as to check whether a system is
aA-system. Lemm@a_3l5 defines conditions sufficient for a cyeleetal -cycle: As soon as three points
of consecutive cycle iterations lie on a straight line, #@uorof the distances between consecutive points
of different rounds is preserved.

Lemma 3.5 Let # = (22, f) be a ML. Suppose (1) = o for T € Tr* and 0 € £(#). Assume that
X1,X%2,X3 € €, €€ g, are consecutive points of intersectionradnd e. If X, %o, X3 € L for some line L then
Tis aA-cycle.

As we see in Lemmia 3.6, it is sufficient for tAeproperty to hold for two distinct trajectories going
through the same cycle of boundary elements. Then it holdegoh cycling trajectory going through
the same cycle. Note that it is sufficient to compute for eaajedtory whether three points of the
consecutive rounds are in one line.

Lemma 3.6 Let# = (2, f) be a ML. Suppose (1;) = ¢* for a trajectory7j, 1 < i < 3. Assume that
71 and 1 are A-cycles. Then the following holds.

e T3isaA-cycle.
e LT || LS || LS, where IF is aA-line of 1; with respect to e for eacheo.

Lemma 3.7 Let.# = (22, f) be a ML. Suppose eaahc C(.%) is aA-cycle. Then each’ € C"(.7)
is aA-hypercycle.



256 Deciding Reachability for 3-Dimensional Multi-Linear Sgss

Algorithm 1 POINT-TO-POINT REACHABILITY

Input: pointsxo,y € %°, ML system.#, maximal simulation steps e .4
Output: 3T(H,%0) = X0, X1,---,Y

1.y =#(y) {y € R andy € Bd(R) for some partitiori }
2: X<+ X k<0
3: whilek<ndo

4 X+ H(X) k<—k+1

5. if cycle = (x,...,%.s)* detectedhen

6 if Bd(y') = Bd(xp) € ¢ then {boundary element ofis in cycle}
7 if)/:xtljth-x?bfort:1:§§]keL/V+then
8: return true

9 end if

10: end if{y is not reached by cyclé}

11 if isinfinite() then

12: return false

13: else

14: X < exitPoin({)

15: end if

16:  end if{cycle detectef

17: end while

18: return y € 1(J,%o)

Theorem 3.8 Let.7Z” = (2, f) be a multi-linear system. Then it is decidable whetb#iis a A -system.

Proof By Lemmd2.7, the seX(.57) is finite. By Lemma§ 314, 316 and 8.7 it is sufficient to perfdha
following steps: 1) For eactr € ¥ to choose two distinct; andt, such thao(1;) = 0* ando(12) = 0*.

2) To compute three consecutive points of intersection ehdt, with e € g. 3) To check whether these
points are in one line.

We have shown that if each cycle isAacycle then the given system ishasystem. The algorithm
to check whether a (hyper)cycle is infinite is presented értbext section and it is an extension of the
2-dimensional case from [12].

4  Algorithm for Point-to-Point Reachability

First we need to introduce some further notations. d.etBd(x)|x € %° denote the border element
e such thatk € B nefor some partition ande € Bd(R). An edgeeis given in the form of

e={v+k-Uvie 2z <k <h:l,he #z}.
Furthermore, given a cyclé = ()(ij,...,><ij+s)'j‘:1, let x; denote the point reached by the cycle in dtle

iteration on border element Bxh). Then{x} +t- x?b} fort € Z is the line through the trajectory points
on BdX,) (A-line), called a trace in the following.

Algorithm[1 decides for a ML systen#” and a starting pointy € %2 whether a poiny € %° can be
reached by a trajectory( 7, Xp) = Xo, X1, - . ., Y through.s#. The algorithm is allowed to performe .4
simulations of77, note thak can be much larger thamas our experiments will show.
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Algorithm 2 INFINITY TEST

InpUt: CyCIeZ = (XIJ g >Xij+s):j3:1
Output: ¢ is infinite cycle

1: forall ) € ¢ do

2. forall ec Bd(P,) do
Ly
3 if en{x}-+t-xtx2|t € Z*} # 0 then {trace intersects}
4 if Ap > 1then
5: return false
6: else
7 ifxg:ngrl%Ab-x?xbgéPbthen
8 return false
9: end if
10: end if
11: end if
12:  end for

13: end for
14: return true

While the maximum number of evaluations is not reach#djs simulated stepwise until eithgiis
reached or a cycle is detected. In our implementation weheseyicle detection algorithm due to Brent
[4] which requireO(u + A ) system evaluatiors.

Ifacycled = (x,...,x,¢)%_; is detected, several cases have to be distinguished:

a) BdYy') is not part of the cycl@ If ¢ is infinite according to Algorithri]2y will never be reached.

b) Bd(y) = Bd(x,) for someb € [i,i + s and hence is element of the cycle. In this case it needs to be
checked whethefia € .4 such thaty =xg. If so theny’ should be in

0855}
for somety € 2. For allxg,
1-A)

a
ta=$ A= :
a i; 1-Xp

_ log(1-t,(1—Ap))
B log(Ab)

isin 4T iff y is reached by a cycle iteration. \f is not reached by and the cycle is infinitey
is never reached byZ from Xp.

therefore

c) Y is not reached by and the cycle idinite. We calculate the poirmte where( is abandoned
according to algorithrn]3 and continue simulation and cyelection there.

11 denoting the first occurrence of the cycleindicating the cycle length.
2y is the border element reached frgrhy simulating.”#, see algorithril]1 step 1.
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Algorithm 3 EXIT POINT
InpUt: CyCIeZ = (XIJ g >Xij+s):j3:1
Output: pointxe € Z° where cycle] is abandoned

1: PQ+ PriorityQueue .4 x 3
2: forall x}, € { do

3 ifAp<1Vx, €PRythen
4: skip
5. end if
6: forall ec Bd®(R,) do
(X T)- (g )
7: <
|15 < T2
8: end for

9: t < mlneeBde(Pb) te
10: if Ap# 1then

. log(1—t(1-Ap))
11: n< LWJ
1-AD
12: t+ 17/\3
13: else
14: t<n<« |t]
15:  endif

16: xe%xtlﬁt-x%

17:  PQ.put(n,Xe)
18: end for
19: return PQ.pop()

The infinity test (Algorithni2) checks for every partiti&y in cycle { whether the trace lingxt +t -
x%} intersects with some< Bd(R,). If aintersection poinks, , exists and\, > 1 then{ must abandon
R, after some number of iterations and therefore can not batmfilf no intersection occurs oy, < 1
and the convergence point

00 = 4| 3 1 3
%=Xt 3 A% =X Ty
i= b

lies beforexs, . on the trace lineR, is never abandoned. If no partition within the cycle is esraloned
then( is infinite.

For a finite cycle¢, Algorithm[3 determines the exit point from . Recall that an edge can be
represented as= {v+k - U]l <k < h}. For everye € Bd(R,) the intersection poins, , with the trace
line is determined.

The intersection point with the smallest distande xtl) is the exit point toR,. The number of cycle
iterations fully contained i, is given by

log(1—t(1—Ap))
o= | log(Ao) >

with point
1-2A

o 15

“ KpXp-

(S )=

o
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Figure 5: Example ML systems with trajectories. The coneraag line of7# is highlighted in red.
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Figure 6: Projections of trajectory i##7. In c), the dashed black line indicates the trajectory ifibimts
were to be on one line.

Special consideration is given fg, = 1, refer to Algorithm[B. The overall exit point to cycle can
therefore be determined by = Xek With k = argmir,; M.

5 Experiments

The experiments were performed on a server with two dua-2@ GHz CPUs and 3 GB main memory
under RedHat Linux. We implemented the algorithms in Jairgubie JAMA library for linear algebra
operations([B]. The source code of our implementation idabe at [13].

Two sample ML systems were used in our experiments and arietéeépn Figure[b alongside a
sample trajectory for each. The details of the examples edolnd in [14].

All partitions in 77 are unbounded in th®y dimension. ThexOzplane is divided into four inner
partitions and 8 outer ones. In the inner partitions thettary “rotates” around the center with increas-
ing radius, whereas the radius decreases in the outeriqrastiiNot all choices of result in aA -system.
Note that in figuré6 the points of a trace through one bordameht (depicted in red) lie on one line for
2 projections XOyandxO32, but violate the line criterion for thgOzprojection.
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/
, X
Figure 7: Projection onOzplane of trajectory inzz. With each iteration of the hyper cycle, more iter-
ations of the simple cycle through the four 3 dimensionayipetira are required to rea€l. Therefore
no infinite simple cycle exits i#.

Systems#3 consists of 5 two dimensional polygons and 4 unbounded tlireensional polyhedra. In
the unbounded regions the system “rotates” aroundthaxis in ever shrinking circles until it reaches
P1. % then traverses all two dimensional polygons until it readRgwhere it is ejected into to the
unbounded space again. With each iteration more and magarng are required in the unbounded
space to reacP;, and the trajectory througR; converges towards th®x axis. Therefore the system
never reaches an infinite simple cycle as illustrated in &glr

In s placing the initial pointx at any distancen from the inner four partitions results i@(n)
simulation steps until the inner portion is reached. Ouordlgm reduces the complexity ©(u1 +A) in
general, considering#; even toO(1). Only three cycle iterations are required to calculsdor each
X € { = (X,...,X%+s)* and determine the exit point of the cycle. Experimental éathown in tabl&ll
and figurd_8a. We attribute the decrease in running time ofitgarithm in the first two iterations to the
Java just in time compiler, optimizing code dynamically &ais iexecuted[[6]. Thereafter the algorithm
exhibits constant execution time as anticipated.

Modifying .7 to 7] so that the rotation radius decreases in the outer paditisnwell as in the
inner partitionﬁ produces a convergence line for all partition€ht {(C,-,C)}. Simulation alone may
neverdetermine whethey € Cl is reached, whereas our algorithm requires again three dgchtions
of length at most 12 to determine the reachability.of

ML system.z#3 exhibits a similar behavior. With each pass through the tiweedsional partitions the
number of required rotations to reach e axis again increases to infinity. Therefore the reachgbilit
of y on or close to the convergence line of the system is not flyagéiermined by simulation alone. If
y is reached aften hyper cycle iterations, at lea€(n?) simulation steps were required. Our algorithm
reduces the complexity @(n(¢ + A)). With improved hyper cycle handling the complexity ought to
be further reduced t®(c- (1 + A)), since three passes of the simple cycle to reaclOthaxis suffice
to determine the convergence line of the hyper cycle. Agaiperimental data is shown in table 1 and
figure[8b. The data exhibits the same behavior as#pregarding the Java just in time compilation. Due
to its positionxy = (10°,108,C — C/10%) reachesP, beforeP; and therefore requires fewer simulation
steps thanxg = (107,107,C —C/107).

3specifically settings to (3,y1, —1).
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XXO =(50,-% Steps | Simulation | PTPR )>§0 = (xxC-C/x) Steps | Simulation | PTPR
10t 10 10 24 || 10t 10 10 12
107 154 98 18 || 107 59 20 13
103 1594 1421 6| 103 83 17 3
104 15994 2082 6| 10 111 23 4
10° 159994 22609 5| 10° 135 26 4
10° 1599994 188276 5| 108 149 30 3
107 15999994 1952252 5 | 107 161 33 3
10° 159999994| 19700805 71 108 143 29 3

(a) 774 y s first point to be reached in the inner four par- (b) ##: y=(0,0,C—-C/x).

titions.

Table 1: Comparison of our algorithm to pure simulation toide reachability ofy givenxg. Column
stepslists the number of simulation steps required to reaclColumnssimulationand PTPRgive the
time in [ms] required to decide reachability by simulatioxaur algorithm, respectively.

—=&— Simulation | | —=&— Simulation
——PTPR —=—PTPR

z=10' x=10'

(@4 (b) 7

Figure 8: Comparison of our algorithrPTPR to pure simulation to decide reachability yofjiven xg.

6 Conclusions

The complexity of safety critical systems has increasedhdtizally over last decades. The safety prop-
erties of such systems can often not be checked exactly €litiecto theoretical boundaries or due to too
large computational efforts required. One of the drawbackecent techniques is that too little attention
is paid to the geometric properties of the systems undeysisal

A hybrid system (a hybrid automaton) is a formalism that carubed for modeling safety critical
systems. ML systems constitute a rather simple class ofdhghstems but yet they are on the boundary
of decidable and undecidable systems.

ML systems have certain properties that make them veryldait@r a topological analysis. We
have shown that on the one hand there are systems with abglt@vior, and on the other hand if
some properties of 2-dimensional systems hold in three mkimas then it is possible to answer exactly
whether a pointy is reachable from a point. We have presented a prototype implementation of our
approach for solving the reachability problem for a sulxtzsnulti-linear systems which we have called
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A-systems. We compared our approach with simulation. Thdtsesuggest, that using geometrical
properties of the systems can lead to orders of magnitude eficient techniques than simulation.
As soon as our algorithm detects a cycle (or a hypercyclewtach the infinity criterion holds, the
algorithm requires constant number of steps. While the raursteps for simulation grows exponentially
with the distance between points. Also our algorithm cad l@amore exact computations because of
less rounding errors during the computation.
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