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Abstract

For autonomous agents (children, animals or robots), exploratory learning is essential as it allows them
to take advantage of their past experiences in order to improve their reactions in any situation similar to
a situation already experimented. We have already exposed in Blanchard and Cañamero (2005) how a
robot can learn which situations it should memorize and try to reach, but we expose here architectures
allowing the robot to take initiatives and explore new situations by itself. However, exploring is a risky
behavior and we propose to moderate this behavior using novelty and context based on observations
of animals’ behaviors. After having implemented and tested these architectures, we present a very
interesting emergent behavior which is low-level imitation modulated by context.

1 Introduction

For autonomous agents (children, animals or robots),
exploratory learning is essential as it allows them to
take advantage of their past experiences in order to
improve their reactions in any situation similar to a
situation already experimented.
In previous work (see Blanchard and Cañamero

(2005)), we developed a biologically inspired archi-
tecture to make a robot learn which perceptions it
should try to reach in order to maximize its com-
fort (i.e. minimize the distance of internal variables
to ideal values). These perceptions (called desired
perceptions) are memorized either because of pleas-
antness or familiarity associated with them. They
correspond to the zones of comfort in the sense of
Likhachev and Arkin (2000). The balance between
the importance of the familiarity and the pleasantness
has beenmanaged using different time scales selected
in function of the level of comfort of the robot. The
resulting behavior is interesting in robotics as it al-
lows an autonomous robot to learn which perception
it should try to reach, but it is also interesting in bi-
ology because it models the imprinting phenomenon,
a behavior the ethologist Konrad Lorenz first noticed
in the 1930’s: He showed that animals, like geese,
automatically follow the first thing they see (usually
the mother). This behavior seems very important in
animals’ life, and Bateson and Martin (2000) show

the phenomenon is not as simple as it seems to be;
animals can adapt themselves and modify the thing
they follow depending on their experiences (pleasant-
ness or familiarity). Our previous architecture mod-
eled this behavior as well.

However, if we do not interact with the robot, the
robot does not have any opportunity to experience any
new situation and will try to reach the most familiar
and pleasant perception it had, which is the one it al-
ways had and therefore it will not move. This is a
problem as it prevents the robot from learning any-
thing in a static environment and it does not model
behaviors observed in nature, as animals are always
looking for novelty (Panksepp (1999)). Moreover,
throughout evolution the young of many species still
devote a great deal of time and energy to play de-
spite the risks (e.g. injury, meeting predators, energy
expenditure). Therefore play must have important bi-
ological functions in influencing the rate of survival
and ultimately, success in later reproduction (Power
(2000)). We see play as a way of exploring but there
are some other possibilities to encounter new situ-
ations such as moving randomly or imitating other
agents; in any case the difficulty is to learn without
taking too many risks. We are therefore interested
to build architectures biologically inspired allowing a
robot to take initiatives to explore in the right context
and look for novelty. In the Oxford dictionary, nov-
elty is defined as “a new or unfamiliar thing or expe-
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rience” and our working definition is a non predicted
sensation where sensation corresponds to the input of
the sensors.

We see the fact that exploratory behaviors are more
likely to occur in a familiar context (Dunn (1977);
Likhachev and Arkin (2000)) and that we automati-
cally imitate more often the persons with whom we
have stronger affective bonds (Hatfield et al. (1994))
as a way of balancing learning and risk of explo-
ration depending on the environment. Therefore, in
this paper we propose models for a new approach of
development where exploration and imitation depend
on affect. In the Oxford dictionary, affect is defined
as “emotion or desire, especially as influencing be-
havior or action” where emotion is an “instinctive or
intuitive feeling as distinguished from reasoning or
knowledge”. Our working definition is that affect
is an immediate or instinctive evaluation of a situa-
tion (positiveness or negativeness) without direct or
logic explanation. We can evaluate affect using for
example the proximity of the agent (child, animal
or robot) to an object of attachment (Likhachev and
Arkin (2000)) or to a desired perception which can
have been learned through the experience (Blanchard
and Cañamero (2005)). The purpose of this paper is
to propose a mechanism to select a kind of behavior
(exploration, exploitation or imitation) rather than a
specific action, as it is more often the case in action
selection architectures, in order to increase autonomy
in robots and to better understand the development of
children or animals.

In section 2, we present an architecture producing
an exploratory behavior with moderation of the nov-
elty. In section 3, we complete the architecture in
order to take the affect into account and modulate the
explorative behavior. Finally in section 4, we show
how this architecture produces low-level imitation de-
pending on the affect. All the architectures respect
our bottom-up approach: we try to make them as
simple as possible and we add progressively new el-
ements to make them satisfy or explain new features.
To represent the architectures, we use a standard rep-
resentation in engineering (SADT also called IDEF
Knowledge Based Systems (2004)) where each pro-
cess is represented by a box. The inputs of each pro-
cess come from the left, the parameters come from
the top, and the outputs exit from the right of each
box. Each box can be composed by many sub-boxes,
i.e. a process composed by many sub-processes. We
have implemented the architectures on a real robot
and we will present the data of one representative ex-
periment for each architecture.

2 Explorative behavior

2.1 Principle

In Blanchard and Cañamero (2005), our robot was
able to learn which perceptions are associated with
comfort, and was trying to reach these desired per-
ceptions. The problem was that if the experimenter
did not actively put the robot in new situations, the
robot would never experiment new perceptions. It
would stay motionless having the best perception it
knew, which is actually the only one it had expe-
rienced. However, studies (e.g. Panksepp (1999),
Power (2000)) show that novelty is a primary need in
animals motivating the animal to explore. The term
novelty can have different interpretations but we de-
fine and use novelty as the mismatch between the
actual sensation and the predicted sensation. Fig 1
describes how novelty is computed depending on a
static parameter defining the sensitivity of the match-
ing detector.

Figure 1: Representation of novelty.

Seeking novelty is not only a phenomenon ob-
served in animals, but it is also a feature essen-
tial in autonomous robotics. It allows robots to be
self-motivated to learn (Steels (2004); Kaplan and
Oudeyer (2004)) and experience different situations
even in a static world. Nevertheless, exploration and
seeking for novelty should not become the main be-
havior. First, it is hazardous, for a robot or an ani-
mal, to be in a situation totally new and totally un-
predictable. Secondly, in order to learn, animals and
robots need a progressive increase of novelty (Kaplan
and Oudeyer (2005); Oudeyer and Kaplan (2004)).
Therefore, we need a process to inhibit exploration
when there is too much novelty.
A simple way of implementing an explorative be-

havior is to set a primary need or deficit of nov-
elty raising a motivation to explore (which can be
satisfied by generating random actions, wandering
around, etc.) increasing with time. When something
unexpected happens, the motivation to explore is re-
set as the situation is not “boring” anymore (Fig 2).
The actions raised by the exploration’s motivation are
used to create a homeostatic control of the novelty.
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Figure 2: Representation of the exploration’s motiva-
tion.

2.2 Implementation
2.2.1 Architecture

In order to check wether our simple theoretical mod-
els are applicable in reality and provide the desired
behavior, we have implemented them in a real robot.
The robot is a Koala K-Team (2002), a six-wheeled
robot with long range distance sensors at its front. In
this implementation, the considered sensation of the
robot is its distance to a box at its front; its possible
action is to set its velocity. As the relationship be-
tween the velocity and the distance is not direct (the
velocity is proportional to the derivative of the dis-
tance), we use the sensation of velocity which is the
difference between the actual sensation of distance
(Sd) and the temporally smoothed sensation of dis-
tance (Sd). This simplifies our problem and it has
been shown that this pretreatment happens in biol-
ogy; for example in the retina, some neurons are ac-
tivated uniquely by the sensation of motion in the vi-
sual field. To temporally smooth values, we use equa-
tions like in (1) where the value to smooth is Sd and
the value of the parameter ε is comprised between 0
and 1; smaller it is, more important is the smoothing.
In our cases we use a value of 0.1 and we represent
each smoothed value by over-lining it.

Sd = Sd + ε.(Sd − Sd) (1)

To show the principle of our architecture, we need
some kind of predictor (P ) even if it is not accurate.
Therefore we use a very simple one which predicts
a null velocity at any time, this corresponds to what
happen most of the time (nothing moving). We com-
pute the novelty (n) by calculating the error (er) be-
tween the prediction of velocity (Pv) and the actual
sensation of velocity (Sv). The novelty is a value be-
tween 0 (no novelty at all) and 1 (maximum of nov-
elty) the speed of convergence to 1 depends on a pa-
rameter (s) representing the sensitivity of the robot
to unpredictable sensations. When the novelty is too
low, it will be raised by a movement forward of the

robot activated by the motivation to move forward for
exploration (Mf(e)). We present the implemented ar-
chitecture Fig 3 (next page) where non novelty (¬n)
equals one minus novelty (n) and e represents the ex-
ponential function. The output on the right of each
box is defined by the result of the equation inside
the box where inputs are the incoming arrows. It is
not represented in the figure, but before going to the
motors, the motivation to move forward is temporally
smoothed in order to avoid sharp movements.

2.2.2 Experiments

The aim is to make our robot explore by itself the dif-
ferent possible distances to a box. Therefore, we put
the robot at about 80 cm (maximal distance detection)
of a box, and we start it without doing anything else
(see Fig 4).

Figure 4: Setup of the experiment with the target box
on the left and the Koala robot on the right.

We present in Fig 5 the successive position of the
robot toward the box during three representative ex-
periments among ten similar for four different val-
ues of the sensitivity parameter (250, 500, 1000 and
2000). The range of values (Sd) given by the sensors
are varying from 50 when the box is at about 80 cm
from the robot to 1000 when the robot touches the
box.
It is interesting to notice that the robot has a be-

havior similar to those observed in animals’ approach
behavior. During the approach behavior, the robot
moves then stops, moves again and so on as an an-
imal would do. The robot’s behaviors would be even
more similar to animals’ behaviors if the predictor
were able to learn and do better and better predic-
tions; in this case, the robot would inhibit less and
less its explorative behavior, as it would have less and
less novelty (better prediction). It is the same with an
animal which becomes more and more confident with
habit (better prediction).
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Figure 3: Representation of the simple explorative behavior.
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Figure 5: Progression of the robot toward the box for
four values of sensitivity, (250, 500, 1000 and 2000)
for curves from top to bottom respectively.

3 Perseverance and retraction

3.1 Principle

Exploration is an advantage only if the robot is able
to exploit the discovered situations. It should con-
tinue explorative actions leading to positive results
(positive affect), and on the contrary avoid or even
cancel exploratory actions with negative results (neg-
ative affect). Therefore, we use an association be-
tween perception and action allowing the robot to en-
hance a new perception when the affect is positive or
on the contrary to reduce it when the affect is nega-
tive. In our case, this association is hard coded: for
example, an unexpected perception of the box com-
ing closer activates the command of moving forward
when affect is positive (to increase the new percep-
tion) and the command of moving backward when af-
fect is negative (to reduce this new perception). How-
ever this association could have been learned during a
“babbling” phase as it is done by Andry et al. (2003)
and Demiris and Dearden (2005).
The exact calculation of the value of affect is out of

the scope of this paper, we are interested here only on
its effect on behavior. As we said it can be correlated
with the proximity of the robot to a desired perception
as defined in Blanchard and Cañamero (2005) or the
proximity to an object of attachment in the sense of
Likhachev and Arkin (2000). The direct consequence
will be that the robot explores more easily when it is
close to a desired perception or an object of attach-
ment which corresponds to a familiar and positive sit-
uation. On the contrary, it will hesitate more or even
go back when it is in an unfamiliar and negative sit-
uation. We can see the principle of the architecture
Fig 6 (next page).

3.2 Implementation
3.2.1 Architecture

To implement this architecture on the robot, we add a
mechanism to the previous architecture which is able
to amplify or reduce (motivation to continue Mc) a
new perception through action (motivation to move
forward Mf ). This does not interfere with the ex-
ploratory behavior as the exploratory behavior is in-
hibited when there is novelty. Whereas, the behavior
amplifying or reducing a new perception is triggered
only when there is novelty and therefore, merging
the two signals consists of summing them together.
In our case, the sensori-motor association is imple-
mented by the fact that the value of the sensation of
velocity is sent to the motors’ command (Mf )through
a positive or negative amplification (Mc) depending
on the affect (af ). The implemented architecture is
represented Fig 7.

3.2.2 Experiments

We use exactly the same setup that in the section 2,
but with this new architecture and for different values
of affect. For all the experiments, we use an average
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Figure 6: Representation of the exploration behavior with perseverance and retraction.

Figure 7: Architecture of the robot providing perse-
verance and retraction.

value (500) of the sensitivity (s) defining the “charac-
ter” of the robot.

3.2.3 Results

The ideal values of affect are completely dependent
on the apparatus but in order to keep the system sta-
ble the absolute values have to be strictly inferior to
the quotient of the motors’ command (motivation to
move forward Mf ) by the sensation of velocity (Sv)
associated. It means that if the robot has usually a
sensation of velocity x when it sends a command y
to the motors, the absolute value of affect must be
strictly inferior to y

x
. If we do not respect this, the

movement of the robot will not converge, the robot
will either oscillate (when the affect is negative) or
moving faster and faster (when the affect is positive).
In our case, this maximum value is 0.0004 and we
present in Fig 8 (next page) the successive positions
of the robot for three values of affect (0, 0.0002 and
-0.0003).
When the affect is null we have exactly the same

behavior that with the exploration only architecture;
actually the parts that we have added are totally neu-
tralized. However, when the affect is positive we have
much smoother movements, the robot seems to go
more directly to the unknown situation—be close to

the box. This is due to the fact that positive affect re-
inforces the motivation of the robot to keep the first
initiated action. On the contrary with a negative af-
fect, the robot does not just stop when a perception is
new but it acts in order to avoid this new perception.
It moves forward, and then as soon as something hap-
pens, it does not only stop but moves backward, and
after a while moves a bit more forward and so on. We
see during the last fifteen seconds in Fig 9 the com-
parison between the positions of the robot when the
affect is negative (solid line) and when the affect is
null (dashed line). This behavior is very similar to
the one of an animal exploring a new space in a very
unfamiliar environment.
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Figure 9: Comparison of the approach of the robot
with negative affect in solid line (the robot is moving
back sometimes) and with null affect in dashed line.
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Figure 8: Approach of the robot toward a box (at 80 cm) for different values of affect (from left to right
respectively, 0, 0.0002 and -0.0003). We see on the top the successive positions of the robot, and on
the bottom the successive values of novelty.

4 Low-level imitation
In our previous experiments, we have shown how the
exploration process can be modulated by the affect.
The resulting behavior is really similar to the one ob-
served in animals during exploration in different con-
text (familiar or not). Moreover this simple architec-
ture is not only interesting to generate appropriate ex-
plorative behaviors but it produces as well low-level
imitation behavior depending on the type of affect.
The exploratory behavior and the imitative behav-
iors are not interfering and the robot autonomously
switches from one behavior to another one, mainly
depending on the fact that there is something inter-
acting or not.
When affect is positive and the experimenter

moves toward the robot, for example, he will gener-
ate novelty for the robot and, as the affect is positive,
the robot will try to increase the new perception and
therefore moves forward as well; if the experimenter
moves backward, the robot moves backward as well.
Therefore we produce low-level imitation depending
on our notion of affect, and not based on the prin-
ciple of correcting an error like Andry et al. (2003)
or Demiris and Dearden (2005). On the contrary, in
our case imitation results as a side effect the princi-
ple to increase an error (the error of prediction) which
can accelerate the learning as it contrasts the new per-
ceptions. However when affect is negative, the op-
posite happens, the robot avoids any new situation

and avoids the experimenter if he tries to approach
the robot. When the affect is null the robot does not
interact with the experimenter and moves only if it
misses novelty.

5 Conclusions and perspectives
We have presented here the basis of simple architec-
tures producing explorative and imitative behaviors
useful for learning. There are four main direct inter-
ests in this work:
1. It is based and provides solutions on commonly
accepted needs in autonomous agents, notably
exploration and research for novelty.

2. With simple biologically plausible functions, it
reproduces behaviors observed in nature, which
can give some clues about the operation of the
brain.

3. It allows us to build architectures managing an
appropriate level of novelty for constant learn-
ing.

4. Increasing the novelty when affect is positive
can accelerate learning as it contrasts the new
perceptions.

Some adaptations or additions could make this archi-
tecture more interesting. First, instead of using a sim-
ple static predictor as we did, a predictor able to learn

136



and to increase the prediction with time would make
the robot more and more confident, and make it ex-
plore progressively more and more. The exploration
which was simply moving ahead could be more so-
phisticated and proposes actions randomly, or even
better the actions which maximize the learning pro-
gression Kaplan and Oudeyer (2005).
In the future, we will develop imitation as an emer-

gent property depending on affect in order to allow
learning through imitation and for human-machine
interaction. Actually, the possibility of the robot to
initiate actions or imitations depending on its famil-
iarity with its partner can be useful for the develop-
ment of relationship between a user and a companion
robot. It will also give clues in the comprehension
of the turn taking behavior. We will also study how
an appropriate stimulation of the robot could be used
as a reward in itself and modify affective bonds like it
seems to be the case in men and animals. It is interest-
ing that a good interaction can improve the relation-
ship in order to have even more interaction. Finally,
more work should be done in order to go from low-
level imitation through more complex imitation such
as imitation of sequences.

Acknowledgments
We would like to thank Dr. Carol Britton for her feed-
back on a draft of this paper. Arnaud Blanchard is
funded by a research scholarship of the University of
Hertfordshire. This research is partly supported by
the EU Network of Excellence HUMAINE (FP6-IST-
2002-507422).

References
P. Andry, P. Gaussier, and J. Nadel. From sensori-
motor development to low-level imitation. In 2nd
Intl. Wksp. on Epigenetic Robotics, 2003.

P. Barron Bateson and P. Martin. Sensitive periods. In
Design for a Life : How Behavior and Personality
Develop, chapter 8. Simon and Schuster, 2000.
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