University of Hertfordshire

Density profile of dark matter haloes and galaxies in the Horizon-AGN simulation : the impact of AGN feedback

University of Hertfordshire Research Archive

Help | UH Research Archive

Show simple item record

contributor authorPeirani, S.
contributor authorDubois, Y.
contributor authorVolonteri, M.
contributor authorDevriendt, J.E.G.
contributor authorBundy, K.
contributor authorSilk, J.
contributor authorPichon, C.
contributor authorKaviraj, S.
contributor authorGavazzi, R.
contributor authorHabouzit, M.
date accessioned2017-12-04T17:43:09Z
date available2017-12-04T17:43:09Z
date issued2017-12-01
identifier citationPeirani , S , Dubois , Y , Volonteri , M , Devriendt , J E G , Bundy , K , Silk , J , Pichon , C , Kaviraj , S , Gavazzi , R & Habouzit , M 2017 , ' Density profile of dark matter haloes and galaxies in the Horizon-AGN simulation : the impact of AGN feedback ' Monthly Notices of the Royal Astronomical Society , vol 472 , no. 2 , stx2099 , pp. 2153-2169 . DOI: 10.1093/mnras/stx2099en
identifier issn0035-8711
identifier otherPURE: 12744850
identifier otherPURE UUID: 8e6f1e12-640f-4fa9-b72c-c3ba39273050
identifier otherArXiv: http://arxiv.org/abs/1611.09922v2
identifier urihttp://hdl.handle.net/2299/19587
descriptionThis article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. ©: 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.en
description abstractUsing a suite of three large cosmological hydrodynamical simulations, Horizon-AGN, Horizon-noAGN (no AGN feedback) and Horizon-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, H_AGN, H_noAGN and H_DM) significantly evolve with time. More specifically, at high redshift (z~5), the mean central density profiles of H_AGN and H_noAGN dark matter haloes tend to be much steeper than their H_DM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z~1.5, these mean halo density profiles in H_AGN have flattened, pummelled by powerful AGN activity ("quasar mode"): the integrated inner mass difference gaps with H_noAGN haloes have widened, and those with H_DM haloes have narrowed. Fast forward 9.5 billion years, down to z=0, and the trend reverses: H_AGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ("radio mode"), and the gaps in integrated central mass difference with H_noAGN and H_DM close and broaden respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations. As both dark matter and stellar inner density profiles respond quite sensitively to the presence of a central AGN, there is hope that future observational determinations of these quantities can be used constrain AGN feedback models.en
format extent17en
language isoeng
relation ispartofMonthly Notices of the Royal Astronomical Societyen
rightsen
subjectastro-ph.GAen
titleDensity profile of dark matter haloes and galaxies in the Horizon-AGN simulation : the impact of AGN feedbacken
typeArticleen
contributor institutionSchool of Physics, Astronomy and Mathematicsen
contributor institutionCentre for Astrophysics Researchen
identifier doihttp://dx.doi.org/10.1093/mnras/stx2099
description versionpublishersversionen
description statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record

Your requested file is now available for download. You may start your download by selecting the following link: test