Show simple item record

dc.contributor.authorLones, John
dc.date.accessioned2017-04-07T09:37:47Z
dc.date.available2017-04-07T09:37:47Z
dc.date.issued2017-04-07
dc.identifier.urihttp://hdl.handle.net/2299/17859
dc.description.abstractIn autonomous robotics, there is still a trend to develop and tune controllers with highly explicit goals and environments in mind. However, this tuning means that these robotic models often lack the developmental and behavioral flexibility seen in biological organisms. The lack of flexibility in these controllers leaves the robot vulnerable to changes in environmental condition. Whereby any environmental change may lead to the behaviors of the robots becoming unsuitable or even dangerous. In this manuscript we look at a potential biologically plausible mechanism which may be used in robotic controllers in order to allow them to adapt to different environments. This mechanism consists of a hormone driven epigenetic mechanism which regulates a robot’s internal environment in relation to its current environmental conditions. As we will show in our early chapters, this epigenetic mechanism allows an autonomous robot to rapidly adapt to a range of different environmental conditions. This adaption is achieved without the need for any explicit knowledge of the environment. Allowing a single architecture to adapt to a range of challenges and develop unique behaviors. In later chapters however, we find that this mechanism not only allows for regulation of short term behavior, but also long development. Here we show how this system permits a robot to develop in a way that is suitable for its current environment. Further during this developmental process we notice similarities to infant development, along with acquisition of unplanned skills and abilities. The unplanned developments appears to leads to the emergence of unplanned potential cognitive abilities such as object permanence, which we assess using a range of different real world tests.en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEpigenenticen_US
dc.subjectAutonomous roboten_US
dc.subjectHormoneen_US
dc.subjectDevelopmental Plasticityen_US
dc.subjectDevelopmental roboticsen_US
dc.subjectNeural Networksen_US
dc.titleHormonal Modulation of Developmental Plasticity in an Epigenetic Roboten_US
dc.typeinfo:eu-repo/semantics/doctoralThesisen_US
dc.identifier.doi10.18745/th.17859
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhDen_US
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record