
 

 

 

Abstract—We present in this paper three novel 

developmental models allowing information to be encoded in 

space and time, using spiking neurons placed on a 2D substrate. 

In two of these models, we introduce neural development that 

can use bilateral symmetry. We show that these models can 

create neural controllers for agents evolved to perform 

chemotaxis. Neural bilateral symmetry can be evolved and be 

beneficial for an agent. This work is the first, as far as we know, 

to present developmental models where spiking neurons are 

generated in space and where bilateral symmetry can be 

evolved and proved to be beneficial in this context. 

I. INTRODUCTION 

N order to investigate the importance of bilateral 

symmetry in artificial neural development, here we 

introduce three different novel models of a developmental 

program that grow spiking neural networks on a two-

dimensional substrate. Each of these models has different 

degrees of allowed or enforced symmetry. These 

developmental programs are evolved, using a genetic 

algorithm, to allow simulated agents to perform chemotaxis. 

This paper begins with a basic introduction on symmetry in 

nature and how it has been modeled in artificial evolutionary 

models. Then, we introduce our developmental model, the 

agent used and the task it had to perform. Further, we 

describe in more detail our three different models. Then, the 

simulation and genetic algorithm parameters are presented. 

This section is followed by the results, the discussion and 

finally the conclusion. 

A. Symmetry 

For centuries, people have observed and been fascinated 

by symmetrical patterns found in nature [1-3]. In our minds, 

symmetry is often related to something beautiful, well 

balanced or well proportionate [3]. It has been shown that in 

many species (even in humans), female prefer males that 

have symmetrical displays [4]. One possible reason to 

explain this phenomenon is that symmetry might reflect the 

high quality of a signaler. Another reason could be that 

individuals have evolved recognition systems that have 

common properties and are capable of generalization, and 

from this could emerge a high sensitivity to symmetries [4]. 

In living organisms, symmetries arise as a side effect of the 

creation of axes that will guide cells during development [1-

3, 5-8]. Cells divide and migrate following gradients that 

form these axes. They might also create or modify gradients 

and rearrange themselves to form the most 

thermodynamically stable pattern [6]. Therefore, it is very 

likely that cells will be placed symmetrically along different 

axes to have a system in a state of equilibrium [3]. But due to 

developmental noise, even the most bilaterally symmetrical 

animals do not show perfect symmetry. Also, many 

vertebrates are mainly bilaterally symmetrical about the 

midline of the body but they have many internal organs that 

are not bilaterally symmetrical (for example in humans: 

heart, stomach, spleen…) [5-8]. Even if the emergence of a 

bilateral body plan was a key step in evolution, new axes 

were defined that differentiated head and foot, back and front 

and left from right, and allowed asymmetrical parts to be 

created and eventually lead to more complex organisms. 

B. Evolutionary Computation 

In order to understand the importance of symmetry in 

development, certain researchers in artificial intelligence 

have created abstract developmental models that generate 

neural controllers for robots or simulated agents. It is always 

a difficult task to create robust and adaptable neural 

controllers for agents that can perform many different 

actions. It is even more difficult if you want to reuse existing 

controllers and add new modules so an agent can learn and 

perform new tasks.  A promising trend is to evolve neural 

networks using evolutionary computation. There are 

different approaches in this research area and many different 

ways to encode evolving features into genes [9-14]. A certain 

amount of work has been done in evolutionary computation 

on encoding spatial neural networks [15], with symmetrical 

structure using L-systems [16-21] and grammatical encoding 

[22, 23]. Stanley also created abstract models generating 

representations of symmetrical patterns [24, 25]. To the best 

of our knowledge, no one has created a developmental model 

generating spiking neural controllers placed in 2D spaces, 

where bilateral symmetry can be evolved, and improved the 

performance of an agent to perform certain tasks. 

C. Our Approach 

In this study, we used developmental programs that 

allowed information to be encoded as spatio-temporal neural 

activity patterns. We created three new developmental 

models initially inspired by Kodjabachian and Meyer’s 
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SGOCE paradigm [26-30] and NEAT [24, 25, 31]. By using 

them, we wanted to see how bilateral symmetry in neural 

networks could be generated and affect the behavior of a 

simulated robot. In our models, a developmental program 

was expressed in a genome and when executed, it would 

create one or more intermediate neurons with one or more 

connections to make the whole neural network grow. Like in 

[31, 32], one of the key ideas in our approach is based on 

complexification. An initial genome is first composed of 

only one gene creating only one neuron when expressed. 

Then, during evolution, new genes can be added via 

mutations creating more neurons and more connections, 

therefore adding more complexity to the system. Another 

important concept of this model is targeting [32]. We used a 

2D neural substrate where spiking neurons (with synaptic 

integration and conduction delays) are placed and can grow 

connections to target locations. Evolution can therefore 

generate neural networks able to encode external information 

as spatio-temporal patterns.  

We first created a model where parameters of each neuron 

were encoded in the genome (NO_SYM). We then created 

two variations of it allowing bilateral symmetrical clones of 

neurons to be created. The first one allowed the evolution of 

symmetrical neurons (EVO_SYM) and the second one 

enforced the symmetry for every neuron (ENF_SYM). We 

also decided to have neural development performed in two 

stages: first creating every neuron on the substrate, then 

creating all the connections. This was inspired by biological 

systems where neurons first divide, then migrate to a certain 

location and finally create connections [5, 6, 33]. Some 

neurons might eventually die but we decided not to model 

apoptosis in our model to deal with complexity 

incrementally. 

D. The agent and its Task  

We decided to evolve an agent to perform a simple task 

which was to stay inside a chemical concentration in a 

simulated continuous environment (Fig. 3). The agent has 

two wheels, one on each side of the agent, providing a 

differential steering system. Each wheel is controlled by two 

motor neurons providing forward and backward propulsion. 

The agent also has two antennae placed on the front of the 

agent, one orientated on the left and the other one on the 

right. Each antenna is linked to a sensory neuron. The two 

antennae are separated widely enough to detect the presence 

of the chemical gradient (Fig. 1). To control the agent, we 

used a spiking neural network. The sensory and motor 

neurons placed on the neural substrate form the initial neural 

network (Fig. 2).The complete neural network was created 

by using a developmental program.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

II. METHODS 

A. Spiking Neurons 

We used a leaky-integrate and fire model with synaptic 

integration and conduction delays already described in [34, 

35]. We also used a realistic model of noise in the form of an 

diffusive OU (Ornstein-Uhlenbeck) current [36]. This form 

of colored noise reproduces the subthreshold voltage 

fluctuations in real neuronal membranes. We added this 

noise to the total input current of each neuron. The noise 

current  I(t) is described by:                                  

             
( )

( )( ) ( )tDItI
dt

tdI

I

ξ
τ

+−−= 0

1
                    (1)                    

where τI denotes the current noise time constant (2ms in our 

case), I0 is the mean noise current (0 in our case),                 

D = 2σ
2
 / τI is the noise diffusion coefficient, σ is the 

standard deviation (0.0007 in our case) and ξ(t) is a Gaussian 

white noise (with mean = 0 and standard deviation = 1). The 

motor neurons used to control the wheels are modeled in the 

same way. However, the sensory neurons are based on this 

model but have a different expression to calculate the input 

current. We created a model of a spiking sensory neuron in 

which the chemical concentration is processed so that a 

quasi-linear relationship between the concentration and the 

firing rate of the sensor is produced. The sensory neurons 

were already described in detail in [34, 35, 37].  

B. Chemical Concentration 

We decided to use a simple model of chemicals that are not 

diffused and evaporated. The concentration is a linear 

Fig. 2.  2D substrate of an agent with initial neural network. The two 

sensory neurons are shown on the right in yellow. The motor neurons 

move the agent forward (green) or backward (orange) by turning the 

wheel. 

Fig. 3.  Path of an agent moving towards the middle of a fixed chemical 

concentration (red circle). The concentration is a linear gradient where 

the maximum value is situated in the middle. 
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Fig. 1.  Properties of an agent equipped with two wheels and two 

antennae. Units are arbitrary. 
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gradient where the maximum value is situated in the middle 

of the circular chemical concentration. 

C. Agent Movements 

In order to move the agent, we calculated the velocity V(t) 

(arbitrary unit) of each wheel using the following equation: 

 

          
( ) ( ) ( )( )bfvmotor ttttKVV

dt

dV
−−−+−= δδτ 0

             (2) 

Where δ is the Dirac function (pulse) defined by δ(x) = 0   

when x ≠ 0 and δ(x) = 1 when x = 0. 

We decided for simplicity that an agent should always 

move forward in the absence of any external input so we set 

up the parameters accordingly: V0 = 0.5 is the default 

velocity (the agent is always moving straight by default),    

Kv = 5 is the speed coefficient, τmotor = 0.05 is  the time 

constant in seconds, tf  is the time when the most recent spike 

was emitted by the motor neuron responsible to turn the 

wheel forward, tb is the time when the most recent spike was 

emitted by the motor neuron responsible to turn the wheel 

backward. The agent was moved by calculating the velocity 

every time step. 

III. DEVELOPMENTAL PROGRAMS 

A. Without Symmetry: NO_SYM 

The developmental program constructing the neural 

network consists of a genome which is an array of modules. 

A module must have a gene, which we denote N, encoding 

the position (x, y) of an intermediate neuron, and can have 

genes encoding possible connections, denoted C. The neuron 

is placed on a 2D Cartesian coordinates system with its 

origin situated in the centre of the agent (Fig. 1 and 2). If a 

new module is created, it will be added to the end of the 

genome. A module is valid if it is composed of only one N 

gene but not if it is only composed of C genes. A C gene 

encodes the different parameters for a connection of a 

neuron. That includes an angle θ and a distance d to 

determine where it connects (see Section III. B), a synaptic 

strength (w) and a type (afferent or efferent). A neuron can 

also have connections even if they are not encoded in the 

module defining its properties. The reason is that other 

neurons can create efferent and afferent connections to this 

neuron. 

When an agent is created, it only has an initial neural 

network (Fig. 2). There are no intermediate neurons, only 

motor neurons and sensors. If the genome of an agent is 

composed of at least one module, the complete neural 

network can be created by executing the developmental 

program expressed in the genes, reading the genome from 

the beginning to the end. With only one module, only one 

intermediate neuron will be created but it can have more than 

one connection. The neural network is constructed by the 

developmental program in two steps by reading the genome 

twice. First, all the neurons are created in the 2D substrate by 

reading all the N genes. Secondly, all the connections are 

created by reading all the C genes. 

When reading a C gene, a target position for a given 

neuron is defined to determine to which neuron it will be 

connected to. The target position is given by the angle θ (in 

radians) and the distance parameter d relative to the neuron. 

A neuron creates a connection to the closest cell to this target 

position (Fig. 4). Self connections are therefore possible. 

Motor neurons cannot have output connections and sensory 

neurons cannot have input connections. A target position can 

be situated outside the substrate. In this case, a connection 

will still be created linking the closest neuron. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Evolvable Symmetry: EVO_SYM 

This model is a modification of NO_SYM. The main 

concept of this model is to introduce genetically encoded 

bilateral symmetry with respect to the longitudinal axis of the 

agent. The idea is that instead of encoding two neurons that 

are similar but are positioned on opposite sides of the 

midline (x-axis), the genome could encode only one neuron 

but with an extra evolvable parameter allowing the creation 

of its symmetrical clone; this allows compressing genetic 

information. In fact, the initial neural network is 

symmetrical, and therefore the evolutionary process should 

be able to use this important embedded feature. This model 

is based on an abstraction of a gradient that could form the 

horizontal axis. Compared to NO_SYM, C genes are still the 

same but N genes have an additional Boolean parameter sym. 

This parameter sym plays an important role. If it is activated 

(set to true), a clone of the actual neuron will be created and 

placed symmetrically to the x-axis (Figs. 5 & 6). If the parent 

neuron is situated on the x-axis, its clone will be created in a 

close random place around it.  

The development of the neural network is very similar to 

NO_SYM. The only difference is that during the first step of 

development (creation of neurons), each created neuron will 

have a symmetrical clone if its parameter sym is set to true. 

TABLE 1 

RANGES OF VALUES USED FOR THE PARAMETERS OF THE GENES 

Parameters Ranges of values 

x [-50,50] 

y [-25,25] 

w [-15,15] 

θ [0,2π] 

d [1,100] 

type afferent / efferent 

 

Fig. 4.  Creation of a connection by neuron 1 in two steps. First, 

neuron 1 places a target point on the substrate depending on the 

distance d and angle θ parameters. Secondly, the closest neuron to 

the target point gets connected to neuron 1. The type of connection 

(input or output) depends on the parameter type and the synaptic 

strength (weight) is encoded by the parameter w. 

θ 
  1 

2 
d 

  1 

2 
w 

Target point 

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:34 from IEEE Xplore.  Restrictions apply. 



 

 

 

A clone of a neuron has its y parameter set to - y and all the 

connection parameters θ set to - θ. Therefore, the clone of a 

neuron is horizontally symmetric and its connections are also 

symmetric (Figs. 5 & 6). The neural growth is still performed 

in two steps by reading the genome twice. First, all the 

neurons (and their possible symmetrical clones) are created 

in the 2D substrate by reading all the N genes. Secondly, all 

the connections are created by reading all the C genes. 

C. Enforced Symmetry: ENF_SYM 

This developmental model is almost the same as 

NO_SYM. The only difference is the systematic creation of 

a symmetrical clone for every neuron. Every time a neuron is 

added to the substrate by executing the genome, a 

symmetrical clone is also created, as in EVO_SYM (Figs. 5 

& 6). But compared to EVO_SYM, ENF_SYM does not 

encode the possible symmetry in the genome. The creation of 

symmetrical neurons is an automatic process always 

occurring during the first step of the development of the 

neural network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. EXPERIMENTS 

We performed two series of tests. First, we evolved 

simulated agents that stay in a fixed chemical concentration. 

We then evolved agents to stay inside a moving 

concentration. In each series, we performed seven GA runs 

for each developmental model in order to study the 

importance of symmetry in neural development.  

For the first series of tests, each agent had two runs of 200 

seconds and started from different locations (left and right of 

the fixed chemical concentration). The fitness function was 

very simple and consisted of the sum of the inverse distances 

between the agent and the centre of the concentration during 

the last 50s of a run. The fitness of an agent was the sum of 

the fitness values recorded for the two runs.  

For the second series of tests, we evolved agents able to 

stay within a moving concentration. One agent and one 

chemical source were placed in a toroidal world. Compared 

to the first series, the time of a run was longer (300s). During 

a run, an agent was always placed at the same place with a 

random angle of initial movement and the chemical 

concentration was placed randomly in the world. The 

concentration was then set moving randomly in the 

environment. The fitness function was also different and 

started to be calculated only when the agent was touching the 

concentration (recording time was initialized at this point). 

The fitness is the sum of the inverse distances, divided by the 

recording time. We used a resolution of 1ms (1 time step) for 

every simulations. 

A. Genetic Algorithm 

We used a classical genetic algorithm (Fig. 7) to evolve an 

agent that could perform chemotaxis. The initial population 

was composed of 100 agents. Each one of them was 

equipped with four motor neurons and two sensors 

composing the initial neural network (Fig. 2). Initially, they 

all had a genome composed of one module encoding one 

neuron, placed in the middle of the substrate, and one initial 

connection, having parameters randomly initialized. 

Therefore, the genome of these agents had one module 

composed of one N gene and one C gene. Then, each agent 

was subject to mutations (see Section IV.B). After mutations, 

these agents were placed in the initial population and the GA 

could begin. Once all the agents were evaluated, the agents 

were ranked by fitness and the ten fittest ones were copied to 

the next generation. Ninety new individuals were created and 

added to the next generation‘s population by selecting two 

parents for each, using a tournament selection of size 5. A 

new individual was created by cross-over of the two parents 

(see Section IV.B.). Out of these 90 new agents, twenty were 

mutated. The genetic algorithm lasted for 1000 generations. 

B. Genetic Operators 

The use of the following genetic operators allowed 

complexification of the genome by adding, modifying or 

removing new genes. 
 

Mutation - In our model, mutations occur with the same 

probability independently of the size of the genome. Twenty 

agents were randomly chosen from the 90 new agents created 

by the tournament selection and mutated. Three kinds of 

mutations were used in this GA. A mutation could add or 

delete neurons, add or delete connections and modify the 

values of the parameters of the genes. Each mutation was 

performed within a certain range of values added to the 

Fig. 5.  At the top, the 2D substrate of an agent with the initial 

neural network and one intermediate neuron (in red) having two 

connections is shown. At the bottom, the symmetrical clone has 

been added. 

Fig. 6.  Drawing showing the coordinates and the angle of the 

connections of the intermediate neuron (bottom) and its 

symmetrical clone (top). 
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original ones (Tables 2 & 3), and these parameters were 

maintained within certain values defined earlier (Table 1). 

For example, if the value of the parameter x of a N gene was 

49, and a mutation tried to add 5 to x (x = 54), x would be set 

to its maximum value 50 due to the range of values used. 

Here is the simple algorithm of the mutation process: 

For all twenty agents: 

I. Mutate each module: 

1. 5% chances to add a new connection. 

2. 5% chances to remove a randomly selected 

connection. 

3. Choose randomly one of the following mutations: 

• Pick randomly one connection, choose randomly 

one parameter and mutate it. 

• Add a random value to parameter x of a N gene. 

• Add a random value to parameter y of a N gene. 

II. 5% chance to add a new module (new neuron).  

III. 5% chance to remove a randomly selected module 

(neuron and connections). 

When a new module is added to the genome, the new 

neuron always has one randomly initialized connection. The 

new neuron is placed randomly in the vicinity of the last 

neuron created on the substrate (last encoded in the genome). 

A new connection added is also always randomly initialized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cross-over - Neural selection is applied here by crossing-

over modules at the same position. By doing so, each neuron 

should be able to specialize more quickly during evolution. 

Here is an example: 

Two agents A1 and A2 are selected to create a new agent 

A3. The maximum number of modules a new agent can have 

depends on its parents. In this case, agent A1 has five 

modules and A2 has three of them. Therefore, the new agent 

A3 will have at maximum five modules (i.e. five neurons). 

The crossover process will make five selections of modules 

and at each selection, there is an equal chance of selecting 

the agent A1 or A2. Therefore, each module of the same 

position has 50% chances to be selected and copied. If at the 

fourth selection, for example, the chosen agent is A2, which 

does not have any more modules at this position, nothing will 

be added to the genome of agent A3 at this stage. But another 

module can be copied from A1 if this one is chosen during 

the fifth selection, and this module, originally from position 

5, will become a module of position 4 of agent A3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. RESULTS 

In the first series of tests, we evolved agents to stay inside 

a chemical concentration as close as possible from its center 

(Fig. 3). We found that the GAs implementing the 

developmental models using symmetry (EVO_SYM, 

ENF_SYM) evolved good neural networks so the agent went 

in and stayed close to the centre of the concentration. We 

saw that in all the seven GAs, EVO_SYM evolved a neural 

network with symmetrical neurons. In fact, the neural 

controllers evolved with EVO_SYM or ENF_SYM were 

very similar. NO_SYM did not manage to evolve an optimal 

solution as the others and had an overall pretty bad 

performance. Therefore, the first series of tests showed us 

that without evolvable or enforced symmetry, the system 

could not evolve and find an optimal solution. In Fig. 8, we 

can see the neural controller of the fittest agents evolved 

using NO_SYM. We can clearly see that it is not bilaterally 

symmetric and in fact, the agent implementing it performed 

rather badly. Fig. 9 shows the neural network of the fittest 

agent evolved using EVO_SYM. This agent was performing 

well and used both sensors and motor neurons. It used only 

two symmetrical neurons where only one neuron was 

encoded in the genome. Neuron N1 is taking an input from 

TABLE 2  

RANGES OF MUTATIONS USED FOR THE PARAMETERS OF THE GENES 

Parameters Ranges of mutation 

x [-5;5] 

y [-5;5] 

sym (only for EVO_SYM) true / false 

θ [-π/4;π/4] 

d [-2;2] 

w [-5;5] 

type afferent / efferent 

 

GA starting with a population of 100 agents 

100 

Run every agents and 

record fitness values 

100 

10 fittest 

Use tournament 

selection for 

reproduction 

elitism 

90 

Apply 

mutations 

Fig.  7.  Genetic algorithm with parameters. The population is 

composed of 100 agents. For the first experiment, each agent had two 

runs of 200 seconds starting from different places (left and right of 

the chemical concentration). In the second experiment, each agent 

had only one run of 300s. For both experiments, the fitness rewarded 

an agent that stayed inside the chemical gradient. Once all the agents 

were evaluated, the agents were ranked by fitness and the ten fittest 

ones were copied to the next generation. Ninety new individuals were 

created and added to the next generation‘s population by selecting 

two parents for each, using a tournament selection of size five. A 

new individual was created by cross-over of the two parents (see 

Section IV.B.). Out of these 90 new agents, twenty were mutated. 

The genetic algorithm lasted for 1000 generations. We ran the GA 

for 1000 generations. 
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the sensor S0 and is stimulating M0 and M3 and is inhibiting 

M1 allowing the agent to turn quickly. N1 also has an 

excitatory self connection. Neuron N2 has the same 

symmetrical connections. We also noticed that both neurons 

are inhibiting each other. This neural network can be seen as 

an advanced Braitenberg vehicle [38]. The trajectory of this 

agent is shown in Fig. 3.  

 

 
 

 

 

 

 
 

 

 

 

In the second series of test, we saw again that the 

developmental models using bilateral symmetry generated 

better neural controllers than NO_SYM (Fig. 11). Once 

more, EVO_SYM always evolved a neural network with 

symmetrical neurons in all the seven GAs. Fig. 10 and Table 

3 show the neural controller of the fittest agent evolved using 

EVO_SYM. Neuron N1 is taking an inhibitory input from 

sensor S0 and an excitatory input from S1. It is stimulating 

M2 and is inhibiting N4 allowing the agent to turn more 

quickly as N4 stimulates M0. Neuron N2 is symmetrical to 

N1 so it has the same symmetrical connections. We also 

noticed that both neurons are inhibiting each other. Neuron 

N3 takes input from the sensor S1 and stimulates the motor 

neurons M1 and M2 so the agent can turn quickly. Neuron 

N4 is symmetrical to N3 so it has the same symmetrical 

connections. We notice that two other symmetrical neurons 

(N5 and N6) and a non symmetrical neuron (N7) exist but 

they do not modify the overall neural activity of the 

controller. This shows that symmetrical neurons (N1 and N2) 

can also have asymmetrical connections. N5, 6 and 7 can be 

seen as evolutionary artefacts that could become useful in 

time or disappear. This neural network has more complexity 

that the one shown in Fig. 9. The main differences between 

the two are the two layers of neurons and inhibitory 

connections coming from the sensors. We also noted that 

neurons N3 and N4 created more than one connection to the 

motor neurons. We suppose that it is due to the limit values 

the weights can have [-15; 15] (see Table 1). Therefore, we 

can see that the system can easily adapt to circumvent certain 

constraints.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3 

WEIGHT MATRIX OF THE NN FROM FIG. 9 SHOWING THE CONNECTIONS 

LINKING CELLS (TOP ROW) TO OTHER CELLS (LEFT COLUMN)  

Cells S0 S1 N1 N2 N3 N4 N7 

M0    15  15  

M1     6, 15   

M2   15  15   

M3      6, 15  

N1 -6 9  4, -15    

N2 9 -6 -15    4 

N3  6  -10    

N4 6  -10     

N7       -8 

 

Fig. 10.  Neural network of the fittest agent using EVO_SYM evolved to 

stay in a moving concentration. Motor neurons are depicted in red, 

sensory neurons in green and intermediate neurons in black. 

 

M0 M1 

M2 M3 

S0 

S1 

N2 

N1 

Fig. 9.  Neural network of the fittest agent using EVO_SYM evolved 

to stay in a fixed concentration. Motor neurons are depicted in red, 

sensory neurons in green and intermediate neurons in black. 

Fig. 8.  Neural network of the fittest agent using NO_SYM evolved to 

stay in a fixed concentration. Motor neurons are depicted in red, 

sensory neurons in green and intermediate neurons in black. 

 

M0 M1 

M2 M3 

S0 

S1 

M0 M1 

M2 M3 

S0 

S1 

N1 

N2 

N7 

N5 

N3 

N4 

N6 

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:34 from IEEE Xplore.  Restrictions apply. 



 

 

 

 

 

VI. DISCUSSION 

In this paper, we have shown that bilateral symmetric 

neural networks can be evolved using a genetic algorithm 

and our developmental models, and have better 

performances than non-symmetrical ones. Perhaps this is not 

surprising. Firstly, the agent has bilaterally placed sensors 

and actuators. Secondly, the task of chemotaxis also has 

implicit symmetry: a chemical to the left triggers a turn to the 

left and symmetrically, a chemical to the right triggers a turn 

to the right.  

Complexification, targeting and neural selection are 

important concepts in our model. We use a 2D neural 

substrate where spiking neurons are placed and can grow 

connections to target locations. Therefore, the geometric 

configurations of the neural network significantly matter. 

Since we use spiking neurons with conduction delays, 

distances separating connected neurons encode time delays 

between the points in time spikes are sent by a neuron, and 

the time they are received by another neuron. A neural 

network generated by our developmental models can encode 

information not only using firing rate encoding but also using 

temporal coincidence or delay encoding [34, 35, 39]. 

Evolution can therefore generate neural networks able to 

encode external information as spatio-temporal patterns. 

More detailed analysis of the activity of the different neural 

networks that evolved will be done in the future to see which 

neural encodings were really used.  

We have noticed from our results that sometimes more 

than one connection linking two cells was created. This is 

due to the limits of the weights used, showing that the system 

can easily adapt to certain limiting constraints. We have seen 

that connections between symmetrical parts of the neural 

 

 

 

controller could be connected and inhibitory connections of 

symmetrical neurons were often evolved. Also, neural 

controllers grown with NO_SYM could have symmetrical 

neurons, but did so with an extremely low probability.  

We have to emphasize the fact that the initial neural 

network, placed on the substrate, is bilaterally symmetrical. 

Most physical robots are also bilaterally symmetric, and 

therefore, we assume that mapping sensors and motors to 

sensory and motor neurons on the neural substrate could be 

done in a direct manner when implementing our model on a 

simulated and real robot. In this case, it biased evolution to 

find an appropriate solution that uses this embedded 

symmetry.  It would be very interesting to see if bilateral 

symmetry would still arise and be beneficial when evolving 

the morphology of the agent as well as the neural substrate. 

Cells could migrate on the substrate and differentiate to 

become sensors, neurons and motor neurons.  

Many modifications of this model can be done. For 

example, adding the possibility to encode the threshold of a 

neuron or different axes of symmetry in the genome. Other 

developmental models could have been created where only 

one gene could have created symmetrical neurons for the 

entire neural network. However, we decided to use 

EVO_SYM to permit the creation of both symmetrical and 

asymmetrical parts, and therefore to increase complexity. 

VII. CONCLUSION 

In this paper, we have presented three novel 

developmental models allowing information to be encoded in 

space and time using spiking neurons placed on a 2D 

substrate. In two of these models, we introduce neural 

development that could use bilateral symmetry. We showed 

Fig. 11.  Fitness mean values over seven GA runs of fittest agents per generation. The agents were evolved to perform chemotaxis with a moving 

target. This graph shows that the use of bilateral symmetry (EVO_SYM and ENF_SYM) created neural controllers performing considerably better 

than without symmetry (NO_SYM). 
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that these models created neural controllers that permit 

agents to perform chemotaxis, and do so better than 

controllers with no symmetry. We also have showed that 

with EVO_SYM, neural bilateral symmetry was often 

evolved and was found to be beneficial for the agents. This 

work is the first, as far as we know, to present developmental 

models where spiking neurons were generated in a 2D space 

and where bilateral symmetry could be evolved and was 

proved to be beneficial in this context. 

In future work, we will use incremental evolution to 

generate agents that can perform more than one task. Our 

long term interest is to study the emergence of chemical 

communication in a population of artificial agents. 
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