contributor author | Safaryan, Karen | |
contributor author | Maex, Reinoud | |
contributor author | Davey, Neil | |
contributor author | Adams, Roderick | |
contributor author | Steuber, Volker | |
date accessioned | 2017-05-17T15:11:20Z | |
date available | 2017-05-17T15:11:20Z | |
date issued | 2017-04-20 | |
identifier citation | Safaryan , K , Maex , R , Davey , N , Adams , R & Steuber , V 2017 , ' Nonspecific synaptic plasticity improves the recognition of sparse patterns degraded by local noise ' Scientific Reports , vol 7 , 46550 . DOI: 10.1038/srep46550 | en |
identifier issn | 2045-2322 | |
identifier other | PURE: 10871644 | |
identifier other | PURE UUID: b25f3335-5672-4f42-b812-b0986b52e7d1 | |
identifier other | Scopus: 85038830873 | |
identifier uri | http://hdl.handle.net/2299/18197 | |
description | Safaryan, K. et al. Nonspecific synaptic plasticity improves the recognition of sparse patterns degraded by local noise. Sci. Rep. 7, 46550; doi: 10.1038/srep46550 (2017). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ © The Author(s) 2017. | en |
description abstract | Many forms of synaptic plasticity require the local production of volatile or rapidly diffusing substances such as nitric oxide. The nonspecific plasticity these neuromodulators may induce at neighboring non-active synapses is thought to be detrimental for the specificity of memory storage. We show here that memory retrieval may benefit from this non-specific plasticity when the applied sparse binary input patterns are degraded by local noise. Simulations of a biophysically realistic model of a cerebellar Purkinje cell in a pattern recognition task show that, in the absence of noise, leakage of plasticity to adjacent synapses degrades the recognition of sparse static patterns. However, above a local noise level of 20 %, the model with nonspecific plasticity outperforms the standard, specific model. The gain in performance is greatest when the spatial distribution of noise in the input matches the range of diffusion-induced plasticity. Hence non-specific plasticity may offer a benefit in noisy environments or when the pressure to generalize is strong. | en |
format extent | 14 | en |
language iso | eng | |
relation ispartof | Scientific Reports | en |
rights | en | |
title | Nonspecific synaptic plasticity improves the recognition of sparse patterns degraded by local noise | en |
type | Article | en |
contributor institution | School of Computer Science | en |
contributor institution | Centre for Computer Science and Informatics Research | en |
identifier doi | http://dx.doi.org/10.1038/srep46550 | |
description version | publishersversion | en |
description status | Peer reviewed | en |
This item appears in the following Collection(s)
Your requested file is now available for download. You may start your download by selecting the following link: test